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Abstract

The full 6d Wess-Zumino term in the action functional for the M5-brane is anomalous as traditionally

defined. What has been missing is a condition implying the higher analogue of level quantization familiar from

the 2d Wess-Zumino term. We prove that the anomaly cancellation condition is implied by the hypothesis that

the C-field is charge-quantized in twisted Cohomotopy theory. The proof follows by a twisted/parametrized

generalization of the Hopf invariant, after identifying the full 6d Wess-Zumino term with a twisted homotopy

Whitehead integral formula, which we establish.
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1 Introduction and results

The expected but elusive quantum theory of M5-branes in M-theory (see [Duf99, Sec. 3], [HSS18, Sec. 2]) has

come to be widely regarded as a core open problem in string theory, already in its decoupling limit of an expected

6-dimensional superconformal quantum field theory (see [Mo12], [HR18]). Most attempts to understand at least

aspects of this theory have been based on analogies (such as with the known M2-brane theory) and consistency

checks (such as from implications of the expected superconformal structure). But a systematic derivation of the

theory from deeper principles had not been possible, since these deeper principles must be those of the ambient

M-theory, whose formulation is itself a wide open problem (see [Mo14, Sec. 12]).

Recently in [FSS19a], following [Sa13], we motivated, from rigorous analysis of the super homotopy theory of

super p-branes initiated in [FSS13b], a hypothesis about the mathematical foundations of microscopic M-theory:

Hypothesis H. The M-theory C-field is charge-quantized in J-twisted Cohomotopy theory (Def. 4.1).

We proved in [FSS19b] that this hypothesis implies a list of subtle consistency conditions that had informally

been argued to be necessary for M-theory to exist. This suggests that Hypothesis H could indeed be a correct

assumption about the mathematical principles underlying microscopic M-theory. If this is the case, further aspects

of M-theory must be systematically derivable, by rigorous mathematical deduction.

Here we prove that Hypothesis H implies global consistency of the full 6d Wess-Zumino-type term (WZ-term)

that appears in the action functional for the Green-Schwarz-type action functional of the M5-brane.
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The open problem. The full 6d WZ-term of the M5-brane, originally proposed in [Ah96, p. 11] and fully

established by [BLNPST97, (1)] (and reviewed in detail below in §2) is a functional of fields on a 6d worldvolume

Σ6 which may be expressed in terms of auxiliary extended fields on a cobounding extended worldvolume Σ̂7 as

follows (full generality and details in Def. 2.5 below):

Ŝ 1M5
WZ = 2Ŝ M5

WZ := 2

∫

Σ̂7

(
1
2
Ĥ3 ∧ f̂ ∗Gint

4 + f̂ ∗G7

)

(1)

exp
(

2πi
(
Ŝ 1M5

WZ

))
∈ U(1)

(2)

Σ̂7 Extended worldvolume

f̂ Extended sigma-model field

Ĥ3 Extended worldvolume higher gauge field

Gint
4 Shifted background C-field flux

G7 Dual background C-field flux

The open problem is to show that this expression (1) is well-defined, in that it is independent of the choice of

extensions, or at least independent up to integer shifts, so that at least the exponentiated Wess-Zumino action

functional (2) is well-defined.

Partial solution in the literature. A suggestive partial solution to this problem was proposed in [In00] by

(i) assuming that G4 is not only the form datum underlying a topological cocycle in rational Cohomotopy, but

even that of an actual smooth function csmth to the smooth 4-sphere [In00, (5.3)];

(ii) focusing on the first summand [In00, (2.4)] and disregarding the second summand in (1), leaving its under-

standing for later [In00, top of p. 16].

With these simplifications imposed, expression (1) reduces on oriented difference manifolds Σ̃7 := Σ̂7
1 − Σ̂7

2 to the

classical Whitehead integral formula [Wh47] (see [BT82, Prop. 17.22]) for the Hopf invariant HI(csmth ◦ f̃ ) of

maps to the 4-sphere. Since the Hopf invariant is an integer by its homotopy-theoretic definition (recalled as Def.

4.2 below), [In00] suggests that (2) is satisfied and thus refers to the first summand in (1) as the Hopf-Wess-Zumino

term, a terminology that was used for other sigma-models before [WZ83][TN89] and has become widely adopted

for the M5 since (e.g. [KS03, Sec. 3.2][HN11][Ar18, Sec. 4.1]). But, since assumption (i) is not supposed to be

generally satisfied, so that disregarding the second term (ii) is not generally possible, this is a partial solution, and

the full problem of showing consistency of (1) by demonstrating (2) had remained open.

Solution by homotopy periods in Cohomotopy. We identify the Whitehead product/formula as the right setting

and observe that Haefliger [Ha78, p. 17] already remarked that the strict Whitehead integral formula [Wh47] should

generalize to a homotopy-invariant formula with integrands the “functional cup products” of Steenrod [St49]. We

note that these secondary characteristic classes descending from the intersection pairing are expressions just of the

full form seen in (1)! For maps from the 3-sphere to the 2-sphere, this was worked out in [GM81, 14.5]. A more

general statement appears in [SW08, Ex. 1.9] under the name homotopy period-expressions.

Our first main result here (Theorem 3.2 below) is a transparent proof that the full 6d WZ term (1) (including

both summands) is a homotopy period/homotopy Whitehead integral in this sense, which reduces to the Whitehead

integral formula for the Hopf invariant in the respective special cases (Remark 4.5 below). In fact, we prove a more

general statement which incorporates also the topological twists that account for the half-integral shift by 1
4

p1

demanded by flux quantization of the background C-field (see [FSS19b, Section 3.4]).

This shows, in particular, that the two summands in (1) can not be invariantly separated, and hence that it is

really the full term (1) which deserves to be called the Hopf-Wess-Zumino term. Thereby resolves the puzzlement

expressed in [In00, top of p. 8]: the first summand of (1) by itself does not actually qualify as a Wess-Zumino term,

since it is not (the pullback of) a cocycle. The full term is a cocycle, and in fact a cocycle in integral cohomology

if Hypothesis H is satisfied, by the proof of our second main result:

Our second main result (Theorem 4.6 below) shows that under Hypothesis H the 6d Wess-Zumino term (1)

is generally integral, even in its topologically twisted generalization. This topologically twisted/parametrized

generalization of the Hopf invariant thus establishes (2) and hence proves anomaly cancellation for the 6d Wess-

Zumino term of the M5-brane.
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Consequences. We briefly highlight some consequences of and conclusions drawn from this result:

1. Level quantization. A key argument of [In00, (2.8)] was that the mathematical incarnation of N coinciding

M5-branes is that the bare Hopf-WZ term (1) S̃ M5
WZ =

∫
1
2
H3 ∧ f̂ ∗G4 + · · · is to be multiplied by N(N +1), at least

in its first summand. But, since by our result the two summands cannot be invariantly separated, this means that

the full term has to be multiplied this way, hence that for N coincident M5-branes (1) generalizes to

Ŝ N M5
WZ := N(N +1)

∫

Σ̂7

(
1
2
Ĥ3 ∧ f̂ ∗Gint

4 + f̂ ∗G7

)
N Number of coincident M5-branes (3)

with the factor of 2 in (1) being the case of N = 1. But, since N(N +1) is even for all N, the condition that (2) is

well-defined up to an integral shift, by Theorems 3.2 and 4.6, implies that

exp
(

2πi
(
S̃ N M5

WZ

))
∈ U(1) (4)

is also well-defined, for all N. Thus the factor N(N + 1) plays the role of the level of the 6d Wess-Zumino term

of the M5-brane, and its special even integral form is the level quantization for the 6d Wess-Zumino term of the

M5-brane, in analogy with integral levels of ordinary Wess-Zumino terms [Wi83].

2. Dimensional generalization of the Hopf invariant one theorem. The full 6d Wess-Zumino term of the M5-

brane (1) is evidently the special case k = 1 of a sequence of Wess-Zumino terms S
1B(4k+1)
WZ that exist for all k ∈ N

on higher gauged p-brane sigma-model fields with p = 4k+1 (hence precisely in those worldvolume dimensions

that admit self-dual higher gauge fields). For trivial topological twist τ in (29) the proof of Theorem 3.2 generalizes

verbatim to this infinite hierarchy, simply by generalizing the degree of the generator ω4 in (29) to 2(k+ 1) and

the degree of the generator ω7 to 4k+ 3. Similarly, Prop. 4.4 generalizes verbatim and shows that for all k ∈ N

the anomaly functionals S̃
1B(4k+1)
WZ of these Wess-Zumino terms compute, in the absence of topological twists and

under Hypothesis H, the Hopf invariant of the composite of the brane’s sigma-model field with the cocycle of the

background field in Cohomotopy.

