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”Scrivi del notare sotto l’acqua e avrai il
volare dell’uccello in aria”

L. da Vinci (Codice Atlantico, f. 571ar)

.

”Molecola fluida girandola
in vortici trasparenti
seguendo percorsi assoluti
scansando detriti e barriere
di aria e ombra:
hai abraso il terreno
sfavillando in tragitti di luce,
mormorando nel mondo
la vita.
Or quindi qui ti lanci
dall’alto divenendo
imponente cascata
fragorosa di liquidi atomi
per poi più in là silenziarti ”

C. Monachesi
(Poesia per l’acqua - 7 maggio 2010)

.

”Dove corri acqua senza fine?
Lontano, lontano verso l’ignoto
Là dove terra e cielo si uniscono per
sempre!
Lontano, lontano verso l’ignoto
corre con te il mio destino!
Lontano, lontano
dove il vento, mio padre,
la nuvola, mia madre,
si confondono con l’infinito a trovar pace;
come il mio cuore che,
lontano , lontano verso l’ignoto
corre con te!
Ma dove... perché?
Lontano, lontano
verso l’ignoto
sempre con te!”

Eugenio Monti Colla
(LA LEGGENDA DI POCAHONTAS)

.
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A B S T R A C T

The proposed research focuses on a novel geometric approach to study Navier-
Stokes turbulence. In the last century, the study of turbulence has been ap-
proached following the great Kolmogorov’s physical insights on the inertial
energy cascade and, more recently by investigating the geometry of the state
space of the Navier-Stokes equations treated as a dynamical system. This novel
geometric approach arises from the evidence that what is observed in physical
space sometimes is not always suggestive of the hidden laws of physics of
the turbulent motion. Thus, looking at the turbulent dynamics in state space
may lead to a new understanding of the associated physical processes. In
particular, vortices in a channel flow change shape as they are transported
by the mean flow at the Taylor speed, or dynamical velocity. Removing the
translational (Toric) symmetry in state space reveals that the shape-changing
dynamics of vortices influences their own motion and it induces an additional
self-propulsion velocity, or geometric velocity. Thus, in strong turbulence, the
Taylor’s hypothesis (Taylor, 1938) of frozen vortices is not satisfied because the
geometric velocities can be significant. In my PhD work, I aim at revealing
the shape of turbulence in channel flows. In particular, I study how vortices
change shape as they are transported by the mean flow, and how these shape-
changing dynamics influence their own motion. This study yields the discovery
that the geometric velocity, induced by vortex shape changes, is the physical
manifestation of hidden wave-like dispersion properties of turbulence.

results

Symmetry reduction approaches provide a new way to understand the vortical
motion of turbulence in channel flow (Cvitanovic et al. (2005); Fedele et al.
(2015); Willis et al. (2013)). This depends on the inertia of the flow and on its
own shape-changing form over time. Because of the inertia of the flow, vortices
are transported at roughly the Taylor speed, the so-called dynamical velocity
Vdyn (Fedele et al. (2015)). If turbulent fluctuations are significant because
of vortex stretching and tilting, vortices change shape over time as they are
transported by the mean flow. Their shape-changing dynamics induces an
additional “self-propulsion velocity”, the so-called geometric velocity Vgeom
(Fedele et al. (2015)). Thus, in strong turbulence the Taylor’s hypothesis of
frozen vortices is not satisfied since the geometric velocity is not negligible over
the Kolmogorov’s inertial range.
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The Navier-Stokes (NS) equations for channel flows have translational
symmetry, i.e. if the fluid velocity u(x, t) and associated pressure p(x, t) fields
are solutions of the NS equations, so are the space-shifted u(x + `, t) and
p(x + `, t), where ` is any shift along the streamwise direction x. From a
dynamical system perspective, if symmetry is present, the velocity V of the
vortical motion can be uncoupled in to the sum of dynamical and geometric
components (Fedele et al. (2015))

V = Vdyn + Vgeom. (1)

Such uncoupling is clearly observed in state space, and symmetry can be
reduced or quotiented out to reveal the pure motion solely due to turbulence.
The desymmetrized state space reveals how i) vortices change shape over time
and how ii) their shape-changing influences their own motion. The Fourier
representation of the velocity field is

u(x, t) =
N∑
−N

zn(t)e
ik0nx (2)

and the truncated NS state space is CN = R2N, where N is the number of
Fourier modes. As N −→ ∞ the state space becomes of infinite dimensions.
We collect the Fourier modes zn in a vector z and the NS equations can be
rewritten as

ż = F(z), (3)

where F(z) is a nonlinear vector function of z. Translational symmetry in
physical space becomes a Toric symmetry (T-symmetry) in Fourier space, i.e.
if the set {zn} of Fourier modes is a solution of Eq. (3), so is {zn exp(ik0n`)},
for any shift `. The state space CN has the geometric structure of a fiber
bundle (see Fedele et al. (2015) and references therein). The bundle is made of a
base manifold B ∈ CN of dimensions R2N−1 and 1D fibers along the direction
of T-symmetry that attach at any point of B.

The T-symmetry can be reduced by devising a reduction map π that maps
trajectories or orbits z(t) of CN onto desymmetrized orbits ZD(t) of the base
manifold B. The map π is invariant under the T-symmetry and it can be
interpreted as a coordinate change transformation that allows for a map rep-
resentation of the abstract base manifold. There are infinite ways to represent
such manifold, i.e Mercatore projection, stereographic projections, etc. The
desymmetrized orbit ZD(t) depends only on the shape-changing dynamics
of vortices as in the motion of a jellyfish. Geometric and dynamical velocities
allow studying the motion of the vortical motion in the desymmetrized frame.
Figure 1b shows the mean velocity profile Vm of a turbulent channel flow at
Re = 3300 (Reτ = 180). The regime of turbulence is strong and the Taylor
hypothesis is not satisfied. The dynamical velocity Vdyn is estimated as if

iv



vortices were transported by and frozen in the flow. Vdyn underestimates the
observed mean velocity and the geometric component Vgeom, proportional to
Vm − Vgeom, is not negligible, indicating that the shape-changing of vortices
affects their own speed.

(a) Desymmetrization concepts

U[m/s]

y
 [

m
]

V
m

V
d

(b) Dynamic and geometric velocity

The group orbit of a trajectory z(t) is a sheet of the fiber bundle and it is
defined as {

G(z) = {Gα(z(t)) ∀ t}
Gα(z(t)) =

{
zn(t)e

inα, α ∈ [0 2π]
} (4)

Typical group orbits of CN, visualized in a 3D subspace are depicted in
figures 2. The simulated full trajectory or orbit z(t) (black line), the orbit in
the comoving frame (green line) and the desymmetrized orbit ZD(t) (blue line)
are also shown. The comoving frame trajectory is that seen from a frame that
moves with the dynamical velocity Vdyn. The desymmetrized trajectory is seen
from a frame that moves at the total speed V = Vdyn + Vgeom, sum of the
dynamical and geometrical velocities.

Figure 2: Group orbit of DNS turbulent channel flow
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This novel approach is applied to both the global dynamics in a channel
flow and to a reduced dynamics of few vortices followed in their motion along
the channel. In particular, the study of two vortices and their merging, from
which a third vortex arises, reveals the effect of the shape changing dynamics of
vortices to their own motion. Moreover, in the Kolmogorov’s inertial range, the
geometric velocity is induced by the vortex shape-changing dynamics, which
is the physical manifestation of an hidden wave-like of dispersion property of
turbulence. In particular,turbulent motion behaves as capillary-type in the wall
region of the channel and as of deep-water type waves in the centerline region.

conclusions

Symmetry reduction approaches are new ways to study the anatomy of the
vortical motion in channel flows. Because of the inertia of the flow, vortices
are transported at the Taylor speed, the so-called dynamical velocity (Fedele
et al., 2015). When the vortex shape changes over time, it induces an additional
self-propulsion velocity, the so-called geometric velocity (Fedele et al., 2015).
Thus, in strong turbulence the Taylor’s hypothesis of frozen vortices is not
satisfied since the geometric velocity is not negligible. At least, the physical
manifestation of an hidden wave-like dispersion property of turbulence is
noticed. The dispersion properties of turbulence is revealed using symmetry
reduction method and Boccotti’s quasi-determinant theory (Boccotti, 2008).

vi



C O N T E N T S

1 introduction to the thesis 1

1.1 Motivation and background 2

1.2 State of the art 8

1.3 Structure of the thesis 12

2 turbulent channel flow 15

2.1 The continuous problem and the physical parameters 16

2.1.1 Mean force balance 17

2.1.2 Shear stress and turbulent velocity profile 19

2.2 Numerical method 22

2.2.1 Govening equations 22

2.2.2 Solver algorithm 23

2.2.3 Computational domain and grid spacing 24

2.2.4 Initial and Boundary conditions 27

2.2.5 Numerical schemes 28

2.2.6 Numerical procedures 28

2.3 Results 30

2.3.1 Mean velocity profile 30

2.3.2 Turbulence intensities 32

2.3.3 Two-point correlation and spectra 35

2.3.4 Energy cascade 37

2.3.5 Dissipation rate ε 37

2.4 Conclusions 38

3 on the symmetry of planar vortices 41

3.1 Vortex as a Cat and a Dancer 41

3.2 Planar Vortices: Hamiltonian theory 45

3.2.1 Leapfrogging vortices 46

3.2.2 Planar vortices 51

3.3 Conclusion 54

4 symmetry reduction method 55

4.1 Introduction 55

4.2 Dynamical system governed by a PDE 56

4.2.1 Fourier space representation 56

4.2.2 The geometry of chaos 58

4.3 Dynamical system with symmetries: When does the symmetry
exist? 59

4.3.1 Dynamical system with Translation symmetries 60

4.4 Dynamical systems 63

4.4.1 Group orbit 63

vii



4.5 Projection methods 67

4.5.1 Property of the map Π 68

4.5.2 Stereographic projection 69

4.5.3 HOPF reduction 71

4.5.4 Fourier slice method 72

4.5.5 Complex projective space CPN 73

4.5.6 Translation complex projection TCPn 75

4.6 T-symmetry reduction 76

4.6.1 Geometric and dynamical phases and velocities decom-
position 80

4.7 Conclusion 85

5 symmetry reduction of turbulent channel flows 87

5.1 Introduction 87

5.2 Symmetry reduction of the channel flow: a global view 90

5.2.1 Overcoming the Taylor Hypothesis: the comoving frame. 90

5.2.2 Desymmetrization by slicing 92

5.2.3 Group orbits and desymmetrized trajectory 97

5.3 Inside the flow: Symmetry reduction of the tracked vortices 99

5.3.1 Metholody of tracking vortices 101

5.3.2 3 vortices 104

5.3.3 Vortices interaction 106

5.3.4 Symmetry reduction of tracked vortices 112

5.4 Conclusion 115

6 wave-like dispersion of turbulence 117

6.1 An analytic solution of wave packets 118

6.2 Wave-like dispersion of turbulence in channel flows 121

6.2.1 Dispersion feature of a Turbulent flow: from capillary to
deep-water gravity waves 122

6.2.2 Conclusions 125

7 conclusion and future perspectives 133

a appendix a : hamiltonian theory 137

b appendix b : proper orthogonal decomposition- pod 141

c appendix c : fourier fft in the space 143

d appendix d : scalar product of vectors in C 147

e appendix e : analytic determination of dynamical and

geometric phase velocity expressions 149

f appendix f : analytic determination of surface elevation

η(x, t) for a wave group with a gaussian spectrum 151

bibliography 152

viii



1
I N T R O D U C T I O N T O T H E T H E S I S

Under turbulence a dictionary says: ”strong sudden movements within air
or water” or ”violent or unsteady movement of air or water, or of some
other fluid” or ”a state of confusion without any order”, a state of conflict or
confusion”. These are some definitions of turbulence: starting from a physical
point of view, its meaning it is used in terms of social, psychological and
political conditions and behaviour. When one thinks about turbulence, his
mind goes towards something chaotic, uncontrollable and incomprehensible
and sometimes frightening. The contradiction lies in the fact that our daily life
is perennially surrounded by turbulent phenomena. There are many occasions
to observe turbulent conditions in our daily life as a smoke from a chimney,
water into a river or waterfall or the buffeting of a strong wind on leaves. In the
waterfall the flow is unsteady, irregular, seemingly random and chaotic and its
eddies and droplets motion seems to be unpredictable (Pope, 2001). In chimney
the smoke rises and increases in speed and its motion passes from ordered to
disordered and vortices follow each other making sometimes beautiful shapes.
To understand how much turbulence is present in our life, let’s consider that
the earth is covered for two thirds by water from the oceans and seas where
turbulence plays an important role in sea currents, wave motions and the wind
interaction in weather condition and ecosystems life (Lesieur, 2012). The wave
mode is extraordinarily complex due to the water interaction with the bottom
sea and winds. This is the case of extreme phenomena such as rogue waves, ”a
huge wave that appears from nowhere and disappears without a trace” (Fedele
et al., 2016), an open problem (Fedele et al., 2017), where turbulent airflow
over steep ocean wave may play an important role in its development. In
the emerged lands there are rivers and streams in which the water generates
swirling and chaotic motions in waterfalls, rapids and hydraulic jumps. Finally,
the earth’s surface is surrounded by the atmosphere where the circulation of
air masses takes place, which allows the exchange of heat between areas with
different temperatures and humidity. In clouds, updrafts, and intense cyclonic
phenomena, very well known to pilots and engineers, turbulence plays an
important role but it is often counteracted. Turbulence is widely present in
flora and fauna reigns. Flying birds benefit from turbulence (Mallon et al.,
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2 introduction to the thesis

2016). On the contrary, nocturnal raptor have wings whose shape is such as
to reduce as much as possible the turbulence in order to be less noisy and
hunt without being heard by their prey (Krishnan et al., 2020). Even animal-
induced turbulence in the ocean (Huntley and Zhou, 2004) or the effect of flow
turbulence on the swimming speed was deeply studied (Lupandin, 2005). These
considerations are necessary to understand that the presence of fluids in nature
is so wide that the study of fluid dynamics is fundamental and turbulence
plays a huge role. In other words, without turbulence the earth would not be
as we know it. Obviously, the study of turbulent flows encounters considerable
practical applications, some of which try, albeit in vain, to reduce it or at least
to control it. Aeronautical and mechanical engineering study turbulent flows
around the wings and that induce resistance, vibrations and noises causing
possible to the vehicle’s structures and its dynamic. In the ducts’ turbulence
causes friction and reduction of the flow rate and, in the case of engines, it
produces problems in combustion. All engineering applications lead to a
continuous deep study in turbulence having as their objective the prediction of
the effects and its control. From a strictly physical point of view, there is an
ever greater need to understand this physical phenomenon in order to have a
further explanation of the interconnected phenomena. The essential feature of
turbulent flow is that fluid velocity varies significantly and irregularly in space
and time and it allows the transport and the mix of fluid much more effectively
than a comparable laminar flow. Despite the considerable research conducted
on the origin and behavior of turbulence, still today there is no a clear and
complete understanding of its dynamics, which motivates the numerous studies
still existing and, in some way, also the research activity of the present thesis.

1.1 motivation and background

Turbulence is a challenging research topic which is sometimes at the origin
of serious fights within the scientific research community originated by the
extremely different points of view. All of them have in common the model
complexity based on the Navier-Stokes equation, as well as the inability to
solve the problem at all (Lesieur, 2012).
In the last century, the Navier-Stokes equations have been studied and explored
thanks to the great Kolmogorov’s physical insights on the inertial energy cas-
cade. However, turbulence is not still fully understood.
In the last decade, turbulence has been approached by studying the Navier-
Stokes equations applied to a chaotic dynamical system. Such novel approach
arises from the evidence that what happens or it is observed in physical space
sometimes is not significant to fully understand the hidden physics laws of the
turbulent motion. Thus, moving in the state space of the dynamical system
may lead to new understanding of the associated physical processes.
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The aim of my Ph.D. work consists in revealing the shape of turbulence of chan-
nel flows. This will be realized by looking at how vortices change their shape,
how they are transported by the mean flow, and how the shape deformation
dynamics influences their own motion.
The first studies on the dynamics of turbulence date back to the Renaissance.
All the hydraulic works, done up to then, were based entirely on a purely
experiential approach. Leonardo, an Italian inventor, artist and scientist, a man
of genius and universal talent, he was probably the first started to questioning
on turbulence. Leonardo was a good observer of nature and his passion became
almost an obsession. He was fascinated by the vortical and turbulent motions
not only of water, but on all systems governed by the same laws, as blood.
In the Codex Leicester he provided unprecedented depictions of vortices and
their infinite variability. With its devastating spiral dynamics, the vortex is an
expression of the irrepressible force of nature. Nothing can resist its destructive
action that continually changes the surface and the belly of the Earth (da Vinci,
2020). In figure 1.1b the famous ”Cascades of water” based on the Atlantic code
where the Reynolds decomposition and dispersion are clearly drawn: there
is a mean flow where fluid has a principal circular motion and fluctuations
move getting smaller and smaller (Wikipedia, 2020). In a stolen picture of
Leonardo (see figure 1.1c) called ’Leda and the swan’ (1505) is incredibly visible
in woman’s curly hair its perennial study and observation on nature in the
vortical motion. The first detailed description of wave motion and the effects
of their impact on the shores of the sea or on the banks of rivers was found in
the Leicester Code. Leonardo interpreted wave motions in terms of dynamic
motion. He analysed the impact of the wave on the shore with an exceptional
degree of detail, highlighting the back protrusions of the crest that collides with
the next wave dividing into two parts (see figure 1.1d)

Leonardo was also the first in using the term ’turbulence’ to describe the
swirling motion of a fluid, thus using it with its current scientific meaning.
In the Codex Atlanticus preserved at the Ambrosiana Library in Milan, reads
(Treccani, 2020):

”Doue la turbolenza dellacqua rigenera, doue la turbolenza dellacqua simantiene
plugho, doue la turbolenza dellacqua siposa”

”Where water turbulence is generated, where water turbulence lasts for a long
time, where water turbulence settles”

This demonstrates how Leonardo intuited some physical characteristics
of turbulence at the basis of modern theory, which begins with the works
of William T. Kelvin, Lewis F. Richardson and Andreij N. Kolmogorov and
governed by the Navier-Stokes equation. All available evidence suggests that
the phenomenon of turbulence is consistent with the Navier-Stokes equation
(Sreenivasan, 1999) or the Navier-Stokes equations contains all of the turbulence
information (Frisch, 1995). The Navier-Stokes equation are a set of partial
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(a) An apocalyptic deluge drawn (b) Waterfalls-Atlantic code

(c) Leda and the swan picture (d) Leicester Code

Figure 1.1: Leoanardo’s drowns

differential equations which describe the motion of viscous fluid substances.
In 1823, Claude-Louis Navier derived the equation of motion of a viscous
fluid by adding a friction term proportional to the velocity gradient to the
Euler equation. Navier’s work was later perfected by the Irish mathematician
and physicist George G. Stokes and, but less known, it was the results of the
cumulative work of heroes such as J.R. d’Alambert, L. Euler, A.L Cauchy, S.D
Poisson, J.C.B. Saint Venant (Sreenivasan, 1999). Despite it has been still 200

years and even if in some cases it can be solved using modern calculators, the
Navier-Stokes equation presents mathematical difficulties still to be solved and
little understood. Although the formulation of Navier-Stokes equations is quite
easy, their behavior is not. The main difficulty lies in being strongly non-linear
equations. A problem that remained a matter of debate for almost a century
was the meaning to be attributed to the adjectives irregular and chaotic, used
to describe in a qualitative way the turbulent motion of a fluid. It should be
noted that, on a conceptual level, the problem is made even more difficult and
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interesting. In a turbulent flow, it is possible to observe some well-defined
and regular structures, such as vortices, which are continuously formed and
destroyed. Turbulence is an irregular mixture of eddies of all sizes. It was
Reynolds (1883-1894) who declared a new beginning of the study of turbu-
lence. Studying pipe flow, he identified two different flow regimes, laminar
and turbulent and the criterion for the onset of turbulence in terms of the
nondimensional parameter that has his name: Reynolds number (Re = UL/ν).
The Reynolds decomposition was his new statistical method where he splinted
the fluid motion into mean and fluctuation parts. He understood also that
the nonlinear terms in the Navier-Stokes produce additional stresses called
Reynolds stresses (Sreenivasan, 1999). This approach highlights the so called
”closure problems ” in turbulence: ”if one generates from the Navier-Stokes
equations an auxiliary equation for a low-order moment such as the mean
value, that equation contains higher-order moments, so that, at any level in the
hierarchy of moments, there is always one unknown more than the available
equations” (Sreenivasan, 1999).
Although Reynolds addressed the problem, the merit goes to Keller and Fried-
mann who derived the general dynamic equations for two point velocity mo-
ments and showed that the equations for each moments also contain high
order moments. In order to solve the problem, the moment equations have
been closed by involving various statistical hypotheses. The most famous
are Boussinsew, Taylor, Prandtl and vomn Kármán who postulated relations
between turbulent stress and the gradient of mean velocity closing the equation.
Taylor (1935) introduced the concept of homogeneous and isotropic turbulence
that is statistically invariant under translation, rotations and reflections of coor-
dinates. He derived the equations for turbulent vorticity and started the use of
Fourier transform and spectral representation.
In reality, turbulence is not homogeneous and isotropic, so in 1941 Kolmogorov
(1941b) published his revolutionary postulated, known with the jargon as K41,in
which the ”small” scale of turbulence are universal even though ”large” scale
are specific to a given flow or class of flow with the same boundary condition
(Kolmogorov, 1941). In K41, Kolmogorov showed the energy spectral density
varies with the wave number k according with φ(k) = ckε2/3k−5/3 where ε is
the rate at which the energy is dissipated by the low end of the small scales
and ck is unknown but defined as an universal constant called Kolmogorov
constant. In K41 he explained the basic dynamic of coupling that is assumed
to be between scales of similar size and how the energy cascade (also studied
by Richardson) is injected in the large scales and it is dissipated in the small
scales. The key assumption is that < ε > is independent of viscosity and it is
the only relevant dynamical property of the flow. When it is combined with ν
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the kinematic viscosity of the fluid, the smallest length scale in the flow can be
calculated by dimensional analysis and it given by (Nelkin, 2000):

η = (ν3/ < ε >)1/4 ∼= LRe−3/4 (1.1)

Landau in 1944 showed the limits of Kolmogorov’s theory, demonstrating
the non universality. This was explained by the fact the turbulence flows are
intermittent ((Frisch, 1995)). In particular, turbulent flow shows active zones,
characterized by the concentration of vortices with high speeds, followed by
zones of inactivity where the flow has characteristics of laminarity. In this way
the turbulence turns out to be intermittent both considering the speed range,
but also taking into account the rate energy dissipation, the latter being linked
to speeds (Meringolo, 2009).
From the intermittent hypothesis, several interpretative models have been
proposed and also Kolmogorov himself in 1962 presented a modified version
of his original theory (Kolmogorov, 1962).
In 1960s Mandelbrot was the first to connect intermittence through fractal
patterns and in 1985 Parisi and Frisch developed the multi-fractal model. The
real revolution appeared with the introduction of the ”Chaos Theory”, as a new
approach to study the non liner system and thus turbulence with a deterministic
approach (Frisch, 1995).
The works of Henri Poincaré, David Ruelle, Edward Lorenz, of the Russian
school of Andreij N. Kolmogorov and his students Jacov G. Sinai and Vladimir
I. Arnold, led to a profound understanding of the concept of chaotic motion and
unpredictability, or irregularities and chaotic motions. Thanks to these works,
it has been possible to understand how a physical system, even if described
by absolutely deterministic laws, can behave in an apparently random and
unpredictable way, just like it happens in turbulence. It should be noted
that some of these concepts have found direct confirmation, stimulating the
interest of many researchers, thanks to the use of numerical simulations as
a new investigation tool, and in some cases an alternative, compared to the
theory-experiment dichotomy existing in scientific research. As explained by
Ruelle, turbulence at low Reynolds numbers corresponds to a mathematical
phenomenon observed in the study of solutions of differential equations

dx/dt = F(x). (1.2)

This is the equation describing a generic dynamical system. In many cases,
solutions have an asymptotic behaviour when t → ∞ and as a consequence,
the flow appears chaotic, “turbulent”, and the solutions depend in a sensitive
manner on initial condition (Ruelle, 1976). Lorenz was the first to interpret
turbulence by solutions of differential equations which appear chaotic with
sensitive dependence on the initial conditions. In particular, these chaotic
solutions belong to the attractor, the set of numerical values toward which the
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system tends to evolve, for a wide variety of starting conditions of the system.
System that gets close enough to the attractor remains close even if slightly
disturbed.
In the last thirty years, two different points of view on turbulence have been
carried out. The first, ’statistical’, tries to model the temporal evolution of the
average quantities of the flow. This follows the theories of Taylor and Kol-
mogorov, believing in the phenomenology of the energy cascade. The second,
’order from chaos’, considers turbulence from a purely deterministic point of
view, studying both the behavior of dynamical systems and the stability of the
flow under different circumstances. This community is also associated with
experimentalists who seek to identify coherent structures in turbulence (Lesieur,
2012) Much of the qualitative understandings and aspects of turbulence have
been acquired from Reynolds to the present day. These advances have been
useful in practice, although there are many obscure points in our understanding
of this phenomenon.
It has been remarked that viewing turbulence as one problem remains diffi-
cult. The large and different approaches, such as astrophysical, mechanical,
aeronautical, atmospheric physical and chemical engineering make difficult a
focused frontal attack and a unique solution (Sreenivasan, 1999). A real but
amazing representation of turbulence community and some of main approaches
(theoretical, experimental and numerical) are shown in figure 1.2.

