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Dynamics of mode-locked nanolasers based on Hermite-Gaussian modes
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The different dynamical behaviors of the Hermite-Gaussian (HG) modes of mode-locked nanolasers based
on a harmonic photonic cavity are investigated in detail using a model based on a modified Gross-Pitaevskii
equation. Such nanolasers are shown to exhibit mode locking with a repetition rate independent of the cavity
length, which is a strong asset for compactness. The differences with respect to conventional lasers are shown to
originate from the peculiar gain competition between HG modes, which is investigated in details. In the presence
of a saturable absorber, the different regimes, i.e., Q switching, Q-switched mode locking, and continuous-wave
(cw) mode locking, are isolated in a phase diagram and separately described. Mode locking is found to be robust
against phase-intensity coupling and to be achievable in a scheme with spatially separated gain and absorber.
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I. INTRODUCTION

The integration of ultracompact laser sources on a sili-
con platform should strongly improve the energy efficiency
in short-distance and on-chip communication for future
computers by suppressing a large volume of cables and
components [1–3]. In this context, passively mode-locked
semiconductor lasers are a promising source of optical pulses
at high repetition rates for integrated photonics, which are
potentially compact, low cost, and reliable. Besides, pho-
tonic crystal (PC) lasers, which exhibit appealing properties
in terms of low volume, low threshold, and excellent energy
efficiency [4–6], have achieved significant progress since the
first photonic crystal laser was demonstrated [7]. By modify-
ing the geometry of the PC, different cavity properties can be
optimized, leading for example to ultrahigh quality factors [8]
or high collection efficiency [9]. Moreover, nanolasers based
on photonic crystal (PC) cavities are of great importance from
the point of view of quantum optics due to their ability to
tightly confine modes in three dimensions [3].

With the objective of generating short pulses of light, self-
pulsing operation of Fano photonic crystal lasers has been
demonstrated [10,11]. Moreover, mode-locked operation has
been considered for lasers based on PC cavities [12,13]. Re-
cently, an alternative type of photonic crystal cavity forming a
harmonic photonic potential leading to the possible oscillation
of multiple longitudinal Hermite-Gaussian (HG) modes has
been experimentally demonstrated [14–16]. Based on such
a harmonic potential cavity, the concept of an ultracompact
mode-locked nanolaser has been proposed [17]. It is based on
the fact that in the presence of a harmonic potential cavity
HG modes exhibit a periodic spectrum, which is a necessary
condition for mode locking. Moreover, the inhomogeneous in-
tensity distribution of HG modes inside the cavity, compared
to the standing waves of conventional Fabry-Perot cavities,

and the compactness of the cavity, lead to different scalings for
the laser parameters compared to conventional mode-locked
lasers. In particular, the repetition rate of the laser pulse train
is governed by the curvature of the photonic potential and not
the cavity length [17]. Beyond the initial prediction that such
harmonic cavity lasers should exhibit passive mode locking,
the aim of the present paper is to give a detailed account of
the possible dynamical behaviors predicted for such lasers.

Due to the spatial inhomogeneity of the intensity distribu-
tion of HG modes, investigating the dynamical behavior of
such parabolic cavity lasers cannot be easily performed using
conventional methods usually used to model mode-locked
lasers. For example, the Haus master equation [18], which
is widely used in the theory of semiconductor mode-locked
lasers, describes the evolution of the pulse after one round trip
inside the cavity in a reference frame moving with the pulse,
and treats the gain and absorber as lumped elements inside
the cavity. We choose here not to follow this approach because
(i) it is well adapted to the situation where the pulse duration is
much shorter than the cavity round-trip time, which will not be
the case in nanolasers that will sustain oscillation of only a few
modes, and (ii) Haus’s master equation is written in a refer-
ence frame moving at the pulse group velocity, while we favor
a static reference frame. Another widely used method is based
on delay differential equations [19], which easily provides the
bifurcation analysis and does not assume small gain and loss
per cavity round trip. However, this method is also not well
adapted to nanolasers in which the pulse fills more or less the
resonator. We thus describe in Sec. II below a model based on
the Gross-Pitaevskii equation (GPE) with dissipative terms.
The cavity effect is based on the second-order dispersion and
the spatially dependent parabolic potential. The dissipative
terms describe the saturable gain and absorption in the active
structure. In this framework, the spatial effects typical of HG

2469-9926/2020/102(4)/043503(12) 043503-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0676-8259
https://orcid.org/0000-0001-9769-7905
https://orcid.org/0000-0002-6457-3372
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.043503&domain=pdf&date_stamp=2020-10-08
https://doi.org/10.1103/PhysRevA.102.043503


SUN, COMBRIÉ, DE ROSSI, AND BRETENAKER PHYSICAL REVIEW A 102, 043503 (2020)

modes, linked to the spatial distributions of the gain and the
absorber inside the resonator, are properly taken into account.