It is interesting to note that, from this perspective, we take the classical Hopf invariant one theorem [Ad60] to

say that if the oriented difference of extended worldvolumes is the (4k+1)-sphere Σ̃4k+1 = S4k+1, then for almost

all values of k ∈N the anomaly functional S̃
1B(4k+1)
WZ is an even integer, in that the only values of k for which it may

take odd integer values are precisely those corresponding to branes that actually appear in string/M-theory:

k = 0 1 2

(4k+1)-brane string five-brane nine-brane

Hypothesis H with the Hopf invariant one theorem singles out the worldvol-

ume dimensions p+1∈ {2,6,10} among p-branes admitting self-dual higher

gauge fields, as those whose Wess-Zumino anomaly functional S̃
1B(4k+1)
WZ is

integrally indivisible.

3. Unifying role of the quaternionic Hopf fibration. It is noteworthy that the proofs of our main results (The-

orem 3.2 and Theorem 4.6) proceed entirely by characterizing lifts in Cohomotopy through the quaternionic Hopf

fibration, observing that it is such lifts which reflect, under Hypothesis H, the higher gauge field H3 on the world-

volume of the M5-brane [FSS19b, Proposition 3.20]. This tightly connects the discussion of the 6d Wess-Zumino

term here to the analogous cohomotopical discussion of its supersymmetric completion in [FSS15] and to the

anomaly cancellation conditions on the background fields in [FSS19b], all rigorously derived from first principles;

and thus suggests that a complete derivation of the elusive quantum M5-brane may exist guided by Hypothesis H.

4. Outlook. It is well known that the definition of WZW- and CS-terms by field extensions over a cobounding

manifold is, while an elegant method when it applies, not the most general definition of these terms: in cases

where such field extensions do not exist, the WZW- and CS-terms may still exist, now defined as hypervolume
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holonomies of some cocycle in a differential generalized cohomology theory. For the ordinary WZW- and CS-

term this differential cohomology theory is differential ordinary cohomology, represented equivalently as Cheeger-

Simons differential characters or as Deligne cohomology or as bundle gerbes with connections, or as BnU(1)-
principal connections. The reader may find a review in [FSS13a].

For the case of the 6dWZW term of the M5-branes, the results of this article show that the appropriate differ-

ential cohomology theory that generalizes the construction by field extension presented here must be a differential

refinement of Cohomotopy cohomology theory. We had constructed one version of such a differential Cohomotopy

cohomology theory in [FSS15, 4], further discussed in [GS20, 3]. Ultimately one should use this, or possibly some

variant, to generalize the results we present here to situations where extensions of fields over cobounding manifolds

may not exist.

Outline. In §2 we make precise the 6d Wess-Zumino term and its anomaly, including topological twisting. In

§3 we establish that the full WZ term is a homotopy period/homotopy Whitehead integral. In §4 we prove that

Hypothesis H implies anomaly cancellation of the full 6d Wess-Zumino term.

2 The full 6d Wess-Zumino term of the M5-brane

In this section we present a precise definition, paraphrasing from the informal literature, of the 6d Wess-Zumino

term of the M5-brane, generalize it to include topological twists reflecting the shifted flux quantization condition

on the C-field flux, and then prove that the corresponding anomaly functional is a homotopy invariant.

First we state (in Def. 2.3 below) the 6d WZ term for “small” sigma-model fields as found in the original

articles [Ah96, p. 11][BLNPST97, (1)], then we consider its globalization via extension to cobounding extended

worldvolumes as in [In00, (5.4)] (Def. 2.5 below), where we generalize to include the half-integral shift of G4

by 1
4

p1, demanded by the flux quantization of the C-field (see [FSS19b, Section 3.4]). Finally we discuss the

corresponding anomaly functional (Def. 2.8 below) and show that it is a homotopy invariant on the space of

gauged sigma-model fields (Lemma 2.9).

To be precise and reasonably self-contained, we begin by introducing the relevant ingredients:

Definition 2.1 (Background C-field and higher gauged sigma-model fields).

(i) Let X8 be a smooth 8-manifoldwhich isconnected, simplyconnected1 and spin, tobecalled the target spacetime2.

(ii) Let Σ be a smooth manifold, which is compact and oriented, to be called

(a) the worldvolume if it is 6-dimensional Σ := Σ6 without boundary;

(b) the extended worldvolume if it is 7-dimensional Σ := Σ̂7, with collared boundary

Σ6 = ∂ Σ̂7 � � (id,0) //
(
∂ Σ̂7

)
× [0,1) �

� // Σ̂7
. (5)

(c) the oriented difference of extended worldvolumes if it is 7-dimensional Σ := Σ̃7 and arising as the oriented

difference

Σ̃7 = Σ̂7
1 − Σ̂7

2 := Σ̂7
1 ∪Σ6

(
Σ̂7

2

)op
(6)

(where (−)op denotes orientation reversal) of two collared coboundary extension Σ̂7
1,2 (5) of the same world-

volume ∂ Σ̂7
1,2 = Σ6; in particular Σ̃7 is without boundary.

(iii) A background field configuration on X8 is
1 All results in the following readily generalize to non-connected X , but nothing essential is gained thereby. The assumption that X is

simply connected is to allow the use of Sullivan model analysis in §3 and §4 (as in [FSS19b, Remark 2.6]). For this it would be sufficient to

assume that X is simple in that it has abelian fundamental group acting trivially on homotopy and homology groups of its universal cover.

This assumption should not be necessary, but without it all proofs will become much more involved.
2 This pertains to M-theory on 8-manifolds, see [FSS19b, Remark 3.1]. We will often just write X for X8.
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(a) an affine Spin(8)-connection ∇ on the tangent bundle3 T X8;

(b) a pair of differential forms

G4 ∈ Ω4
(
X8
)

2G7 ∈ Ω7
(
X8
) such that

d G4 = 0 ,

d 2G7 =−G4 ∧G4 +
(

1
4

p1(∇)
)
∧
(

1
4

p1(∇)
) (7)

where the Pontrjagin 4-form is given by

p1(∇) := 〈R∇ ∧R∇〉 . (8)

In terms of the shifted flux form

Gint
4 := G4 +

1
4

p1(∇) (9)

the condition in (7) equivalently reads

d 2G7 =−
(
Gint

4 ∧Gint
4 − 1

2
p1(∇)∧Gint

4

)
. (10)

(iv) A higher gauged4 sigma-model field is a pair of

(
f , H3

)
=
(

Σ
f smooth
−−−−−! X , dH3 = f ∗

(
G4 −

1
4

p1(∇))
)

(11)

(a) with a smooth function f from the (extended) worldvolume to spacetime,

(b) a smooth differential 3-form H3 on the (extended) worldvolume, which trivializes the pullback along f of the

difference between G4 from (7) and 1
4

p1(∇) from (8),

both required to have sitting instants on any collared boundary (5), in that in some neighborhood of the boundary

they are constant in the direction perpendicular to it [FSS10, Def. 4.2.1];

(v) A homotopy between two higher gauged sigma-model fields (11)

(
f0,(H3)0

) (η ,(H3)[0,1]) +3
(

f1,(H3)1

)
(12)

is a pair of a smooth homotopy η from f0 to f1 and a differential 3-form (H3)[0,1] ∈ Ω3
(
Σ× [0,1]

)
gauging η and

restricting to (H3)0,1 at the boundaries of the interval:

Σ

(id,0)

��

f0

))❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚❚

❚ (H̃3)0

Σ× [0,1]
η smooth // X (H3)[0,1]

❴
(id,0)∗

OO

❴

(id,1)∗

��

d
(
(H3)[0,1]

)
= η∗

(
G4 −

1
4

p1(∇)
)
.

Σ

(id,1)

OO

f1

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥ (H3)1

(13)

(vi) We write

Maps
ggd
smth(Σ,X) :=

{(
f ,H3

)}
, π0

(
Maps

ggd
smth(Σ,X)

)
:=
{(

f ,H3

)}/
∼homotopy

(14)

for the sets5 of higher gauged sigma-model fields (11) and of their homotopy classes (12), respectively.

3 The theorems below hold, as general statements about the 6d WZ term, for ∇ a connection on any Spin-bundle. But application to the

actual M5-brane system requires ∇ to be a tangent connection on spacetime.
4 This is the higher analog of abelian gauging of 2d WZW model fields (e.g. [Fo03, (5)]), making the 6d Wess-Zumino term the action

functional of a higher gauged Wess-Zumino model [FSS13b].
5 The inclined reader will notice (see [FSS13b] for exposition) that the set Maps

ggd
smth(Σ,X) is of course the underlying set of global

sections of the atlas for the smooth moduli 2-stack of higher gauged sigma-model fields on Σ, and π0

(
Maps

ggd
smth(Σ,X)

)
is the set of

connected components of the geometric realization of this moduli 2-stack. All of the following discussion lifts to the higher differential

geometry of moduli stacks of fields, but for the sake of brevity we will not further consider this here.
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As an important example, we offer the following.