Figure 1.2: ”Climbs of the peak of Navier-Stokes” Cartoon drawn of turbulence
community by Philippe Delache from (Frisch, 1995)
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1.2 state of the art

As previously stated, turbulence is a huge branch that has been studying for
more than 150 years and is still an open problem. My research starts from a nu-
merical procedure to turbulence thought the well-known problem of turbulent
channel flow using the statistical approach.
The incompressible and viscous channel flow is one of the main physical prob-
lems used for studying turbulence. While the laminar condition has a theoretic
solution, the turbulence one is still a physical open problem under investigation.
Since the study started, there have been numerous advances from an experi-
mental and numerical point of view thanks to the evolution of instruments and
methods of measurement and the increase of computing power.
The first studies were of an experimental nature. Nikuradse (1929) and Re-
ichardt (1938) were the first to investigate the fully developed turbulent channel
flow. Nikuradse’s measurements were centered on the mean flow,while Re-
ichardt was able to measure the fluctuations in streamwise and wall normal
directions. Laufer (1951) was the first to present detailed turbulence statistics.
Comte-Bellot(1963) added higher-order statistics such as two point correla-
tion, energy spectra, skewness and flatness factors. Clark (1968) documented
additional information in the region near the wall at high Reynolds num-
bers. Hussain and Reynolds conducted experiment at high Reynolds numbers
(Re = 13800− 33300) and for extremely long times, in order to reach, with
higher-order statistics, a fully developed turbulence. Eckelmann and Kreplin
(1974) were the first to give detailed information regarding turbulence struc-
tures near the wall. Despite the great efforts, there were discrepancy among
results may be due to the wide range of Reynolds numbers used and also the
technological difficulties in the experiment measures, in particular near the wall.
Now it is well know how Reynolds number affects the log law men velocity
profile.
For these reason numerical simulations became an important research tool
to investigate the physic of turbulence and there was an important effort to
develop this methods. Unlike the turbulence models as RANS and LES, in
direct numerical simulation (DNS) the Navier–Stokes equations are completely
solved. It allows to solve the whole range of temporal and spatial scales of
turbulence. However, the DNS is not applied to all turbulent cases caused by
its high computational cost but only to moderate Reynolds numbers. Accurate
DNS calculations of turbulent channel flow have been carried out by (Kim
et al. (1987), Lyons et al. (1991), Antonia et al. (1992), Kasagi et al. (1992),Rut-
ledge and Sleicher (1993), Moser et al. (1999),Abe et al. (2001), Iwamoto et al.
(2002),Del Alamo and Jiménez (2003),del Álamo et al. (2003), Tanahashi et al.
(2004),Iwamoto et al. (2005) ,Hoyas and Jiménez (2006), Hu et al. (2006),Alfonsi
and Primavera (2007),Lozano-Durán et al. (2012),Lozano-Durán and Jiménez
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(2014),Vreman and Kuerten (2014b), Bernardini et al. (2014), Lee and Moser
(2015) and Alfonsi et al. (2016))

Authors Method Years Reτ
(Kim et al., 1987) Spectral 1987 180

(Lyons et al., 1991) Spectral 1991 Reb = 2075− 2262

(Antonia et al., 1992) Spectral 1992 Reb = 3300− 21500

(Kasagi et al., 1992) Spectral 1992 150

(Rutledge and Sleicher, 1993) Spectral 1993 180-2800

(Moser et al., 1999) Spectral 1999 180,395,590

(Abe et al., 2001) Finite Difference 2001 180,395,640

(Iwamoto et al., 2002) Spectral 2002 110–650

(Del Alamo and Jiménez, 2003) Spectral 2003 180-550

(del Álamo et al., 2003) Spectral 2004 1900

(Tanahashi et al., 2004) Spectral-Finite Difference 2004 800

(Iwamoto et al., 2005) Spectral 2005 2320

(Hoyas and Jiménez, 2006) Spectral-Finite Difference 2006 2003

(Hu et al., 2006) Spectral 2006 1440

(Alfonsi and Primavera, 2007) Spectral-Finite Difference 2007 180

(Lozano-Durán et al., 2012) Spectral 2012

(Lozano-Durán and Jiménez, 2014) Spectral 2014 4200

(Vreman and Kuerten, 2014b) Spectral 2014 590

(Vreman and Kuerten, 2014a) Spectral 2014 180

(Bernardini et al., 2014) Finite Difference 2014 4000

(Lee and Moser, 2015) Spectral 2015 5200

(Alfonsi et al., 2016) Spectral 2016 200,400,600

Table 1.1: Overview of DNS Turbulent channel flow

The scientific community set exact Reynolds number, as function of friction-
velocity Uτ, Reτ = utauδ/ν, equal to some values 180, 395, 590, 640 in order to
have the same turbulent regime and to be able to compare their results. In
this study, the DNS simulation of turbulent channel flow is set at Reτ = 180,
that is the first regime of fully developed turbulence. In 1987 Kim, Moin and
Moser (Kim et al., 1987) performed the first DNS simulation at Reτ = 180

with pseudo-spectral code and in 1990 Moser, Kim and Mansour (Moser et al.,
1999) repeated the simulation with the same numerical method but with a
quite different computational domain (Kim, 2012). A recent comparison at
the same Reτ = 180 of DNS databases and new simulations was conducted
by (Abe et al. (2001), Vreman and Kuerten (2014a) and Alfonsi et al. (2016))
using spectral method. The present simulation were conducted with an open
source code, called OPEN-Foam, base on a finite volume method. Although
this methodology was not the best performing in terms of computational cost,
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it was used because it was the simplest and fastest available to obtain results
aimed to find a methodology for a new characterization of turbulence and
to test the DNS code for future applications. The core of this study was the
application of the symmetry-reduction method on the numerical results. It was
possible exploiting the symmetry of channel flow, called translational symmetry.
More in general, a symmetry is any discrete or continuous invariance group of
dynamical theory. Let G denote a group of transformation acting on space-time
function v(t, r), which are spatially periodic and divergenceless. In Navier-
Stokes equation G is said to be symmetry group if ,for all v solution of NS
equation, and all g ∈ G, the function gv is also a solution (Frisch, 1995). The
symmetries of NS equation are:

• Space-translation gtimeρ : t, r, v −→ t, r+ ρ, v, ρ ∈ R3

• Time-translation gtimeτ : t, r, v −→ t+ τ, r, v, τ ∈ R

• Galilean-translation gGalU : t, r, v −→ t, r+Ut, v+U U ∈ R3

• Parity P : t, r, v −→ t,−r,−v

• Rotations grotA : t, r, v −→ t,Ar,Av, A ∈ SO(R3)

• Scaling gscalλ : t, r, v −→ λ1−ht, λr, λhv, λ ∈ R+,h ∈ R

If space and time symmetries are obvious, the listed symmetry, except for
the scaling symmetry, are the macroscopic consequence of the basic symmetries
of Newton’s equation governing microscopic molecular motion in the classical
approach. The presence of symmetry and its removal represents a possibility
to discover an hide turbulence structure’s behavior. It is based on the chaos
theory approach. Chaos theory defines the non linear equation of Navier-Stokes
in state space as a infinite dimensional sets of exact solutions (attractors as
equilibrium points, stable and unstable periodic orbits), which form a rigid
skeleton that allows to describe and predict the motions of turbulent flows
(Cvitanovic et al., 2005) and (Cvitanović and Gibson, 2010). The incompressible
turbulence flows in pipe flow has been examined as chaotic dynamics in
the state space of a high-dimensional system at moderate Reynolds numbers
(Fedele et al., 2015) and it can be visualized as a sequence of close passages to
unstable periodic orbits typical of time-recurrent dynamical coherent structures
(Cvitanović and Gibson, 2010). In this approach turbulence is structured as a
effective random paths in state space through a collection of invariant (‘exact’)
solution of Navier-Stokes equations (Willis et al., 2013). In state space, the
turbulent trajectory travel around the equilibrium solution, periodic orbits,
passing from one saddle to another through their stable and unstable periodic
orbits (Fedele et al., 2015). The studies on the geometry of 2D Kolmogorov flow
(Chandler and Kerswell, 2013) revealed that the unstable periodic orbits are the
skeleton of the chaotic dynamic of turbulent flow. In channel flow the intrinsic



1.2 state of the art 11

continuous streamwise translational symmetry hides the periodic orbits that
have inside the characteristic of the flow structures. These structures travel
downstream with the Taylor’s velocity, a drift velocity, connected with the
streamwise translational simmetry (Fedele et al., 2015). Recently the geometry
of the state space of a pipe flow at moderate Re numbers was investigated by
the symmetry reduction through the method of slices (Siminos and Cvitanović
(2011) and Willis et al. (2013)). Furthermore (Budanur et al., 2015) applied the
first Fourier slice to a spatially extended system, such as channel or pipe flows.
These system are equivariant under continuous symmetry transformations
because each state of the flow have an infinite numbers of equivalent solutions
obtained from it by a translation or a rotation. This method permits to reveal the
shape-changing dynamic in a symmetry reduced space such as a base manifold
and one dimensional transverse fibers attached to it associated with the group
symmetry. The state space is the geometric representation of the non-linear
dynamical system as a high dimensional system in CN made by a fiber bundle,
where N are the degrees of freedom (DOFs) of the dynamical system. The
symmetry reduction decomposes the state space of the dynamical system in a
base manifold, the desymmetrized dynamics (not associated to the drift), and
transverse fibers attached to it along the symmetry associated to the drift (Hopf
(1931) and Marsden et al. (1990)). Furthermore, the symmetry reduction in state
space allows uncoupling vortical speed in a dynamic phase velocity component
Ud related to the symmetry and in the geometric phase velocity Ug induced
by the shape changing dynamics of the turbulence structures (Fedele et al.,
2015). In other studies at high Reynolds numbers, the associated Navier-Stokes
equations has been reduced to a set of coupled Korteweg-de Vries–type (KdV)
equations that support inviscid and smooth travelling waves. The weakly
nonlinear dynamics of small long-wave disturbances to the laminar state in
non-rotating axisymmetric Poiseuille pipe flows was studied (Fedele, 2012) to
localized travelling waves in form of toroidal vortices concentrated near the
pipe boundaries (wall vortexons) or that wrap around the pipe axis (centre
vortexons)(Fedele and Dutykh, 2013b). Such studies suggest that vortices of
the turbulent flow are analogous to ocean wave groups in the capillary to deep-
water gravity waves regime. Following their ”crest” motion is possible to figure
out their speed up and slow down related to the geometry and dynamical
phases c = Ug +Ud (Fedele, 2014). The motion of vortices (slow down and
speed up) and their interplay depend on the dispersion similar to the energy
exchange as the ocean waves. The novelty of this dissertation is represented by:

• Symmetry reduction method applied to DNS turbulent channel flow
simulation.

• Symmetry reduction approaches as new ways to study the anatomy of
the vortical motion. This depends on the inertia of the flow and on its
own shape-changing form over time.
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• Because of the inertia of the flow, vortices are transported at the Taylor
speed, the so-called dynamical velocity (Fedele et al., 2015)

• The shape-changing dynamics induces a “self propulsion velocity”, the
so-called geometric velocity (Fedele et al., 2015)

• In strong turbulence, the Taylor’s hypothesis (Taylor, 1938) of frozen
vortices is not satisfied since the geometric velocity is not negligible
(Fedele, 2014).

• In the Kolmogorov’s inertial range, the geometric velocity is induced by
the vortex shape-changing dynamics, which is the physical manifestation
of an hidden wave-like dispersion property of turbulence (Fedele, 2014).

• The Boccotti’s quasi-deterministic method (Boccotti, 2008) was applied
to vorticity field treated as a wave group in order to further demonstrate
the wave-like dispersion of turbulence. In particular, turbulent motion
behaves as capillary-type in channel’s wall region and as deep water
waves in channel’s centreline.

1.3 structure of the thesis

The research done in this dissertation is based on the cooperation activity
between University of Roma ’Sapienza’ and CNR-INM (ex INSEAN) and the
Georgia Institute of Technology (Atlanta - USA). The thesis has the same struc-
ture as the logic that was followed during the study: numerical simulations of
the turbulent channel, the study on the symmetry reduction of discrete vortices
as Hamiltonian systems, symmetry reduction theory and its application on tur-
bulent channel flow turbulence and the investigation on the wavelike behaviour
of turbulence. It is decomposed into three parts. In the first part, Chapter §2

presents a brief historical reference to the turbulent channel flow, the numerical
simulation results and comparisons with literature. It is necessary to remark
that the numerical simulation were used as an investigation tool to obtain
fluid dynamic data in order to study turbulence evolution thorough symmetry
reduction method.
The second part deals with the symmetry reduction method. In Chapter §3

the method is introduced studying the symmetry reduction concepts on a
simpler system of discrete planar vortices exploiting the Hamiltonian theory.
In Chapter §4, the deeply and general explanation of the symmetry reduction
method from geometric and mathematics point of view. In Chapter §5 the
results of the application of symmetry reduction on turbulent Channel flow
data: the translational symmetry is removed to the global field of vorticity,
demonstrating the Taylor’s hypothesis are non consistent with high turbulence
regime. Later a system of few vortices were tracked to go deeply inside the
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physics of turbulence and reveal the shape of turbulence.
The third part contains the wave theory and its application on vorticity field to
discover the dispersive wave-like property of turbulence. In Chapter §6 a wave
group of capillary wave and deep water wave was studied in order to under-
stand the different dispersive behaviours and associated to vortices through the
application of the quasi-deterministic theory: boundary layer vortices behave
as capillary wave while central channel vortices as deep water wave. Finally in
Chapter §7 the conclusion of that work and the future prospective to move on
in this scientific research of turbulence.
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2
T U R B U L E N T C H A N N E L F L O W

The turbulent channel flow problem has been studied intensively to increase
the understanding of the dynamic of wall-bounded turbulent flow. Unlike the
laminar channel in which the particles have smooth path and highly ordered, in
the turbulent channel they are characterized by velocity fluctuation and highly
disordered motion. The transition from laminar to turbulent flow does not occur
immediately; rather, it occurs over some region in which flow fluctuates between
laminar and turbulent motion before it becomes fully turbulent. The simple
geometry allowed to perform a first numerical simulation on turbulence; its
velocity and pressure data provided information to complement experiments in
the study of the physic of this chaotic dynamic system. Numerical simulations
are one of the way to approach turbulence flow investigation. Unlike the RANS
(Reynolds-Averaged Navier-Stokes) and LES (Large eddies simulation) method,
the direct approach of solving Naver-Stokes equations for turbulence flows,
called direct numerical simulation (DNS), is the most straightforward and
powerful research tool for investigating simple turbulent flows at moderate
Re. In the direct numerical simulation (DNS) the Navier–Stokes equations are
numerically solved without any turbulence models. This means that the whole
range of spatial and temporal scales of the turbulence are resolved. The objective
of this work is to perform the direct numerical simulation of the fully developed
channel flow at Re = 3300 using a open source code called OpenFoam. The
database obtained by such simulation is of considerable value for qualitative
and quantitative studies of the structures of turbulence and to design and
test the numerical code for future perspective for more complex flows. The
computed flow field was used in this study to carry out a new characterization
of turbulence. The obtained results were compared with the available numerical
and experimental data. Agreements as well as discrepancies will be presented
in detail. The formulation of the continuous problem and the computational
set-up, including physical and numerical parameters, computational domain
and initial and boundary condition are described in this chapter. Results and
comparison will be presented below.

15
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2.1 the continuous problem and the physical parameters

The developed turbulence in channel flow is a theoretical case consisting of a
flow passing through two infinite parallel planes, driven by a constant pressure
gradient. The scientific community decided to set the coordinated system
as shown in figure 2.1 Let the x-axis be in the direction of negative pressure

Figure 2.1: Coordinate system in channel

gradient coinciding with that of the mean flow i.e. the streamwise direction.
The y-axis is taken to be orthogonal to the walls, pointing from the lower
to the upper and it is named as wall-normal direction. Finally, the z-axis is
given so that (x,y,z) forms a orthonormal coordinate system and it is called
spanwise direction. Since the walls are considered as infinite size, the only
geometric parameter is the channel width, h or the distance between the two
plane, δ = h/2 is the channel half-width while the bottom and the top walls are
at y = 0 and y = h respectively. While in the experiments it is more difficult
to reproduce the infinite extension of the walls, in numerical simulations the
channel is artificially truncated in x and z direction, but the infinity is made
thanks to the periodic boundary conditions. Despite this, in both cases, the
effective dimensions of the channel have to be large enough to fit the largest
turbulent structures inside the domain. In this case, the simulations were
conducted using the same geometric dimensions as in Kim et al. (1987).

The physical parameters of the flow are the driving pressure gradient and
the kinematic viscosity of the fluid ν = µ/ρ(m2/s). The problem is well-
defined when these two parameters are given. The pressure gradient can be
imagined directly related to the power of a fan or a pump to maintain the
velocity constant in order to contrast the viscous effects. The dimensionless
quantity called Reynolds number Re = UL

ν , allows to defines the flow regimes:
increasing the Reynolds number, the flow passes from laminar to turbulent
regime. In the case of channel flow, an alternative to the pressure gradient,
easier to set, is the mean bulk velocity Ub

Ub =
1

h

∫h
0

< u(x,y, t) >xz dy (2.1)
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with < · > the average in x e z direction. The Reynolds bulk number is

Reb =
Ubh

ν
. (2.2)

The flow is laminar for Reb < 1350 and fully turbulent fro Reb > 1800 although
transitional effects are evident up to Reb = 3000. The kinematic viscosity ν
can be viewed as a viscous diffusivity of momentum and another characteristic
velocity scale is the wall friction velocity uτ defined as a function of the wall
shear stress τw and of the fluid density ρ:

uτ =

√
τw

ρ
(2.3)

and the friction Reynolds number is:

Reτ =
uτδ

ν
(2.4)

evaluated of the channel half-width. The case tested is at Reτ = 180 that
coincides to Reb = 3300.

2.1.1 Mean force balance

The fully developed channel flow is statistically stationary and one-dimensional,
with velocity statistics (mean value, Reynolds stress, mean square root) depend-
ing only on y. The Reynolds decomposition equations:

u = U(y) + u ′ v = V(y) + v ′ w =W(y) +w ′ (2.5)

allows to separate the mean velocity components U(y),V(y),W(y) from the
fluctuations u ′, v ′,w ′. The Reynolds-Averaged Navier-Stokes equations, in
tensor notation, result: {

∂Ui
∂xi

= 0

ρDUiDt = ∂
∂xi

(T ij − ρ(u
′
iu
′
j))

(2.6)

with
∂T ij

∂xj
= −

∂P

∂xi
+ µ

∂2Ui
∂xj∂xj

(2.7)

the internal forces and without the mass force contribution. Moreover, the flow
is statistically symmetric about the mid-plane y = δ that brings to W(y) = 0.
Since W(y) = 0 and U = U(y), the mean continuity equation reduces to:

dV(y)

dy
= 0 (2.8)
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and with the boundary condition at bottom wall V(0) = 0 yields V(y) = 0 so
that the boundary condition at the top wall V(2δ) = 0 is satisfied. The lateral
(y) mean-momentum equation reduces to:

0 = −
d

dy
(v ′2) −

1

ρ

∂P

∂y
(2.9)

which, with the boundary condition (v ′2)y=0 = 0, integrates to

v ′2 + P/ρ = pw(x)/ρ (2.10)

where pw is the mean pressure at the bottom wall. An important consequence
from this equation is that the mean streamwise pressure gradient is uniform
across the flow:

∂P

∂x
=
dpw

dx
(2.11)

Moreover, the streamwise mean-momentum equation is:

0 = ν
d2U

dy2
−
u ′v ′

dy
−
1

ρ

∂P

∂x
(2.12)

and can be written as:
dτ

dy
=
dpw

dx
(2.13)

where the total shear stress τ(y) is:

τ = ρν
dU

dy
− ρu ′v ′ (2.14)

As a consequence in this flow there is no mean acceleration, so the mean
momentum equation consists of a balance of forces: the axial normal stress
gradient and the cross-stream shear stress gradient. Since τ is a function only
of y and pw is a function only of x, both dτ/dy and dpw/dx are constant and
the solution of τ(y) and dpw/dx can be expressed in terms of the wall-shear
stress:

τw = τ(0) (2.15)

The shear stress τ(y) is anti-symmetric about the mid-plane. The solution
of the equation 2.13 is:

τw

δ
= −

dpw

dx
(2.16)

and
τ(y) = τw(1−

y

δ
) (2.17)

The flow is driven by the pressure gradient in x direction between the entrance
and the exit of the channel. It is needed to balance the shear stress gradient in y
direction given by the equation 2.17 So the flow is defined if ρ,νδ are specified
toghether with one between the pressure gradient dpw/dx, the mean velocity
U or the center-line velocity Ub (Pope, 2001).
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2.1.2 Shear stress and turbulent velocity profile

Consider the fluid entering in the channel with a uniform velocity. The no-slip
condition given by the presence of the walls causes the complete stop of the
layer of particles in contact with the wall. This causes the layers immediately
over to slow down gradually as a results of friction. To counterbalance this
velocity reduction the particle’s velocity in the mid-section of the channel has
to increase to keep the mass flow rate constant. The region of the flow in
which the effects of the viscous shearing forces are stronger is called boundary
layer. Hypothetically, the channel in the xy plane is divided in two regions:
the boundary layer region in which the viscous effects are significant and the
irrotational flow region where the viscous effects are negligible and the velocity
remains essentially constant in the streamwise direction. The thickness of
the boundary layer increases in the flow direction until it reaches the channel
mid-section and thus it fills the entire channel and the flow is said to be fully
developed. The velocity profile in the fully developed region is parabolic in
laminar flow and flatter in turbulence flow due to the eddies motion and more
vigorous mixing in the streamwise direction. Turbulent flow is characterized by
random and rapid fluctuations of swirling regions, called eddies. The intense
mixing of the fluid in turbulent flow is a result of rapid fluctuations which
enhance momentum transfer between fluid particles, increases the friction force
on the surface and thus the required pumping power. The friction reaches a
maximum when the flow becomes fully turbulent. The time-averaged velocity
profile remains unchanged when the flow is fully developed. The shear stress
τw is related to the slope of the velocity profile at the wall surface. If the
velocity profile remains unchanged also the wall shear stress remain constant
in that region. How turbulence affects the wall shear stress is one of the most
important aspects of the turbulent flows. The time average of fluctuations
is zero and its magnitude is usually just a few percent of U but the high
frequency of the eddies make it very important for the momentum transport
and for the pressure drop. The turbulent fluctuations increase the shear stress
τ. The total shear stress can be considered the sum of a laminar component
τlam = −µdU/dy, which accounts for the friction between layers in the flow
direction and a turbulent component that depends from the velocity fluctuation
τturb = −ρu ′v ′, also called Reynolds stress, In compact form it is:

τtot = τlam + τturb (2.18)

Many semi-empirical formulation, called turbulence model, has been developed
in order to model the Reynolds stress terms and to provide a mathematical
closure to the equations.
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One of the simplest model suggested by the mathematician J. Boussinesq is:

τturb = −ρu ′v ′ = µt
∂U

dy
(2.19)

where µt is called eddy viscosity and νt = µt/ρ the kinematic eddy viscos-
ity. While ν is the molecular diffusivity of momentum and it is a fluid property,
the eddy viscosity is not a fluid property and its value depends on flow con-
ditions: it decrease toward the wall and becomes zero at the wall but exceeds
several thousand times the value of ν in the core region. The velocity gradients
at the wall and the wall shear stress of turbulent flow are much larger than
laminar flow and they change the shape of the mean velocity profile. While
the mean velocity profile of laminar flow is parabolic and constant in space
and time and its expression is given by an exact solution, the fully developed
turbulent profile is flatter with a sharp drop near the channel wall. In fact the
turbulent boundary layer is thicker than the laminar one for the same value of
the free stream velocity.

Figure 2.2: Comparison between laminar and turbulent boundary layer shape

Turbulent boundary layer can be considered to be divided in four regions,
identified moving away from the wall :

• viscous sublayer

• buffer layer

• inertial sublayer

• outer layer

The viscous sublayer is the very thin layer next to the wall where the viscous
effects are dominant. In this region the velocity profile is quite linear and the
flow is laminar. Next to the viscous sublayer is the buffer layer in which the
turbulent effects becomes significant but the flow is still dominated by the
viscous effects. Above the buffer layer there is the transition layer called inertial
sublayer where the turbulent effects are much more relevant than before. Finally
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there is the outer layer where the turbulent effects are predominant over the
viscous effects. There is not an analytic expression for the thickness of the
boundary layer and for their extensions as exists for the laminar flow. Generally
the viscous sublayer is very small (generally 1% of the channel width) but it
plays a dominant role caused by the large velocity gradient. The latter remains
nearly constant in the viscous sublayer du/dy = u/y and the wall shear stress
can be expressed as

τw = µ
u

y
→ τw

ρ
=
νu

y
(2.20)

where the quantity τw
ρ is related to the friction velocity uτ =

√
τw
ρ and by

substituting it in the equation 2.20, the velocity profile in the viscous sublayer
is obtained in dimensionless form as:

u

uτ
=
νuτ

ν
(2.21)

that is also called the law of the wall. The thickness of the viscous sublayer is
found by the experimental data to be roughly:

y = δsublayer =
5ν

uτ
(2.22)

that results to be proportional to the kinematic viscosity and inversely propor-
tional to the friction velocity. As a results, the viscous sublayer gets thinner as
the velocity increases and consequently the velocity profile becomes nearly flat
and the velocity distribution becomes more uniform at high Re numbers.

The quantity ν/utau is called viscous length or wall unit and it is used to
nondimensionalize variables as distance and velocity:

y+ =
yuτ

ν
u+ =

u

uτ
(2.23)

The law of the wall becomes simply :

u+ = y+ (2.24)

In the overlap layer, dimensional analysis and experiments confirmed that
the velocity is proportional to the logarithm of the distance and the velocity
profile can be express by:

u

uτ
=
1

κ
ln
yuτ

ν
+B (2.25)

where κ and B are constants whose values are evaluated experimentally to be
about κ = 0.41, called Karman constant, and B = 5.2 and the logarithmic law is:

u+ = 2.5lny+ + 5.2 (2.26)
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with 1/κ = 2.5. As will be explained later, further studies have been carried out
and corrections have been made to this expression. However, comparisons with
DNS data of fully developed turbulent channel flows for 109 < Reτ < 2003

showed good agreement (Absi, 2009)

Figure 2.3: Universal velocity profile

For a first interpretation, the universal velocity profile, has two main regions:
the inner layer and the outer layer. The inner layer, in wall units, is composed
by the region very close to the wall in the viscous sublayer for 0 < y+ < 5, the
buffer layer for 5 < y+ < 30 and the logarithmic law in the inertial sublayer for
y+ > 30 . The outer layer is for y+ > 50 where the direct effects on the mean
velocity U are negligible and it is characterized by the velocity defect law as :

U0 −U

uτ
= F

(y
δ

)
(2.27)

that is the difference between the mean velocity U and the center-line value U0
and it is independent from the viscosity of the fluid.

2.2 numerical method

2.2.1 Govening equations

The NS equations fully describes the motions of fluid particles in the case of
turbulent channel flow. The well-know equations for an incompressible and
viscous flow are given by:
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∂u
∂t + (u · ∇)u = −∇pρ + ν∇2u + f

∇ · u = 0

+I.C

+B.C

(2.28)

where u is the velocity of the fluid, ρ the density, p is the pressure and ν the
viscosity. ”I.C” and ”B.C” are respectively the initial and boundary conditions
needed to close the mathematical problem. While the incompressibility of the
fluid is given by the continuity equation ∇ · u = 0, the momentum equation is
composed by the terms with the following meaning:

Inertia (per volume)︷ ︸︸ ︷
∂u
∂t︸︷︷︸

Acceleration

+ (u · ∇)u︸ ︷︷ ︸
Convection

︷ ︸︸ ︷
− ν∇2u︸ ︷︷ ︸

Diffusion

= −
∇p
ρ︸ ︷︷ ︸

Internal
source

+ f︸︷︷︸
External
source

(2.29)

System 2.28 is locally nonlinear. One of its peculiar characteristics is that of
constituting a hyperbolic / parabolic hybrid system. In fact, the first equation
for the conservation of mass is hyperbolic while the equations for the balance
of the amount of motion and energy conservation are parabolic in nature. It is
then said that the incompressible equations constitute an incomplete parabolic
system. In particular, the system is composed of 4 equations:

• one for the mass conservation

• three, for each directions, of the momentum equation

and 4 unknown: three components of velocity (u,v,w) and the pressure p. The
density of the fluid ρ is constant in space and time. As a direct consequence,
four initial and boundary conditions of velocity and pressure are necessary to
close the problem.

2.2.2 Solver algorithm

The DNS numerical simulations of turbulent channel flows were carried out
using OpenFOAM Open-source Field Operation And Manipulation”). It is a
C++ toolbox for the development of customized numerical solvers, and pre-
/post-processing utilities for the solution of continuum mechanics problems, in
particular computational fluid dynamics (CFD). It based on the finite volume
method. This method subdivides the flow domain into a finite number of
contiguous control volumes and uses the integral forms of the equation set
as a starting point. These equations are integrated and the result is a finite
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number of linear algebraic equations that can be solved using matrix methods.
The same code was used to perform LES simulations of turbulent channel
flow (by De Villiers (2006) and Mukha and Liefvendahl (2015)) at Retau = 395.
OpenFoam has not been used for DNS simulations of channel flows at Reτ =

180, although OpenFoam has been used to solve for other physical problems
on turbulence flows by DNS simulations ( (Zheng et al., 2019),(Komen et al.,
2014),(Zhang et al., 2015),(Vo et al., 2016), (Marocco and Franco, 2017)).
The solver used in the simulations exploits the PISO algorithm (Pressure-
Implicit with Splitting of Operators). It is an extension of the SIMPLE algorithm
used in computational fluid dynamics to solve the Navier-Stokes equations.
It was proposed in 1986 without iterations and with large time steps and a
lesser computing effort. PISO is a pressure-velocity calculation procedure
for the Navier-Stokes equations particularly adapted to steady-state problems.
The algorithm solves the discretized momentum equation, in accord with the
boundary condition, to compute an intermediate velocity field, and then it
carry out the mass fluxes at the cells faces. At this point it solves the pressure
equation and correct the mass fluxes at the cell faces. Using the new pressure
field it corrects the velocities and updates the boundary conditions. It repeats
the computing the mass fluxes for the prescribed number of times and if it
converges it increases the time step and repeats from the start (Ferziger et al.,
2002).

