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Abstract

In this paper we formulate a poroelastic model starting from a model of species 
diff usion in an elastic material. The model is applied to study the mechanics of the 
lamina cribrosa (LC) in the eye. The LC is a porous tissue at the head of the optic 
nerve. Deformation of this tissue and impairment of blood flow induced by tissue 
deformation are considered to be related to the pathogenesis of glaucoma.
The governing equations are derived from general thermomechanical principles. 
We carefully revise the role of the energy-stress Eshelby tensor, mutuated from the 
framework of tissue growth, in describing the hemo-mechanical behaviour of the 
tissue.
The model accounts for non-linear deformations of the solid matrix and deforma-
tion-induced changes in porosity and permeability. The model provides a qualitative 
better undertanding of the phatophysiology and pathogenesis of glaucoma in terms 
of coupling between tissue deformation and the resulting impaired hemodynamics 
inside the LC.
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1. Introduction 

The LC is a part of the optic nerve head (ONH) acting as a scaold for collecting the 
retinal ganglion cells (RGC) axons. The optic nerve carries, through the axons, the 
signal generated by the retina to the brain. The LC is also a region crucial for blood 
supply to the whole optic nerve. An increased pressure inside the vitreous chamber 
(intraocular pressure, IOP) or a decreased pressure inside the subarachnoid space 
surrounding the optic nerve (cerebrospinal fluid pressure, CSFp) can generate a 
mechanical deformation of the LC, pinching the RGCs, possibly progressively leading 
to cell death. Further, lamina deformation can have an adverse effect on vascular 
perfusion of ocular tissue. Damages of the optic nerve are typical of glaucoma, a 
progressive optic neuropathy resulting in irreversible vision loss and blindness. 
A mathematical model able to describe the mechanics behind the pathogenesis 
of glaucoma would be invaluable, not only for diagnostic purposes by providing 
useful simulations and data, but also to support and guide, in the near future, the 
design of medical devices. Many researchers have worked on the mechanics of 
the ONH accounting for the complicated structure of the lamina. However, most 
of the literature focuses on the lamina deformation without accounting for the 
interactions with blood perfusion.1–3 A possible strategy to eectively couple tissue 
deformation and blood perfusion is to model the tissue as a poroelastic material, 
where the saturated porosity stands for the vascular network made up of small 
vessels.4,5 The aim of the present work is to study the interaction between porosity, 
tissue deformation, and blood perfusion.

2.Methods

We derive a poroelastic model6,7 from a model of species diusion in an elastic 
material.8,9 This derivation is formulated in the not common framework of virtual 
powers,10 and it is carried out by transforming, in a natural way, quantities 
appropriate to a diusing species, such as concentration, chemical potential, and 
molar flux into the corresponding quantities which are appropriate to a saturated 
porous material, such as porosity, interstitial pressure, and discharge, while 
retaining the usual description for a non-linear elastic solid, based on deformation 
and stress.

We get a couple of power balance laws for the forces and for the mass of the fluid 
filling the pores:

 ∫  P0
       b0 · v0dV + ∫ ∂P0

        t0 · v0dA =  ∫ P0
       S0 ·   F   

• 
  0  dV      (1)

  ∫ P0
          ⏝ p  0 β   

•
   dV = ‒ ∫ ∂P0

        ⏝ p 0q0 · n0dA +  ∫ P0
        q0 · ▽ ⏝ p 0dV     (2)



Table 1. Parameter values used in the simulations.

Description Value

lamina thickness 0.02 cm

lamina external radius 0.095 cm

central retinal vessel passage radius 0.01 cm

shear modulus of the lamina 8 x 103 Pa

bulk modulus of the lamina 6 x 105 Pa

shear modulus of the sclera 11 x 105 Pa

reference porosity 0.01

max IOP 4666-4800 Pa

RLTp 1300 Pa
ciliary pressure 2000 Pa

central vein pressure 1000 Pa
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where P0 is any part of the referential body simultaneously showing the presence 
of both fluid and solid parts, v0 is the velocity test field,   F   •  0  is the time rate of the 
deformation gradient, b0 and to are respectively any volume and surface density 
of external forces, and S0 is the first Piola-Kirchho stress tensor. Moreover,   ⏝ p 0  is the 
interstitial pore pressure, β is the determinant of the total deformation and q0 is 
the fluid flux.