Lemma 2.2 (The 7-sphere as extended worldvolume). In the situation of Def. 2.1 let the oriented difference of

extended worldvolumes be the 7-sphere: Σ := Σ̃7 := S7. Then the set (14) of homotopy classes of extended gauged

sigma-model fields is the set underlying the 7th homotopy group of target spacetime X:

π0

(
Maps

ggd
smth

(
S7
,X
))

≃ π7(X) . (15)

Proof. Since homotopy classes of continuous functions between smooth manifolds are given by smooth homotopy

classes of smooth functions (e.g. [BT82, Cor. 17.8.1]) it follows that already smooth homotopy classes of ungauged

sigma-model fields are in bijection to π7(X) (since the target spacetime X is assumed to be connected there is no

dependence on a basepoint). Hence it only remains to show that, for any extended sigma-model field f̃ there

exist at least a gauging H̃3, and that for any
(

f̃ ,(H̃3)0

)
and

(
f̃ ,(H̃3)1

)
two gaugings (11) of the same extended

sigma-model field f̃ , there exists a gauged homotopy (12)

(
f̃ ,(H̃3)0

) (η̃ ,(H̃3)[0,1]) +3
(

f̃ ,(H̃3)1

)

between them. For the existence of the gauging H̃3 for a given f̃ , we only need to notice that as H7
dR(S

7) ∼=

H4(S7;R) = 0, we have f ∗[G4 −
1
4

p1(∇)] = 0 and so there exists H̃3 ∈ Ω3
(
S7
)

such that dH̃3 = f ∗
(
G4 −

1
4

p1(∇)
)
.

Similarly, given two gaugings (H̃3)0 and (H̃3)1 of f̃ , since H3
dR

(
S7
)
= 0 and (H̃3)1 − (H̃3)0 ∈ Ω3

(
S7
)

is closed by

assumption, there exists

α ∈ Ω2
(
S7
)

such that dα = (H̃3)1 − (H̃3)0 .

Then (
η̃ : (x,s) 7−! f̃ (x), (H̃3)[0,1] := (H̃3)1 +(s−1) ·dα +(ds)∧α

)

constitutes a homotopy as required.

We now consider the 6d WZ term in its various incarnations, surveyed in Table A.

Maps
ggd
smth

(
Σ6

,X11
) S // R

WZ action functional

on worldvolume

Σ6

Def. 2.3

Maps
ggd
smth

(
Σ̂7

,X11
) Ŝ // R

Extended WZ functional

on coboundary

∂ Σ̂7 = Σ6

Def. 2.5

Maps
ggd
smth

(
Σ̃7

,X11
) S̃ // R

WZ anomaly functional

on oriented difference

Σ̃7 = Σ̂7
1 − Σ̂7

2

Def. 2.8

Table A – Incarnations of the WZ

term The 6d WZ term functional S :=

SM5
WZ is a priori defined on gauged sigma-

model fields on Σ6. Its global definition

involves an extension Ŝ to extended fields

on a coboundary Σ̂7. The difference of any

two extensions is the anomaly functional S̃

on fields on the oriented difference Σ̃7 =

Σ̂7
1 − Σ̂7

2.

Definition 2.3 (6d WZ term for small sigma-model fields). In the setting of Def. 2.1, let U ⊂ X8 be a chart (a

contractible open subset). For Σ6 any closed orientable 6-manifold, write Maps
ggd
smth

(
Σ6

,U
)
⊂ Maps

ggd
smth

(
Σ6

,X
)

for

the subset of those higher gauged sigma-model fields (14) which factor through U ⊂ X (the “U -small sigma-model

fields”). As the cohomology of U is trivial in positive degree, we can choose local potentials CU
3 ∈ Ω3

(
U
)

for

ι∗U(G4 +
1
4

p1(∇)) and 2CU
6 ∈ Ω6

(
U
)

for ι∗U 2G7 +CU
3 ∧ ι∗U(G4 −

1
4

p1(∇)
)
.

U� _

ιU

��

dCU
3 = ι∗U G4

d 2CU
6 = ι∗U 2G7 +CU

3 ∧ ι∗U
(
G4−

1
4 p1(∇)

)

Σ6

f
//

fU

<<②
②

②
②

②
②

②
②

X8 d G4 = 0

d 2G7 =−G4 ∧G4+
(

1
4 p1(∇)

)
∧
(

1
4 p1(∇)

)

(16)
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Then the M5 6d Wess-Zumino term action functional on these small fields is the function

Maps
ggd
smth

(
Σ6

,U
) SM5

WZ // R
(

fU ,H3

) ✤ // SM5
WZ

(
fU ,H3

)
:= 1

2

∫
Σ6

(
−H3 ∧ f ∗UCU

3 + f ∗U2CU
6

)
.

(17)

Lemma 2.4 (Independence of choices). The functional SM5
WZ

(
fU ,H3

)
is well defined, i.e., it does not depend on the

choice of the local potentials CU
3 and CU

6 .

Proof. A different choice of local potentials is of the form (CU
3 +αU

3 ,2CU
6 + 2αU

6 ), with derivatives dα3
U = 0

and d2αU
6 = αU

3 ∧ ι∗U(G4 −
1
4

p1(∇)
)
. As the local chart U is contractible, this is equivalent to αU

3 = dαU
2 and

2αU
6 = αU

2 ∧ ι∗U(G4 −
1
4

p1(∇)+dαU
5 . Therefore, we have

∫

Σ6

(
−H3 ∧ f ∗U(C

U
3 +αU

3 )+ f ∗U2(CU
6 +αU

6 )
)
−

∫

Σ6

(
−H3∧ f ∗UCU

3 + f ∗U 2CU
6

)

=
∫

Σ6
−H3 ∧d f ∗U αU

2 + f ∗U
(
(αU

2 ∧ ι∗U(G4 −
1
4

p1(∇)
)
+d f ∗UαU

5

=
∫

Σ6
−H3 ∧d f ∗U αU

2 + f ∗U αU
2 ∧ f ∗(G4 −

1
4

p1(∇)+d f ∗UαU
5

=

∫

Σ6
−H3 ∧d f ∗U αU

2 + f ∗U αU
2 ∧dH3 +d f ∗U αU

5

=

∫

Σ6
d
(
H3 ∧ f ∗UαU

2 + f ∗U αU
5

)
= 0.

Now we globalize this definition, following the well-known procedure originally introduced in the 2-dimensional

case in [Wi83].

Definition 2.5 (Global 6d Wess-Zumino term via extended worldvolumes). In the situation of Def. 2.1, for Σ6 a

given worldvolume, let Σ̂7 be a compact oriented smooth collared cobounding 7-manifold6 according to (5)

Σ6 := ∂ Σ̂7
. (18)

Then we say that the corresponding extended action functional for the 6d WZ-term on the closed manifold Σ6 is

the function

Maps
ggd
smth

(
Σ̂7

,X
) Ŝ M5

WZ // R
(

f̂ ,Ĥ3

) ✤ // Ŝ M5
WZ

(
f̂ ,Ĥ3

)
:= 1

2

∫
Σ̂7

(
Ĥ3 ∧ f̂ ∗

(
G4 +

1
4

p1(∇)
)
+ f̂ ∗2G7

)
(19)

on the set of extended gauged sigma-model fields (11).

Lemma 2.6 (Global WZW term restricts to local WZW term). In the situation of Def. 2.3, consider a worldvolume

Σ6. Then, for every choice of extended worldvolume Σ̂7 (18) the corresponding extended action functional Ŝ (Def.

2.5) coincides, for any chart U ⊂ X with p1(∇)|U = 0, on U-small extended sigma-model fields f̂ = ιU ◦ f̂U (16)

with the local action functional S (Def. 2.3) evaluated on the boundary values f := f̂ |Σ6 of the extended fields:

Maps
ggd
smth

(
Σ̂7

,U
)

(−)|
∂ Σ̂7

��

Ŝ M5
WZ // R

Maps
ggd
smth

(
Σ6

,U
)

SM5
WZ

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

Ŝ M5
WZ

(
f̂ ,Ĥ3

)
= SM5

WZ

(
f := f̂ |∂Σ7 , H3 :=

(
Ĥ3

)
|
∂ Σ̂7

)
.