Figure 2.4: PISO algorithm’s flow chart

2.2.3 Computational domain and grid spacing

Two simulation were carried out at Reτ = 180 taking into account the simulation
of (Kim et al., 1987). The value of the parameters chosen for the simulations
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are listed in table 2.1 (Kim et al., 1987) defined the bulk mean velocity as a

ρ 1kg/m3

ν 2 ∗ 10−5m2/s
Reτ 180

Rem = Um2∗δ
ν 5600

Rec =
Ucδ
ν 3300

uτ 0.0036m/s
Um 0.0569m/s
∆t 0.15

Table 2.1: Parameters’ values

function of the channel width h as:

Um =
1

2

∫h
0

ud(
y

δ
) (2.30)

so the bulk Reynolds is Rem = Um2∗δ
ν = 5600 unlike Reynolds center-line, used

in literature, that is Rec = Ucδ
ν = 3300 function of the channel half-width. The

ratio between the mean center-line velocity to the mean bulk velocity Uc/Um =

1.16, in agreement with Dean’s correlation of Uc/Um = 1.28Re−0.0016
m = 1.16.

The dimensions of the computational domain is chosen to be in streamwise
and spanwise direction periodic and large enough to capture the larges eddies
in the flow 2.2

x y z
L Lx = 4πδ h = Ly = 2δ Lz = 2πδ

Table 2.2: Dimensions of computational domain

where the channel half-width δ = 1.
The geometrical simplicity of the channel allows to use a structured hex-

ahedral computational mesh. One of the goals of this part is based on the
understanding of the effects of the grid size and if the numerical code and
the methodology used are suitable for doing DNS simulations. Two different
computational meshes are used. The first was employed with the same grid of
(Kim et al., 1987) and a second with a finer mesh made of 13 million of points.
The result were compared in particular with (Kim et al. (1987) , Moser et al.
(1999), Abe et al. (2001)) that used a pseudo-spectral code in their simulation. It
means they needed a coarser mesh, thanks to a more accuracy of the spectral
codes, than finite volume code in order to have the same results. For this reason
the fist simulation (M1) was carried out with the same number of points while
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in the second (M2), the finest, the number of points was doubled in x and z
direction, the same directions where the spectral method acts. Presumably
there is a factor two of the convergence order between the spectral and finite
volume codes. However, the computation effort for the second mesh (M2) was
intense that it don’t permit to do a finer one with the computational power and
time available. The meshes were produced with an implemented Matlab code
that was able to pull out the mesh files written appropriately for OpenFoam.
The planned computationally intense simulations have been performed with
the Georgia Tech PACE-cluster (64 nodes). Both simulations were performed
decomposing the numerical domain and using parallel function. The mesh
characteristics are summarized in tables respectively for M1 2.3 and M2 2.4.

M1 x y z
N Nx = 192 Ny = 129 Nz = 160

C Cx = 191 Cy = 128 Cz = 159

∆ ∆x = 0.0658 - ∆z = 0.0395
∆+ ∆x+ = 11.84 - ∆z+ = 7.11

Table 2.3: Coarser Mesh M1 details

M2 x y z
N Nx = 383 Ny = 129 Nz = 319

C Cx = 382 Cy = 128 Cz = 318

∆ ∆x = 0.0329 - ∆z = 0.0198
∆+ ∆x+ = 5.922 - ∆z+ = 3.56

Table 2.4: Finer Mesh M2 details

Note that the dimensionless quantity marked by the superscript + were
calculated at first using the theoretical value of uτ whose value has been
confirmed during the simulations. In order to increase the resolution of the
turbulent structure and to reach a correct definition of the boundary layer,
because of the large gradient in the wall region, a non uniform grid was used
in the wall-normal direction, as (Kim et al., 1987), with the following law :

yj = cos θj = cos((j− 1)π/(N− 1)) (2.31)

where N is the number of points in y-direction and details of the finest grid
M2 (M1 has the values doubled) are listed in the table 2.5,

where yδ is the dimension of the cell at the channel centreline and y+δ the
unidimensional quantity.
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y1 y+1 yδ y+δ
0.0003134 0.05 0.05 7.11

Table 2.5: M2 details in y direction

2.2.4 Initial and boundary conditions

In order to reach faster the steady-state condition, the laminar parabolic profile
of velocity, given by the theoretical solution, was employed as a initial condition
of the velocity based on Rec = Ucδ

ν .
Moreover to advect the streamwise flow and counteract the viscous effects,

a function of OpenFOAM, called meanVelocityForce part of the fvOptions tool
is used. It introduces an additional external force term into the momentum
equation that drives the flow. The magnitude of the force is extracted by the
bulk velocity . At each time step, the volume averaged velocity is computed
and a correction of the momentum source is made in order to research the
desired mean velocity Ubar.

∑
i(
u
|u|
ui)Vi∑
i Vi

(2.32)

where the summation is over the cells that belong to the user-specified
domain, u is Ubar, ui is the velocity in the i-th cell and Vi is the volume of the
i-th cell. In particular the algorithm evaluates a pressure gradient increment
needed to adjust the average velocity and reach the user-specified value Ubar.
The value used as Ubar was the velocity based on Rem = Um2δ

ν . In order
to simulate a domain of the infinite size, in the streamwise and spanwise
directions periodic boundary conditions were applied for the velocity and the
pressure. The first connects the boundaries at x = 0 and x = Lx and the second
z = 0 and z = Lz. Otherwise the walls were treated with the Dirichlet type
(no-slip u = 0) boundary condition for the velocity and the Von Neumann type
(dPdn = 0) condition for the pressure .

Boundary conditions Type U p
x Periodic Periodicity Periodicity
y Wall No-slip dP

dn = 0

z Periodic Periodicity Periodicity

Table 2.6: Boundary conditions
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2.2.5 Numerical schemes

OpenFoam has a wide range of options for numerical schemes. It is allowed
by the setting of the numerical schemes for each terms of equations, such as
derivatives or laplacian, that are calculated during a simulation. In the present
simulations the numerical schemes used are listed in table 2.7. In particular,

Term Scheme Order
Time derivative ∂

∂t Cranck Nicolson 2◦
Gradient ∇ Gauss linear 2◦

Divergence ∇· Gauss Linear 2◦

Laplacian ∇2 Gauss linear 2◦

Table 2.7: Numerical schemes

CrankNicolson is a transient, second order implicit, bounded scheme. It
requires an off-centering coefficient Ψ chosen here equal to 0.9 because it is
used to bound/stabilize the scheme for practical engineering problems. The
Gauss entry specifies the standard finite volume discretization of Gaussian
integration which requires the interpolation of values from cell centers to face
centers. The linear entry, means linear interpolation or central difference and it
corresponds to a second order, unbounded scheme. The only drawback is the
absence of numerical schemes with a convergence order higher than three and
those with three are not recommended for their high numerical dissipation.

2.2.6 Numerical procedures

In order to reach faster the steady state of fully developed turbulence an ad-
ditional forcing terms was used to force turbulence. A new solver has been
created in which a random force Fz, periodic function of the mesh coordinates
and with random phases, has been added to the momentum equation act-
ing in the spanwise direction, visible in the figure 2.5. The equation of the
dimensionless forcing term is the following:

Fz = A ∗C(F1 + F2 ∗ F3)fx ∗ fy (2.33)
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and its terms are: 

F1 = cos(2Z+ θ1)

F2 = 0.1 cos(8Z+ θ2)

F3 = cos(X+ θ1)

fx = sin(X+ θ2)

fy =
(F3arg)

(1+F16arg)

Farg = 1.8 |Y − 1|A = U2bar/δ

(2.34)

where the X, Y,Z are the cell center coordinates divided by the channel
half-width δ, θ1 and θ2 are random phases. The amplitude of the forcing term
is of the order of Fz ∝ 103 dPdn = 0

Figure 2.5: Visualization of an instant time of the forcing term Fz acting in spanwise
direction

The simulation for each mesh size consisted of two phases. The first when
the force acts and accelerates the chaotic behaviour of fluid and the second
when the force is turned off. Both the simulations were carried out for 10
non-dimensional times t∗ with the force Fz turned on at time:

t∗ =
tuτ

δ
' 10 (2.35)

t =
t∗δ

uτ
' 3000s (2.36)
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In the second part the simulations were carried out for other t∗ = 10 (from
3000s to 6000s) that corresponds to 500 time steps with a write interval of 40

∆t.

2.3 results

The following results have been obtained, for both meshes, considering the last
3000s, i.e. 500 time steps in which the forcing term Fz is off. The simulation
results were compared with the numerical data of (Kim et al. (1987), Moser
et al. (1999), Vreman and Kuerten (2014a) and Abe et al. (2001)) and with the
experimetal data of Eckelmann (1974). In the following plots are shown the
data of the two simulations, the coarser(M1) and the finest (M2) compared with
literature’s results . It is useful to remember the coarser grid is the same used
by (Kim et al., 1987), while the finest has a number of points doubled in x- and
z-direction.

2.3.1 Mean velocity profile

Figure 2.6: Mean-velocity profile with the definition of the sub regions of the boundary
layer. The mean velocity profile of the finest mesh (RE180) is compared with numerical
results of Kim et al. (1987) and Vreman and Kuerten (2014a) and experimental results
of Eckelmann (1974). The Log-law was compared with that proposed by Luchini (2017).

The profile of the mean velocity non-dimensionalized by the wall-shear
velocity of the finest mesh is shown in figure2.6 with the division of the
three principal regions. In figure 2.7 there is a graphic convergence between
the results of the two grids and a comparison with the data of (Kim et al.
(1987), Moser et al. (1999), Vreman and Kuerten (2014a) and Eckelmann (1974)).
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Moreover, the results were compared also with the new research made by
(Luchini, 2017) that brought a correction on the turbulent velocity profile. As
mentioned in (Mathieu and Scott, 2000), the pressure gradient influences the
outer layer of the order of px = O(1), whereas the viscous layer is relatively
insensitive to perturbing effects. (Luchini, 2017) demonstrated that the mean
velocity profile is influenced by the presence of the pressure gradient px which
in turn depends on the geometry of the problem. This problem can be solved
adding a correction term in the log-law that depends on the pressure gradient
that makes the low-law universal. Starting from the von Kárman ′s constant
expression κ = uτ

yuy
, the correction with the pressure gradient leads to obtain:

uy

uτ
=
1

κ
−A1

px

τw
(2.37)

and, by integration, th velocity profile’s law becomes:

u+ = κ−1log(y+) +A1gRe
−1
τ y+B (2.38)

where A1 in a new universal constant, g = −δpx/τw is a geometric parameter
and δ the channel half-width. In the case of the turbulent channel flow κ = 0.392,
A1 = 1 and B = 4.48.
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Figure 2.7: Mean-velocity profile - Coarser mesh (M1) finest mesh (M2). Comparison
with numerical results of (Kim et al., 1987) and (Vreman and Kuerten, 2014a) and
experimental results of (Eckelmann, 1974). The Log-law was compared with that
proposed by(Luchini, 2017)

Looking at the figure 2.7 the simulations results agree much better with this
new log-law. It is evident also the difference between the traditional log-law and
the one proposed by (Luchini, 2017). Even if there isn’t a noticeable discrepancy
between the two grids, the finest one converges well with the reported results
of (Kim et al. (1987), Moser et al. (1999), Vreman and Kuerten (2014a) and
Eckelmann (1974) and Luchini (2017)). For the finer grid was plotted in figure
2.8 also the trend of the von-Kárman constant with this general expression :

κ = y+
du+

dy+
(2.39)
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Figure 2.8: Von karman costant. Comparison with (Abe et al., 2001) results.

The skin friction coefficient Cf is defined as:

Cf =
τw

1
2ρUm

= 8 ∗ 10−3 (2.40)

and the empirical correlation proposed by Dean (1978)

Cf = 0.073Re−0.25
m = 8.4 ∗ 10−3 (2.41)

evaluated with simulations results that are in good agreement with (Kim et al.,
1987) and (Abe et al., 2001).

2.3.2 Turbulence intensities

Turbulence intensities normalized by the wall-shear velocity are shown in
figure 2.9. There is a little discrepancy in the symmetry of the profiles about
the channel center-line probably given by not adequacy of the samples used for
the average. The general shape is in a good agreement with the results of (Kim
et al., 1987) where the finest grid matched quasi-completely.

Figure 2.10 shows the profile of root mean square pressure normalized by
the wall shear velocity prms/ρu2τ of the two simulations (M1) and (M2) together
with the (Kim et al., 1987) results. As mentioned by (Kim et al., 1987) their
results appear lower than experimental results compiled by (Willmarth, 1975)
(see figure 2.11) which show that the r.m.s wall pressure in turbulent boundary
layer varies between 2 and 3 as it can be seen in the figure 2.11.

It gives a good reason on the evident discrepancy between the present
numerical results and ones of (Kim et al., 1987) and moreover the values
increases passing from coarser to finest grid. The turbulence intensity I near
the wall, is shown in figure 2.12 normalized by the local mean velocity, as a
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Figure 2.9: Comparison root-mean-square velocity fluctuations normalized by the wall
shear velocity- In global coordinates. Compared with data of Kim et al. (1987)

Figure 2.10: Comparison of r.m.s. pressure fluctuation normalized by the wall shear
velocity.Compared with data of (Kim et al., 1987)

function of the non-dimensional wall distance y+. It was evaluated for the
finest grid M2 and for the three velocity components as:

Iu =
urms

u

Iv =
vrms

u

Iw =
wrms

u

(2.42)

where u is the local mean streamwise velocity as a function of the wall normal
direction y. For comparison, the the DNS numerical results of (Kim et al., 1987)
are shown in the same figure. It can be seen that there are weak discrepancies
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Figure 2.11: Variation of root-mean-square wall pressure with Reynolds number by
(Willmarth, 1975)
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Figure 2.12: Turbulence intensity Iu = urms/u near the wall normalized by the local
mean velocity. Evaluated on the finest mesh M2 and compared with the results of (Kim
et al., 1987)

in the near wall region in the turbulence intensity Iu (spanwise vorticity) and
Iv that decay moving away from the wall. It can be caused by the greater
resolution at the wall given by the pseudo-spectral code and grid used by (Kim
et al., 1987) . On the contrary, a better agreement is noticeable in the streamwise
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vorticity intensity Iw at the wall. The values of TI could suggest we are in weak
turbulence condition.

2.3.3 Two-point correlation and spectra

The two point correlations in x- and z-direction at a location y+ 5.88 are shown
in figure 2.13 and 2.14. One can see the fall off of the correlation to vanishing
values for large separations, demonstrating that the computational domain is
large enough. For comparison, the results of (Kim et al., 1987) are also shown
in the same figures.
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Figure 2.13: Two-point correlation of streamwise separations. Results of the two meshes
(M1) and (M2) (straight line) are compared with data of (Kim et al., 1987) (dotted line)
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Figure 2.14: Two-point correlation of spanwise separations. Results of the two meshes
(M1) and (M2) (straight line) are compared with data of (Kim et al., 1987) (dotted line)
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The one dimensional energy spectra in streamwise and spanwise direction
are respectively depicted in 2.15 and 2.16 as a function of the wave numbers
kx and kz. These quantity are necessary to understand the adequacy of the
computational domain since the energy density associated with the high wave
numbers is several decades lower that the energy density corresponding to
low wave numbers and the absent of energy pile-up at high wave numbers.
However, ”the drop off of the computed spectra of high wave numbers is
not sufficient evidence that the data are unaffected by the small scale motion
neglected in the computation. It is not clear what significant dynamical roles, if
any, these small scales would play if included in the computations” ((Kim et al.,
1987)).
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Figure 2.15: One dimensional energy spectra-Streamwise. Compared with data of (Kim
et al., 1987)

10
0

10
1

10
2

Kz [rad/m]

10
-4

10
-2

10
0

10
2

E
n

n

E
uu

(M1)

E
vv

(M1)

E
ww

(M1)

E
uuKMM

E
vvKMM

E
wwKMM

E
uu

(M2)

E
vv

(M2)

E
ww

(M2)

Figure 2.16: One dimensional energy spectra-Spanwise. Compared with data of (Kim
et al., 1987)
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The computed spectra have the same order of magnitude and the same
trend of (Kim et al., 1987) but there isn’t a total agreement. What is evident is
that the finest grid is able to collect the energy spectra at higher wave numbers.
It is presumably given by the capability of capturing smaller-scale than the
coarser grid that stops at the same wave numbers. The decay of energy occurred
in both the simulations,but with wave numbers higher than the KMM results.
Moreover the finer grid agrees much better with the results of KMM at low wave
numbers than the coarser one, indication that the doubling of the points was
correct to compare better the two different codes. Both the simulations show
also the oscillations at high wave numbers, that is more marked in the finer
grid probably due to the not fully achieved steady-state or by an anisotropy
produced by the forcing term that energize much more the small-scales.

2.3.4 Energy cascade

After demonstrating that the finest mesh converges better towards the compari-
son results, it is interesting to analyze the spectrum. In the turbulence theory,
the energy cascade is valuable from the energy spectrum evaluation. It plays
an important role to understand if the turbulence is fully developed because
it involves the transfer of energy from the large scales to the small scales in
the case of direct energy cascade. This transfer of turbulence kinetic energy is
typical of the non-linear dynamic of the Navier-Stokes equation. The energy
spectrum of turbulence is related to the mean turbulence kinetic energy as:

1

2
(u ′u ′) =

∫ inf

0

S(k)dk (2.43)

The energy spectrum, S(k), represents the contribution to turbulence kinetic
energy by wavenumbers from ktok+dk. The largest eddies have low wavenum-
ber, and the small eddies have high wavenumbers caused by their frequency.
Looking at the figure 2.17 of S(k)/Smax, the inertial sub-range, where the
transfer takes place, is well-visible with its trend S(k)−5/3. In the last part
of the spectrum, the dissipation section is visible where the turbulent kinetic
energy is dissipated by viscosity in the small scales range.

2.3.5 Dissipation rate ε

Since the diffusion goes as the Laplacian of velocity, the dissipation rate may
be evaluated in terms of the energy spectrum:

ε = 2ν

∫ inf

0

k2S(k)dk (2.44)

Looking at figures, 2.18 , 2.19 and 2.20, the dissipation ε in the three direc-
tions is compared with the results of (Vreman and Kuerten, 2014a). While in
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Figure 2.17: Energy cascade in the energy spectrum of turbulence of streamwise
velocity

streamwise and spanwise there is a total agreement, a discrepancy is present
in the wall normal direction. This may be due differences of the computa-
tional domain of (Vreman and Kuerten, 2014a). Their channel’s dimensions are
4π x 2 x 4/3π and in the wall normal direction has the doubled number
of points with a tangent hyperbolic function of the points stretching.

Figure 2.18: Component of the dissipation εu. Comparison with (Vreman and Kuerten,
2014a) results.

2.4 conclusions

Two numerical simulations of turbulent channel flow at Reτ = 180 were carried
out compared with results obtained by spectral codes that are more accurate
with the same grid. The comparison of the statistical quantities with the numer-
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Figure 2.19: Component of the dissipation εv. Comparison with (Vreman and Kuerten,
2014a) results.

Figure 2.20: Component of the dissipation εw. Comparison with (Vreman and Kuerten,
2014a) results.

ical and experimental results is satisfying. In order to increase the Reynolds
number this code will be probably prohibitive caused by computational efforts
for the available power.
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3
O N T H E S Y M M E T RY O F P L A N A R V O RT I C E S

To introduce the concept of symmetry reduction, two discrete systems of planar
(2D) inviscid vortices were taken into account, in particular i) leapfrogging
vortices (Péntek et al. (1995); Shashikanth and Marsden (2003)) and ii) rotating
planar vortices (Hernández-Garduño and Shashikanth, 2018). The Hamiltonian
structure of the vortex dynamic equations can be exploited to desymmetrize
the vortical motion. In fluid dynamics a vortex is a region where flow, or
somethings that behaves as a fluid, turns around an axis line or a point in the
case of spherical vortices. In nature is not so difficult to observe vortices, indeed
they surround us. Sink vortex, tropical cyclone, tornado or dust devil, wingtip
vortices of a airplane and whirlpools of the boat’s wake and smoke rings are
the most famous. Without being in conditions of turbulent flows, vortices are
present in the wake behind bodies: interesting the atmospheric vortices flow
past an island. Harder to see photon, electromagnetic and optical vortices as
the mega cyclone on Jupiter planet. Vortices can be found in plants and animal
reign in the form of plant’s leaf, in a shell shape or in the way animals behave
as schooling fishes or flock of birds.

Scientists recently discovered ring bubbles vortices of dolphins and belugas
as way to play together (Burghardt (2005), Delfour and Aulagnier (1997), Jones
and Kuczaj (2014)) and used to communicate each other (McCowan et al.
(2000),Marten et al. (1996), Moreno and Macgregor (2019)) and in this video.
Humpback whales use cylindrical ring of bubble-netting around the pray
hunted (Friedlaender et al., 2011).

3.1 vortex as a cat and a dancer

Two physical examples, falling down cat and rotating dancer, are presented to
introduce one of the main aspects of vortex motion, revealed by the symmetry
reduction. The falling down cat is a problem that has interested scientists since
the ancient times. Starting with R. Cartesio (1596-1650), it was studied by J.C.
Maxwell (1831-79) and Sir. G. Stokes (1819-1903) but it remained unsolved
since it was considered as a rigid body problem. A more rigorous study
was conducted in 1984 by L. Lecornu and Étienne-Jules Marey that applied

41

https://www.youtube.com/watch?v=ks3aQhEohTE
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Figure 3.1: Nature vortices

chronophotography to capture the cat’s descent on film (Marey, 1894). The two
physiologists G.G.J Rademaker and J.W.G. ter Braak in 1935 demonstrated that
the secrets of the cat’s reflexes consist of its capability of body deformation of
bending and twisting. These ’blend and twist’ give the cat the capability of
flipping by 180◦ (Gerritsen and Kuipers, 1979). In the 1960s astronauts were
trained to imitate the movements and twists of the cat in a vacuum.

While falling, the cat is safe because it can change its shape. But how do
this shape-changing and rotation help the cat? It is able to right itself, as it falls,
landing on its feet, irrespective of its initial orientation. The answer is in the
conservation of angular moment:

L(t) = I(t)ω(t) = 0 (3.1)

There are stages as in figure 3.5b:

• Fist stage: Folding up - Both parts are moving in opposite directions L = 0

• Second stage: Flips - Each half in opposite directions L = Lback +

Lfront = 0

• Third stage: Unfold — same reason as the first stage L = 0

There are no external moments but only the gravitation force applied on its
center of mass that doesn’t produce a moment and remain fix on the vertical
direction as show in figure 3.6 and in this video. As a direct consequence of the

https://youtu.be/xjLsmxfEQeY
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Figure 3.2: Nature vortices

Figure 3.3: Nature vortices
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Figure 3.4: Cetaceans vortices

(a) Falling Cat Marey’s images. (b) Astronauts training in cat falling down

Figure 3.5: Falling cat images. In 3.5a the image was captured by a chronophotographic
gun, a device of Marey’s own invention. It appeared in the journal Nature in 1894

(Marey, 1894)

conservation of the angular moment, inertial moments I(t), directly connected
with its shape, and rotation velocity needs to change in time.

This is the same physical problem of the a spinning ballet dancer, as in
figure 3.7, where the conservation of angular momentum, let him use his
shape changing to increase his rotational speed, counteracting the frictional
force. Thus, if the angular momentum is conserved, then the shape-changing
produces a motion of the cat or dancer. This also holds for discrete systems of
vortices.
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Figure 3.6: Cat falling down problem: decomposition of angular momentum L during
the motion

Figure 3.7: Spinning ballet dancer rotation

3.2 planar vortices : hamiltonian theory

The motion of a discrete set of planar vortices was revised. The present
study reveals the pure shape-changing motion of vortices by exploiting their
symmetry. Similarly to the motion of a jellyfish or swimmer, in absence of
inertia the motion of vortices is uniquely determined by their shape-changing
over time (Shapere and Wilczek, 1989). From a dynamical system perspective,
if a translational or rotational symmetry exists, it must be used to reveals the
self-induced vortical motion. In particular, the velocity V of each vortex is given
by the sum of dynamical and geometric components:

V = Vgeometric + Vdynamic (3.2)

In simple terms, the dynamic velocity is due to the inertia of vortices and to ex-
ternal forces. On the other hand, the added geometric velocity of a vortex is due
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Figure 3.8: Vortex ring (Van Dyke and Van, 1982)

to the shape-changing motion caused by the interaction with the non uniform
local flow ( e.g a second nearby vortex). As an application, a discrete system
of planar (2D) inviscid vortex rings is considered, in particular leapfrogging
vortices with null circulation (Péntek et al. (1995), Shashikanth and Marsden
(2003)) and rotating vortices having non-vanishing circulation (Hernández-
Garduño and Shashikanth, 2018).
The Hamiltonian structure of the vortex dynamic equations is used for a sym-
plectic reduction of the associated symmetries, thus revealing the hidden motion
induced by the shape-changing evolution of vortices. The kind of symmetry is
different for the two considered discrete system of vortex rings. In particular,
leapfrogging vortices have translational T(1) symmetry whereas the non-zero
circulation vortex system has rotational U(1) symmetry. The Hamiltonian struc-
ture of the vortex dynamic equations can be exploited to desymmetrize the
vortical motion as follows.

3.2.1 Leapfrogging vortices

The translational symmetry of leapfrogging vortices implies that if Ψ(x,y, t)
is the associated stream-function solution, so is Ψ(x+ L,y, t) for any L shift
along x. As a result, if (xk(t),yk(t)) is the coordinate position of the k-th point
vortex, another admissible position is (x(t) + L,y(t)). Each vortex ring consists
of a pair of contra-rotating point vortices with the same strength (figure 3.10a).
Thus, the total circulation

∑
Γk = 0, where Γk is the vortical strength of each

point vortex. In the absence of viscosity and external forces, an isolated vortex
ring just advects without changing its shape as shown in figure 3.8, which
depicts famous fluid dynamic photos of (Van Dyke and Van, 1982). However,
in case of leapfrogging vortices, each vortex motion is affected by the flow
induced by the presence of the other surrounding vortices. Assume the vortex
rings travel along the axis x as shown in figure 3.9.
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Figure 3.9: Leapfrogging vortices by (Van Dyke and Van, 1982)

The Hamiltonian of the system is:

H(xi,yi) =
1

4π

∑
i 6=j

ΓiΓjlog‖xi − xj‖ (3.3)

where the canonical variables (x1,y1, x2,y2) make a phase space in R4, and
the equations of motion follow as{

Γiẋi =
∂H
∂yi

Γiẏi = − ∂H∂xi ,
(3.4)

and i = 1, 2. See also Appendix A for a review of the Hamiltonian theory.
The two vortex rings alternatively leapfrogs each other, while advecting

downstream as shown in this video. Advection is caused by the flow generated
by each vortex (dynamical velocity) and that induced by the changing topology

https://youtu.be/uc6Au5ICviM
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of vortices, due to the mutual interaction with the other vortices (geometric
phase velocity).