After having derived the model in Sec. II, Sec. III is
devoted to the investigation of the specific aspects of the
competition between the HG modes in the presence of gain
saturation. In particular, we isolate the peculiarities of the
competition between HG modes compared to the usual modes
of a FP cavity and the role of the response time of the ac-
tive medium in the result of mode competition. Section IV
gives a detailed description of the different dynamical regimes
achievable in the harmonic cavity nanolaser, namely Q-
switched operation, Q-switched mode locking, and cw mode
locking. Finally, in Sec. V, the influences of different param-
eters on the stability of the mode-locked soliton oscillation
regime are investigated, such as the presence of a nonzero
Henry factor in the semiconductor gain and absorber sections.
We also investigate whether mode locking can be obtained
using spatially separated gain and absorber sections in the
cavity, which could lead to more practical implementations.
Finally, a general comparison between harmonic cavity lasers
and traditional FP cavity lasers is also presented.

II. MODEL

A. From the wave equation to the Schrödinger equation

Let us consider the wave equation in a unidimensional
nonlinear medium with periodic relative permittivity εr (x):

[
∂2

∂x2
− εr (x)

c2

∂2

∂t2

]
E (x, t ) = μ0

∂2PNL

∂t2
, (1)

where c is the light velocity in vacuum and PNL is the
nonlinear polarization. Sipe and Winful have theoretically
demonstrated, using the multiple scales method and Floquet-
Bloch theory [20,21], that, in the case of a Kerr nonlinearity,
Eq. (1) can be replaced by the nonlinear Schrödinger equation
(NLSE):

i
∂A

∂t
+ 1

2
ωkk

∂2A

∂x2
+ α|A|2A = 0. (2)

In this equation, A(x, t ) is the slowly varying amplitude of the
field related to E (x, t ) through

E (x, t ) = A(x, t )u(x)eikxe−iω0t + c.c., (3)

where u(x) is periodic with the same period as εr (x), ωkk =
∂2ω/∂k2 is the group velocity dispersion, α is the effective
nonlinearity seen by the field envelope, and ω0 is the center
frequency. The group velocity dispersion can be largely con-
trolled by the PC structure [22]. The band edge is located at
a high-symmetry point in the reciprocal space in most cases.
Therefore, within the spectral domain of interest, high order
dispersion is controllable [17].

B. Harmonic photonic cavity description: Gross-Pitaevskii
equation (GPE)

One can create an effective potential for light by spatially
varying one parameter of a dielectric guiding nanostructure,
for example the period a of the confining holes, along a given
direction x. This formalism holds in the limit of slow changes

FIG. 1. (a) Shape of the Hermite-Gaussian modes with parabolic
potential. The semitransparent pink area is the active medium, for
gain or absorber. (b) Location (triangles) and width (circles) of the
outermost lobe of HG modes as a function of the mode order n.

of a, as shown mainly by experimental and numerical verifi-
cation [14,15] but also by some theoretical arguments [23,24].
A minimum in the effective photonic potential can thus be
used as a resonator to confine light, whose evolution is then
governed by the Gross-Pitaevskii equation (GPE), which is
constructed by adding the potential V (x) to the NLSE:

ı̇
∂A

∂t
+ 1

2
ωkk

∂2A

∂x2
− V (x)A = α|A|2A. (4)

One example of such a resonator design is a chirped periodic
dielectric material with a relative permittivity εr (x) = ε̄ +
�ε cos[2πx/a(x)] in which the period a(x) slowly changes
along x according to a parabolic evolution, namely a(x) =
a0 + ςx2. The limitation to small change of a leaves the
normal modes approximately unchanged, as well as ωkk .
Equation (4) still holds, but the spatial change of a induces
a frequency offset V (x) ∝ [a(x)−1 − a−1

0 ] ∝ −ςx2. Hence,
such a chirped periodic dielectric results in a harmonic pho-
tonic potential for the field envelope of the normal modes near
the band edge. This idea was proposed in a slightly different
implementation involving the modulation of the thickness of
a patterned slab [24].