6This always exists, since the oriented cobordism ring in dimension 6 is trivial and by the collar neighbourhood theorem.
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Proof. Observe with (11) and (16) that

d
(
− Ĥ3 ∧ f̂ ∗UCU

3 + f̂ ∗U2CU
6

)
=− dĤ3︸︷︷︸

f̂ ∗ (G4−
1
4 p1(∇))

∧ f̂ ∗UCU
3 + Ĥ3∧ f ∗U dCU

3︸ ︷︷ ︸
f̂ ∗(G4+

1
4 p1(∇))

+ f̂ ∗Ud2CU
6︸ ︷︷ ︸

f̂ ∗(G4−
1
4

p1(∇))∧ f̂ ∗U CU
3

+ f̂ ∗2G7

= Ĥ3 ∧ f̂ ∗
(
G4+

1
4

p1(∇)
)
+ f̂ ∗2G7 .

(20)

With this, the claim follows by Stokes’ theorem:

Ŝ M5
WZ

(
f̂ , Ĥ3

)
:= 1

2

∫

Σ̂7

(
Ĥ3 ∧ f̂ ∗

(
G4+

1
4

p1(∇)
)
+ f̂ ∗U2G7

)

= 1
2

∫

Σ̂7

d
(
− Ĥ3∧ f̂ ∗UCU

3 + f̂ ∗U 2CU
6

)

= 1
2

∫

∂ Σ̂7

(
− Ĥ3 ∧ f̂ ∗UCU

3 + f̂ ∗U2CU
6

)
|∂Σ7

= 1
2

∫

Σ6

(
−H3∧ f ∗UCU

3 + f ∗U 2CU
6

)

=: SM5
WZ

(
fU , H3

)
.

(21)

Example 2.7 (Coboundaries for Σ6 = S3 ×S3). In the situation of Def. 2.1, consider as worldvolume the product

manifold of two 3-spheres (this is considered in [MS15, Example 2] in the non-commutative setting):

Σ6 = S3 ×S3
.

In this case there is a canonical choice of cobounding manifold Σ̂7 (18) given by the Cartesian product of the 4-disk

D4 (the closed 4-dimensional ball) with the 3-sphere, in either order (as in [Sa13]):

Σ̂7
L := D4 ×S3 and Σ̂7

R :=
(
S3 ×D4

)op
. (22)

Here we are equipping each of

S3 ×S3
,

D4 ×S3 = D4 ×
(
∂D4

)
,

S3 ×D4 =
(
∂D4

)
× D4

,





⊂ D4 ×D4 ⊂ R8

with the orientation induced from the canonical embedding into R8, which implies, by the odd-dimensionality of

S3, that the boundary of S3 ×D4 is
(
S3 ×S3

)op
(opposite orientation). This way, with (22) we indeed have

∂ Σ̂7
L,R = Σ6 := S3 ×S3

as oriented manifolds. Observe that the union of one of these coboundaries with the orientation reversal of the

other is the 7-sphere (as considered in Lemma 2.2): 7

Σ̃7 := Σ̂7
L ∪
(
Σ̂7

R

)op
= D4 ×

(
∂D4

)
∪
(
∂D4

)
×D4

= ∂
(
D4 ×D4

)

≃ ∂D8

= S7
.

S3 ×S3

(po)

��

// D4 ×S3

��
S3 ×D4 // S7

(23)

7Note that a different manipulation treats these as manifolds with corners [Sa14][Sa13].
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While Def. 2.5 gives global meaning to the local WZW term (Def. 2.3), by Lemma 2.6, this potentially comes

at the cost that the global definition depends on the choice of coboundary (18). The following definition measures

this potential dependency:

Definition 2.8 (WZ anomaly functional). In the situation of Def. 2.1, with given worldvolume Σ6, consider in Def.

2.5 two choices Σ̂7
L,R of collared cobounding extended worldvolumes (5) ∂Σ7

L,R = Σ6. This makes their oriented

difference (6) a smooth closed 7-manifold Σ̃7 := Σ̂7
L − Σ̂7

R := Σ̂7
L ∪Σ6

(
Σ̂7

R

)op
. Then for

Σ̂7
L

f̂L

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑ d
(
Ĥ3

)
L
= f̂ ∗L G4
❴

ι∗∂ L

��
Σ6
?�

ι∂ L

OO

_�

ι∂ R

��

f // X d H3 = f ∗G4

Σ̂7
R

f̂R

99sssssssssssss
d
(
Ĥ3

)
R
= f̂ ∗RG4

❴
ι∗∂ R

OO

any pair of gauged extended sigma-model fields (11), extending the same ordinary sigma-model field f over the

two choices of coboundaries, respectively, we obtain a gauged extended sigma-model field
(

f̃ ,H̃3

)
on the closed

7-manifold Σ̃7 (6) (which is smooth by the assumption of sitting instants in (11)):

Σ̂7
L� _

ιL

��

f̂L

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑ d
(
Ĥ3

)
L
= f̂ ∗L G4
OO
ι∗L

❴

Σ̃7
f̃ // X d H̃3 = f̃ ∗G4

Σ̂7
R

f̂R

99sssssssssssss� ?

ιR

OO

d
(
Ĥ3

)
R
= f̂ ∗RG4

��
ι∗R

❴

(24)

In terms of this, the difference between the two extended action functionals (Def. 2.5) corresponding to the two

choices of coboundaries may be expressed as a single integral over Σ̃7:

S̃
(

f̃ , H̃3

)
:= Ŝ

(
f̂L,(Ĥ3)L

)
− Ŝ
(

f̂R,(Ĥ3)R

)

= 1
2

∫

Σ̃7

(
H̃3 ∧ f̃ ∗

(
G4 +

1
4

p1(∇)
)
+ f̃ ∗2G7

)
.

(25)

We call expression (25) the anomaly functional of the 6d Wess-Zumino term.

Lemma 2.9 (Anomaly functional is homotopy invariant). In the situation of Def. 2.1, let Σ := Σ̃7 be a closed

7-manifold. Then the anomaly functional (25) is well-defined on the set (14) of homotopy-classes of higher gauged

sigma-model fields:

π0

(
Maps

ggd
smth

(
Σ̃7

,X
)) S̃ // R

[
f̃ ,H̃3

] ✤ // 1
2

∫
Σ̂7

(
H̃3 ∧ f̃ ∗

(
G4 +

1
4

p1(∇)
)
+ f̃ ∗2G7

)
(26)

in that the integral on the right is independent of the choice of representative ( f̃ ,H̃3) in its homotopy class.

Proof. Consider a homotopy (12) between two extended gauged sigma-model fields

(
f̃0,(H̃3)0

)
(

η̃ ,(H̃3)[0,1]

)
+3
(

f̃1,(H̃3)1

)
.

9



We need to show that then S̃
([

f̃1,(H̃3)1

])
= S̃

([
f̃0,(H̃3)0

])
. With the data (13) and using Stokes’ theorem we

directly compute as follows:

S̃
([

f̃1,(H̃3)1

])
− S̃
([

f̃0,(H̃3)0

])
= 1

2

∫

∂
(

Σ̃7×[0,1]
)

((
H̃3

)
[0,1]

∧ η̃∗
(
G4 +

1
4

p1(∇)
)
+ η̃∗2G7

)

= 1
2

∫

Σ̃7×[0,1]

d
((

H̃3

)
[0,1]

∧ η̃∗
(
G4 +

1
4

p1(∇)
)
+ η̃∗2G7

)

= 1
2

∫

Σ̃7×[0,1]

(
d
((

H̃3

)
[0,1]

)

︸ ︷︷ ︸
η̃∗
(

G4−
1
4

p1(∇)
)
∧ η̃∗

(
G4 +

1
4

p1(∇)
)
+ η̃∗d2G7

)

= 1
2

∫

Σ̃7×[0,1]

η̃∗
((

G4 −
1
4

p1(∇)
)
∧
(
G4 +

1
4

p1(∇)
)
+d2G7︸ ︷︷ ︸

=0

)

= 0 ,

where in the last step, under the brace, we used the condition (7).

3 The full M5 WZ anomaly is a homotopy Whitehead integral

We first recall from [FSS19b] how the background C-field (G4,2G7) is a cocycle in twisted rational Cohomotopy,

as Remark 3.1 below. Then we prove in Theorem 3.2, that the WZ anomaly functional from §2 is equivalently a

lift in rational Cohomotopy through the equivariant quaternionic Hopf fibration, hence in particular a homotopy

invariant of both the gauged sigma-model fields and the background fields in Cohomotopy. Below in §4 we identify

this as a twisted/parametrized generalization of a homotopy Whitehead integral.