(a) Geometry of Leapfrogging vor-
tices (b) Hyperplanes in phase space

Figure 3.10: Leapfrogging vortices representation

The Hamiltonian in equation 3.3 is invariant to rotations and then it gives
the following first integrals of motion:

L =
∑
k Γk‖xk‖2

Mx =
∑
k Γkxk

My =
∑
k Γkyk

(3.5)

expressing, the conservation of angular momentum L and linear momentum
M = (Mx,My) on the plane, where ‖xk‖ represent the magnitude of xk.
Conservation of momentum allows to remove one degree of freedom, reducing
the phase space R4 to R3. In particular,:

L =
∑
k Γk‖xk‖2 = 0

Mx =
∑
k Γkxk = 0

My =
∑
k Γkyk = 2Γ(y1 + y2) = cost

(3.6)

Since Γ1 = −Γ2, My = y1 + y2. New canonical variables can be defined as
follows. Consider the absolute ”centre-of-mass” coordinates{

x0 =
1
2(x1 + x2)

y0 =
1
2(y1 + y2),

(3.7)

and the relative (to the centre of mass) variables{
xr = x2 − x1

yr = y2 − y1.
(3.8)

The variable y0 is an invariant of the system because of the conservation of the
momentum My from Eq. 3.6. So, the degrees of freedom are now (x1, xr,yr)
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and the dynamics is in R3. Note that the triplet (x2, xr,yr) or (x0, xr,yr) is
a possible choice among others. Furthermore, the reduction of translational
symmetry is attained by choosing a reference system that moves together with
the first vortex. This further coordinate change permits to reduce the dimension
of the state space from R3 to R2 by selecting one of the hyper-planes (leaves)
in the full phase space shown in figure 3.10b and governed by the equation 3.7.
Using the ”jargon” of differential geometry, the 3-D space (x1, xr,yr) is the
”fiber bundle”: the reduced 2-D space (xr,yr) is called ”base manifold”, a plane
where the pure dynamics due to the shape-changing of vortices is projected
and 1-D space x1 makes ”fibers”, the geometric representation of the symmetry.
In simple terms, an observer moves together with the first vortex to watch
the relative interaction with the other vortex. The variables xr and yr are
canonically conjugate and the associated Hamiltonian is

H =
1

2
ln

(x2r + 4y
2
0)(4y

2
0 − y

2
r)

x2r + y
2
r

. (3.9)

Note that H depends neither on x1, x2, nor on x0. The horizontal velocity ẋ1
of the first vortex can be split in the sum of a dynamical velocity ẋd and a
geometrical velocity ẋg, that is

ẋ1 = ẋd + ẋg = ẋd + (ẋ1 − ẋd). (3.10)

There is no unique definition of the dynamical ẋd. In this case we choose
it as the velocity of the centroid of the vortex system. This form yields to a
symplectic definition of the geometric component ẋg, i.e. the area spanned by
the orbit of the dynamics on the shape manifold (xr,yr) as shown in figure 3.11

(See Shashikanth and Marsden (2003)). In particular, the dynamical phase
velocity

ẋd =
y1ẋ1 + y2ẋ2
y1 + y2

(3.11)

and from Eq. 3.10 the geometric phase velocity

ẋg = ẋ1 − ẋd = −
2y0 + yr

2

ẋr

2y0
, (3.12)

which simplifies to

ẋg = −
ẋr

2

(
1+

yr

2y0

)
. (3.13)

Then, the geometric phase xg associated with the orbit or path γ on the shape
manifold is

xg =

∫t
0

ẋgdt =
1

4y0

∮
γ

yrdxr = −
Areaγ

4y0
. (3.14)

Thus, the geometric phase is proportional to the area spanned by the orbit γ on
the shape manifold. Figure 3.11 depicts the contour levels of the Hamiltonian
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in the symplectic shape manifold (xr,yr). If γi are the elliptic orbits, or contour
levels of H, then the geometric phase associated with each orbit or configuration
is proportional to the area spanned by the same orbit.

Figure 3.11: Base manifold in the relative coordinates (xr,yr): contour levels of the
Hamiltonian function.

The motion of the leapfrogging vortices were simulated in MATLAB by
solving numerically the above mentioned equations. Two vortices are shown in
figure 3.12 and video in the lab frame, whereas in the desymmetrized frame
in the figure 3.13 and in the following videos. The symmetry was removed
placing the coordinate system once on the center of mass of the vortices system
in video n 1 and the other centered on a vortex in the video n 2 .

Figure 3.12: Two Leap Frogging vortices in Lab frame

In this video it is shown the motion of three leapfrogging vortices in the
desymmetrized frame. Each vortex is located at the corners of a deforming
triangle. The shape-changing of the vortices is given by the deformation of the
triangles.

https://www.youtube.com/watch?v=KK5rCLamwRc
https://www.youtube.com/watch?v=sUTCJ0Kr7go
https://www.youtube.com/watch?v=hKlgECeJzyc
https://www.youtube.com/watch?v=k4xCbcKt4-M&t=7s
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Figure 3.13: Two Leap Frogging vortices in desymmetrized frame

3.2.2 Planar vortices

Figure 3.14: Planar vortices scheme

Consider a planar system of N vortices that have the same value of circu-
lation Γk and

∑
Γk 6= 0. Vortices are located at the vertices of a polygon. In

absence of viscosity and external forces, an isolated (N = 1) vortex does not
advect. For N > 1 vortices, the velocity of each point vortex is induced by the
mutual flow generated by the other vortices. In simple terms, the vortex system
as a whole advects while rotating around the ’centre of mass’ of the vortices. To
see this, consider the associated Hamiltonian from Eq. (3.5) written in complex
form (Chorin et al. (1990)). Define the complex variable zα = xα + iyα and the
equations of motion of the N vortices follow as (Aref, 2007):{

żα = ∂H
∂zα

żα = − ∂H
∂zα

(3.15)

where ∂zα is the complex conjugate. Such dynamical system admits the so-
called U(1) symmetry associated with the conservation of angular momentum,



52 on the symmetry of planar vortices

i.e. if zα is a solution, so is zαeiθ for any phase θ. Vortices are free to rotate
around the ”center of mass” zc =

∑
Γk zk/

∑
Γk. A coordinate is made and

a reference system moving with zc chosen, z changed to z − zc. The U(1)
symmetry can be quotiented out by reducing the dynamics onto a complex
projective space CPn, where we can describe the pure shape-changing motion
of the vortices.

The motion ofN vortices can be understood geometrically in a complex state
space CN, which is isomorphic to R2N. Consider identical vortex strengths,
i.e. Γk = Γ for any k. Then, conservation of angular momentum constraints the
dynamical orbits on a complex N-sphere

|z1|
2 + |z2|

2 + .....|zN|
2 = 1, (3.16)

where zk = xk + ixk. For N = 2 the 2-sphere in R4 can be fibrated ala
Hopf (Hopf (1930), Hopf (1935)) as a 1-sphere (base manifold) of R3 and 1-
dimensional circular fibers attached to any point of base manifold, as shown in
Figure 3.15. Thus, a dynamical orbit can be decomposed into a desymmetrized
orbit on the base manifold and a drift along the fibers.

Figure 3.15: Schematization of complex projective space CPn

A reduction map π, that is invariant under U(1) symmetry, takes a full
orbit and reduces it onto the base manifold. This can be represented by a chart
shown in figure 3.15 made of the complex plane z1 = 1. Then, π takes the 1-D
fiber attached to a point P ′ of the sphere and reduce it to a point P1 on the
chart. The fiber is given by

z2 = λz1 (3.17)

where λ = eiα is the symmetry parameter that is:

(z1, z2)
π−→
(
1,
z2
z1

)
(3.18)

Varying the value of λ, all the points of the sphere and their attached fibers are
reduced on the complex plane and the symmetry is removed. In fact, points
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P ′ and P1 belongs to the same equivalent class made by the fibers. In physical
space, this is equivalent to choosing a reference frame moving on top of the
first vortex. For N > 2, the map Π generalized to:

(z1, z2...zN)
π−→
(
1,
z2
z1

...
zN
z1

)
(3.19)

As an application consider a system of 3 vortices (N = 3).

Figure 3.16: 3-vortex system

The left panel of figure 3.16 depicts the vortex system. Note that Liouville’s
theorem guarantees integrability of the N-vortex system problem for N 6 3

(Aref (2007)). The trajectory or orbit in the full phase space appears to drift as
it wanders around. Such drift is due to the U(1) symmetry. Once symmetry is
reduced, the desymmetrized orbit on the shape manifold has no drift and it
appears quasi-periodic as it wanders on a torus typical of Hamiltonian systems.
The left panel of the same figure 3.16 shows the dominant shape modes,
obtained by Proper Orthogonal Decomposition (POD), of the desymmetrized
vortex motion. It is an eigenvalue problem and it has been used to extract
mode shapes. A review of POD theory is in Appendix B. In this particular
case, POD reveals how the three vortices move with respect to each other in
physical space in accord with a revealed dance choreography. The polygon,
the triangle, connecting the point vortices deforms in time and they represents
three different POD modes. Moreover, an ’elastic energy’ can be associated with
those deformations. Such elastic motion on the base manifold is hidden by the
symmetry since it confuses together with the induced drift (rigid rotation) along
the fibers. Once symmetry is removed the ’elasticity’ of vortices is revealed.
The dynamical velocity can be defined as the velocity of the frozen vortices as
if the whole vorticity is concentrated in a fixed point. The same procedure was
applied on a system of 4-Vortex which dynamics in Lab Frame and Hopf-Stereo
Frame are shown in this video

https://www.youtube.com/watch?v=737EenPwyz0
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3.3 conclusion

Two different systems of planar vortices were studied in order to introduce and
understand the concepts at the base of the symmetry reduction method. The
simplicity of these discrete systems is in their Hamiltonian formulation that
permits to reduced the symmetry and reveals how vortices interaction and their
shape changing influence their motion.



4
S Y M M E T RY R E D U C T I O N M E T H O D

4.1 introduction

Figure 4.1: Schematization of a non linear dynamic system in Fourier domain

A turbulent channel flow can be seen as a generic chaotic dynamical system,
governed by the NS equations:{

∇ ·u = 0
∂u
∂t + (u · ∇)u = −∇pρ + µ∇2u+ f

(4.1)

The physical space is R3. In ”Chaos theory”, this nonlinear dynamic system
is studied in the ”state space representation”. It is a mathematical model of
a physical system as a set of input, output and state variables related to the
differential equations. The state space is an Euclidean space in which the
variables on the axes are the state variables while the state of the system is
represented as a vector within that space. State variables are variables whose
values evolve over time in a way that depends on the values they assume at any
given time and on the externally imposed values of input variables. Output
variables values depend on the values of the state variables. The reason why it
works in state space is that what happens in physical space sometimes is not
always suggestive of the hidden laws of physics of the turbulent motion. In
fact sometimes a dynamic system can seem chaotic in physical space while in

55
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reality it is a sum of exact solutions and its behaviour in state space follows
a periodic path called orbit. Indeed, ” Writing about turbulence is a bit like
writing about a ballet without seeing any” (Cvitanović and Gibson (2010)). It
also clear in this video, where an apparent chaotic flow, in state space appear
ordered following a periodic orbit. On the other hand, a symmetry reduction
method approach allows to visualize a chaotic dynamics in physical space as a
high-dimensional system in state space (Fedele et al., 2015) but with a more
”ordinate” structure. It is not easy to visualize and interpret it and, at first sight,
it can be seen as a ball of threads as shown in figure 4.1 .

4.2 dynamical system governed by a pde

To introduce the methodology, consider the 1D linear advection equation

∂u

∂t
+ c

∂u

∂x
= 0 (4.2)

with c = 1m/s. It is a partial differential equation (PDE) and it describes
a linear dynamical system. The solution is unique if initial conditions and
boundary conditions are defined unequally. The initial condition (IC) is a space
function f(x) and the boundary condition (BC) is periodic as in the following:

u(x, 0) = f(x) (4.3)

u(−L, t) = u(L, t) (4.4)

with L the length of the domain.

4.2.1 Fourier space representation

In order to move in state space, the general solution u(x, t) can be expressed in
the discrete Fourier domain through the discrete Fourier transform:

zn(t) =
1

L

L/2∑
−L/2

u(x, t)e−ik0nx (4.5)

Assuming u(x, t) as real function, its complex conjugate is:

zn(t) =
1

L

L/2∑
−L/2

u(x, t)e+ik0nx =
1

L

L/2∑
−L/2

u(x, t)e−ik0(−n)x = z−n (4.6)

http://chaosbook.org/tutorials/Movies/P68closepass.html
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with zn are Fourier modes, N the number of modes, n ∈ [−N,N], k0 = 2π
L the

smallest wave number and L the domain length. Doing the inverse Fourier
transformation, it’s possible to come back to the physical space:

u(x, t) =
N/2∑
−N/2

zn(t)e
ik0nx (4.7)

Applying the Fourier transform, the wave equation can be written as below:

N/2∑
−N/2

(
∂u

∂t
+
∂u

∂x
)e−ik0nx = 0 (4.8)

In order to obtain the equation written in Fourier domain, one of the methods
available consists of the scalar product method that assumes the meaning of a
projection on the Fourier space functions (see also Appendix C ) that is:〈(

∂u

∂t
+
∂u

∂x

)
, e−ik0mx

〉
= 0 (4.9)

with < · > denotes the scalar product where the 4.7 was taken in account〈 ∂

∂t

N/2∑
−N/2

zn(t)e
ik0nx +

∂

∂x

N/2∑
−N/2

zn(t)e
ik0nx

 , e−ik0mx
〉

= 0 (4.10)

Performing time and space derivatives steps:

〈 N/2∑
−N/2

żn(t)e
ik0nx +

N/2∑
−N/2

ik0nzn(t)e
ik0nx

 , e−ik0mx
〉

= 0 (4.11)

〈 N/2∑
−N/2

(żn(t) + ik0nzn(t)) e
ik0nx

 , e−ik0mx
〉

= 0 (4.12)

N/2∑
−N/2

〈
(żn(t) + ik0nzn(t)) e

ik0nx, e−ik0mx
〉
= 0 (4.13)

N/2∑
−N/2

(żn(t) + ik0nzn(t))
〈
eik0nx, e−ik0mx

〉
= 0 (4.14)

N/2∑
−N/2

(żn(t) + ik0nzn(t)) δnml = 0 ∀m (4.15)
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and the last equation is different than a trivial identity 0=0 only if n = m. The
wave equation in Fourier domain is expressed as:

żm(t) + ik0mzm(t) = 0 ∀m ∈ {−N/2 . . .N/2} (4.16)

where zm are Fourier coefficients in the complex C domain assembled in a
vector z(t):

z(t) =



z−N/2
z−N/2+1

...
z−2
z−1
z0
z1
z−2

...
zN/2



(4.17)

The dynamical equation can also be written more compactly as :

ż(t) = F(z) (4.18)

where F(z) is a linear function of z:
where the vector F(z):

F(t) =



F−N
F−N+1

...
F−2
F−1
F0
F1
F−2

...
FN



(4.19)

whose components Fm(z) = −ik0mzm

4.2.2 The geometry of chaos

From a visual interpretation, z(t) a trajectory, that moves in high-dimensional
complex space as a function of time, whose n components belong to the vector
in equation 4.17 . This dissertation does not claim to study dynamical system
stability but its geometric representation and concepts necessary to understand
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the geometry of chaos. In the state space there are several geometric entities
that create the portrait of the dynamic system: stable and unstable equilibrium
points, stable and unstable periodic orbits (circular or more complicated curves)
that are invariant solution and manifolds (lines or curves that start and finish
from equilibrium points and moves in state space). The trajectory zn(t) de-
scribes the behaviour of the dynamical system moving through these geometric
entities. The set of invariant solution and the unstable manifold built a rigid
structure of the state space that arrange the system dynamics (Cvitanović and
Gibson, 2010).

4.3 dynamical system with symmetries : when does the symmetry

exist?

Taking into account a non-linear dynamical system, passing from physical
space to state space, its treatment becomes apparently more complicated. While
in physical space is possible to visualize all the system evolving in time, the
same procedure is not possible in state space. This is cause by the fact that
human beings have experience of the physical world and understand it as
the motion of a particle in three-dimensional space and time. On the other
hand, the system in state space is a complex high dimensional space that our
mind cannot easily figure out. In a dynamical system the degree of freedom
coincides with the numbers of parameters that may vary independently. Taking
into account the Navier Stokes equation in the continuum space and time,
DOFa are 4 : the three components of velocity −→u (x,y, z, t) and the pressure
p(x,y, z, t). The system is defined in R4. In a discrete situation, as a numerical
simulation, the DOFs are equal to the number of the grid points where velocity
and pressure are defined. In this case the system has a dimension equal to
R4N. Despite the size of the system, its visualization is understandable. Taking
for example the vorticity field in the turbulent channel flow. What can be
visualized is a chaotic flow that changes over time and space, with different
colours. The dimension of the dynamical system in the state space is already
given by the DOFs of the dynamical system. For example the number of DOFs
of numerical simulation of the turbulent channel in the state space is equal to
2N the numbers of grid points that in the finest grid are N = 106. Visualize
the whole system in state space is prohibitive because it is a complex high
dimensional space CN. Only choosing a 3D subset on Cn it is possible to have
a view of the system; but it is a subset of the system and in addition it could
appear complicated similar to the figure 4.1. A way to reduce the complexity
exists for some dynamical system; it is represented by a reduction of system’s
DOFs. In these systems, the DOF , that can be ”removed”, is represented by the
continuous symmetry of the physical problem. It can be reduced in order to be
able to observe the core of the dynamical system. As shown in the §3, planar
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vortices had symmetries and the desymmetrization revealed the motion, given
by the vortex shape-changing and their interaction. In mathematics the concept
of continuous symmetry is provided by the Lie group. It is a symmetry group
that encodes symmetry features of a geometrical object: the group consists of
the set of transformations that leave the object unchanged. In particular Lie
group is a continuous group: it is a group whose elements are described by
real parameters and it is represented by a differentiable manifold. Lie group
typically playing the role of a symmetry of a physical system such as rotational
symmetry in three dimensions (given by the special orthogonal group SO(3).
What must be understood is the nature of ’small’ transformations, for example,
rotations through tiny angles, that link nearby transformations. The presence of
continuous symmetries expressed via a Lie group action on a manifold places
strong constraints on its geometry and facilitates analysis on the manifold. Lie
groups are smooth manifolds, so have tangent spaces at each point. The most
important symmetries characterized by Lie group are

• Continuous Translational symmetry=Toric group symmetry (T-Symmetry)
Gx0

• Rotational symmetry = U(1) group symmetry Gα

The U(1) symmetry group Gα is that if z ∈ RN is a solution of the dynamical
system so is Gα = zeiα. The continuous translational symmetry Gx0 is that
if z ∈ RN is a solution of the dynamical system so is Gx0(z) = z(x+ x0). As
will be explained better later these symmetries are represented by the fibers
in the fiber boundle. In the present study the turbulent channel flow has a
continuous translational symmetry and in physical space it is represented by
the mean velocity that carries flow and eddies from upstream to down stream
in streamwise direction. In state space this symmetry appears with a toroidal
shape (T-symmetry). Removing symmetry may permit to understand how
vortices change their shape and how it influences their motion. The fulcrum
consists in the fact that the desymmetrization is allowed only in the state space.

4.3.1 Dynamical system with Translation symmetries

As mentioned previously, continuous translational symmetry has a different
appearance passing from physical space to state space. It is a pure space
translation in physical space and it is a Toric-symmetry (T-symmetry) in Fourier
space cased by its toroidal shape as in figure 4.2

The Navier-Stokes (NS) equations are a non linear differential equation
and for channel flows are dominated by continuous translational symmetry,
that is if velocity field u(x,y, z, t) and associated pressure field p(x,y, z, t) are
solutions of NS equation, so the space-shifted u(x+ `,y, z, t) and p(x+ `,y, z, t),
where `(t) is the shift, are solutions of the problem. This is true also in the state
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Figure 4.2: Group orbit of DNS turbulent channel flow

space where if the set zn of Fourier modes is a solution of 4.18, so is (zne
ik0`),

for any shift `.
Considering again for simplicity the linear advection equation in the physi-

cal space:

∂u

∂t
+
∂u

∂x
= 0 (4.20)

A traveling wave:
u(x, t) = sin(x− t) (4.21)

is a solution of 4.20. Indeed, performing space and time derivative:

ut(x, t) = −cos(x− t) (4.22)

ux(x, t) = cos(x− t) (4.23)

and substituting them in equation 4.20, it yields:

∂u

∂t
+
∂u

∂x
= −cos(x− t) + cos(x− t) = 0, (4.24)

so equation 4.21 is a solution of the PDF in equation 4.20.
Considering the same solution shifted by a length `(t):

u(x+ `(t), t) = sin(x+ `(t) − t) (4.25)

Then,
ut(x+ `(t), t) = −cos(x+ `(t) − t) (4.26)

ux(x+ `(t), t) = cos(x+ `(t) − t)(1−
d`(t)

dt
) (4.27)
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ut + ux =
d`

dt
cos(x+ `(t) − t) = 0, (4.28)

Imposing:
d`

dt
= 0, (4.29)

`(t) = const (4.30)

and ` must be constant in time.
Now the solution u(x, t) can be expressed as the Fourier series in the Fourier
space:

u(x, t) =
N/2∑
−N/2

zn(t)e
ik0nx (4.31)

with k0 = 2π/L0 the wave number associated to the domain length `0 and
zn(t)n=1,N are the Fourier coefficients in CN. The Fourier series shifted is:

u(x+ `, t) =
N/2∑
−N/2

zn(t)e
ik0n(x+`)

=

N/2∑
−N/2

(zn(t)e
ik0n`))︸ ︷︷ ︸

z̃n(t)

eik0nx

=

N/2∑
−N/2

z̃n(t)e
ik0nx

(4.32)

where we define:

z̃n(t) = zn(t)e
ik0n` = zn(t)e

inα. (4.33)

Here the angle α is a phase shift

α = k0`, −∞ 6 ` 6∞ (4.34)

and

u(x+ `, t) =
N/2∑
−N/2

zn(t)e
ik0n(x+`) =

N/2∑
−N/2

z̃n(t)e
ik0nx (4.35)

is already a solution of the PDE in equation 4.20.
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4.4 dynamical systems

Consider a generic non linear dynamical system perspective, in the state space
CN. The NS equations can be written in the form :

dz

dt
= N(z1, z2, ..., zN) (4.36)

where N(z) is a vector encoding the non linearity of the system. If z =

{zn(t)}
N
n=1is a solution of the dynamical system 4.36, so is

{
zn(t)e

inα
}

a
solution of that system, with α = k0/L parameter connected with the space
shift L. The translation L in the physical space becomes a phase shift in the
state space. The state space CN has the geometric structure of a fiber bundle.
This can be imagined at first as a bamboo forest (see figure 4.3a). It is composed
by the ground, where the bamboo are attached, called base manifold, and the
bamboo sticks, called fibers. The fiber bundle is the geometric structure of the
state space CN, where the continuous symmetry G, represented by the fibers,
gives it a rigid backbone.

(a) Fiber bundle as a bamboo forest (b) Fiber bundle scheme

Properly, the fiber bundle is composed by a base manifold that is a com-
plex hyperplane B = CN|R of dimensions R2N−1 and 1D fibers (direction of
symmetry) that are attached to any point of B as depicted in figure 4.3b.

4.4.1 Group orbit

A group orbit is a subset of the fiber bundle.
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Figure 4.4: Group orbit scheme

This is defined as a sheet of the fiber bundle, as shown in figure 4.4, and it is
the collection of all the shifted copies of a given solution z(t) of the dynamical
system, that is:

G(z) = {Gα(z(t)) ∀ α ∈ [0, 2π]} (4.37)

where, the shifted copy of z(t) is:

Gα(z(t)) = {zα(t)} (4.38)

and
zα =

{
zn(t)e

inα
}

α ∈ R (4.39)

The shift α = k0L is defined in R and it varies in [0 2π], moving along the
fibers. In order to understand easily the topological concepts it may be useful
to do the reverse exercise of building a group orbit, as shown in figure 4.5. As
mentioned before,it is not possible to visualize graphically the entire group
orbits due to the high order dimensions of the state space. A subset of three
components of the Fourier coefficients zn can be chosen as coordinate system
and the trajectory expressed as a function of them as shown in figure 4.5a
where z(t) is the trajectory, function over time, and α is equal to zero over it.
Fibers, that are 1D curves, has to be attached to any points of the trajectory and
the fiber’s shape is given by varying the value α as is shown in figure 4.5b. It is
used to say also the trajectory is fibrated with the fibers. On the trajectory the
value of α = 0

The group orbit Gα represents the full motion and it is a collection of the
possible solutions of the dynamical system. The full motion is the trajectory z(t)
that climbs over the fibers as in figure 4.6. As demonstrated before, if z(t) is a
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(a) Trajectory in state space (b) Group orbits Gα

Figure 4.5: Geometric construction of a group orbit Gα starting from the full trajectory
z(t)

solution, so is z(t)einα. It means that the translation, represented by the shift α
is invariant under the symmetry of the physical problem.

Figure 4.6: A schematic representation of a fiber bundle in state space composed the
trajectory that climbs on the fibers and the base manifold.

As a consequence, the symmetry of the system is connected with the fibers,
the Lie group G, function of einα. In reality things are more complex than those
schematized in the figures. The identification of the ”full motion” is not possible
because the entire system is a concatenation of a complicated full trajectory
and fibers. Moreover, full motion inherently possesses the symmetry that is
not clearly divisible by the motion due to the deformation. For this reason it is
necessary to reduce the symmetry. The reduction of the symmetry means to
pull out the dependence of the dynamic part connected to the symmetry and
to find a ”base” motion connected only with motion given by the deformation.
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Given a group orbit, the tangent to the full trajectory is :

ż(t) =
dz(t)

dt
= F(z) (4.40)

that is equivalent to :
dzn(t)

dt
= −nk0zn(t). (4.41)

Figure 4.7: Group orbit with velocity ż and tangent vector T(z) depicted on it

The generic tangent Tα(z) to the orbits zα(t) is a function of the angle α as
shown in figure 4.8 and it is given by:

Tnα(z) =
∂zα(t)

∂α
=
{
zn(t)ine

inα(t)
}
= in

{
zn(t)e

inα(t)
}

︸ ︷︷ ︸
zα(t)

= {inzα(t)} (4.42)

where zα =
{
zn(t)e

inα(t)
}

is the full motion. If the base motion is a motion
not connected with the symmetry and thus by the fibers, the full motion can be
written as:

zαn(t) = Zn(t)e
inα(t) Full motion (4.43)

so the base motion is:

Zn(t) = z
α
n(t)e

−inα(t) Base motion (4.44)

Moving back to the tangent and posing α = 0, the tangent to the trajectory
z(t) is:

Tn,α=0(z) = T(Z) = {zn(t)in} (4.45)

while the tangent along the group orbits, is:

Tnα(z) =
{
inzn(t)e

inα(t)
}

. (4.46)
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Figure 4.8: Phase shift translation of the full motion z(t) as a function of the shift α(t)

The velocity vector ż(t) and Tα(z) and the tangent are not necessarily orthogonal.
In order to remove the symmetry, the base motion should be locally transversal
to the fibers as depicted in figure 4.8.

These concepts can be explained considering the example of a jellyfish
motion in a current. The base motion corresponds to the motion due to the
jelly’s deformation, while the full motion is is due to the velocity of the current
plus the translation motion induced by its deformation. The same phenomenon
appears in turbulence: ”The speed of coherent structures includes not only the
comoving frame velocity, which accounts primarily for their inertia, but also a
geometric component. This can be interpreted as a ‘self-propulsion’ velocity
induced by the shape-changing deformations of the flow structures similar to
that of a swimmer at low Reynolds numbers” (Fedele et al. (2015)).

4.5 projection methods

How can the symmetry be quotiented out? Depending on the type of symmetry,
there are different methods of symmetry reduction. It depends on the symmetry
and it leads to a projection problem.

Starting from the full motion z(t), the symmetry reduction consists in
finding a reduction map Π that is invariant under the symmetry and maps
the trajectory z(t) of CN on a base manifold B, finding the desymmetrized
trajectory ZD(t). The same method may be applied on the entire group orbits
Gα(z) = zne

inα −→ ZD = π(Gα(z)). The projection is not a reduction of the
system dimension. It allows uncoupling motion due to the symmetry from the
hidden dynamic motion due to a pure deformation of the flow.

A principal fiber bundle is said to be composed of a quadruplet: a total
space P ∈ RN or CN, the base manifold B, the group orbit Gα(z) with the
parameter α ∈ R and Π the projection map. These mapping methods are a sort
of parametrization of the system’s variables, that removes the dependence from
the symmetry of the problems. It is carried out through a projection of all the
points of the group orbits on a hyper-plane. A complex geometry of the group
orbit is reduced to a line or a point and the system is simplified.
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4.5.1 Property of the map Π

In order to apply a projection method, the fibers have to be traversal to the base
manifold, but they are not necessary to be orthogonal.