Applying this to the GPE (4) for the “cold cavity” without
any Kerr nonlinearity (α = 0) indeed leads to the Schrödinger
equation for the one-dimensional (1D) quantum harmonic
oscillator:

i
∂A

∂t
+ 1

2
ωkk

∂2A

∂x2
− 1

2

	2

ωkk
x2A = 0, (5)

where 	 is the free spectral range of the modes and 	2/ω2
kk

characterizes the curvature of the harmonic potential. The
eigensolutions are the Hermite-Gaussian (HG) functions


n(x) = 1√
2nn!

π−1/4 exp(−x2/2)Hn(x), (6)

with

Hn(x) = n!

� n
2 �∑

m=0

(−1)m

m!(n − 2m)!
(2x)(n−2m), (7)

where � n
2� denotes the largest integer less than or equal to n

2 .
Such modes can exhibit high Q values, as experimentally

demonstrated [14–16]. These localized states are the same as
the solutions of the quantum harmonic oscillator, as shown
in Fig. 1(a). Their electromagnetic energy distributions are
very different from those of the homogeneous standing wave
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modes of standard Fabry-Perot cavities. Moreover, the fre-
quency separation between the HG modes depends on the
effective mass m−1

eff = h̄−1∂2
k ω = h̄−1ωkk of the quasiparticle

and is related to the potential stiffness V (x) = 1
2 meff	

2x2/h̄ =
	2

2ωkk
x2, instead of the size of the oscillator. This can be

an effective way to reduce the cavity size for a given desired
value of the mode frequency separation 	. The size of the cav-
ity can be determined from the scaling factor x	 = √

ωkk/	,
which is the width of the fundamental HG mode. Setting for
example 	/2π = 100 GHz and taking a typical value for the
dispersion ωkk = 2v2

g/�ωg = 45 m2 rad s−1 estimated from
the typical photonic band gap �ω/ω ≈ 20% of the PC cavity
and the group velocity c0/4 in semiconductor waveguides,
leads to a size x	 = 8.4 μm.

The field A(x, t ) inside the cavity can be expanded on the
basis constituted by these Hermite-Gaussian modes:

A(x, t ) =
∞∑

n=0

Cn(t )e−iωnt
n(x), (8)

where ωn = (n + 1/2)	. For a given field distribution A(x, t ),
the modal coefficient Cn(t ) can be calculated by projecting it
on 
n:

Cn(t ) = eiωnt
∫ ∞

−∞
A(x, t )
n(x)dx. (9)

C. Harmonic cavity laser: Dissipative terms

The cold cavity described by Eq. (5) can be transformed
into a laser by adding gain inside or hybridized to the cavity.
Moreover, mode locking can be favored by adding a saturable
absorber. Adding in an empirical manner these elements to
Eq. (5) leads to the so-called modified GPE:

i
∂A

∂t
+ 1

2
ωkk

∂2A

∂x2
− 1

2

	2

ωkk
x2A − iH1(|A|2)A = 0. (10)

The dissipative term H1 describes the gain and absorption
according to

H1 = 1
2 g(x, t )(1 − iαg) − 1

2 a(x, t )(1 − iαa ) − 1
2γ0, (11)

where g(x, t ) and a(x, t ) are the time and space dependent
gain and saturable absorber coefficients, with their respective
Henry factors αg and αa. The term γ0 holds for the intrinsic
losses.

Incidentally, we notice that Eq. (10) is similar to Haus’
master equation in the limit case of zero group velocity. But
the assumptions of the two models are different.

The use of the standard form of Eq. (11) for the gain and
absorber terms is based on the usual approximation that these
effects are a small perturbation to the laser, which do not
modify the shape of the modes. The modes are supposed to
be defined by the “cold” resonator only.