Notions from rational homotopy theory. In the following we freely make use of Sullivan models in rational

homotopy theory (i.e., what in supergravity are called “FDA”s [FSS13b]); see [Hes06] for introduction, [GM81]

for a standard textbook account, and see [FSS16, FSS19a] for review in our context. As in these references, for

X a simply connected topological space of finite rational type, we write CE(lX) for its minimal Sullivan model

differential graded-commutative algebra (dgc-algebra), indicating that this is the Chevalley-Eilenberg algebra of

the minimal L∞-algebra lX corresponding to the loop group of X . For making Sullivan models explicit we display

the list of differential relations on each generator, thereby declaring what the generators are. For example, the

Sullivan model of the plain quaternionic Hopf fibration we denote as follows (see [FSS19b, Lemma 3.18]):

S7

hH

��

CE
(
lS7
)

OO

CE(lhH)

(
d ω7 = 0

)
OO

0 ω7

7! 7!

ω4 ω7

S4 CE
(
lS4
)

(
d ω4 = 0

d ω7 = −ω4 ∧ω4

)

topological
homotopy theory

dgc-algebraic
homotopy theory

We take the base field to be R instead of Q, so that our “rational homotopy groups” are actually “real homotopy

groups” π(X)⊗ZR; but, since this makes no essential difference in our context, we still speak of “rational” models.

We denote the real de Rham dg-algebras of a smooth manifold X by Ω•(X).
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Remark 3.1 (Background C-field is cocycle in rational twisted Cohomotopy). The Sullivan model (“FDA”) for

the 4-sphere is free on generators ω4 and ω7 (in degrees 4 and 7, respectively) subject to differential relations as

on the right of the following (27). Then the background field data (7) is identified, in the case that p1(∇) = 0 (8),

with a map to the rationalized 4-sphere (S4)R, hence with a cocycle in rational Cohomotopy [Sa13, Sec. 2.5] (see

[FSS16]):

X
(G4,2G7) // (S4)R Ω•(X) oo

G4  [ ω4

2G7  [ ω7

(
d ω4 = 0

d ω7 =−ω4 ∧ω4

)
.

topological cocycle dg-algebra homomorphism

(27)

More generally [FSS19b, Prop. 3.20], if the tangent bundle of X is equipped with topological Sp(2)× Sp(1)!
Spin(8)-structure τ , and the corresponding Euler-form trivializes

Θ7 ∈ Ω7(X) s.t. dΘ7 = χ
8(∇) := Pf(F∇) (28)

then the general background field data (7) is identified with a cocycle in rational τ-twisted Cohomotopy

X
(G4,2G7) //

τ

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
(
S4�(Sp(2)×Sp(1))

)
R
,

xx♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣♣

Ω•(X) oo

G4  [ ω4

2G7 −Θ7  [ ω7

]]

p1(∇)  [ p1

p2(∇)  [ p2

χ
8(∇)  [

χ
8 ❁❁

❁❁
❁❁

❁❁
❁❁

❁❁




d ω4 = 0

d ω7 =−ω4 ∧ω4 +
1
4

p1 ∧
1
4

p1

− χ
8




88

p1 7! p1

p2 7! p2

χ
8 7!

χ
8

+
� qqq

qqq
qqq

q

(
B(Sp(2) ·Sp(1))

)
R

CE
(
lB(Sp(2) ·Sp(1))

)

rz ♠♠♠
♠♠♠

♠♠♠
♠

♠♠♠
♠♠♠

♠♠♠
♠

(29)

Notice that the assumption (28) does not restrict the generality of the physics setup, as it is satisfied after removing

the singular loci of black M2-branes from spacetime [FSS19b, Section 2.5].

The following Theorem 3.2 says that not only does rational twisted Cohomotopy naturally encode the back-

ground C-field, via Remark 3.1 [FSS19a, FSS19b], but that it also naturally encodes the gauging (11) of the M5-

brane sigma-model fields (as in [FSS19b, Rem. 3.17]) as well as the anomaly functional of the 6d Wess-Zumino

term (Def. 2.8) as a homotopy invariant (Lemma 2.9):

Theorem 3.2 (6d WZ anomaly functional is lift through hH). In the situation of Def. 2.1, consider a closed

extended worldvolume Σ := Σ̃7. Then, under the identification of the background field with a cocycle c in rational

twisted Cohomotopy, via Remark 3.1, we have:

(i) The homotopy classes (14) of gaugings H̃3 (11) of an extended sigma-model field f̃ are in bijection to homo-

topy classes of homotopy lifts ĉ◦ f̃ through the quaternionic Hopf fibration hH of the composite c◦ f̃ with the

classifying map c (29) of the background C-field:

π0

(
Maps

ggd
smth(Σ,X)

)
|

f̃
≃





Σ̃7 ĉ◦ f̃ //❴❴❴❴❴❴❴❴❴❴

c◦ f̃

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
(
S7�(Sp(2) ·Sp(1))

)
R

(
hH�(Sp(2)·Sp(1))

)
R

xxqqq
qqq

qqq
qqq

qqq
q

(
S4�(Sp(2) ·Sp(1))

)
R

s{ ♦♦♦
♦♦♦

♦♦

♦♦♦
♦♦♦

♦♦




/

∼homotopy

(30)

(ii) Under the bijection of (30) twice the anomaly functional (Def. 2.8) equals the correction by the Euler-

potential Θ7 (28) of the integral

2S̃
(

f̃ ,H̃3

)
=
∫

Σ̃7

(
ĉ◦ f̃

)∗
(ω7)+ f ∗Θ7
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of the pullback of the angular cochain ω7 on the universal 7-spherical fibration which is fiberwise the unit

volume form on S7 and which trivializes minus the universal Euler form:

〈ω7,S
7〉= 1 , dω7 =−χ

8 . (31)

Proof. By [FSS19b, Lemma 3.19] the dgc-algebra model for the situation is as shown on the right in the following

diagram, where the generator ω7 in the top right satisfies (31) by [FSS19b, Prop. 2.5 (39)]:

Σ̃7

f̃

��

ĉ◦ f̃ //❴❴❴❴❴❴❴❴
(
S7�(Sp(2) ·Sp(1))

)
R

(
hH�(Sp(2)·Sp(1))

)
R

��

Ω•
(
Σ̃7
)
oo
(

2S̃
(

f̃ , H̃3

)
−
∫
Σ̃7 f ∗Θ7

)
·vol

Σ̃7  [ ω7

hh

H̃3  [ h3

f̃ ∗ G4  [ ω4

f̃ ∗(2G7 −Θ7)  [ ω7

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗OO

f̃ ∗

(
d ω7 = −χ

8

)

OO

≃
0 1

4 p1 ω7

7! 7! 7!

h3 ω4 ω7


d h3 = ω4 −
1
4

p1

d ω4 = 0

d ω7 = −dh3 ∧
(
ω4 +

1
4

p1

)

−χ
8




OO
ω4 ω7

7! 7!

ω4 ω7� ?

X

τ

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺ c
//
(
S4�(Sp(2) ·Sp(1))

)
R

zz✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈

Ω•(X) oo

G4  [ ω4

2G7 −Θ7  [ ω7

]]

p1(∇)  [ p1

p2(∇)  [ p2

χ
8(∇)  [

χ
8 ✿✿

✿✿
✿✿

✿✿
✿✿

✿✿




d ω4 = 0

d ω7 = −ω4 ∧ω4 +
(

1
4

p1

)2

−χ
8




88

p1 7! p1

p2 7! p2

χ
8 7!

χ
8

♣♣♣
♣♣♣

♣♣♣
♣♣

B
(
Sp(2) ·Sp(1)

)
CE
(
l
(
Sp(2) ·Sp(1)

))

≃
H̃3

�� ✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎

✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎ :B

≃

η∗

⑥⑥
⑥⑥
⑥⑥
⑥⑥

⑥⑥
⑥⑥
⑥⑥
⑥⑥

(32)

Here the right vertical morphism exhibits the minimal relative cofibration resolution of the parametrized quater-

nionic Hopf fibration, and hence any homotopy as on the left in (32) is represented by a homotopy η∗ as shown on

the right.

(i) With this cofibration resolution, the diagonal map on the right of (32) manifestly exhibits a choice of gauging

H̃3 of f̃ . It just remains to see that this establishes a bijection on homotopy classes. But a homotopy of homotopy

lifts is now of the form

Ω•
(
Σ̃7
)
cc

(H̃3)1  [ h3

f̃ ∗ G4  [ ω4

f̃ ∗2G7 − f̃ ∗Θ7  [ ω7

qq (H̃3)0  [ h3

f̃ ∗ G4  [ ω4

f̃ ∗2G7 − f̃ ∗Θ7  [ ω7OO

f̃ ∗




d h3 = ω4 −
1
4

p1

d ω4 = 0

d ω7 = −dh3 ∧
(
ω4 +

1
4

p1

)

−χ
8




OO
ω4 ω7

7! 7!

ω4 ω7� ?