Figure 4.9: An example of geometrically complicated group orbits G(z) composed
by the full motion z(t) (red curve), the fibers and with more than one transversal
base manifolds. The projection of the full motion z(t) on the base manifolds is the
desymmetrized trajectory Z(t) (blue curve)

This is quite easy to understand. As shown in figure 4.9, the tube represents
the entire group orbits, the red line is the full motion z(t), the blue line the
base motion ZD(t), the curved arrows are the fibers and there are two planes
of projection. Figure 4.9 is a simplification of a real group orbit that can present
more complicate geometries. Due to the different directions of fibers, the full
motion has to be projected using two different hyperplanes that are two distinct
base manifolds. When the direction of the fibers runs parallel to the plane of
mapping, change the plane of projection becomes necessary.

Different projection methods exist and some of them will be described
below. They are:

• Stereographic projection(Mercator’s projection)

• Hopf reduction for U(1) and T(1) symmetries

• Fourier slice method

The map Π brings a trajectory in full space onto a base manifold, where
symmetry is quotient out. The base manifold is also called the quotient space.
In particular, some of the projective spaces in C are:
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• The base manifold of a system which admits U(1) symmetry is the projec-
tive space CPn that is CPn+ fibers = full space

• The base manifold of a system which admits T(1) symmetry is the projec-
tive space TCPn that is TCPn+ fibers = full space.

4.5.2 Stereographic projection

In differential geometry, the stereographic projection is a particular graphical
mapping function that projects a unit sphere onto a plane or a circle on a line.
It is a particular case of the projective space CPn and it is useful to introduce
it for being more intuitive. This method has benefits with some inevitable
compromises. It maintains angles but it isn’t isometric nor it preserves distances
and areas. The projection is defined on the entire sphere, except at the projection
point. In figure 4.10 is depicted a unit circle S projected on a line, where N is
the projection point and P ′ is the projection of the point P appertains to S.

Figure 4.10: Schematization of the stereo graphic projection in 2D case

For any point P on S, there is a unique line through N and P, and this line
intersects the plane exactly in one point P ′. One of the most famous examples
of stereo-graphic projection is Mercator’s projection. It is the standard map
projection used for navigation maps in which local directions and shapes are
preserved. This projection increases the size of entities away from the equator.
This enlargement is very small near the equator but increases with latitude to
become infinite at the poles.

If the earth is simply thought as a sphere, each point of its surface is
projected on a cylinder as sketched in figure 4.11a. As an analogy with fiber
bundle, the cylinder represents the plane of projection, the base manifold, the
earth is the full motion where the radial line of projection are the fibers. There
are other ways of association with the fiber bundle :

• In R4 the S3 is locally fibrated in a S2 sphere and 1-D hyper-circles fibers
attached on any point of S2 and they are projected on the cylinder as
shown in figure 4.11b

• In R4 any point of the S3 sphere that lays on the same radius are projected
on the cylinder and the radius are the fibers.
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(a) General Mercator’s projection (b) Mercator’s projection: the fibration

Figure 4.11: Mercator’s projection

• In R4 the S3 sphere is filled by 1-D hypercircles fibers.

From a mathematical point of view, the unit sphere may be a complex
hyper-sphere that belongs to C2 = R4 and it is a set of point described by the
equation:

x21 + x
2
2 + x

2
3 + x

2
4 = 1 (4.47)

where it has 4 independent variables (x1, x2, x3, x4) and a DOF given by the
radius. For this reason the sphere is said to be a geometric entity in three
dimensional space R3 in a four dimensional space R4. The unit sphere is
defined as sum of surface entity plus the radius as sum of R2×R = R3. All the
points of the volumes that lay on the same radius or any points of the surface
and the corresponding fiber attached on it are projected with an only point
on the cylinder. It said they are equivalent points or they belong to the same
equivalent class. As the stereo-graphic projection, the projection is defined on
the entire sphere, except at the poles where the radius is parallel to the cylinder.
This projection method has a inner meaning of symmetry reduction. It removes
the spherical symmetry projecting all the points of the sphere on the cylinder,
that can be cut becoming a plane.
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4.5.3 HOPF reduction

A famous non trivial projection method is the Hopf fibration represented by
a S3 sphere fiber bundle, 1D circles S1 fibers and a base manifold S2. It is
based on the stereo-graphic projection concepts. The Hopf fibration, like any
fiber bundle, has the important property that is locally a product space, i.e.
S3 = S2 × S1

Figure 4.12: The Hopf fibration can be visualized using a stereographic projection of
S3 to R3 and then compressing R3 to the boundary of a ball. This image shows points
on S2 and their corresponding fibers with the same color.(wikipedia )

Figure 4.13: Schematization of Hopf fibration

https://en.wikipedia.org/wiki/Hopf_fibration
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The filling space with circle of the Hopf fibration is visible in this video.
Clicking on a point on the sphere, it draws the fiber in the total space. The total
space is stereographically projected onto R3. Drawing an equator on the sphere
it gives exactly a circle of circles — a torus.

There are numerous generalizations of the Hopf fibration. The unit sphere
may be written in complex coordinate space Cn+1 naturally over the complex
projective space CPn with 1D circular fibers as schematized in figure 4.13.The
Hopf fibration joins into a family of four fiber bundles in which the total space,
base space, and fiber space are all spheres.

4.5.4 Fourier slice method

The slice method consists in the slicing across the group orbits by a fixed
hypersurface called slice and project the fiber bundle on it. The map function Π
is chosen to be invariant under the symmetry. The state space is sliced in such
a way that an entire class of symmetry-equivalent points is represented by a
single point that is the intersection with the slice Cvitanovic et al. (2005). While
the slice fixes only the symmetry of the group orbits, the continuous full space
trajectory remains a continuous-time trajectory in the symmetry reduce state
space Willis et al. (2013). Mathematically it is a parametrization of the Fourier
amplitudes of the system and each slice has its map function. Considering the
trajectory in the complex full space, the components are the variables of the
system:

z = (z1, z2, ..., zn) (4.48)

that are the complex Fourier amplitudes with phase φn and solutions of the
dynamical system, whom expression is:

zn =|zn|e
iφn (4.49)

The projection is carried out through a parametrization that consists in
dividing all the Fourier amplitudes by one of the zn components. Choosing the
slice Z1 = 1, that is the chart, with the map function in the form Zn = zn

zn1
, the

desymmetrized components are :

Z = (1,
z2

z21
,
z3

z31
, ...,

zN

zN1
) (4.50)

where Z1 = 1 is the slice equation and it is a complex hyperplane where the
fiber bundle is projected. This transformation caused a phase shift given by the
phase of the first component. This is called First Fourier slice.

Zn =
zn

zn1
=

|zn|

|z1|
n e
iφn−inφ1 (4.51)

https://wgxli.github.io/hopf-fibration/
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The corresponding desymmetrized orbit in the original state space is ob-
tained by multiplying the map function (equation 4.50) by |z1|

n :

ZD = (|z1| ,
z2 |z1|

2

z21
, ...,

zN |z1|
N

zN1
) (4.52)

ZDn = zn
|z1|

n

zn1
= zn

|z1|
n

|z1|
n einφ1

= zne
−inφ1 = |zn| e

(iφn−inφ1) (4.53)

The reduction is performed applying the map Π that projects the full motion
on the base manifold, doing a parametrization. If the n-solutions are shifted in
phase with the multiple nφ1 of the first harmonic, it is a called First Fourier
slice.

4.5.5 Complex projective space CPN

The complex projection space CPn is a projective space under the action of
the U(1) symmetry group; the rotational symmetry. It is represented by a
quotient space of S2n+1 hypersphere in Cn+1. For any natural number n, an
n-dimensional sphere, or n-sphere, can be defined as the set of points in an
(n+ 1) dimensional space which are a fixed distance from a central point. The
central point can be taken to be the origin, and the distance of the points on
the sphere from this origin can be assumed to be a unit length. With this
convention, the n-sphere, Sn, consists of the points (x1, x2, . . . , xn+1) in Rn+1

with x21 + x
2
2 + . . .+ x

2
n+1 = 1

This is the case of Hopf fibration p : S3 → S2 of the 3-sphere over the
2-sphere

Figure 4.14: Complex projective plane CP2

The unit hypersphere S in C2 = R4 is projected on a complex manifold.
The sphere’s points (x1, x2, x3, x4) in R4 satisfy the equation:

x21 + x
2
2 + x

2
3 + x

2
4 = 1 (4.54)
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The identification of R4 with C2 and R3 with CxR, where C denotes the
complex numbers, is possible with the complex relations:

(x1, x2, x3, x4)↔ (z1, z2) = (x1 + ix2, x3 + ix4) (4.55)

Thus S3 is identified with the subset of all (z1,z2) in C2 such that:

|z1|
2 + |z2|

2 = 1 (4.56)

As schematized in figure 4.14, the projection hyperplane is z1 = 1 and any
points of the sphere P ′ and the attached fiber P belong to the same equivalent
class. Any point of the sphere are projected by the radial straight lines, passing
from origin, described by the complex number λ = eiα. It is the symmetry
parameter and it varies with the α given by tgα = z1/z2 and it is so |λ|2 = 1

obtaining :
z2 = λz1 (4.57)

Projecting the point P ′ on the complex plane z1 = 1, the point P1 has coordinates
equal to:

P1(z1, z2) = P1(z1, λz1)
Π−→ P ′(1,

z2
z1

) (4.58)

where the dependence from the symmetry parameter λ disappeared. The
complex plane z1 = 1 is a ”cartography” of the base manifold and the projected
points are non linear coordinate transformation (non physical), a distorted view
of the physical space. Only after another mapping of any projected points of
the z1 = 1 onto the original physical space, you can obtain the desymmetrized
trajectory in physical space.

Furthermore, if two points on the 3-sphere are mapped to the same point
on the hyperplane, i.e., if p(z1, z2) = p(w1,w2), then:

p(w1,w2) = (λz1, λz2) ∈ C (4.59)

The converse is also true; any two points on the 3-sphere that differs by a
common complex factor λ map to the same point on the hyperplane. These
conclusions follow because the complex factor λ cancels with its complex
conjugate λ∗ in both parts of p. The projection of all the points of the sphere on
the hyperplane z1 = 1 allowed to removed the U(1) symmetry because they are
independent from λ.

More in general, CPn is the quotient space of a S2n+1 sphere in Cn+1 under
the action of the U(1) group ,

CPn = S2n+1/U(1) (4.60)

Indeed, every line in Cn+1 intersects the unit sphere S2n+1 in a circle S1 and
we obtain a point of CPn defined by this line by identifying all points on S1.
The projection Π : S2n+1 −→ CPn is called hopf mao. Since CP1 = S2 we
obtain the classical Hopf bundle S3 → S2 with fiber S1. When n = 1, the
complex projective space CP1 is the Riemann sphere, and when n = 2, CP2 is
the complex projective plane.
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4.5.6 Translation complex projection TCPn

The CPn space can be generalized to the Toric space TCPn that is a projective
space under the action of the T-symmetry group; the translational symmetry. It
is a quotient space of E2n+1 hypersurfaces i.e. in Cn+1 given by:

Figure 4.15: TCPN scheme

E2n+1 =

z = z1...zn+1 ∈ Cn+1 :
n+1∑
j=1

∣∣zj∣∣ 2(n+1)j = 1

 (4.61)

under the action of the translational group T(1). The circular fibers are attached
to any points of the ellipsoid where any points are expressed by:

z = {z1, z2, ..., zN} ∈ Cn (4.62)

An element z of TCPn is defined with w, the set of equivalent class and with
the symmetry parameter λ = eiα ∈ C and |λ| = 1 that is:

w ∼ (λz1, λ2z2, ..., λnzn) ∈ Cn∀λ (4.63)

that is a parametrization of the system given by the maps Π that is:

z ∼ w⇔ ∃λ ∈ C :
{
wj = λ

jzj
}
j=1,2...,N (4.64)

The reduction is given by the stereographic projection of any point of the
hyper-ellipsoid on a complex plane z1 = 1 trough parabolas. All the points of
the parabola are also projected with a single point on the complex plane that is
Cn = CPn−1 ×C

In n = 1 case that is C2 = CxR, the parametrization returns:

|λz1|
4+|λ2z2|

2 =|λ|4(|z1|
4+|z2|

2) (4.65)
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and
|λ|4Q =|w1|

4+|w2|
2 (4.66)

where |λ| = 1

4.6 t-symmetry reduction

Consider a non linear dynamical system with a real space-periodic state u(x, t)
and governed by the partial differential equation:

∂tu = N(u,∂xu,∂xxu) (4.67)

The Navier-Stokes equations belongs to this class of partial differential equa-
tions. The dynamics satisfied the continuous translation symmetry Gx0 that is
if u(x, t) is a solution of equation 4.67 so is Gx0 = u(x+ x0).

As shown before it is convenient to work in Fourier space, thus the solution
u(x, t) is:

u(x, t) =
N∑
n=1

zne
ik0nx =

N∑
n=1

|zn|e
ik0nx+φn (4.68)

where zn = |zn|e
iφn are the complex Fourier amplitudes with phase φn and

k0 = 2π/L the minimum wave number with L the domain size. The dynamic
of zn is governed by

żn = Fn(z1, z2, ..., zn) (4.69)

where Fn is the discrete Fourier transform of N(z) in 4.67.
The dynamical system admits the continuous T-symmetry if a phase shift α

(a space translation in physical space) is applied to the system described by the
equation :

żne
inα(t) = Fn(z1e

iα, z2e2iα...zNeNiα) (4.70)

Multiplying both sides by e−inα

N∑
n=1

e−inαeinα ˙zn =

N∑
n=1

e−inαFn(z1e
iα, z2e2iα...zNeNiα) (4.71)

Since the system admits T(1) symmetry, the Fn satisfy the property:

e−inαFn(z1e
iα, z2e2iα...zNeNiα) = Fn(z1, z2...zN) (4.72)

and

żn =

Fn(z)︷ ︸︸ ︷
e−inαFn(z1e

iα, z2e2iα...zNeNiα) (4.73)

żn = Fn(z) (4.74)
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Figure 4.16: Fiber bundle composed by the full motion z(t) (red line), fibers(narrow
black lines), desymmetrized motion ZD(t) (blue line) and the base manifold (curved
plane)

Thus, the initial equation is obtained again because the dynamical system
admits a T-symmetry.

As explained in the previous sections, the continuous translation symmetry
reduction is performed projecting the group orbits Gα(z), composed by the full
motion and the fibers, on the base manifold. It removes the dependence on the
symmetry returns a base motion using a map Π that has to be invariant under
the symmetry. The trajectory z(t) = (z1, z2, ...zN) moves in the state space
P ∈ CN which geometrically can be represented by a fiber bundle denoted with
the quadruplet: the total space P ∈ RN, the base manifold M, the group orbits
Gα(z) expressed by:

Gα(z) = (z1e
iα, z2ei2α...zNeiNα) (4.75)

the fibers, function of α ∈ R, and the map function Π. In figure 4.16 is
shown how the full motion z(t) is decomposed in a component on the base
manifold, called desymmetrized motion ZD(t), and in a part along the fibers,
the transversal motion, connected with the phase-shift α along the fibers.

The desymmetrized trajectory on the base manifold is given by the map
function Π that is:

Z = Π(z) = (Z1,Z2, ...,ZN) (4.76)

where each component is given by the projection method used. As explained
before, the map function Π, already proved to be invariant under the symmetry
α, can be given by slice method by the relation:

Zn = zn

(
z1
z1

)n
=
zn|z1(t)|

n

zn1
= |zn(t)|e

i(φn−nφ1) (4.77)
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so all the desymmetrized components are:

Z = Π(z) = (|z1|, |z2|ei(φ2−2φ1),...,|zN(t)|eiΦN−nφ1 ) (4.78)

where φ1 is the phase of the first harmonic.
In a turbulent condition, the continuous translation symmetry is connected

to a mean velocity of convection that brings the eddies from upstream to
down stream. The desymmetrized motion is connected with a motion caused
by eddies deformation and their interaction. As shown in figure 4.16 the
desymmetrized motion ZD(t) may be imagined as jellyfish motion produced
only from its shape-changing.

The core of the problem consists in the fact that at first only the full motion
z(t) is known and only performing the projection is possible to uncouple
the full motion into the desymmetrized motion and the fibers. In order to
understand the group orbit Gα it is useful to image of attaching onto any point
of z(t) a fiber. The desymmetryzed motion Z is the projection of the full motion
on the base manifold. As demonstrated before, the full motion can be seen
as a phase-shifting of the desymmetrized motion on the fibers. The shift is
composed by the dynamical phase and the geometric phase. The shift along the
fibers that brings the motion in the comoving frame is called dynamical phase.
”Only dead fish go with the flow: comoving frame” Cvitanovic et al. (2005). For
example it is the translational shift induced by the mean convective velocity in
the channel flow and its projection on the base manifold is represented by a
point. The shift along the fiber necessary to project the full trajectory on the base
manifold includes a geometric phase and it allows to reduce a relative periodic
orbit in a periodic orbit. The reducing of the symmetry allows to uncouple
these two components of the motion: one connected with the dynamical phase
and the other one to the geometric phase. In fact the dynamical phase increases
with the time spent by the trajectory to wander around the state space of the
dynamical system P and system’s answer to: ”how log did your trip take?”.
Instead, the geometric phase is independent of time and it depends only upon
the geometry of P and system’s answer to ”where have you been?”.

Sometimes, in order to desymmetrized the system should may be useful
to perform more than a ”projection” (as shown in figure 4.18) because some
functions map hide the physical meaning of the variable. The slice method
gives desymmetrized variables that are physical: for example setting the phase
of the first harmonic of the full z to zero in the first-Fourier slice. In other
projection method as the Hopf reduction for U(1) and the extension to T(1) the
desymmetrized variables are nonlinear transformation of the original variables.
However, another transformation of variables can be used that maps to physical
variables as is shown in figure 4.18, where the first mapping is preformed with
Πchart that projects the full motion on complex plane where the trajectory
Zchart(t) (green line) lose their physical meaning. For this reason a second
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Figure 4.17: Principal fiber bundle. The relative periodic orbit ABC is reduced to a
periodic orbit PQ in the base manifold by the phase shifting of the trajectory along the
fibers. The shift is composed by the dynamical end geometric phases. The shift induced
by the dynamical phase leads to the comoving trajectory A’B’C’ to be transversal to
the fibers but its not closed. A further shift by the geometric phase leads the trajectory
A’B’C’ to the closed PQ trajectory on the base manifold.

Figure 4.18: Example of more than a projection application

projection Π
′
chart maps the Zchart(t) to another complex plane providing the

desymmetrized trajectory ZD(t) (blue line)
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4.6.1 Geometric and dynamical phases and velocities decomposition

Once the projection was performed, the symmetry is demonstrated to be
dependent from the fibers and the uncoupling of the phase shifting is allowed.

Taking into account the group orbit zα(t,α) =
{
zn(t)e

inα(t)
}

(see also

Figure 4.19: Schematization of a part of the group orbit zα composed by the full motion
z(t) and the circular fiber attached on it. The tangents on the full trajectory z(t) is ż
and to the fiber is T(z) attached in that same point.

equation 4.39) composed by the full motion z(t) and by the circular fiber
attached to the trajectory as shown in figure 4.19. Choosing a point on the
trajectory, ż and T(z,α = 0) are respectively tangents on the trajectory and on
the fiber in that point where the tangent to the fiber is given by equation 4.42

that we rewrite for clarity:

Tn(z1e
iα, ...zNeiNα) =

∂
{
zne

inα
}

∂α
=
{
inzne

inα
}
= {inzαn} (4.79)

being zα(t,α) =
{
zn(t)e

inα(t)
}

the group orbit.
In the same way in the base manifold, tangents on desymmetrized motion Ż

and on the fiber T(Z) are traced along the same fiber as shown in figure 4.20a.
The tangent of the full motion ż can be considered to be decomposed in two
components: one orthogonal and one parallel to the fiber. As depicted in figure
4.20b, the two couple of components respectively ż and Ż and T(z) and T(Z)
have the same modulus but different direction, caused by the curvature of the
fiber. The derivative to the group orbit zα(α, t) is

dzα(t,α)
dt

=
dz(t)

dt
einα(t) + inz(t)einα(t)α̇ = Ż(t) + T(z)α̇ (4.80)

As a results the tangent ż to the trajectory is given by:

ż = Ż+ T(z)α̇ (4.81)

where Ż is the tangent on the base motion trajectory, while T(z)α̇ is the term
connected to the symmetry. Once the full trajectory is projected on the base
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(a) Geometric construction of the tangents to the group
orbits. (b) Zoom

Figure 4.20: component decomposition of the tangents to the group orbits

manifold, the desymmetrized variables and the shift α are known. The next
step is the determination of the phase velocity α̇ and its uncoupling as:

α̇ = α̇dynamical + α̇geometric (4.82)

where αdynamical is the dynamical velocity and α̇geometric is the geometric
velocity. Taking into account equation 4.81 and the equations of the dynamical
system in Fourier space 4.40 and 4.41 and the base motion equation (4.44)
written easily as

z(t) = Z(t)e−inα (4.83)

it yields:
Żne

−inα − inα̇Zne
−inα = Fn (z1, z2, ..., zN) . (4.84)

Next step involves the projection of ż along the fiber, multiplying equation
4.40 by T(z) and exploiting the property of the scalar product (see also Appendix
D ):

ż · T(z) = F(z) · T(z) (4.85)

It means to multiply the equation 4.84 by T(z), that is:

∑
n

Tn(z)
(
Żne

−inα − inα̇Zne
−inα − Fn(z1, z2, ..., zN)

)
= 0 (4.86)

Taking into account the tangent definition Tn(z) = inzαn and Zn = zne
inα

and applying the scalar product: (see also APPENDIX D), one obtains:

<

N∑
1

Tn(z)
(
Żne

−inα − Tn(z)α̇− Fn(z)
)
= 0 (4.87)
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where R() is the real part of z.
The properties of complex numbers applied on the module of the two

tangents :

|T(z)|2 = T(z)T(z) =
∑

(−inzn)(inzn) =
∑

n2znzn =
∑

n2|zn|
2 (4.88)

and:

|T(Z)|2 = T(Z)T(Z) =
∑

(−inZn)(inZn) =
∑

n2ZnZn =
∑

n2|Zn|
2 (4.89)

and beeing |zn|
2 = |Zn|

2 by definition, it allows to demonstrate that tangents
have the same modulus but different direction, that is:

|T(z)|2 = |T(Z)|2 (4.90)

Coming back to the equation 4.87 and by making multiplication explicit:

<
∑

[T(z)nŻne
−inα] − α̇<

∑
[T(z)nTn(z)] −<

∑
[T(z)nFn(z)] = 0 (4.91)

The first element is:∑
T(z)nŻne

−inα =
∑

−inznŻne
−inα =

∑
−inZnŻn ⇒ T(Z) · Ż (4.92)

given also by the equality

T(Z) · Ż =
∑

<(Tn(Z)Żn) =
∑

<(Tn(Z)Żn) (4.93)

applicable to the other terms obtaining the equation:

T(Z) · Ż− α̇T(z) · T(z) − T(z) · F(z) = 0 (4.94)

Finally the relation, mentioned before, is obtained where the phase velocity
α̇ is uncoupled in two components, dynamic and geometric:

α̇ =
T(Z) · Ż
|T(Z)|2

−
T(z) · F(z)
|T(z)|2

= α̇geom + α̇dynamic (4.95)

If T(Z) · Ż = 0 then the fibers are aligned with the base manifold and the
geometric component disappears. For this reason the base manifold must
be orthogonal to the fibers. It may be more convenient to express them as a
function of the Fourier amplitudes, considering equations 4.79,4.89 ,4.93 and
|z(t)| = |Z(t)| and see Appendix E, so the geometric phase velocity is :

α̇geom =

∑
<[−inZnŻn]∑
n2|Zn|2

(4.96)
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and the dynamic phase velocity is:

α̇dynamic = −

∑
<[−inznFn(z)]∑

n2|zn|2
(4.97)

The first observation is that the dynamical phase velocity is written as a
function of the original variables Fn(z) and zn so it can be evaluated regardless
of desymmetrization, while the geometric phase velocity one can be evaluated
after the desymmetrizzation.

Considering the desymmetrized variables Zn (see equation 4.53 ) and
substituting it in the two components (see Appendix E for details), the dynamic
and geometric phase velocity are given by:

α̇geom =

∑
n |zn|

2 (φ̇n −nφ̇1)∑
n2 |zn|

2
. (4.98)

α̇dynamic = −

∑
n2 |zn|

2 φ̇n
n∑

n2 |zn|
2

(4.99)

The term (nφ̇) of the dynamic phase velocity (equation 4.99) is a weighted
average of the phase velocity of all the harmonics and higher frequencies have
more weight on its value. Adding the two components (see Appendix E for
details) we obtain that the α̇ = α̇tot = φ̇1, that is the total phase shifting along
the fibers to project the full motion on the base manifold

Taking into account only the dynamical phase, the comoving trajectory can
be found shifting the trajectory z(t) along the fiber by αdyn that is:

Zc(t) = zn(t)e
−ik0nαdyn (4.100)

The comoving trajectory Zc(t) moves through the fiber bundle locally transver-
sal to the fibers as:

=
∑
nZnŻn∑
n2ZnZn

= 0 (4.101)

because in this condition of traversality to the fiber or group orbit the vectors
Zn and Żn are orthogonal. This motion is referred to as horizontal transport
through the fiber bundle. The trajectory Zc may experience a shift by the geo-
metric phase αgeom and the desymmetrized trajectory Z in the base manifold
is obtained.

In physical space

Now the goal is finding the meaning of the dynamical and geometric phase
velocity in the physical space. Considering the linear advection equation:

∂u

∂t
+ c

∂u

∂x
= 0 (4.102)
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where c is the convection velocity. The space and time derivative expressed in
the Fourier domain:

∂u

∂x
=
∑

inzne
ink0x (4.103)

∂u

∂t
=
∑

żne
ink0x (4.104)

and the relation between Fourier components of the full and desymmetrized
trajectory is given by:

zn(t) = Zn(t)e
inα(t). (4.105)

It follows that the sum of geometric phase velocity α̇dynamic (equation ??) and
geometric phase velocity α̇geometric ( equation ?? ) is the total velocity α̇ that
can be written as:

α̇ =

−α̇geom︷ ︸︸ ︷
< ∂UD

∂t ·
∂UD

∂x >

< ∂UD

∂x ·
∂UD

∂x >
−

α̇dynam︷ ︸︸ ︷
< ∂u
∂t ·

∂u
∂x >

< ∂u
∂x ·

∂u
∂x >

, (4.106)

in terms of the full solution u and the desymmetryzed solution UD expressed
in the physical space, and where < f(x) >= 1

b−a

∫b
a f(x)dx.

As demonstrated above, the dynamic velocity is a function of the full motion
both in state variables {zn} and physical variables u (4.106). On the contrary,
the geometric component

α̇geom = −
< ∂UD

∂t ·
∂UD

∂x >

< ∂UD

∂x ·
∂UD

∂x >
(4.107)

can be evaluated only after the symmetry reduction because it is a function of
the desymmetrized variables. Thus, symmetry reduction is necessary since it
allows to discover the system’s dynamics connected with the changing shape
of vortices.
Moreover, the dynamical phase velocity is related to the convection velocity. In
fact if f(x) is a solution of the dynamical system ∂u

∂t = −c∂u∂x then the dynamical
velocity follows as:

Ud = −
< ∂u
∂t ·

∂u
∂x >

< ∂u
∂x ·

∂u
∂x >

= +
< c∂u∂x ·

∂u
∂x >

< ∂u
∂x ·

∂u
∂x >

= c (4.108)

In the case of turbulent flow, in condition of weak turbulence the contribu-
tion of the rotation and the shape changing of vortices is negligible respect to
the convective velocity: they can be considered as frozen and carried by the
current with a velocity c. This is the Taylor hypothesis, the velocity c is called
Taylor velocity and it coincides with the convection velocity (Taylor, 1938).
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For the general dynamical system:

∂u

∂t
= N(u) (4.109)

the advection by a velocity c can occur only approximately, that is

∂u

∂t
+ c

∂u

∂x
' 0. (4.110)

In order to find c, the ordinary least square is used to find the value of c that
minimize

E =

∫ (
∂u

∂t
+ c

∂u

∂x

)2
dx (4.111)

Find c that minimizes E,

∂

∂c

∫ (
∂u

∂t
+ c

∂u

∂x

)2
dx =

∫
2

(
∂u

∂t
+ c

∂u

∂x

)
∂u

∂x
dx = 0, (4.112)

or obtain: ∫
∂u

∂t

∂u

∂x
dx+ c

∫
∂u

∂x

∂u

∂x
dx = 0 (4.113)

The expression for the velocity c, follows as:

c = −

∫
∂u
∂t
∂u
∂xdx∫

∂u
∂x
∂u
∂xdx

(4.114)

that is the same expression of the dynamical phase velocity.
Otherwise, in condition of strong turbulence the equality is not more veri-

fied:
∂u

∂t
+ c

∂u

∂x
' 0 (4.115)

In condition of strong turbulence the Taylor’s hypothesis is not enough
to describe the total motion. This is due to the dynamical velocity plus a
component, the geometric phase velocity, given by the deformation of vortices.