In general, saturations of the gain and of the absorption
are described by the following set of spatially local equa-
tions [25]:

∂g(x, t )

∂t
= −g(x, t ) − g0(x)

τg
− |A(x, t )|2

τgIsat,g
g(x, t ), (12)

∂a(x, t )

∂t
= −a(x, t ) − a0(x)

τa
− |A(x, t )|2

τaIsat,a
a(x, t ), (13)

where τg and τa are the lifetimes of the gain and the absorp-
tion, respectively, Isat,g and Isat,a their saturation intensities,
and g0 and a0 the unsaturated values of g and a. In the case
where the lifetimes τg and/or τa are much shorter than all the
response times of the system, g and/or a can be considered to
reach steady-state instantaneously, leading to

g(x, t ) = g0(x)/

(
1 + |A(x, t )|2

Isat,g

)
, (14)

a(x, t ) = a0(x)/

(
1 + |A(x, t )|2

Isat,a

)
. (15)

In the following the simulations are performed using a
split-step Fourier method with adaptive step size control. The
spatial discretization period is equal to 0.13x	. Time dis-
cretization is variable but has at least 100 samples per period
2π/	.

The initial conditions that we use are a small fraction of
g0(x) for g(x, 0) and random complex numbers corresponding
to a small intensity for the fields A(x, 0).

III. GAIN SATURATION: HERMITE-GAUSSIAN MODE
COMPETITION

The peculiarity of the spatial distribution of the light inten-
sity in the case of HG modes, as can be seen in Fig. 1, allows
us to expect a competition behavior different from the case of
usual Fabry-Perot or ring cavities. The aim of this section is
to investigate this competition for gain among HG modes in
the absence of saturable absorption.

A. Mode saturation matrix

The spatial inhomogeneity of the intensity distribution of
HG modes is very different from the spatial homogeneous
distribution of standing waves in FP lasers, so that the cross
saturation of the gain of one mode by another mode should
be different from what happens in FP lasers. To evaluate this
cross-gain saturation, we define the saturation matrix as

Sn,m =
∫ ∞
−∞ 
2

n (x)
2
m(x)dx√∫ ∞

−∞ 
4
n (x)dx

∫ ∞
−∞ 
4

m(x)dx
, (16)

where 
n(x) is the spatial dependence of the field envelope
of mode of order n, i.e., a Hermite-Gaussian mode like that
in Eq. (6) for the harmonic photonic cavity or a standing
wave for the Fabry-Perot cavity. In both cases the modes are
normalized according to∫ ∞

−∞

n(x)
m(x)dx = δnm. (17)

The definition of Eq. (16) supposes that the gain medium ho-
mogeneously fills the resonator. Figure 2 compares the value
of the coefficients of the saturation matrix for the two types
of modes. The calculation for standing waves is based on ten
successive modes of a FP semiconductor laser with 100 GHz
free spectral range (FSR), operating at 1.55 μm wavelength,
and filled with a medium of refractive index equal to 3.5.

In both cases, the values of the elements of the diagonal
are equal to 1. In the case of the HG modes [see Fig. 2(a)],
the cross-saturation coefficients progressively decrease with
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FIG. 2. Saturation matrix Sn,m for (a) Hermite-Gaussian modes in
a harmonic photonic laser and for (b) sinusoidal modes in a Fabry-
Perot laser. The saturation matrix in (a) will remain valid in the case
of Sec. V B where the gain medium fills only one half of the cavity.

the distance from the diagonal. This is consistent with the plot
of Fig. 1(b), which shows that the position of the main lobe of
HG mode of order n increases roughly like

√
n. In contrast, for

the FP cavity modes [see Fig. 2(a)], all non-diagonal elements
are equal to 0.667, which means that the cross saturation is the
same for all pairs of modes in the FP cavities.

The plots of Fig. 2 permit us to predict that mode com-
petition among HG modes will be different from the one
experienced in usual FP lasers. Indeed, while in the latter
case one dominant mode will equally saturate the gain seen
by all other modes, competition among HG modes will be
fierce only among neighboring modes. Therefore, one can
expect modes of very different orders to be quite easily able
to oscillate simultaneously.