Ω•(X) oo

G4  [ ω4

2G7 −Θ7  [ ω7




d ω4 = 0

d ω7 = −ω4 ∧ω4 +
(

1
4

p1

)2

−χ
8




FN

η∗

✕✕
✕✕
✕✕
✕✕
✕✕
✕

✕✕
✕✕
✕✕
✕✕
✕✕
✕

(33)
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Hence, since path objects of de Rham dgc-algebras are given by tensoring with R[s,ds] := Ω•([0,1]), this is

equivalently a dgc-algebra homomorphism making the following diagram commute:

Ω•
(
Σ̃7
)

OO
0 0

7! 7!
s ds

ll
(H̃3)0  [ h3

f̃ ∗ G4  [ ω4

f̃ ∗2G7 − f̃ ∗Θ7  [ ω7

❨❨❨❨❨❨
❨❨❨❨❨❨

❨❨❨❨❨❨
❨❨❨❨❨❨

❨❨❨❨❨❨
❨❨

Ω•
(
Σ̃7
)
⊗ [s,ds] oo η∗




d h3 = ω4 −
1
4

p1

d ω4 = 0

d ω7 = −ω4 ∧ω4 +
(

1
4

p1

)2

−χ
8



.

Ω•
(
Σ̃7
)��

s ds

7! 7!

1 0

rr
(H̃3)1  [ h3

f̃ ∗ G4  [ ω4

f̃ ∗2G7 − f̃ ∗Θ7  [ ω7

❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

(H̃3)[0,1] oo
✤
h3

(34)

This diagram (34) exhibits manifestly the same data and conditions as in (13) for a homotopy of gaugings of a

sigma-model field f̃ :

(
f̃ ,(H3)0

) (id,(H̃3)[0,1]) +3
(

f̃ ,(H3)1

)
.

(ii) Consider in the following any 7-form on Σ̃7 of unit volume:

volΣ̃7 ∈ Ω7
(
Σ̃7
)

such that

∫

Σ̃7

volΣ̃7 = 1 . (35)

Since path objects of de Rham dgc-algebras are given by tensoring with R[s,ds] := Ω•([0,1]), the homotopy

η∗ on the right in (32) is a dgc-algebra homomorphism that makes the following diagram commute:

Ω•
(
Σ̃7
)

OO
0 0

7! 7!

s ds

ll

(
2S̃−

∫
Σ̃7 f ∗Θ7

)
·vol

Σ̃7  [ ω7

1
4

f̃ ∗ p1(∇)  [ ω4

0  [ h3

❨❨❨❨❨❨
❨❨❨❨❨❨

❨❨❨❨❨❨
❨❨❨❨❨❨

❨❨❨❨❨❨
❨❨

Ω•
(
Σ̃7
)
⊗ [s,ds] oo η∗




d h3 = ω4 −
1
4

p1

d ω4 = 0

d ω7 = −ω4 ∧ω4 +
(

1
4

p1

)2

−χ
8



.

Ω•
(
S7
)��

s ds

7! 7!

1 0

rr
H̃3  [ h3

f̃ ∗ G4  [ ω4

f̃ ∗2G7 − f̃ ∗Θ7  [ ω7

❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

We claim that such an η∗ is given by:

sH̃3  − [ h3

ds∧ H̃3 + s · f̃ ∗G4 +(1− s) 1
4

f̃ ∗p1(∇)
η∗

 − [ ω4

s ·
(

f̃ ∗2G7 − f̃ ∗Θ7

)
+
(

2S̃−
∫

Σ̃7 f̃ ∗Θ7

)
· (1− s) ·vol

Σ̃7 + s(1− s) · H̃3∧ f̃ ∗
(
G4 −

1
4

p1(∇)
)
+ ds∧Q6  − [ ω7

(36)

where Q6 ∈ Ω6
(
Σ̃7
)

is any differential form which satisfies

dQ6 =
(

H̃3 ∧ f̃ ∗
(
G4 +

1
4

p1(∇)
)
+ f̃ ∗

(
2G7 −Θ7

))
−

=:2S̃−
∫

Σ̃7 f̃ ∗Θ7( ︷ ︸︸ ︷∫

Σ̃7

(
H̃3 ∧ f̃ ∗

(
G4 +

1
4

p1(∇)
)
+ f̃ ∗

(
2G7 −Θ7

))
)
·volS7 .

This exists by (35) and because cohomology classes of differential forms in top degree on compact connected

manifolds are in bijection with the values of their integrals (e.g. [La15, Sec. 7.3, Thm. 7.5]). It is clear that
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η∗ thus defined satisfies the boundary conditions in (36), as a linear map. Hence it only remains to check that it

is indeed a dgc-algebra homomorphism, in that it respects the differentials on the generators. This is verified by

direct computation:

dη∗(h3) = d
(
sH̃3

)

= ds∧ H̃3+ s ·
(

f̃ ∗G4 −
1
4

f̃ ∗p1(∇)
)

= η∗(ω4)−
1
4

f̃ ∗p1(∇)

= η∗
(
dh3

)
.

dη∗(ω4) = d
(
ds∧ H̃3+ s · f̃ ∗G4 +(1− s)1

4
f̃ ∗p1(∇)

)

=−ds∧
(

f̃ ∗G4 −
1
4

f̃ ∗p1(∇)
)
+ds∧

(
f̃ ∗G4 −

1
4

f̃ ∗p1(∇)
)

= 0

= η∗
(
dω4

)
.

dη∗(ω7) = d
(
s · ( f̃ ∗2G7 − f̃ ∗Θ7)+

(
2S̃−

∫

Σ̃7
f̃ ∗Θ7

)
· (1− s) ·volS7 + s(1− s) · H̃3∧ f̃ ∗

(
G4 −

1
4

p1(∇)
)
+ds∧Q6

)

= ds∧
(

f̃ ∗2G7 − f̃ ∗Θ7

)
−ds∧

(
2S̃−

∫

Σ̃7
f̃ ∗Θ7

)
·volS7 +ds∧ H̃3∧ f̃ ∗

(
G4 −

1
4

p1(∇)
)

−2s ·ds∧ H̃3∧ f̃ ∗
(
G4 −

1
4

p1(∇)
)
−ds∧dQ6

= ds∧
(
( f̃ ∗2G7 − f̃ ∗Θ7)+ H̃3∧ f̃ ∗

(
G4 −

1
4

p1(∇)
)
−2S̃ ·volS7 −dQ6

)

+(2−2) ·ds∧ H̃3∧
1
4

f̃ ∗p1(∇)︸ ︷︷ ︸
insert 0

−2s ·ds∧ H̃3∧ f̃ ∗
(
G4 −

1
4

p1(∇)
)

= ds∧
(

f̃ ∗(2G7 −Θ7)+ H̃3 ∧ f̃ ∗
(
G4+

1
4

p1(∇)
)
−

(
2S̃−

∫

Σ̃7
f̃ ∗Θ7

)
·volS7 −dQ6

)

︸ ︷︷ ︸
=0

−2 ·ds∧ H̃3∧ f̃ ∗
(
s ·G4 +(1− s)1

4
p1(∇)

)

=−η∗
(
ω4

)
∧η∗

(
ω4

)

= η∗
(
dω7

)
.

Notice that in the last two steps we used the fact that all 8-forms on Σ̃7 vanish, hence that f̃ ∗G4 ∧ f̃ ∗G4 = 0,

f̃ ∗p1(∇)∧ f̃ ∗p1(∇) = 0, and f̃ ∗G4 ∧ f̃ ∗p1(∇) = 0.

Remark 3.3 (Interpretation). The appearance of the correction term −
∫

Σ̃7 f ∗Θ7 has a transparent interpretation

in terms of dgca’s. Namely, as we are assuming the Euler form on X comes with the trivialization dΘ7 = χ
8(∇)

from equation (28), the lift ĉ◦ f̃ : Σ̃7
! (Sp(2) ·Sp(1))

)
R

is actually a lift ĉ◦ f̃ : Σ̃7
! E7

R, where E7
R is the rational

space obtained from (Sp(2) ·Sp(1))
)
R

by universally trivializing the closed element χ8, i.e., the rational space

whose dgca CE(lE7
R) is obtained from CE(l(Sp(2) · Sp(1)

)
R
) by adding a single generator θ7 and the relation

dθ7 = χ8. Now, in CE(lE7
R) the element ω7 + θ7 is a cocycle and so

∫

Σ̃7
ϕ∗(ω7 +θ7) is a homotopy invariant of

ϕ : Σ̃7
! E7

R. As ϕ is constrained by ϕ∗θ7 = f ∗Θ7, this homotopy invariant is

∫

Σ̃7
ϕ∗ω7 +

∫

Σ̃7
f ∗Θ7.