Superimposing the contributions of both external power expenditures, the 
energy imbalance principle reads: 

 S0 ·  F ˙  0 +   ̌  p 0 β ˙   - q0 · ▽  ̌  p  0 -   d _ dt   ϕ ≥ 0       (3)

from which we state some constitutive prescriptions on the form of every dissipative
term, together with a Darcy’s law coupling tissue deformation with the flux:

 
 q0 = ‒ K0▽  ⏝  p  0         (4)

We assume a second order dependence of the permeability tensor K0 from 
the porosity, through a modified Carman-Kozeny equation, which should be 
appropriate to describe the capillary network. We emphasize how this charac-
terization relies on the expression for the free energy, mutuated by tissue growth 
models, and in turn, on the stress energy function:

 T =   
⏜

 T    
eff

   ( F  ι  , β)  ‒  ⏝ p 0I |=  (  
⏜

 T    
g
  ( F  ι  )  +  (  

⏜
 p   φ   (β)  +  φ  ι   ( F  ι  ) I)  ‒   ⏝ p   0  I)     (5)



Fig. 1. Radial section of the LC-ppS system deformed under IOP = 35 mmHg. The colors show 
the value of the porosity field inside the LC: from low (blue) to high values (red). The boxed 
picture is a magnification of the interface region.
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where    
⏜

 T    
eff

   is the ective stress and   φ  ι   ( F  ι  )   is the spherical part of the Eshelby tensor.11

We perform numerical simulations on a three-D system - depicted in the 
background of Figure 1 - consisting in a curved disk embedded in a portion of peri-
papillary slera (ppS). The LC is modelled as a non-linear poroelastic tissue, whose 
governing equations are (4) and (5), while the surrounding ppS is described as an 
hyperelastic incompressible medium. The blood supply is imposed by assigning 
the value of the ciliary pressure at the LC-ppS interface, aswell as the blood 
drainage by assigning the value of the central vein pressure on the hole surface, 
located at the center of the cap (Fig. 1). On the upper boundary of the LC (facing 
the vitreous chamber), we increase the IOP from physiological values ( 15 mmHg) 
to pathological ones (up to 35 mmHg), whereas on the lower surface (facing to the 
retrolaminar region) we assign a value of retrolaminar tissue pressure (RLTp). The 
most meaningful parameter values are reported in Table 1.



Fig. 2. Blood flux as a function of IOP.
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3. Results 

Figure 1 shows the porosity map, obtained for a high IOP value (35 mmHg), and
the corresponding tissue deformation. A magnification of the LC-pps interface 
region is also shown, since this is where the most significant coupling between 
tissue deformation and changes in porosity occur, which strongly aects blood flow.

Figure 2 shows that the blood flux decreases for increasing values of IOP. IOP 
increases from physiological values (corresponding to 2000 Pa) towards increasing-
ly more severe stages of glaucoma, up to IOP = 4666 Pa. The cause of such a decrease 
is related to the large deflection of LC portions close to the sclera, and the related 
appearance of a low porosity region crossing all the LC thickness (see the magnifi-
cation of the interface region in Fig. 1).

4. Discussion

These preliminary results suggest that tissue deformation can influence blood flow 
significantly, at least in certain regions of the LC. The decrease in blood flow from 
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posterior ciliary arteries to the central retinal vein secondary to tissue deformation 
is far from being a minor adverse eect on the RGC axons, and it seems to be crucial 
for better understanding the pathogenesis of glaucoma.