4.7 conclusion

The symmetry reduction theory was explained in details in order to be able to
applied it to the turbulent channel flow and find the hidden motion of vortices
produced by their shape-chaining and their interaction.
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5
S Y M M E T RY R E D U C T I O N O F T U R B U L E N T C H A N N E L
F L O W S

5.1 introduction

Turbulent flow is generally characterized by a chaotic motion of the fluid
particles that are advected in an irregular flow varying in time and space.
However, if we look at the turbulent structures, i.e. the vortices in the field (see
figure 5.1 and video), they seems mainly advected by the mean flow.
More in detail, the vortical structure borns at the wall where large velocity

gradient occurs, then it is advected toward the center of the channel where it
continues its travel advected by the mean flow, merging with or splitting by
interacting with other vortices and finally dissipating on the small scales. This
is also the mechanism at the base of the direct energy cascade. This classical
vision of the turbulence obscures some features of the turbulent structures,
that can be revealed by looking with a closer view and by following in a
Lagrangian way the single vortex. This is highlighted in figure 5.2, which
shows an enlarged view of an isolated vortex (identified through a suitable
spatial windows moving in time), among the others in the turbulent channel. It
is well evident as the flow structure, while being advected along the channel, it
changes continuously its shape by focusing and defocusing its energy content
through a modulation of its amplitude. This simple observation suggests a new
vision of the turbulence structure which needs novel theoretical tools able to
reveal the shape of the turbulence, that is the main objective of this thesis work.
The tool here proposed is the symmetry reduction method, originally proposed
by (Siminos and Cvitanović, 2011) and developed by (Fedele et al., 2015).
This implied to study it as a chaotic non-linear system in state space of a
high-dimensional system.

In physical space (see figure 5.2 and video), translational symmetry of
turbulent channel flow, connected with the fluid convection in x-direction,
makes it difficult to identify the breathing turbulent structures: vortices travel
with their own velocity, deforming as they are advected downstream. Working
in the state space allows to remove or quotient out the symmetry (see chapter §4)
and unveil only the motion given by vortex shape changing. From a dynamical
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https://youtu.be/lv9uGr8VBmQ
https://youtu.be/9yFZxN0UkSg
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Figure 5.1: Time frames of global spanwise vorticity field ωz(x,y, t)

system perspective, if symmetry is present, the total velocity V of the vortical
motion can be uncoupled in a dynamical and a geometric component (Fedele
et al., 2015)

V = Vdyn + Vgeom (5.1)

The dynamical velocity Vdyn is connected to the inertia of the turbulent flow,
to its vortex interactions, and to the external forcing such as pressure gradients.
The geometric velocity Vgeom is induced by the intensity of the shape-changing
dynamics of vortices. Once symmetry is removed, the dynamic and geometric
phase velocities can be uncoupled. The desymmetrized state space reveals how:
i) vortices change shape in time and ii) their shape-changing influences their
own motion. Conceptually this is what was performed on leapfrogging vortices
(Chapter §3), where the continuous translational symmetry was removed in
order to distinguish dynamically the motion given by the shape changing and
by the vortices interaction. Here the difference is related to the viscosity and to
the non-linearity of this dynamical problem that needs the application of a more
general approach. The approach followed in this chapter is to look from the
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Figure 5.2: Time frames of a vortex dynamics

global to local view. This means that the turbulence is a phenomenon involving
all the energy scales through the energy cascade. The evolution at the global
scale, necessary for an overall comprehension of the turbulent flow in line with
the classical statistical approach, indeed, can hide or simply average some local
details of the simmetry reduction occurring on the single vortex dynamics.
This motivates the investigation approach used in this chapter: the first part
focuses on the results of the symmetry reduction applied to global fields of the
streamwise velocity and of the spanwise vorticity of the turbulent channel flow;
the second part analyzed the results of tracking a group of vortices during their
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motion in the channel. Because of the limit of the computational resources
and to bound the computational burden, all the considered fields are averaged
along z-direction and are defined on a time window as large as to 202 s, which
corresponds to 1347 time steps.

5.2 symmetry reduction of the channel flow : a global view

The symmetry reduction is applied to global fields of streamwise velocity and
spanwise vorticity of the turbulent channel flow. The procedure and the results
are described in detail.

5.2.1 Overcoming the Taylor Hypothesis: the comoving frame.

Consider the incompressible three dimensional flow fieldU(x,y, z, t) = (U0,V0,W0)
that satisfies the NS equation with the proper boundary conditions.
The continuous translational symmetry is such that given a solution

U(x,y, z, t),

the
U(x− `,y, z, t)

is still a solution of the NS equations for any arbitrary value of `. The presence
of the continuous translational symmetry permits the definition of the shift `
and to introduce new reference systems from which the flow can be observed.
The comoving frame is (x− `dyn(t),y, z, t) with `dyn the dynamical shift. The
time derivative of the dynamical shift it is the dynamical velocity:

Ud =
d`dyn

dt
(5.2)

already derived in Chapter 4, that is

Ud = −
< ∂tU∂xU >x

< ∂xU∂xU >x
(5.3)

The desymmetrized frame is (x− `dyn(t) − `geom,y, z, t) with `geom the geo-
metric shift. The time derivative of the geometric shift is the geometric velocity

Ug =
d`geom

dt
(5.4)

later defined. The brackets < · > denote the space average in x-direction.
Consider the spanwise vorticity ω(x,y, z, t) = ω0 as a passive scalar field
advected and dispersed by U0 in accord to:

∂ω0
∂t

+U0∇ω0 = Dm∇2ω0 + f0 (5.5)
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where Dm is the diffusion coefficient and f the sources and sinks. In the pair
(U0,ω0), the U0 evolves according to the NS equations with no-slip condition at
the wall boundary and ω0 evolves according to eq 5.5. Streamwise translation
symmetry implies that if (U0,ω0)(x,y, z, t) is a solution, so is (U0,ω0)(x−
`,y, z, t) for an arbitrary and fixed shift `. The dynamical velocity 5.3 can be
used to minimize, on average, the material derivative:

Dω0
Dt

=
∂ω0
dt

+U3Dd
∂ω0
∂x

(5.6)

that is: 〈
(
∂ω0
dt

+U3Dd
∂ω0
∂x

)2
〉
x,y,z

(5.7)

and it is the smallest possible if

U3Dd (t) = −
〈∂tω0∂xω0〉x,y,z

〈(∂xω0)2〉x,y,z
(5.8)

where 〈·〉 denote space average in x,y and z. When Dω0
Dt = 0 the diffusion term,

source and sink are in balance and 5.10 can be written as:

U3Dd (t) = −

〈
U0(∂xω0)

2 + ∂xω0V0∂yω0 +W0∂xω0∂zω0 −Dm∂xω0∇2ω0 − f∂xω
〉
x,y,z

〈(∂xω0)2〉x,y,z
(5.9)

This equation shows that the dynamical velocity is a weighted average of the
local flow velocities, source and sink and for periodic boundary conditions
the diffusion term is negligible. Averaging along x and z direction only, the
equation 5.10 become the vertical dynamical velocity profile:

Ud(y, t) = −
〈∂tω0∂xω0〉x,y,z

〈(∂xω0)2〉x,z
(5.10)

and in the Fourier domain it is:

Ûd(kx,ky,y, t) =
Re
[
i∂ω̂0(kx,K− z,y, t)ω̂0(kx,K− z,y, t)

]
kx |ω̂0(kx,K− z,y, t)|2

(5.11)

where ω̂0 is the complex conjugate of ω̂0, kx and kz are the streamwise and
crosswise wavenumbers and Re() denote the real part. The dynamical velocity
Ûd is the same as the convective velocity cited by Del Álamo and Jiménez (2009)
in regards of Taylor’s hypothesis Taylor (1938) on the turbulent flows as fields
of frozen vortices advected by the flow. As a matter of fact, the definition of
comoving frame and dynamical velocity recalls the Taylor hypothesis concept.
In the Taylor’s hypotesis (Taylor, 1938), turbulent flow is filled by frozen
vortices convected downstream. This happens in weak turbulence regime, when
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turbulent fluctuations are small compared to the larger-scale flow and they are
advected at a velocity close to the time average of a mean flow velocity Um at a
fixed point. As a first evaluation, it usually happens when the variation of the
flow speed due to turbulence is less than 1/2 of the mean flow speed and eddies
can be considered advected with a velocity close to the mean flow velocity
Um. However, in figure 5.3 the comparison between the mean velocity profile
Um and comoving frame velocity Ud, computed on the spanwise vorticity ωz,
shows that they are not exactly the same. This excess of velocity Um −Ud
is just related to the geometric velocity, as will be assessed in the following.
A large excess of velocity, i.e. a large geometric velocity means that we are
in strong turbulence regime and the Taylor’s hypothesis is not satisfied at all
(Fedele, 2014). From its definition 5.3, the dynamical velocity doesn’t depend
on the desymmetrization method; being governed by the advection phenomena
it is computed in the physical space.

U[m/s]

y
 [

m
]

U
d

U
m

Figure 5.3: Comparison between mean velocity profile Um(y) (black line), the convec-
tive Ud(y) (Taylor) velocity (red line) and its std (gray dashed line) computed on the
ωz vorticity. The difference proves the presence of a geometric component of velocity

In contrast, the geometric component is affected by the vortices shape
deformation. In this global analysis, the geometric velocity is a sort of space
average of the geometric velocity of all the vortices within the field, then
possibly smoothed and weakened.

5.2.2 Desymmetrization by slicing

According to §5.1, the coherent structures in a turbulent channel flow are
advected downstream with a velocity that depends on both inertia and their
shape changing dynamics. The geometric velocity, related to this deformation,
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can be interpreted similarly to the fish propulsion and recoil induced by the
body deformation (Lighthill, 1960), as a self propulsion of the vortex. Without
a desymmetrization process, the motion given by their deformation couldn’t
be known a priori. The Fourier Slice method enables to unveil the shape of
turbulence of the global fields. Slicing returns a symmetry-reduced frame from
which the shape-changing of coherent structures can be observed in a reference
system fixed with the geometric center of the structure, i.e. without any drift.
While the relative velocity between the full motion and the comoving frame is
the dynamical velocity, the velocity difference between the comoving frame and
the desymmetryzed frame is the geometric phase velocity. The dynamical phase
velocity has the meaning of convective velocity and is defined in the ground
fixed reference frame; the geometric phase velocity provides the shape defor-
mation and is striclty dependent on the definition of the symmetry-reduced
frame. Different slices yield different symmetry-reduced frames. Hereinafter
two different slices are chosen to desymmetrize the vorticity field ω(x,y, t): the
first Fourier slice and the 14-th Fourier slice. Before going ahead, it is useful to
recall the main steps to perform a symmetry reduction, as explained deeply in
§4:

1. Consider the Navier-Stokes dynamical system in the state space CN =

R2N of Fourier modes, by Fourier-transforming the Navier-Stokes equa-
tions. We moved from the physical space R3 to the state space of Fourier
modes CN.

2. the state space CN has the geometric structure of a fiber bundle as it is
made of a base (shape) manifold B = CN|R of dimensions R2N−1 and
1D fibers (direction of translational symmetry (T-symmetry)) attached to
any point of B (see figure 4.17).

3. We find a reduction map π, that is invariant under the T-symmetry and
maps trajectories z(t) of CN to desymmetrize trajectories ZD(t) in the
base manifold B, reducing the T-symmetry.

4. We apply the reduction map π and find the motion in the desymmetrized
state space, or base manifold B.

5. We evaluate the geometric and dynamical velocities that reveals the
anatomy of vortices in the desymmetrized frame.
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Step 1 and 2

The Fourier-transform of the fields finds N Fourier modes zn ∈ CN = R2N in
the state space, that can be expressed as a truncated Fourier series:

ω(x,y, t) =ω0(y, t) +
1

2

N∑
m=1

zm(y, t)eimk0x + c.c =

= ω0(y, t) +
N∑
m=1

|zm(y, t)| cos(mk0x+ θm(y, t))

(5.12)

where ω0(y, t) is the mean, k0 = 2π
Lx

is the minimum wavenumber for the
domain of length Lx and zm(y, t) = |zm(y, t)| eiθm(y,t) is the m-th complex
Fourier mode with amplitude |zm| and phase θm. In differential geometry, the
evolution of the vector z(y, t) = {zm(y, t)} = (z1(y, t), z2(y, t), ..., zm(y, t)) is the
orbit that travels in the state space P ∈ Cn and it represents the dynamics of
the full system.

Step 3 and 4

The choice of the slice. Different slices yield different desymmetrized frame
and there is not a unique way to reduce the symmetry. No one knows a priori
the best Fourier slice, a series of test is needed. ”A good reduction requires
that the amplitude of zj to be dominant in comparison to the other Fourier
components” (Fedele et al., 2015). Moreover, a proper choice of the slice should
yield a reduced field in which the shape-changing dynamics of the vortices can
be observed without a drift. The desymmetrized orbit Z(y, t) is defined by the
following expression:

Z = Πj(z) = {Zm} =

zm
(
zj∣∣zj∣∣
)m/j =

{
|zm| eiφm

}
, (5.13)

whose phases are:

φm = θm −
mθj

j
(5.14)

The reduction map Πj(z) is a function of the number of slices chosen to perform
the projection. The number of slices is defined by the value of j: with j = 1 the
desymmetrization scheme was achieved with the First Fourier Slice, while with
j > 1 it was an high order Fourier slice.

The reduction map Π applied to z(y, t) shifts the full trajectory by the total
shift

`tot = −
θm

k0j
j > 1, (5.15)
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that returns the desymmetrized complex trajectory:

Zm = zme
−imko`tot m = 1, ...,N (5.16)

Coming back to the physical space we can write the desymmetrized vorticity
field as:

ωD(y, t) = ω0(y, t) +
N∑
m=1

|zm(y, t)| cos(mk0x+Φm(y, t)) (5.17)

Step 5

The total shift related to the total phase θm is the sum of the dynamical (`dyn)
and geometric shift (`geom):

`tot = `dyn + `geom (5.18)

We can get a second definition of the corresponding velocities: the total, dy-
namical and geometric velocities are respectively

Utot =
d`tot

dt
(5.19)

Udyn =
d`dyn

dt
(5.20)

Ugeom =
d`geom

dt
(5.21)

If Udyn is known by 5.3, from 5.19 we can derive the dynamical shift:

`dyn(y, t) =
∫t
0

Udyn(y, τ)dτ (5.22)

Similarly, once the slice has been chosen, the geometric phase velocity yields
from the desymmetrized components

Ugeom(y, t) = −
< ∂tωD∂xωD >x

< ∂xωD∂xωD >x
(5.23)

and the geometric shift comes from:

`geom(y, t) =
∫t
0

Ugeom(y, τ)dτ (5.24)

The geometric drift and velocity can be also evaluated from, respectively:
`geom = `tot − `dyn and Ugeom = Utot −Udyn that is consistent with the
previous relations.

The application of the above procedure to the spanwise vorticity field
allows to get the results that are summarized in figures 5.4 and 5.5, related to,
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respectively, the slice j = 1 (fig. 5.4) and j = 14 (fig. 5.5). More in detail, the first
two panels of both figures, show, respectively, the field evolution in space and
time as seen in the earth fixed lab frame (left panel) and in the comoving frame
(center panel). They shown two different ranges of time of the same vorticity
field omega(x, t) (averaged in y and z direction): in figure 5.4 field goes from
t = 0s to t = 100s while in figure 5.5 from t = 100s to t = 200s in order to
empathize the desymmetry features, shown in the third panel. Despite the
dynamical velocity is quotiented out, in the comoving frame we still observe a
mean velocity field. The latter is removed in the desymmetrized frame (third
panel of each figure). The motion in desymmetrized frame depends on the slice
chosen. Since the choice of the Fourier slice is arbitrary, the space time evolution
shown in figure 5.4 by considering the first Fourier slice yields an imperfect
reduction in the desymmetrized frame; the field shows a weak deformations. It
means this slice is not able to project all the full motion on it. High order slice,
in particular the 14-th, is then used to reduce the vorticity field and the results
are shown in the third panel of figure 5.5 with the drift almost disappeared.

Lab frame

x [m]

t 
[s

]

Comoving frame

x [m]

Desymmetrized frame

x [m]

Figure 5.4: Symmetry reduction of ωz with the first Fourier slice. Space-time evolution
in lab frame (left) ω(x, t), comoving frame ω(x− `dyn, t) (center), desymmetrizzed
frame ω(x− `dyn − `geom, t)(right)

By summarizing, figures 5.4 and 5.5 are used to assess that:

• in the lab frame there is a high drift given by the sum of the dynamical
and the geometric drift. This drift potentially obscures the shape of the
vortices evolving in the field.

• in the comoving frame there is still a drift given by the geometric compo-
nent;

• in the desymmetrized frame the drift disappears and the motion is only
due to the pure deformation of the coherent structures.

In figure 5.6 total, dynamical and geometrical shift and velocities are shown
for both the reduced-symmetry frames: first and 14-th Fourier slices. The
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Lab frame

x [m]

t 
[s

]

Comoving frame

x [m]

Desymmetrized frame

x [m]

Figure 5.5: Symmetry reduction ofωz with the 14-th Fourier slice. Space-time evolution
in lab frame (left) ω(x, t), comoving frame ω(x− `dyn, t) (center), desymmetrizzed
frame ω(x− `dyn − `geom, t)(right)

dynamical velocity and shift (blu lines) are the same while the total velocity and
shift (black lines) are affected by the choice of the slice (eq. 5.15). The geometric
drift `geom and the associated velocity Ugeom are different, confirming the
importance of the correct choice of the slice. The reduction achieved with the
14th slice (see figure 5.6 (bottom)) yields more suitable results in term of shifts
and velocity. Even if the dynamical velocity is almost equal to the total one, the
geometric velocity is greater than zero, even if slightly. In figure 5.6, velocities
Utot and Ugeom show lots of oscillations. It is caused by the derivative of the
`tot and `geom, while the Udyn (see equations 5.19) is obtained by using the
equation 5.3.
It is worth to remark that the reduction was performed on the global spanwise
vorticity field: the dynamical phase velocity has the meaning of convective
velocity, while the geometric phase velocity is the mean velocity due to the
shape-changing of all vortices. This implies that the deformation of each vortex
contributing to the mean geometric speed, produces a motion which does
not necessarily have the same direction of the mean motion. The velocity
contribution of each vortex induced by its own shape deformation can be
summed up with a destructive interference so that the mean geometric velocity
can results near to zero.

This motivates why the geometric shift and velocity appear to be close to
zero (see figure 5.6 (red lines)).

5.2.3 Group orbits and desymmetrized trajectory

A whole representation of the CN dynamical system in the space state is a pure
abstraction of thought; a subspace representation becomes then a must. Group
orbits are a geometric representation of the dynamical system in the complex
domain. As mentioned in Chapter §4, in the state space only a subspace of
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Figure 5.6: Total, dynamical and geometric drift and phase speeds of reduced using
First (top) and 14-th Fourier slices(bottom)

the entire CN system can be represented by choosing, among infinite possible
coordinate systems, three different Fourier modes or a combination of their real
and imaginary parts. Each combination returns different shapes of group orbits
as shown in figures 5.7 and 5.8 where the The 14th Fourier slice was applied
on the spanwise vorticity ωz, averaged in y-direction. The group orbits are
composed by:

• the full trajectory z(t) =
{
|zm(t)| eiθm(t)

}
(black lines),

• the fibers (red lines) attached to any points of the full trajectory functions
of phase θm,

• the comoving trajectory (green lines)Zcom(t) = z(t)e−imk0`dyn ,

• the desymmetrized trajectory (blue lines) Z(t) = z(t)e−imk0`tot .

The base manifold is not drawn but it can be imagined as a complex hyperplane
with a intricate shape that cuts the group orbits where the desymmetrized
trajectory is projected.
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Figure 5.7: Groups orbits in a 3D subspace of Cn composed by |z5|, <z6, =z7 : spanwise
vorticity field ωz. the full trajectory z(t) (black lines), the fibers (red lines) attached
to any points of the full trajectory , the comoving trajectory (green lines) and the
desymmetrized trajectory (blue lines

As explained in Chapter 4 (sections §4.4.1) and in this Chapter (section
§5.2.2), the transition between lab frame, comoving frame and desymmetryzed
frame provides respectively the dynamic x(t) − `dyn(t) and total shift x(t) −
`dyn− `geom(t) = x(t) − `tot. These shifts are hyper-dimension phase shift (eq.
5.15), on the fibers; the fibers are the geometric representation of the symmetry
of the dynamical system. The depiction of the group orbits can be more helpful
in understanding these concepts where the transition between the trajectories
is represented by a space shift on the fibers. In particular, they can help to
understand how much is complex the dynamical system in the complex domain.
They are the geometric representation of the mathematical formulation without
a proper physical meaning.

5.3 inside the flow : symmetry reduction of the tracked vor-
tices

In this section the method created to track a discrete system of vortices is
explained. The goal consists in finding a way to follow vortices in order to do
a more detailed analysis of the vortex behavior. In particular, the aim of this
section is to add details in the characterization of the vortices, going inside
the dynamical system and revealing how much the shape-changing and the
interaction between vortices contribute to their motion. The characterization of
turbulence was enriched by going into the vorticity field following each vortex
in time and space. The analysis was executed on the vorticity field ωz averaged
in z direction ω = ωz(x,y, t), which is the same field used for the previous
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Figure 5.8: Groups orbits in a 3D subspace of Cn: spanwise vorticity field ωz, in the
subspace composed by |z12|, <z13, =z14

global analysis. Consider the vorticity transport equation for three-dimensional
incompressible and viscous flow with a uniform and constant viscosity

Dω

Dt
= (ω· ∇)u+ ν∇2ω. (5.25)

The term (ω· ∇), called stretching and tilting, is connected with the contribution
of vortex deformation (e.g atmospheric tornado or drainage vortex into a
tank, see figure 5.9 ). They come directly from the conservation of angular
momentum, seen in chapter §3, and are induced by the high gradient of velocity
aligned to vorticity vector. Stretching is given by the parallel component while
tilting by the orthogonal one.

The use of a two dimensional field ωz(x,y, t) (hereinafter referred to as
ω(x,y, t)), averaged in z-direction, partially hides the vortex deformation in z-
direction; however, the informations about the stretching and tilting components
are not completely lost. They are potentially hidden in the vorticity value in the
plane xy, as a consequence of the solution of the whole 3D field, i.e. equation
5.25 and the subsequent average along z.

In order to identify an interesting system of vortices, within an area with
an homogeneous and isotropic turbulence, the zone near the walls is removed.
A contour function, containing the isolines of the matrix ω(x,y, t), enables to
highlight and track vortices in their space-time motion in the channel. Nev-
ertheless, the use of the ω(x,y, t) is not the most suited approach to define
coherent vortical structures in general, because vorticity also characterizes shear
layers. Later it will be shown that the Okubo-Weiss criteria indicate that for the
cases under examination vorticity can be used for tracking vortices. However
one of the the goal of this dissertation was to create a numerical method of
tracking. Once it works it can be applied to every kind of physical quantities.
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Figure 5.9: Water-Drainage air vortex in a circular tank - CNR-INM

5.3.1 Metholody of tracking vortices

For the tracking of the vortices we take into account the periodicity of the
channel flow along the horizontal direction.

The tracking procedure is based on the following steps:

• step 1) a threshold value ωlower on the vorticity value is used to filter
out the small vortices in the field and to emphasize the larger ones (see
figure 5.10);

• step 2) at the time t0 all the remaining vortices have been labeled through
a sequential number ”n = 1, 2, ...” based on the initial position along the
channel (see figure 5.10b ).

• step 3) a well defined vortex n is selected and the maximum initial value
is measured;

• step 4) based on a given minimum value of contour function (correspond-
ing to 10% of the maximum value at time t0), a squared window is
designed and moved with the velocity field estimated as average of the
particles velocity within the window.
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• 5) At each time step, the maximum vorticity and the corresponding
position within the window is identified allowing the update of a novel
window according to the step 4 (see figure 5.11)

(a) Vorticity field unfiltered

(b) Vorticity field filtered

Figure 5.10: Graphic comparison between filtered and unfiltered vorticity field

Figure 5.11: One isolated vortices during its motion

The above procedure, repeated for all the vortices within the field, enables
tracking the vortices in space and time. This allows also for the identification
of the geometrical properties:

• surface

• moments of inertia

necessary for understanding the shape deformation of the vortex core, and the
kinematic properties,

• maximun of vorticity in time and space

• velocity and acceleration

essential for a full comprehension of the vortex dynamics. In particular :

• Zero moment-Geometric center

• First moment-Center of vorticity

• Second moment-Vortex’s area

• Third moment-Inertial moments
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corresponding to:

Xg =
∫
xdS

S Geometric center

Yg =
∫
ydS

S ,
(5.26)

Xv =
∫
xδωdS∫
δωdS

Vorticity center

Yv =
∫
yδωdS∫
δωdS

(5.27)

where ω is the vorticity distribution in Cartesian coordinates. The matrix of
the moment of inertia in Cartesian coordinate is:

I =

Ixx Ixy 0

Ixy Iyy 0

0 0 Izz

 Inertial moments matrix (5.28)

with 
Ixx =

∫
(y− yv)

2dS

Iyy =
∫
(x− xv)

2dS

Izz = Ixx+ Iyy

Ixy = −
∫
(x− xv)(y− yg)dS

(5.29)

where the xv and yv are the coordinates of the center of vorticity and Ixz
and Iyz are equal to zero since we are in the xy plane. Diagonalizing the matrix
of moment of inertia, the principal moments of inertia and the rotation angle α,
associated with the rotation of the principal axis reference system with respect
to the Cartesian axis were found, being respectively the eigenvalue and the
eigenvector of principal axes :

Figure 5.12: Angle of rotation α between Cartesian and principal axis

The i-th eigenvector is given by:

ni =


Xi
Yi
0

 (5.30)
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so the β rotation is:

β = arctg(
Yi
Xi

) (5.31)

Inertial moments are necessary for two different considerations. The first
is connected with the vortex shape. In fact Ixx, Iyy or I11 and I22 are the
measures of how vortex area is distributed, in space and time, along the axes
as schematized in figure 5.13

Figure 5.13: Inertial Moments as a proof of area distribution

The Izz and I33 are connected with the conservation of the angular moments
and the rotation of vortex:

L = Iω = I

 00
ωz

 = Izωz (5.32)

Finally, the circulation Γ was calculated

5.3.2 3 vortices

During the evolution of the vortices in the field, we found of particular interest
the evolution of two vortices that during their motion merge to originate a third
vortex. This particular setup will be analized in the following: the analysis
of the single vortex tells us how it deforms over time, the interaction analysis
between vortices is useful to understand their mutual influence as shown in
figure 5.14.

Figure 5.14: Two isolated vortices put together to study their interaction

More precisely, there are two vortices (called 1 and 2 as shown in figure
5.14) that meet and merge together during their motion creating a third one
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Figure 5.15: Temporal scheme of vortices evolution in time

called 5. The timing of their motion is shown in figure 5.15, with the vertical
red line shows the time instant of merging.