Theorem 3.2 precisely shows that ĉ◦ f̃ is in in the same homotopy class of a morphism ϕ with

ϕ∗ω7 =

(
2S̃
(

f̃ ,H̃3

)
−

∫

Σ̃7
f ∗Θ7

)
·volΣ̃7 ,
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so the homotopy invariant of ĉ◦ f̃ is

∫

Σ̃7

(
2S̃
(

f̃ ,H̃3

)
−

∫

Σ̃7
f ∗Θ7

)
·volΣ̃7 +

∫

Σ̃7
f ∗Θ7 = 2S̃

(
f̃ ,H̃3

)
.

We will see this situation brought out also in integral cohomology, below in Theorem 4.6.

4 Hypothesis H implies M5 WZ anomaly cancellation

In view of the rational cohomotopical interpretation of background C-field (Remark 3.1) and of the 6d WZ anomaly

functional (Theorem 3.2) it is natural to hypothesize that the topological sector of the background C-field should be

required to be a cocycle in actual twisted Cohomotopy. This charge-quantization condition is called Hypothesis H

in [FSS19b]; we recall the precise statement as Def. 4.1 below.

We observe in Prop. 4.4 that, under Hypothesis H and in the absence of topological twisting, Theorem 3.2

exhibits the M5 WZ anomaly functional as the homotopy Whitehead integral formula (see Remark 4.5 below) for

the Hopf invariant (recalled in Def. 4.2 below). This proves the anomaly cancellation (2) for the special case of

oriented differences of extended worldvolumes being the 7-sphere and for vanishing topological twist. Finally we

establish a twisted/parametrized generalization of the integral Hopf invariant in Theorem 4.6, which proves the

anomaly cancellation condition (2) generally.

Definition 4.1 (Hypothesis H [FSS19b]). In the situation of Def. 2.1 we say that:

(i) the background fields (G4,2G7) (7) satisfy Hypothesis H if they are classified as in [FSS19b, Def. 3.5] by an

actual cocycle c in twisted Cohomotopy [FSS19b, Section 2.1], hence if their classifying map in rational twisted

Cohomotopy from Remark 3.1 factors, up to homotopy, through the homotopy quotient of the 4-sphere canonically

acted on by the central product group Sp(2) ·Sp(1);

(ii) the (extended or not) higher gauged sigma-model fields ( f̃ ,H̃3) (11) satisfy Hypothesis H if the corresponding

lift (32) through the rationalized parametrized quaternionic Hopf fibration, which classifies them by Theorem 3.2,

factors by a lift through the actual parametrized quaternionic Hopf fibration hH:

Σ̃7

f̃

��

ĉ◦ f̃
❴❴❴❴❴❴❴❴ //❴❴❴❴❴❴❴❴

,,
S7�

(
Sp(2) ·Sp(1)

)
rationalization //

hH�
(

Sp(2)·Sp(1)
)

��

(
S7�(Sp(2) ·Sp(1))

)
R

(
hH�(Sp(2)·Sp(1))

)
R

��

lift to actual

twisted Cohomotopy

rational

twisted Cohomotopy

X

τ

&&▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼

(G4,2G7)

22
c❴❴❴❴❴❴❴❴❴ //❴❴❴❴❴❴❴❴❴ S4�

(
Sp(2) ·Sp(1)

)
rationalization //

❧❧❧❧
❧❧❧

uu❧❧❧❧
❧❧❧

(
S4�(Sp(2) ·Sp(1))

)
R

B
(
Sp(2) ·Sp(1)

)

H̃3

�� ✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞

✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞

(37)

Before analyzing the implications of Hypothesis H, we recall the definition of the Hopf invariant (e.g. [MT86,

p. 33]):

Definition 4.2 (Hopf invariant). For k ∈ N with k ≥ 1, let

S4k−1 φ // S2k (38)
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be a continuous function between higher dimensional spheres, as shown. Then the homotopy cofiber space of φ

has integral cohomology given by

H p
(
cofib(φ),Z

)
≃

{
Z | p ∈ {2k,4k}

0 | otherwise

Hence, with generators denoted

ω2k := ±1 ∈ Z ≃ H2k
(
cofib(φ),Z

)
, ω4k := ±1 ∈ Z ≃ H4k

(
cofib(φ),Z

)
,

there exists a unique integer

HI(φ) ∈ Z , s.t. ω2k ∪ω2k = HI(φ) ·ω4k (39)

relating the cup-product square of the first to a multiple of the second. This integer is called the Hopf invariant

HI(φ) of φ . It depends on the choice of generators only up to a sign.

We make the following basic observation:

Lemma 4.3 (Recognition of Hopf invariants from Sullivan models). The unique coefficient in the minimal Sullivan

model for a map φ of spheres as in (38) is the Hopf invariant HI(φ) (Def. 4.2):

S4k−1 φ // S2k

(
d ω4k−1 = 0

)
oo HI(φ ) ·ω4k−1 −[ ω4k−1

0 −[ ω2n

(
d ω4k−1 = −ω2k ∧ω2k

d ω4k = 0

)
.

(40)

Proof. The homotopy cofiber is represented by the ordinary pushout of topological spaces as shown in the fol-

lowing diagram on the left. This is algebraically represented by the pullback of dgc-algebras as shown on the

right:

cofib(φ)

(po)S2k

;;✈✈✈✈✈✈✈✈✈
D4k

dd❍❍❍❍❍❍❍❍❍

S4k−1

φ

dd❍❍❍❍❍❍❍❍❍

::✉✉✉✉✉✉✉✉✉




d ω2k = 0

d ω4k−1 =−ω2k ∧ω2k

+h ·ω4k

d ω4k = 0




(pb)

ω2k  [ ω2k

ω4k−1  [ ω4k−1

0  [ ω4k

yyrrr
rrr

rrr
ω2k 7! 0

ω4k−1 7! ω4k−1

ω4k 7! ω4k

$$■
■■

■■
■■

■

(
d ω2k = 0

d ω4k−1 = −ω2k ∧ω2k

)

ω2k 7! 0

ω4k−1 7! h ·ω4k−1
((❘❘

❘❘❘
❘❘❘

❘❘❘
❘

(
d ω4k−1 = ω4k

d ω4k = 0

)

ω4k−1  [ ω4k−1

0  [ ω4kww♥♥♥
♥♥♥

♥♥♥
♥♥

(
d ω4k−1 = 0

)

One reads off the pullback dgc-algebra at the top by inspection, with the coefficient h as shown, inherited from

the Sullivan model for φ in the bottom left. By the fact that Sullivan models compute the non-torsion cohomology

groups, comparison with (39) shows that h = HI(φ).

Using this, we obtain the following corollary of Theorem 3.2:
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Proposition 4.4 (Recovering the homotopy Whitehead formula). In the situation of Def. 2.1, consider the special

case when:

(i) the background C-field (7) satisfies Hypothesis H (Def. 4.1);

(ii) the extended worldvolume is the 7-sphere Σ := Σ̃7 := S7 (as in Lemma 2.2 and Example 22);

(iii) the Spin(8)-bundle over X is trivial, as well as the Spin(8)-connection ∇, and the trivial trivialization Θ7 = 0

of χ8(∇) (28) is chosen.

Then twice the WZ anomaly functional 2S̃ (Def. 2.8, Lemma 2.9) is equal to the Hopf invariant HI
(
c◦ f̃

)
(Def.

4.2) of the composite

S7 f̃ // X
c // S4

of the extended sigma-model field f̃ (11) with the (untwisted) Cohomotopy cocycle c (37) that classifies the back-

ground fields:

2S̃
(

f̃ ,H̃3

)
=

∫

S7

(
H̃3 ∧ f̃ ∗G4 + f̃ ∗2G4

)
= HI

(
c◦ f̃

)
∈ Z . (41)

Proof. Under the given assumption, the diagram (32) in Theorem 3.2 reduces to

Σ̃7 = S7

f̃

��

HI(c◦ f̃ ) // S7

hH

��

Ω•(S7) oo
2S̃ ·vol

S7  [ ω7

gg

H̃3  [ h3

f̃ ∗G4  [ ω4

f̃ ∗2G7  [ ω7

PPP
PPP

PPP
PPP

PPOO

f̃ ∗

(
d ω7 = 0

)

OO

≃
0 0 ω7

7! 7! 7!

h3 ω4 ω7


d h3 = ω4

d ω4 = 0

d ω7 = −ω4 ∧ω4




OO
ω4 ω7

7! 7!

ω4 ω7� ?

X
c

// S4 Ω•(X) oo
G4  [ ω4

G7  [ ω7

(
d ω4 = 0

d ω7 = −ω4 ∧ω4

)

≃
H̃3

|� ✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂

✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂ @H

≃
η∗

✠✠
✠✠
✠

✠✠
✠✠
✠

(42)

This identifies the top horizontal map with the Hopf invariant, as shown, by Lemma 4.3.