B. Influence of the gain window width

In the laser geometry that we consider, which is sketched in
Fig. 1(a), the gain window has a width w. Since the width of
a HG mode of order n scales roughly like

√
n, we can control

the number of modes that compete for the gain by changing w.
We thus suppose that the gain region exhibits a homo-

geneous unsaturated gain coefficient coefficient g0 = 10 γ0,
with γ0 = 1010 s−1, centered on the bottom of the photonic
potential with a width w, as shown by the semitransparent
region in Fig. 1(a). To avoid boundary effects, we replace the
walls of the rectangular gain window by a smoothed function.
We also suppose that there is no saturable absorber inside the
cavity, i.e., a0 = 0. The steady-state laser fields are obtained
by running the calculations with a fixed gain length w and
starting from random initial field amplitudes with a maximum
intensity equal to 0.0001Isat,g. The simulation is run until the
field amplitudes reach their steady-state values. The steady-
state mode intensities |Cn|2 are then obtained by expending
the field A(x, t ) using Eq. (9).

We start by considering the case of instantaneous gain
saturation, as shown in Eq. (14). For each value of w ranging
from 0 to 6x	, the calculation is run ten times.

Figure 3(a) reproduces the evolution of the steady-state
intensities of the first five modes as a function of w. The
number of occurrences of the different steady-state solutions
are summarized by color regions in Fig. 3(b), in which the
numbers marked in brackets represent the orders of the domi-
nant modes for each region.

FIG. 3. Evolution of the steady-state mode intensities |Cn|2 as
a function of the gain window width w. The simulation is run ten
times with random initial fields for each case. (a) Instantaneous gain
saturation. Evolution of mode intensities versus w for n = 0, . . . , 4.
(b) Corresponding counts for each solution versus w. The numbers
in parentheses represent the orders of oscillating HG modes. Each
color in (a) and (b) represents one possible steady state. (c) Gain
with finite lifetime τg = 1 ns. Evolution of mode intensities versus w

for n = 0, . . . , 4. Simulation is run ten times in each case. (d) Same
as (c) for larger values of w. Each color in (d) represents one mode.
There is no multistability in this case. Parameter values: g0 = 10 γ0,
a0 = 0.

We can see that in the region of 0 < w/x	 < 3.3 only
mode 0 oscillates, because the gain region is to narrow to
sustain oscillation of higher order modes. Then, for 3.4 <

w/x	 < 3.8, two steady-state solutions prevail: one for which
mode 0 oscillates alone, and one in which mode 0 and
mode 1 oscillate simultaneously. Further, when w/x	 � 3.8,
the solution for which mode 0 is alone is no longer stable,
and simultaneous oscillation of modes 0 and 1 is stable till
w/x	 � 4.8. Then, for w/x	 � 4.4, simultaneous oscillation
of modes 0 and 2 occurs and disappears for w/x	 > 5.5.
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The simultaneous oscillation of mode 1 and mode 2 can occur
in the region of 4.6 � w/x	 � 5.4.

We can thus see that, in the case of instantaneous gain
saturation, the competition among HG modes leads to a com-
plicated multistability situation. The general tendency is that
higher order modes are favored when w is increased, but the
number of stable steady-state solutions also increases with w.

The situation becomes completely different when we in-
troduce the noninstantaneous response of the gain described
by Eq. (12). For example, Fig. 3(c) reproduces the results
obtained with a gain lifetime equal to τg = 1 ns. All other
parameter values are kept equal to the case of instantaneous
saturation of Figs. 3(a) and 3(b), and the simulation is also
run ten times starting from random initial conditions for each
situation. We can see that in this situation the multistability of
Fig. 3(b) disappears: only one steady-state solution is obtained
for each value of w. For w/x	 � 2.6, only mode 0 oscillates,
just like in the case of instantaneous gain saturation. But it is
clear that, for larger values of w, a larger number of modes can
simultaneously oscillate than for instantaneous gain satura-
tion. For example, for w = 6x	, all the five modes considered
here oscillate simultaneously. This tendency is confirmed in
Fig. 3(d) for w up to 10x	, where the 14 first modes can
oscillate simultaneously. The effect of finite gain lifetime is
thus clearly to reduce competition between the HG modes. We
can expect this effect to be favorable to stable mode-locking
operation in the presence of a saturable absorber.