Kinematic properties

Figure 5.16 shows the position of the maximum of vorticity ’max’ (dashed line),
of the geometric center ’g’ (solid line) and of the center of vorticity ’v’ (dotted
line) for the three vortices 1, 2, 5 (blu, red, green, respectively). Their evolution
in channel flow is also shown in this video.
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Figure 5.16: Vortices displacements in the channel. For any vortex there are the
displacement of the maximum of vorticity (max), the geometric center (g) and the
center of vorticity (v)

The motion of the geometric center (g) and of the center of vorticity (v)
coincides; however it differs from that of the maximum of vorticity. This is
probably related to the small size of the vortex with respect to the discretization
used as well as to the value of ωlower chosen. A more refined technique will
be used as a next step so to emphasize the differences related to the local value
of the vorticity. In any case, in the actual analysis, from here on, we will report
only the quantities related to the center of vorticity.

https://youtu.be/7MY33DANgwk
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5.3.3 Vortices interaction

Figure 5.17 shows displacements (panel (a)) of the three vortices in time along x
(first panel) and y ( second panel) as well as their trajectory within the channel
(third panel). To proper understand their evolution, the time history of the
vorticity in the center of the vortex is also reported in panel (b) of the same
figure 5.17.
The motion of the first two vortices, before and after their merging is dominated
by the mean longitudinal flow which advects the vortices along the longitudinal
direction of the channel. In contrast, their transversal motion, i.e. along the
wall-normal direction, although bounded between 0.66m and 0.88 m (which is
still closer to the center of the channel than to the wall), shows a clear trend
to approach the center of the channel, at least before the merging time instant.
Then, we observe an oscillation in the wall-normal position of the resulting
vortex (green line), at a first glance associated with the variation of the vorticity
in the center of the vortex field (see panel (b)) and probably related to the
interaction phase. However, after a first oscillation, the vortex continues its
travel in a rectilinear path.
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Figure 5.17: Vortices displacements (a) of three vortices compared with the vorticity of
the center of vorticity (b). The center of vorticity (solid lines) and maximum of vorticity
(dash line)
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However, by using the kinematic and geometrical information reported
in figure 5.17 and 5.18, we can further inspect the dynamics of this vortical
structure. In particular, the motion of vortex 1 can be split in two parts: the
first part going from t = 0 s to t = 20 s and the second from t = 20 s to t = 30
s. In the first part (figure 5.18), the vorticity ω1 increases , while its surface S1
decreases. This behavior can be related to the tilting phenomenon. By tilting,
indeed, the vortex could reduce its projected area in the x-y plane, which is
the one given by the average procedure along z, and increase the mean value
of the vorticity: the vortex tube becomes thinner and the vorticity larger. The
angle of rotation β in the xy plane is constant (see fig 5.19, that is Cartesian and
principal axes are not changing in time. Since I22 > I11 the vortex is stretched (
see fig. 5.19 (i)).

In the second part, after vorticity has reached its maximum value, it de-
creases according to the trend of the vortex surface. As a consequence, the
shape of the vortex is reducing in size and amplitude. It is interesting to note
that during the last stage of the diffusion process the vortex assumes a symmet-
ric shape, i.e. I22 = I11. However the principal axis reference system is rotating
with respect to the fixed ground axis which needs a further investigation.

The second vortex of the system has a quite short evolution before merging
with the previous one and originating vortex 5. However, its geometrical and
kinematic description is important to understand the borning of vortex 5. This
is evident by observing the results in figure 5.16 and 5.17. The merging of
vortex 1 and 2 occurs through various stages and some energy transfer occurs
from 1 to 2. This becoming evident around t=42s when the intensity of the
vorticity of 2 is larger than that of 1. The time history of the maximum vorticity,
indeed shows as the vortex 5 comes directly from vortex 2, with vortex 1

weakening and providing a negligible contribution in terms of the maximum
vorticity of the vortical structure. (Meunier et al., 2005) analysed the interaction
of two 2D identical co-rotating vortices and identified four different stages
in merging process. The first stages corresponds to the condition when the
separation distance between two centres of vorticity remain constant while the
core size increases by viscous diffusion of vorticity. When the critical core size is
exceeded the vortices become unstable and merge, leading to a rapid decrease
of the their distance. This second stage appears to be driven by advection
of vorticity. The merging is not complete because the two vortices are next
to each other but still have two separate centre of vorticity. The diffusion of
vorticity and the rotation of the rotation center lead to an axisymmetrization
of the vortex center in the third stage. In the fourth and last stage, the vortex
diffuses again due to viscosity and its size increases with time. The merging
phenomenon highly depends on the ration between the core size and the
separation distance. In this case vortex 1 and 2 are not equal vortices. Their
merging can be considered the so-called ”straining merging” that happens
when a small vortex (vortex 2) gets close to a strong vortex (vortex 1) and it is
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Figure 5.18: Vortices surfaces and its time derivative (c), the circulation Γ (d) and the
maximum of vorticity (e) as a function of time and compared with the vorticity of the
center of vorticity (f)

stretched and transformed into a vortex sheet which is wrapped around the
larger vortex. As shown in figure 5.19 the circulation Γ of vortex 5 is the sum
of that vortex 1+2. However, the interaction between vortex 1+2 is meaningful
in terms of the geometrical parameters time history, indicating a dominant
role of the shape deformation both at the merging instant (see the jump which
characterizes the several quantities) and during the whole evolution of vortex
5. In particular, for the latter, we can observe both the geometric (transversal
position, surface and inertia moment) and the dynamic quantities change almost
in phase as a possible consequence of the shape deformation. Further a periodic
behaviour with a period of about 80 s is observed.

Despite a objective identification of vortices is still unanswered, to be further
sure that the use of vorticity in this 2D vortex tracking was a suitable method
to identify coherent structure, the Hua-Klein criterion (HK) (Hua and Klein
(1998)) was applied to vortex 5, the longest in terms of time history and the
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Figure 5.19: Cartesian and principal moments of inertia (g and h), the rotation angle α
(i) as a function of time compared with compared with the vorticity of the center of
vorticity (l)

farthest from the wall. In particular, the Hua-Klein criterion is an extension
of the Okubo-Weiss criterion (OW), that is more appropriate for steady flow.
Both represent exact criteria for partitioning fluid with different dynamical
properties: strain dominated regions from vorticity dominated ones. The OW
parameter is:

OW = λ0 =
1

4
(S2n + S2s −ω

2) (5.33)

where Sn = ∂xu− ∂yv are the stretching rate, the Ss = ∂xv+ ∂yu the shear
component of the strain and ω the relative vorticity. The OW weights the
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(a)

(b)

(c)

(d)

(e)

Figure 5.20: Okubo-Weiss and Hua-Klein parameters and terms evaluated in the centre
of vorticity of Vortex 5 as a function of time. In particular (a) Ss (blu line), Sn(azure
line) and ω (red line), (b) the Okubo-Wiess terms S2 = S2n + S2s (black line) and ω2

(red line), (c) the Hua-Klein terms Ṡs (blu line), Ṡn (azure line) and ω̇ (red line), (d)
Ṡ2n + Ṡ2s (black line) and ω̇ (red line) terms and (e) λ0 (magenta line) and Im(λ1) (black
line)

strain properties of the flow against the vorticity properties and thus separates
vorticity-dominates areas from strain-dominated one (Vortmeyer-Kley et al.,
2016). While the OW is related to the eigenvalues of the Eulerian velocity
gradient tensor, the HK is defined as the largest of the eigenvalues of the
acceleration gradient tensor. Thus the HK criterion adds the not stationary
effects :

HK =
1

4
(S2n + S2s −ω

2)± 1
2

√
Ṡ2n + Ṡ2s − ω̇

2 (5.34)
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with λ1 = 1
2

√
Ṡ2n + Ṡ2s − ω̇

2 . In figures 5.20 all the terms of HK equation 5.34,
evaluated in the centre of vorticity of Vortex 5, are plotted separately in order to
understand their own role. In figure 5.20 (a) are shown respectively the Okubo-
Weiss terms, where the vorticity ω (red line) appears to be greater than the
shear stress Ss (azure line), the stretching rate Sn (blue line) and thus then the
sum of squares S2 = S2n+ S2s (black line) in figure 5.20 (b). The value of the OW
λ0 is shown also in 5.20 (e) (magenta line) that is always less than zero: it means
vorticity exceeds the amplitude of strain that usually happens in the vortex
core. The derivative of vorticity ω̇ is greater than the strain derivative and also
then the sum of squares Ṡ2n + Ṡ2s in some ranges of time. As a consequence λ1
is imaginary as shown in figure 5.20 (e) (black line). In particular, taking into
account also the value of surface in figure 5.18 (c) the dynamic of the vortex
can be split in some time regions. From t = 40s to around t = 50s there is
the completion of the merging phase where the stretching Sn and vorticity ω
increase while the shear Ss and the surface decrease. The lack of symmetry is
visible also in the value of principal inertial moments of vortex 5 in figure 5.19

where I22 >> I11. At t = 50s the time derivatives ω̇ and Ṡ reach the maximum.
From t = 50s to t = 70s the variation of vorticity ω̇ decreases together with
the variation of Ṡ2 remaining greater than the last while the surface S in figure
5.18 (c) (green line) increases reaching a first maximum at t = 70s. At t = 70s
a dissipation process starts until to t = 122s: Ss increases while the vorticity
ω and the surface decrease; the time derivative of vorticity is less than the
strain ones so that λ1 is imaginary. From t = 120s to the end there is another
increment of vorticity and the surface of the vortex. Looking at this video from
t = 100s there is another vortex behind vortex 5 that is coming from the wall
and, while it is moving towards the centre of the channel, it interacts with
vortex 5 and gives it energy.

https://www.youtube.com/watch?v=7MY33DANgwk
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5.3.4 Symmetry reduction of tracked vortices

Because of the observations done on the tracking of vortices, they seem good
candidates for the application, for the first time, of the symmetry reduction
method to a single vortex. From the conceptual point of view, it is formally
identical to the method described in section 5.2 for the global field, and then
we do not linger on that.
In this way we trust on the possibility to extract the two mean velocity com-
ponents of the vortex, related to advection (dynamical velocity) and to shape
deformation (geometric velocity).
As total velocity of the vortex, Ctot, we considered the velocity of the vortex
center; while Cdyn has been calculated through formula 5.3 applied to the
vorticity field.
It is interesting to observe that, in this case, the temporal and the spatial deriva-
tives have been estimated on the global field and then filtered through the
application of the window fitting the vortices and following them.
This corresponds to the calculation of time derivative in an eulerian way, but in
the instantaneous position of the vortex. From Ctot and Cdyn, the geometric
velocity comes directly as Cgeom = Ctot − Cdyn. The corresponding shifts
(`tot, `dyn, `geom ) are directly calculated as the time integral, according to
equations 5.15, 5.22 and 5.24.

Figure 5.21 shows the trends of extracted velocity components (left column)
and of the corresponding shifts (right column) for all the three vortices: 1 (first
row), 2(second row) and 5 (third row).
In contrast to the results observed for the global analysis, here the geometric
velocity component assumes a value which is comparable with the dynamic
velocity component, for all the vortices considered, i.e. Ctot/Cdyn almost equal
to 2. This means that the vortex motion is equally influenced by the shape
deformation and the flow advection.
A possible explanation of the different local/global behavior lies, in our think-
ing, in the different ”glasses” used for the analysis. Global analysis is looking
from far away, by averaging the behavior of the whole flow field, which includes
some vortices, but also non vortical structures, the latter dominated by the
advection. In contrast, local analysis is looking only at the details of the local
flow within a single vortex and then properly weighting the advection and the
shape deformation of the local flow structure.
Once the dynamic and geometric velocity components have been identified, we
can look at each vortex with an even more sophisticated ”optical instrument”,
a filter applied on the global field, able to properly follow the single vortex and
then observe closely its structure and its dynamics.
In order to understand this theoretical concept, figure 5.22 shows the space-time
evolution of each vortex (1, 2, 5 from top to bottom, respectively) composing the
vortical structure under investigation, in the three reference systems identified
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Figure 5.21: Velocities (left) and shifts (right) decomposition. Vortex 1 (top), Vortex 2

(center), Vortex 5 (bottom)

in section §5.2: earth-fixed lab frame (first column), comoving frame (second col-
umn) moving with the only dynamic velocity component and desymmetrized
frame (third column), moving with the whole Ctot and then closely following
the vortex. Fourth column shows an enlarged view of the vortex in the last
reference frame (dashed rectangle in the desymmetrized frame), which helps
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to understand the variation of the vorticity strength along x, meaning that the
vortex is changing its shape.
In particular, in Vortex 5 ,the reduction of the vortex surface seems to imply, as
a consequence, an increase in the vortex strength.
This view is only partial; the whole shape deformation also depends on the
deformation along y that will be fuhrer confirmed and highlighted in the next
Chapter §6 of this thesis. However, the present analysis assesses that the vortex
shape deformation induces a variation of the average velocity field of the vortex
itself.
Then, according to the results of the global analysis and to those results shown
in picture 5.21 in the lab frame the drift is given by the sum of the dynamic
and geometric shifts. In the comoving frame, a smaller drift is given by the
geometric component that is produced by the shape changing of the vortex. In
the geometric frame the drift disappears and the system of reference is moving
with the total velocity of the vortex. In the last frame, the pure deformation of
the vortex is now revealed.

Lab frame

T
(s

)

Comoving frame Desymmetrized frame Enlarged view

T
(s

)

X(m)

T
(s

)

X(m) X(m) X(m)

Figure 5.22: Space-time evolution of vortices in x-direction and time respectively in
lab (left), comoving (center) and desymmetrized frame (right): Vortex1 (a), Vortex 2 (b)
and Vortex 5 (c)

Summarizing all the results, we can assess that:

1. the differences between the dynamical and global velocities calculated
on the single vortex and on the global flow field are mainly related to
the different points of view. The global view, indeed, considers a flow
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field partially filled by vortices. There are flow regions with only advec-
tive flow; the spatial average probably hides the single vortex behavior.
Furthermore, the difference in the geometric velocity may be related to
possible destructive interference of the vortices deformations;

2. the shape-changing dynamics of the vortices, induces a geometrical drift
which is added to the dynamical drift induced by the flow advection.

The former might be related to a wave-like dispersive nature of the turbulence.
This is what will be further investigated in Chapter §6

5.4 conclusion

Large scales to small scale approach was applied to the study of turbulence of
the channel flow, in order to reach an additional characterization. Symmetry
reduction was applied first on the total spanwise vorticity ωz(x,y, t). The
Taylor hypothesis was verified to be not consistent with this range of turbulence
where a component of the vorticity dynamics has due to the vortices shape-
changing. A group of vortices were tracked and their dynamic were studied
as a rigid body immersed in the flow. This allowed the application of the
symmetry reduction also on the single vortex. The discovery was that as much
as 50% of the vortex’s velocity is caused by its deformation. It is not negligible
and it is the novelty of this study.
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6
WAV E - L I K E D I S P E R S I O N O F T U R B U L E N C E

The ’shape’ changing dynamics of turbulence, besides the distorsion induced by
the advection, might be related to a wave-like dispersive nature of turbulence
like in water waves. In ocean waves, the geometric phases are induced by wave
dispersion (Fedele, 2014). The objective of this chapter consists in assessing a
possible correlation between turbulence and ocean wave; this is based on the
insight that the turbulence evolution can hide a wave-like dispersion behaviour.
To the purpose, it is helpful to introduce and quickly describe the formation
process of the waves.
When the wind blows on an initially flat sea surface, it generates first capillary
waves, i.e. short waves (from about few millimetres and until a couple of
centimetres) whose propagation is dominated by the surface tension. Though
small, under the action of the wind, capillary waves tends to be grouped and
grow in size, both in wavelength and amplitude, originating gravity waves
above a certain wavelength (typically larger than few centimetres), for which
the gravity acceleration dominates their propagation. The different restoring
mechanism (surface tension and gravity) determines their durability: capillary
wave soon flattens as the wind stops blowing, while gravity wave, once formed
by the wind, continues its propagation for long time even without any forcing
wind. But more interesting is the different dispersion relationship, i.e. the
dependence of the wave celerity from the frequency and wavelength, which
characterizes the two different waves: for the capillary waves, it is proportional
to
√
(k), while for gravity waves in deep water it is O(1/

√
(k)).

This means that shorter wave components are faster than longer one for capillary
waves while the opposite occurs for gravity waves. Since ocean waves typically
travel by grouping, they exhibit a complex propagation which can become
locally highly nonlinear during the focusing process (Fedele et al., 2019). In
water waves theory, crest speeds are connected with their phase speeds. In deep
water gravity waves the generic crests cyclically slowdown, focus and possibly
break and then speed up. Because of the different dispersion behaviour, in
capillary waves, crest first speeds up and then slows down. These phenomena
are a direct consequence of the natural dispersion of waves and it is connected
with their capacity to exchange energy while changing their shape (Fedele et al.,

117
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2019). Wave nonlinearities may modify the slowdown and speed up process
since they affect dispersion and the phase speed (Fedele, 2014). Our research
question is first about the possible role of a wave-like dispersion behaviour
in the Navier-Stokes flows and then the possible link between the wave-like
dispersion nature and shape deformation of the vortices (Fedele and Dutykh,
2013a). In other words, we wondered if turbulence behaviour is analogous to
that of ocean waves. We think that this is possible through a combined and
comparative analysis of waves and turbulence dispersion, which is the core of
the present chapter.

6.1 an analytic solution of wave packets

We have mentioned that ocean waves propagate as wave groups. Then, the evo-
lution of a wave packet with capillary and deep-water gravity waves dispersion
relationship is here studied analytically.
The time-space evolution of a capillary wave is shown in figure 6.1. Here the
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Figure 6.1: Capillary wave: Time-space evolution of wave elevation η (left). Wave is
moving from left to right. Hysteresis curve of the crest steepness Sc as a function of
phase velocity c/c0 (right). Perfect focusing from (Fedele et al., 2019)

central crest of the group changes shape. In particular three essential phases
are noticeable: a speedup phase (A) before focus, with the maximum crest
speed attained at the focusing (B), followed by a slowdown (C) after a focus.
The shape changing of the crest is the result of the shorter waves being before
the longer waves before focus at (A), then they reach the longer waves at focus
time in (B) and surpass them after focus (C).
In figure 6.2, the perfect focusing of a deep-water gravity wave was reported.
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Figure 6.2: Deep water wave: Time-space evolution of wave elevation η (left). Wave is
moving from left to right. Hysteresis curve of the crest steepness Sc as a function of
phase velocity c/c0 (right). Perfect focusing from (Fedele et al., 2019)

The three phases are: a slown down (A) before focus, with the minimum crest
speed attained at the focusing (B), followed by a speed up (C).
The crest shape-changing here is the result of the longer waves being before the
shorter waves before focus at (A), then they reach the shorter waves at focus in
(B) and surpass them after focus (C).
Thus, the shape change of the crest is the manifestation of the dispersion of the
wave group.
According to (Fedele, 2014), the crest slowdown phenomenon, which occurs
when unsteadiness plays a role in the wave group propagation, has its theo-
retical origin in the geometric phase framework in quantum mechanics. The
forward/backward leaning or asymmetry of the evolving crest of a focused
wave is due to a linear phenomenon related to their dispersive nature. It can
be explained in terms of geometric phases (Fedele et al., 2019). At focus point
(x = 0) the profile becomes symmetric, the crest reaches its maximum height
and the potential energy growth is zero. The focusing occurs at the point when
the tallest wave in the group reaches its maximum possible crest height given
by a superposition of elementary harmonic waves whose height depends on
the packet amplitude spectrum. The crest speed of the largest wave in the
group may be assumed to be the sum of a dynamical velocity (phase speed at
the spectral peak) and a geometric component which depends on the shape
changing of the crest (Fedele, 2014), that is

ccrest = cdynamic + cgeometric (6.1)

where the cdynamic = c0 = w0
k0

, where k0 is the wave-number of the spectral
peak and w0 is the associated frequency computed via the dispersion relation.
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Let the wave elevation η(x, t) with a dispersion law ω(k) and the Gaussian
shaped spectrum S(k) with variance σ2 be:

η(x, t) =
∫∞
−∞ S(k)ei(kx−w(k)t)dk (6.2)

where

S(k) =
1√
2πσ2

e
− 1
2

(k−k0)

σ2

2

(6.3)

(Fedele et al., 2019) demonstrated that, for linear dispersion waves with w(k) ∼

kn the crest speedup in capillary wave regime occurs for n = 3/2 > 1, while
the slowdown in deep water gravity wave regime occurs for n = 1/2 < 1 .
Analytical integration of the Gaussian integral yields the simplified form (see
details in Appendix F)

η(x, t) =
1√
2πσ2

√
π

A
e(
B2

4A+C) (6.4)

where

A =
1

(2σ2)
(1+ 2iσ2w0/k20t) (6.5a)

B = 1/(2σ2)(2k0 + 2ixσ
2) (6.5b)

C = −1/(2σ2)k20 (6.5c)

By reversing the axes η(−t,−x) gives packet for k = w2 deep-water gravity
waves. The largest wave crest of amplitude h is observed at x = 0 and t = 0,
according to quasi-deterministic theory (QD) (Boccotti, 2000). The QD theory
shows that as σ −→∞, the largest crest belongs to a well-defined wave group
that passes through x = 0 and reaches its maximum focus at time t = 0. The
wave elevation of the group around the focusing point is described by (Fedele
et al., 2020)

ηQD(x, t) = Ψ(x, t)h (6.6)

where the largest wave crest of height h occurs at x = 0 and t = 0, and:

Ψ(x, t) =
∫∞
0

Sn(k)cos(kx− wt)dk (6.7)

is the space-time covariance of the surface elevation η, with w the angular
frequency. The crest speed c of the tallest crest of the stochastic wave group is:

ccrest =
dxc

dt
(6.8)

where xc(t) is the crest location at time t. From the condition that ηx must
vanish at x = xc(t) at any time t, that is

ηx = ηx(x = xc(t), t) = 0 (6.9)
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it follows by expanding in Taylor series ηx(x, t):

ηxt + ηxx
dxc

dt
= 0 (6.10)

from which
ccrest = −

ηxt

ηxx
, (6.11)

As shown in figure 6.1, the ratio c/c0 in the focusing point (B) is close to
1.15. This means that the geometric component is 15% and the shape changing
is not negligible in the wave motion.

6.2 wave-like dispersion of turbulence in channel flows

In order to find out the dispersion of turbulence, vorticity field of turbulent
channel flow was analyzed at first globally and then through the tracking
of the single vortices. The first analysis of the global field was evaluated
through the Boccotti’s quasi-determinism theory (Boccotti, 2008). As shown
in the previous section, Boccotti’s quasi-determinism theory predicts that the
structure of a Gaussian field around an extreme or peak is shaped like the
spacetime covariance function Ψ(x, t), i.e. the anti-Fourier transform of the wave
number frequency spectrum S(k,w). The most probable shape of a random field
around a peak is given by the covariance function of the field. This result is not
valid only for Gaussian processes as proven by Boccotti, but also for nonlinear
fields and it can be proven via maximum entropy principle (new proof of
this research). Given a random field as vorticity field, i.e. ωz(X, t) = η(X, t),
the spacetime dynamics nearby the large peak (x = 0, t = 0) ηmax = h is
quasideterministic and given by the maximum entropy form:

Ψ(X, T) =< η(x, t)η(x+X, t+ T) > covariance at η (mean η=0) (6.12)

where
Ψ(X, T) =

∫ ∫
S(k,ω) cos(kx− wT)dkdw (6.13)

Ψ(X, T) is the anti-Fourier transform of the spectrum and w is the angular
frequency.

The particularity of QD theory, based on the study of the spacetime covari-
ance, is that it is another way to reveal the dispersive nature of turbulence,
but in physical space rather than in Fourier space, analysing the wave shape
that leans backwards and forward as the packet slows down or speed up. The
theory is also valid for non-Gaussian fields. The core of a turbulent field is
quasi-Gaussian. The deviation from Gaussianity or intermittency is proba-
bly on the small scales. For further information, in figure 6.3 are shown the
kurtosis and skewness evaluated for the streamwise velocity Ux(x,y) and the
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spanwise vorticity ωz(x,y), averaged in z direction and in table 6.1 respectively
the minimum, maximum and the average values. For a Gaussian field (weak
turbulence) the value of skewness is aspected to be approximately equal to
zero, while the kurtosis equal to 3. The mean values (table 6.1) would suggest
the Gaussianity of the fields while they seem to be not everywhere Gaussian as
shown in figures 6.3.

Figure 6.3: Skewness and the Kurtosis evaluated for the streamwise velocity Ux(x,y)
and the spanwise vorticity ωz(x,y), averaged in z direction

Min Max Mean
Kurtosis U 6.08 1.49 2.67

Kurtosis ωz 7.56 1.54 2.98
Skewness U 1.67 −1.44 0.0029

Skewness ωz 1.69 −1.67 −0.023

Table 6.1: Kurtosis and skewness minimum, maximum and average value

6.2.1 Dispersion feature of a Turbulent flow: from capillary to deep-water gravity
waves

Full motion. The spanwise vorticity ω(x,y, t) (the same field used in the
analysis of chapter 5), has been calculated on a prescribed section at a distance
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y = y0 from the wall, i.e. ω(x,y = y0, t). In order to study the dispersion
feature of the turbulence, through the Boccotti theory, the vorticity field ω

will be considered alike the wave free-surface elevation η(x, t). Then in the
following we will use η = ω(x,y0, t).The knowledge of the vorticity field along
a prescribed wall normal section allows, according to the Boccotti’s QD theory
(see the previous subsection), the calculation of the covariance funtion Ψ(x, t)
for the spanwise vorticity. This enables the treatment of the vorticity as a QD
wave packet: we then define it as a QD vorticity packet.
In order to preserve the dependency on the y direction, the covariance function
has been estimated on two differents sections: one close to the wall and the
second close to the centre of the channel.
Figure 6.4 shows the spanwise vorticity QD packet near the wall. The left plot
shows the vorticity profiles along x for different time instants (y-axis). The
right plot represents the velocity of the peak as a function of its amplitude. The
evolution is symmetric with respect the focus time instant: the packet grows
in amplitude reaching a peak and then the exact reversal phase occurs. The
evolution resembles the one of the capillary wave packets: the packet speeds
up A− > B as it attains its maximum in B and then slowdown symmetrically
B− > C. At the focusing there is a constructive interference of many elementary
”waves”: small scale structures behind large scales travel faster reaching them
and generating a large peak.

In figure 6.5 the spanwise vorticity QD packet near the center is shown. It
is interesting to observe as the trend is the opposite to the previous one, i.e. the
QD vorticity packet near the center behaves as a deep-water gravity wave: it
slightly slowdown as it peaks up. The speed up occurs, causing the decrease of
the peak

This study seems to suggest that, as the distance from the wall increases,
vorticity scales change their geometry and their dispersion features.
Figure 6.6 gives the hysteresis curves of the peak of velocity vs peak amplitude
of the QD group of vorticity ωz(x, t). Moving from wall (left) to centre (right),
the speed up followed by the slow down behaviour, typical of the small tur-
bulent scale (capillary waves) becomes slow down followed by the speed up
typical of the large turbulent ones (deep-water gravity waves). The red dashed
line, corresponding to the 3% of the channel half width marks the reversal of
behaviour from capillary to deep water waves. It means that in the boundary
layer, initially dominated by small scales, the large scales become even more
significant.
Desymmetrized motion. To further confirm our insight the QD theory was also
applied to the desymmetrized field.
Figures 6.7 and 6.8 depict, respectively, the pure speed-up/slow-down typical
of the capillary-like behavior and the pure slow-down/speed-up typical of
the deep water gravity wave-like behavior. Here, the desymmetrization has
been done using the 14th Fourier slice. Because of that, the dynamical velocity
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Figure 6.4: Spanwise vorticity QD packet near the wall. Packets behave as capillary
wave groups. Vorticity profiles (left), Hysteresis curves of the peak velocity vs peak
amplitude (right)

component has been removed and the turbulence dynamics is then governed
by the pure deformation. Velocity module in figure 6.7 increases from A to
B until the focusing (speed up) and decreases after from B to C (slowdown)
according with the capillary behaviour in the wall region. In contrast, near the
centre of the channel velocity decreases from A to B (slowdown) and increases
from B to C (speed up) as a deep water gravity wave propagation.