Remark 4.5 (Whitehead integral formulas in the literature). The statement of Prop. 4.4 is essentially that of

[Ha78, p. 17] [GM81, 14.5], the integrand being the functional cup product-expression of [St49], recalled as a

homotopy period-expression in [SW08, Exmpl. 1.9]; but the proof as a special case of Theorem 3.2 is new and

more conceptual. In the special case that G7 = 0 (which is given if the classifying map X
c
! S4 (37) is a smooth

function) the statement of Prop. 4.4 further reduces to that of the classical Whitehead integral formula for the Hopf

invariant [Wh47] (see [Ha78] [BT82, Prop. 17.22]).

The final theorem generalizes this situation to arbitrary oriented differences Σ̃7 of extended worldvolumes and

to non-trivial topological twists:

Theorem 4.6 (6d WZ anomaly functional is integral). Hypothesis H (Def. 4.1) implies that twice the general 6d

Wess-Zumino anomaly functional of the M5-brane (Def. 2.8, Lemma 2.9) takes values in the integers

π0

(
Maps

ggd
smth

(
Σ̃7

,X
))

2S̃

,,// Z � � // R

[
f̃ ,H̃3

] ✤ //
∫
Σ̂7

(
H̃3 ∧ f̃ ∗

(
G4 +

1
4

p1(∇)
)
+ f̃ ∗2G7

)
(43)

and hence that the exponentiated action (2) of the 6d WZ term of the M5-brane (Def. 2.5) is anomaly-free and

well-defined.

17



Proof. For readability we state the proof for G := Sp(2)-structure; but the generalization to Sp(2)×Sp(1)-structure

is immediate, as it just amounts to observing, by the Künneth theorem, that (48) below still holds in this generality.

By Theorem 3.2, the anomaly term is characterized as a homotopy lift through the rationalization of the

parametrized quaternionic Hopf fibration, and by Hypothesis H it is a lift through the actual parametrized Hopf

fibration hH�G. Moreover, the chosen trivialization (28) of χ
8(∇) means that the twist τ factors through the

homotopy fiber space

B̂G
hofib(χ8) // BG

χ
8 // K(Z,8) (44)

which carries a universal 7-cochain

dθ7 = χ
8 (45)

that pulls back under τ to the chosen 7-cochain (28) Θ7 [ θ7 . We write

E7

(pb)

//

hH�G

��

S7�G

hH�G

��
E4

(pb)

��

// S4�G

ρ
S4

��
B̂G

hofib(χ8)
// BG

(46)

for the corresponding pullback of the parametrized Hopf fibration, which we will still denote by the same symbol,

for brevity. The algebraic model for the left column in (46) is obtained from that for the right column, shown in

(32), by adding the generator θ7 and the differential relation (45).

This construction thus exhibits the anomaly polynomial of Def. 2.8 as the integral of a pullback of the following

real cohomology 7-class on E7:

h3 ∧
(
ω4 +

1
4

p1

)
+
(
ω7 +θ7

)
∈ H7

(
E7

,R
)
. (47)

Therefore, it is sufficient to show that the rational class (47) is the rational image of an integral class. This is what

we prove now.

First, consider the Gysin sequence (see e.g. [Sw75, 15.30]) for the universal 4-spherical fibration

S4
hofib(ρ

S4 ) // S4�G
ρ

S4 // BG .

Since for the integral cohomology groups of the classifying space we have (see e.g. [Pi][Ka06, (12)])

H•
(
BSp(2),Z

)
≃ Z

[
1
2

p1,
χ

8

]
are non-torsion groups concentrated in even degrees , (48)

the 5-class controlling this Gysin sequence vanishes, and so it breaks up into short exact sequences of the form

0 // H•
(
BG,Z

) ρ∗
S4 // H•

(
S4�G,Z

) ∫
S4 // H•−4

(
BG,Z

)
// 0 . (49)

Since, moreover, the integral cohomology groups (48) have no torsion, these short exact sequences imply that also

H•
(
S4�G,Z

)
are non-torsion groups . (50)

Now observe, by [FSS19b, Prop. 3.13], that

Γint
4 := ω4 +

1
4

p1 ∈ H4
(
S4�BG,Z

)
−! H4

(
S4�BG,R

)
(51)
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is an integral class, being the universal integral shifted C-field flux density (9). Hence, by (50), the rational

trivialization from (32)

dω7 =−ω4 ∧ω4 +
(

1
4

p1

)2
− χ

8

=−
(
Γint

4 ∧Γint
4 − 1

2
p1 ∧Γint

4

)
− χ

8

implies that also this integral cohomology class vanishes:

[
Γint

4 ∪Γint
4 − 1

2
p1 ∪Γint

4 + χ
8

]
= 0 ∈ H8

(
S4�G,Z

)
. (52)

Consider next the integral Gysin sequence corresponding to the 3-spherical fibration which is the parametrized

quaternionic Hopf fibration:

S3
hofib(hH�G) // S7�G

hH�G // S4�G . (53)

Since, rationally, S7�G is obtained from S4�G by adding the relation

dh3 = ω4 −
1
4

p1

= Γint
4 − 1

2
p1

(54)

by (32), it follows from [FSS19b, Prop. 2.5 (44)] that ω4 −
1
4

p1 is the rational image of the integral Euler class of

(53). Consequently,

Γint
4 − 1

2
p1 ∈ H4

(
S4�G,Z

)
(55)

is the integral 4-class controlling the Gysin sequence of (53), which therefore reads:

· · · // H7
(
S4�G,Z

)(hH�G)∗// H7
(
S7�G,Z

) ∫
S3 // H4

(
S4�G,Z

) ∪(Γint
4 − 1

2
p1) // H8

(
S4�G,Z

)
// · · · (56)

Now consider pulling back this situation along the homotopy fiber of χ
8 (44) to yield the sequence of spherical

fibrations (46). After this pullback the Euler class from (52) disappears, in that we obtain vanishing of the class

[
Γint

4 ∪Γint
4 − 1

2
p1(T X)∪Γint

4

]
= 0 ∈ H8

(
E4

,Z
)
. (57)

With this, the integral Gysin sequence of the pullback 3-spherical fibration from the left of (46)

S3
hofib(hH�G) // E7

hH�G // E4

is found to be

· · · // H7
(
E4

,Z
) (hH�G)∗ // H7

(
E7

,Z
) ∫

S3 // H4
(
E4

,Z
) ∪(Γint

4 − 1
2

p1(TX))
// H8
(
E4

,Z
)

// · · ·

2S̃
✤ // Γint

4
✤ // Γint

4 ∪Γint
4 − 1

2
p1(T X)∪Γint

4︸ ︷︷ ︸
=0

(58)

Here, in the bottom row, we observe that the image of Γint
4 (51) under forming cup product with the 4-class (55) is

just the vanishing class (57), which by exactness of the Gysin sequence implies that there exists an integral 7-class

2S̃ ∈ H7
(
E7

,Z
)

(59)

whose integration over the S3-fibers is Γint
4 , as shown. Since, by (54) and [FSS19b, Prop. 2.5 (45)] the fiberwise

volume form is h3, this is, rationally, the same fiber integration as that of (47), which by the exactness of the Gysin

sequence (58), now with rational coefficients

· · · // H7
(
E4

,R
) (hH�G)∗ // H7

(
E7

,R
) ∫

S3 // H4
(
E4

,R
) ∪(Γint

4 − 1
2

p1(T X))
// H8
(
E4

,R
)

// · · ·

D
✤ //

(
h3∧(ω4+

1
4

p1)+ω7+θ7

−2S̃

)
✤ // 0

(60)
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implies that the integral class 2S̃ (59) differs from the rational class (47) by a 7-class D pulled back from E4, as

shown. But by (48) and (32) there is no non-trivial 7-class on E4. Hence the equality 2S̃ = h3 ∧Γint
4 +(ω7 +θ7)

holds, and so the anomaly integrand (47) is indeed the rational image of an integral class (59) and hence has itself

integral periods:

2S̃❴

��

H7
(
E7

,Z
)

(
ĉ◦ f̃
)∗

//

��

H7
(
Σ̃7

,Z
)

��

∫
Σ̃7 // Z� _

��
H7
(
E7

,R
)

(
ĉ◦ f̃
)∗

// H7
(
Σ̃7

,R
) ∫

Σ̃7 // R

h3∧(ω4+
1
4

p1)
+ω7+θ7

✤ // H̃3∧ f̃ ∗Gint
4

+ f̃ ∗2G7

✤ // 2S̃ M5
WZ

(
f̃ ,H̃3

)
= S̃ 1M5

WZ

(
f̃ ,H̃3

)
.

(61)
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