Phase velocity. Assuming the general phase speed as C(k) = ω(k)/k, the
streamwise phase velocity U(k) for the QD packet is:

U(k) =

∫
S(k,ω)ωk dω∫
S(k,ω)dω

(6.14)

The assessment of the wave-like dispersion of turbulent scales is given in
figure 6.9. Moving from wall to center of the channel, the phase speed changes
from a hyper capillary regime for really small scales (i.e. large k) (w ∼ k4) to
water gravity wave regime (w ∼

√
(k)) for the larger scales (i.e. small k).

Figure 6.10 shows the phase velocity computed on the desymmetrized field,
confirming the above observed behavior for small and large turbulence scales.

In this way we assessed that the analysis of the QD covariance of spanwise
vorticity shows a strong analogy with the propagation of a capillary and a
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Figure 6.5: Spanwise vorticity QD packet near the center. Packets behave as deep water
wave groups. Vorticity profiles (left), Hysteresis curves of the peak velocity vs peak
amplitude (right)

deep water gravity wave packet, respectively, for the small turbulent scales
characterizing the flow at the wall and the large scale of the flow at the center
of the channel.

6.2.2 Conclusions

In this chapter, we demonstrate the wave-like feature of turbulence structures.
In particular, we analyzed the 2D vorticity field ω(x,y, t) in order to discover
that the deformation of vortices is strictly connected with the wave-like dis-
persion of turbulence. The evolution of a wave packet with capillary and
deep-water gravity waves dispersion relationship were studied analytically
in order to understand the different dispersive behaviors. Furthermore, the
application of QD theory was a perfect way to reveal the dispersive nature of
waves and later of turbulence. We discovered that moving from wall to center
of the channel, the turbulence structures change from a hyper-capillary regime
for really small scales (w ∼ k4) to water gravity wave regime (w ∼ sqrt(k)) for
the larger scales. The QD theory was applied both to the original vorticity field
and to the desymmetrized one. It highlighted even more, the shape-changing
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Figure 6.6: Hysteresys curves of the peak velocity vs peak amplitude of the QD group
as a function to the distance from the wall

of vortices.
This new wave-like feature of the turbulence suggested us to represent the three
tracked vortices as a free surface wave group evolving in time and space as the
time-stack in figure 6.11, respectively Vortex 1 (top), Vortex 2 (center) and Vortex
5 (bottom) in Lab frame (left), comoving frame (center) and deymmetrized
frame (right).
In particular, in the first two windows, vortices are watched from the earth-lab
frame respectively at x = Xmax = cost and y = Ymax = cost. In x = Xmax we
observe that vortices are moving in wall normal direction towards the center of
the channel without any drift and changing their shape (section-shape). This is
because vortices motion along the wall-normal direction, although bounded
between 0.66m and 0.88m, shows a weak trend to approach the center of the
channel but without any symmetry, i.e. advection velocity. In y = Ymax the vor-
tices dynamics was prevailed by the drift given by the T-symmetry. According
to Chapter §5, the vortices dynamics was observed by the comoving frame and
then by the desymmetrized frame. While in the comoving frame there is still a
drift given by the motion produced by the shape-changing of vortices, in the
desymmetryzed frame the pure deformation is revealed. Looking at figure 6.11,
Vortex 5 (bottom), one can realizes how much this representation is helpful to
highlight the differences between the system of references and even more the
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Figure 6.7: Desymmetrized spanwise vorticity QD packet near the wall.Pure speed up
of small scaled as capillary wave groups. Vorticity profiles (left), Hysteresys curves of
the peak velocity vs peak amplitude (right)

shape-changing in the desymmetrized frame. In the latter, indeed, we observe
in the time evolution the shrinking and widening of the vortex section

In order to further assess the wave-like dispersive behavior of vortices, we
applied the QD theory, as the first time, to the vortex 5. Unlike the previous
application on the total field that was at y = cost, in the vortex case, the QD was
applied to a 3D field ωvort(x,y, t), respectively, to the full motion (see figure
6.12) and the to desymmetryzed motion (see figure 6.13).

As predicted by the QD theory, we observe the shape of the maximum of
vorticity at the focusing point that occurred in x = 0 and t = 0. In the original
field, the vortex travels in the channel and focused as shown in the time frames
in figure 6.12 and in this video. In the desymmetrized field, the vortex changes
its shape remaining fixed in a point as shown in figure 6.13 and in the video,
thus showing its pure deformation. If a vortex is thought of as a superposition
of harmonics waves, focusing occurs at the point when the tallest wave of the
group reaches its maximum possible crest height, as observed in the wave
packets.

https://youtu.be/f4KZtmrojEQ
https://youtu.be/uUmEV0T2SK8
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Figure 6.8: Desymmetrized spanwise vorticity QD packet near the center. Pure slow
down of large scaled as deep water wave groups. Vorticity profiles (left), Hysteresys
curves of the peak velocity vs peak amplitude (right)
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Figure 6.12: Time frames of QD theory applied to the vortex 5. It travels in the channel
and focus at x = 0 and t = 0
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Figure 6.13: Time frames of QD theory applied to the desymmetrized Vortex 5. It is
fixed in the channel and focuses at x = 0 and t = 0
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C O N C L U S I O N A N D F U T U R E P E R S P E C T I V E S

In the present resaerch activity, the turbulence of channel flow was studied for
finding an additional and novel interpretation of the turbulent flow.
The results of the numerical simulated turbulent channel flows at Reτ = 180

were described and compared with the literature data (Chapter §2). These were
suitable for implementing the subsequent study phase based on the use of
symmetry reduction and vortex tracking.
In order to introduce the symmetry-reduction method and its concepts, simpler
systems of discrete planar vortices were employed, exploiting the Hamiltonian
theory (Chapter§3).
These allowed the later understanding thoroughly the more general symmetry
reduction methods approaching them more in detail from the geometric and
mathematics point of view (Chapter §4).
The symmetry-reduction was applied to the turbulent channel data: the transla-
tional symmetry was removed from the global field of vorticity, demonstrating
that the Taylor’s hypothesis is not consistent with this range of turbulence where
a component of the vorticity velocity is due to the vortices shape-changing.
Later, a group of vortices was tracked to go deeply inside the physics of tur-
bulence. This allowed to apply the symmetry reduction also to the isolated
vortices and reveal the shape of turbulence. This two analysis, global and local,
showed some differences in the dynamical and geometric phase velocity. The
explanation is that in the global view the flow field is considered as partially
filled by vortices and with some flow regions with the only advective flow;
the spatial average probably hides the single vortex behaviour. Furthermore,
the difference in the geometric velocity may be related to possible destructive
interference of the vortices deformations. On the contrary, in the single-tracked
vortices, the contribution of vortex deformation is more explicit and fully as-
sessed, after the removing of the symmetry (Chapter §5).
Last, but not least, the demonstration that the vortex shape-changing dynamics
is the proof of the physical manifestation of an hidden wave-like dispersion
behaviour of the turbulence. A capillary wave group and deep water gravity
wave were studied to understand the different dispersive behaviours and asso-
ciate it to the vortices through the application of the quasi-deterministic theory:
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boundary layer vortices (small scales) behave as capillary waves while central
vortices (large scales) as deep-water gravity waves (Chapter §6)

Summarizing, the novelties and understandings of this work were:

• symmetry reduction approach provides a new way to study the anatomy
of the vortical motion. This depends on the inertia of the flow and on its
own shape-changing form in time;

• because of the inertia of the flow, vortices are transported at the Taylor
speed, the so-called dynamical velocity Fedele et al. (2015);

• the shape-changing in time induces a “self propulsion velocity”, the
so-called geometric velocity Fedele et al. (2015);

• in strong turbulence, the Taylor’s hypothesis of frozen vortices is not
satisfied since the geometric velocity is not negligible;

• the global view hides almost totally the geometrical velocity of vortices
probably caused by the destructive interference of vortices deformation
and by the not completely flow filled by vortices;

• on the contrary, single tracked vortices showed a geometrical velocity that
is the half of the total one;

• in the Kolmogorov’s inertial range, the geometric velocity is induced by
the vortex shape-changing dynamics, which is the physical manifestation
of an hidden wave-like dispersion property of turbulence (Fedele, 2014).

• The Boccotti’s quasi-deterministic method (Boccotti, 2008) was applied to
vorticity field evaluated as a wave group in order to further demonstrate
the wave-like dispersion of turbulence. In particular, the small scales
structures behaves as capillary waves while large scale as deep water
gravity waves.

This new method of characterization of turbulence and a new methodology
promises to be capable of being applied to a variety of fluid dynamics problems
in which turbulence is present.
From the results and simulations experience, OpenFOAM is not the best per-
forming code for doing DNS analysis. Computational efforts and cost were
higher than other codes. Spectral codes for doing DNS simulations on simple
geometries such as the turbulent channel are probably much more efficient.
This research was born within a much larger project that aims to study rogue
waves (an open problem (Fedele et al., 2016), (Fedele et al., 2017) and under-
stand if the turbulence caused by the wind wave interaction is a factor that
influences the arising of these huge and unexpected waves. In order to perform
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DNS simulations for studing the wind wave boundary layer, it was necessary
to be sure of having an accurate solver working with geometries that change
over time and space.
In the future, to move forward in the characterization of turbulence at higher
Re, it will be useful try other codes (Nek500, Channel flow 2.0).
Furthermore, numerical simulations alone are not sufficient, so experimental
campaigns on the turbulent channel are planned to compare numerical results
and reach higher turbulence regimes based on the works of (Antonia et al.,
1997), (Cenedese et al., 1998), (Antonia et al., 1998), (Romano et al., 1999), and
(Romano, 1995).
Moreover, a more detailed analysis of the vortex merging and instabilities on
system of vortices in 2D and 3D based on the works of (Meunier et al., 2005),
(Kraichnan, 1967), (Siggia and Aref, 1981), (Leweke et al., 2016). Regarding the
characterization of vortices, it will certainly be useful to find other quantities for
a better localization and detection of the vortex in time and space. In particular,
it will be interesting to track vortices on the 3D field, to discover the evolution
of their natural shape and the real-direct energy cascade.

http://channelflow.org/
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A
A P P E N D I X A : H A M I LT O N I A N T H E O RY

The spring-mass system is shown in figure A.1 A mass m is subjected by a

Figure A.1: Mass-spring system

force F(t) and displays a displacement of q(t) and k is the spring constant. The
second Newton law gives the

mq̈+ kq = f(t). (A.1)

The total energy is an invariant of the motion since :

E = K+ P = const (A.2)

is conserved and that is dEdt = 0, where the kinetic energy is:

K =
1

2
mq̇2 (A.3)

and potential energy is:

P =
1

2
kq2 − fq (A.4)

The Lagrangian of the system is given by:

L = K− P =
1

2
mq̇−

1

2
kq2 + fq. (A.5)

the dynamics in the time interval T minimizes the action

A(q, q̇, t) =
∫T
0

L(q, q̇, t)dt (A.6)
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Figure A.2: Admissible trajectories

Figure A.2 depicts several admissible trajectories of the system. However
there is only one that minimizes the action (Bold line).

So the variational derivative

δA

δt
= 0 (A.7)

yields equation A.1.

DEMONSTRATION

Since

A =

∫T
0

[K− P]dt, (A.8)

δA

δq
=
∂L

∂q
−
d

dt

[
∂L

∂q̇

]
= −

∂P

∂q
−
d

dt

[
∂K

∂q̇

]
= −[kq− f] −

d

dt
[mq̇] = 0 (A.9)

So equation A.1 is obtained. This is a second order ODE. The equation A.1
can be reduced to a first order ODE. To do so, the Hamiltonian is written in
terms of the conjugate variables [p.q], where the momentum is p = mq̇

mq̈ =
d

dt
(mq̇) =

dp

dt
(A.10)

So the first order system is obtained:{
dp
dt = −kq+ f
dq
dt = p

m

(A.11)

together with the ”sympletic structure” of the Hamiltonian equation:{
dp
dt = −∂H∂q
dq
dt = ∂H

∂p

(A.12)
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Writing the kinetic and potential energy as a function of conjugate variables
(p,q) {

K = 1
2mq̇

2 = p2

2m

P = 1
2kq

2 − fq
(A.13)

The Hamiltonian :

H(q,p) = K+ P =
p2

2m
+
1

2
kq2 − fq (A.14)

For the mass-spring system, H is the total energy but this is not true for a
general system. If F(p,q, t) is a generic observable, then the rate of change of F
under the dynamics is:

dF

dt
=
∂F

∂t
+
∂F

∂q

dq

dt
+
∂F

∂p

dp

dt
. (A.15)

The Hamiltonian description defines a ”hydrodynamic and incompressible

Figure A.3: Manifold

flow” V (∇ ·V = 0) on the manifold M = R2 (see figure A.3), given by:

V = [u, v] =
[
∂q

∂t
,
∂p

∂t

]
=

(
∂H

∂p
,−
∂H

∂q

)
(A.16)

At any point of R2 there is a velocity vector field V and the flow is defined as
the tangent to V. The velocity field is ”incompressible”,this means that starting
with a initial volume of flow it remains the same as the flow evolves but it can
change shape. In fact ∇ ·V = 0 ,or

∂u

∂q
+
∂v

∂p
=
∂

∂q

[
∂H

∂p

]
+
∂

∂p

[
∂H

∂q

]
= 0 (A.17)

Hamiltonian equation generates a sort of hydrodynamic flow in the variable
the conjugate variable (q,p) and the flow evolution is a such a way to keep the
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flow incompressible so the area and the patches of the area evolve under the
flow keeping the area constant

ω = dq∧ dp (A.18)

An example of Hamiltonian system in fluid mechanics is as follow. Consider
an incompressible flow −→v , the stream functions Ψ can be written as:

−→
v =

[
∂Ψ

∂y
,−
∂Ψ

∂x

]
(A.19)

and

∇ ·−→v =
∂

∂x

[
∂Ψ

∂y

]
+
∂

∂y

[
−
∂Ψ

∂x

]
= 0 (A.20)

is always satisfied. Since

−→
v =

(
∂x

∂t
,
∂y

∂t

)
=

[
∂Ψ

∂y
,−
∂Ψ

∂x

]
(A.21)

then (
∂x

∂t
,
∂y

∂t

)
=

[
∂Ψ

∂y
,−
∂Ψ

∂x

]
(A.22)

that is similar to the equation A.16 in which the Hamiltonian H coincides with
the stream function Ψ.

The evolution of the observable F is:

dF

dt
=
∂F

∂t
+
∂F

∂x

∂x

∂t
+
∂F

∂y

∂y

∂t
=
∂F

∂t
+
∂F

∂x

∂Ψ

∂x
−
∂F

∂y

∂Ψ

∂y
(A.23)

dF

dt
=
∂F

∂t
+ [F,Ψ] (A.24)

where [F,Ψ] are the Poisson Brackets. In this case the Hamiltonian doesn’t
represent the kinetic energy or the total energy of the system as seen above. It
is simply related to the stream function Ψ of the flow evolution it’s in such a
way that it evolves and the stream functions remains constant Ψ[x,y] = cost.



B
A P P E N D I X B : P R O P E R O RT H O G O N A L D E C O M P O S I T I O N -
P O D

Suppose to have a set of data x(t) ∈ Rn, in the interval 0 < t < T , and to seek a
projection Pr that minimize the total error (Rowley (2005)):∫T

0

|x(t) − Prx(t)|
2 dt (B.1)

To solve this problem, a matrix nxn is introduced that is:

R =

∫T
0

x(t)x(t)∗dt (B.2)

: where x∗r(t) denotes the transpose, and find the eigenvalues and eigenvectors
of R given by:

Rφk = λkφk (B.3)

with λk the eigenvalues and φk the eigenvectors chosen to be orthonormal.
The results of the POD is that the optimal subspace of dimension r is spanned
by φ1...φr and the optimal projection Pr is given by

Pr =

r∑
k=1

φkφ
∗
k (B.4)

where φr are called POD modes. To compute the POD modes with the method
of snapshot, one must solve a nxn eigenvalue problem and the integral B.3
becomes:

R =

m∑
j=1

xr(t)x
∗
r(t)δj (B.5)

with δj the quadrature coefficients. Assembling data into a nxm matrix

X = [x(t1)
√
δ1...x(tj)

√
δj] (B.6)

and the sum B.5 is written XX∗. The eigenvalue problem becomes:

X∗Xuk = λkuk uk ∈ Rm (B.7)
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The eigenvectors uk may be chosen to be orthonormal and the POD modes
are then given by φk = Xuk/

√
λk. In matrix form, with Φ = [φ1...φm] and

U = [u1...um] this becomes:

Φ = XUΛ−1/2 (B.8)



C
A P P E N D I X C : F O U R I E R F F T I N T H E S PA C E

Given a solution u(z,y, t) that is a snapshot of a dynamical field defined in RN.
The Fourier transform in the space is:

N/2∑
−N/2

an,me
i(kxnx+kymy) (C.1)

The coefficients an,m are called Fourier amplitudes and they are defined in
a matrix of dimension [N+ 1,N+ 1]

{a(t)n,m}n,m=−N/2;N/2 =



a0,1 a0,1 . . . a0,N

. . .

. . .

. . .

. . .

aN,0 aN,1 . . . aN,N


(C.2)

In MATLAB for a specific time instant t = t∗

z = reshape(A, (2N+ 2, 1)) =



a11
a12
. . .

. . .

a1,N

. . .

. . .

aNN


=



z1
z2
. . .

. . .

aN
. . .

. . .

a2N+2


(C.3)

fourier series

In the space R , a bases of vectors linearly independent is:

vj = v1, v2, . . . , vn (C.4)
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but not orthonormal and a generic field solution u ∈ R is defined as:

u =

N∑
j=0

uj · vj = u1 · v1 + u2 · v2 + · · ·+ uN · vN (C.5)

The angle between vectors is found by scalar product:

uj · vj =< −→u ,−→v >=
∥∥−→u ∥∥ ∥∥−→v ∥∥ cos θ (C.6)

that Πu(−→v ) is a orthonormal projection of v on u that is:

Πu(
−→v ) =

∥∥−→v ∥∥ cos −→u∥∥−→u ∥∥
∥∥−→u ∥∥∥∥−→u ∥∥ =

−→u−→v∥∥−→u ∥∥
−→u∥∥−→u ∥∥ (C.7)

and scalar product of u for itself results: < −→u ,−→u >=
∥∥−→u ∥∥2 If

(−→v 1,−→v 2, . . . ,−→v N
)

are linearly independent:

−→u =

N∑
j=0

−→u j · −→v j (C.8)

so:

−→u · −→v k =

N∑
j=0

uj(
−→v k · −→v j) k = 1 . . .N (C.9)

and in matrix form:


−→v 1 · −→v 1 −→v 1 · −→v 2 . . . −→v 1 · −→v N
−→v 1 · −→v 2 −→v 2 · −→v 2 . . . −→v 2 · −→v N
. . .

. . .
−→v N · −→v 1 −→v N · −→v 2 . . . −→v N · −→v N




u1
u2
. . .

. . .

uN

 =


−→u · −→v 1
−→u · −→v 2
. . .

. . .
−→u · −→v N

 (C.10)

If the basis is orthogonal, the Gramian is the diagonal:
−→v k · −→v j k÷ j
−→v k · −→v j = δkj

∥∥∥−→v 2j ∥∥∥ (C.11)

so :
−→u · −→v k = uk(

−→v k−→v k) (C.12)

and in order to find the Fourier coefficients uk:

uk =
−→u · −→v k∥∥−→v k∥∥2 = (C.13)
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and if the vector base of vk is orthonormal
∥∥−→v k∥∥2 = 1 The pace of the periodic

function is L2([−l/2, l/2]) is a vector space, l is the wave period and L2 is a
vector. Two generic functions f(x),g(x) are define in L2 whose properties are:{

f(x) + g(x) ∈ L2

λ · f(x) ∈ L2
(C.14)

It is defined also the scalar product (inner product) from which the angle
between the two functions is obtained:

< f(x),g(x) >= f(x) · g(x) =
∫ l/2
l/2

f(x)g(x)dx (C.15)

If the f and g are discrete function:

f(x) ∈ RN =


f(x1) = f1

√
∆x

f(x2) = f2
√
∆x

. . .

. . .

f(xN) = fN
√
∆x

 (C.16)

with ∆x = l/N and g :

g(x) ∈ RN =


g(x1) = g1
g(x2) = g2

. . .

. . .

g(xN) = gN

 (C.17)

the inner product is defined:

−→
f · −→g =

N∑
j=1

fjgj∆x =

N∑
j=1

f(xj)g(xj∆x (C.18)

The function g(x) can be expressed as a projection on a linearly independent
function base of {f1(x), f2(x), . . . fN(x), . . . }

g(x) =

inf∑
k=1

αkfk(x) (C.19)

A set of a linearly independent function is:

{
e−ikoNx, e−ik0(N−1)x, e−ik0(N−2)x, . . . , e−2ik0x,...,e−ik0x,1,eik0x,...,eikoNx

}
(C.20)
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They are orthogonal to the scalar

< fn, fm >=

∫ l/2
−l/2

eik0nxeik0mxdx =

∫ l/2
−l/2

eik0(n−m)xdx =

{
l if n = m

0 if n 6= m.
= δnml

(C.21)
and ‖fn‖ =

√
l

g(x) =

inf∑
− inf

αne
ik0nx (C.22)

and the αn coefficients are:

αn =
g · fn
‖fn‖2

=
1

l

∫ l/2
−l/2

g(x)fn(x)dx =
1

l

∫ l/2
−l/2

g(x)e−ik0nxdx = (C.23)

So if g(x) ∈ L2, then αn ∈ C2N ∼ R4 represent a point:

α−N

α−N+1

. . .

. . .

α0 . . .

. . .

α2N


(C.24)



D
A P P E N D I X D : S C A L A R P R O D U C T O F V E C T O R S I N C

One important use of scalar product is in projections. The scalar product of
two vectors u,w ∈ CN

u ·w =< u,w >= Re(u ·w) (D.1)

For example, if u,w ∈ C2 the scalar product is in 4D

u ·w = (u1 + iu2) · (w1 − iw2) = (u1w1 + u2w2)︸ ︷︷ ︸
Re(u·w)

+i(u2w1 − u1w2) (D.2)

it follows that:

< u,w >=
N∑
n=1

unwn (D.3)

where wn is the complex conjugate of wn
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E
A P P E N D I X E : A N A LY T I C D E T E R M I N AT I O N O F
D Y N A M I C A L A N D G E O M E T R I C P H A S E V E L O C I T Y
E X P R E S S I O N S

Considering the α̇tot expression:

α̇tot =
T(Z) · Ż
|T(Z)|2

−
T(z) · F(z)
|T(z)|2

= α̇geom + α̇dynamic (E.1)

the geometric component in Fourier expansion is:

α̇geom =

∑
<[T(Z)nŻn]∑
n2|Zn|2

=

∑
<[−inZnŻn]∑
n2|Zn|2

(E.2)

Considering the desymmetrized variables Zn (see equation 4.53 ) and
substituting it in the geometric velocity(equation E.2), the numerator is:

−inZnŻn = −in |zn| e
−i(φn−nφ1)[

d |zn|

dt
ei(φn−nφ1) + i(φ̇n −nφ̇1) |zn| e

i(φn−nφ1)] =

= −in |zn|
d |zn|

dt
+n |zn|

2 (φ̇n −nφ̇1)

(E.3)

taking into account |zn| = |zn| and the Re part is:

|zn|
2 (φ̇n −nφ̇1) (E.4)

while the denominator is :

n2|Zn|
2 = n2|zn|

2 (E.5)

Taking the R and the summation over n, the geometric component follows as :

α̇geom =

∑
n |zn|

2 (φ̇n −nφ̇1)∑
n2 |zn|

2
. (E.6)

The dynamical phase velocity in Fourier components is :

α̇dynamic = −

∑
<[T(z)nFn(z)]∑

n2|zn|2
= −

∑
<[−inznżn]∑
n2|zn|2

(E.7)
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where żn = Fn(z), based on the definition of dynamical system. Taking into
account zn = |zn| e

iφn and its time derivative

żn = |żn| e
iφn + iφ̇n |zn| e

iφn (E.8)

and substituting it in α̇dyn

α̇dynamic = −

∑
<
[
−inzn

(
|żn| e

iφn + iφ̇n |zn| e
iφn
)]

n2 |zn|
2

(E.9)

Performing the products and considering the conjugate expression zn =

|zn| e
−iφn

α̇dynamic = −

∑
<
[
−in |zn| |żn|−n |zn| |zn| φ̇n

]
n2 |zn|

2
(E.10)

Taking the R part allows to obtain the dynamical phase velocity as a function
of the phase velocities of all the harmonics:

α̇dynamic = −

∑
n2 |zn|

2 φ̇n
n∑

n2 |zn|
2

(E.11)

Finally the value of αtot as the sum of αdynamic and αgeom is:

α̇tot =−

∑
n2 |zn|

2 φ̇n
n∑

n2 |zn|
2

−

∑
n |zn|

2 (φ̇n −nφ̇1)∑
n2 |zn|

2
=

=

∑
n |zn|

2 (φ̇n − φ̇n) −n
2 |zn|

2 φ̇1∑
n2 |zn|

2
= φ̇1

(E.12)



F
A P P E N D I X F : A N A LY T I C D E T E R M I N AT I O N O F S U R FA C E
E L E VAT I O N η ( x , t ) F O R A WAV E G R O U P W I T H A
G AU S S I A N S P E C T R U M

Let the wave elevation η(x, t) with a generic dispersion law w(k) and the
Gaussian shaped spectrum S(k) with variance σ2 be:

η(x, t) =
∫∞
−∞ S(k)ei(kx−w(k)t)dk (F.1)

and

S(k) =
1√
2πσ2

e
− 1
2

(k−k0)

σ2

2

(F.2)

The wave elevation can be written making explicit the dispersion law w = k2

for capillary type wave group:

η(x, t) =
∫∞
−∞ S(k)e

i(kx−
w0
k2
0

k2t)
dk (F.3)

where w0/k20 = 1 and w0 and k0 are respectively the wave number of the
spectra peak and the associated frequency computed via the dispersion relation.

Substituting the Gaussian spectrum (equation F.2) in the wave elevation (F.1)
yields:

η(x, t) =
∫∞
−∞

1√
2πσ2

e
− 1

2σ2
(k−k0)

2

e
i(kx−

w0
k2
0

k2t)
dk (F.4)

Taking into account only the exponent part:

−
1

2σ2
(k− k0)

2 + i(kx−
w0
k20
k2t) (F.5)

and performing the multiplications :

1

2σ2

[
−k2(1+ 2iσ

w0
k20
t) + k(2k0 + 2iσ

2x) − k20

]
(F.6)

In order to simplify the integral, it is written as:

η(x, t) =
1√
2πσ2

∫∞
−∞ e−Ak

2+Bk+Cdk (F.7)
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with

A =
1

(2σ2)
(1+ 2iσ2w0/k20t) (F.8a)

B = 1/(2σ2)(2k0 + 2ixσ
2) (F.8b)

C = −1/(2σ2)k20 (F.8c)

The exponent can be written as:

−Ak2 +Bk+C = −(
√
Ak−

B

2
√
A
)2 +

B2

4A
+C (F.9)

so the integral becomes:

η(x, t) =
1√
2πσ2

∫∞
−∞ e

−(
√
Ak− B

2
√
A
)2
e(
B2

4A
+C)dk =

=
1√
2πσ2

e(
B2

4A
+C)

∫∞
−∞ e

−(
√
Ak− B

2
√
A
)2
dk

(F.10)

The Gaussian integral

I =

∫∞
−∞ e−y

2

dy =
√
π (F.11)

can be used to solve the surface wave integral η(x, t) analytically, making a
change of variables such that:

y =
√
Ak−

B

2
√
B

(F.12)

that yields:
dy =

√
Adk (F.13)

and
dk =

dy√
A

(F.14)

The equation F.10 can be written and

η(x, t) =
1√
2πσ2

e(
B2

4A
+C)

∫∞
−∞ e−y2dy (F.15)

the Analytical integration of the Gaussian integral yields the simplified
form

η(x, t) =
1√
2πσ2

√
π

A
e(
B2

4A+C) (F.16)

Switching space with time in the time-space system of reference allows
changing the dispersion law from capillary
mathitw(k) = k2 to deep water gravity waves types w =

√
k.
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