C. Influence of gain lifetime

Based on the difference between the results obtained for
instantaneous and noninstantaneous saturation of the gain in
Fig. 3, we can infer that the gain lifetime has a strong influence
on the laser steady-state behavior. To further investigate this
dependence, we choose a fixed gain width w = 5x	 and run
the simulation ten times starting from random initial fields
with maximum intensity 0.0001Isat,g and excitation ratio equal
to re = g0/γ0 = 10 for τg ranging from 6 to 1000 ps.

The corresponding steady-state mode intensities are repro-
duced in Figs. 4(a) and 4(b) for mode separation values of
	/2π = 100 GHz and 	/2π = 50 GHz, respectively. These
results clearly show the transition between the two regimes,
i.e., instantaneous gain saturation when τg � 2π/	 and slow
gain saturation when τg 	 2π/	. For example, in Fig. 4(a),
the transition between the two regimes occurs for 8 � τg �
17 ps, which is consistent with the value 2π/	 = 10 ps.
This is confirmed by Fig. 4(b), for which we have taken
2π/	 = 20 ps. Then the transition region is shifted accord-
ingly to 17 � τg � 33 ps. The mode separation 	, which is
the frequency of the beat note between the modes, is thus a
key factor to understand the influence of gain dynamics on the
laser competition behavior. If this frequency is much larger
than 1/τg, the gain saturation can no longer follow the beat
note between the modes, and conversely.

The transition between the two regimes can also be directly
observed by looking at the spatiotemporal distribution of the
gain inside the laser. This is done in Figs. 4(c) and 4(d), which
reproduce the evolution versus x and t of the intensity and
the gain inside the laser for different values of τg in the case
2π/	 = 10 ps. One can clearly see that the pattern created by

FIG. 4. (a),(b) Steady-state mode intensities as a function of gain
lifetime τg. The simulation is run ten times with random initial con-
ditions and with w = 5x	 and g0 = 10 γ0, a0 = 0. Mode separations
are (a) 	/2π = 100 GHz and (b) 	/2π = 50 GHz. (c),(d) False
color plots of (c) the field intensity distribution |A(x, t )|2 and (d) the
gain distribution g(x, t ) versus time (horizontal axis) and position x
(vertical axis) in steady state for different values of τg. The values of
the other parameters are the same as in (a).

the beat note between the modes [see Fig. 4(c)] is imprinted
in the gain distribution only as long as τg is shorter than or
of the order of 2π/	. In contrast, when τg is much longer
than 2π/	, the gain is saturated more uniformly, and the
spatiotemporal hole burning disappears.

In addition, we verified that the linear loss rate γ0 is not
a key parameter for this transition. Indeed, we checked that
when we change γ0 from 1010 s−1 to 15 × 1010 s−1, the results
of Fig. 4(a) are almost unchanged. In particular, the transition
between the two regimes always occurs when τg is close to
2π/	.

Some multistability occurs at the transition region, i.e.,
when the repetition period 2π/	 is close to the gain life-
time. Another multistability zone can be seen for τg 
 75 ps
in Fig. 4(a) and 160 ps in Fig. 4(b). These multiple states
converge to the same one when the gain lifetime is increased.

IV. DETAILED DESCRIPTION OF THE DIFFERENT
OSCILLATION REGIMES

The dynamical behavior of the harmonic photonic mode-
locked laser in the presence of a saturable absorber has been
described in Ref. [17]. In particular, mode-locked pulsed oper-
ation has been predicted, which corresponds to the oscillation
of a stable dissipative soliton. In the limit where gain satura-
tion is instantaneous, this soliton has been found to perfectly
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FIG. 5. (a) Phase diagram representing the different steady-state
regimes as a function of unsaturated gain and absorption normalized
to γ0: (0) below threshold; (1) Q-switched operation; (2) Q-switched
mode-locked operation; (3) cw mode locking. (b) Bifurcation dia-
gram: peak values |Ap+|2 of the field intensity propagating in +x
direction at x = 0 in the steady state as a function of rg. The absorp-
tion is fixed at ra = a0/γ0 = 10. (c) The contours of gain pumping
rate gc/γ0 between the cw mode locking and Q-switched mode
locking as a function of the ratio 2πγ0/	 and absorption rate ratio
ra for the saturation energy ratio of RE = 25. (d) The same situation
with the saturation energy ratio RE = 15. The common parameter
	/2π = 100 GHz is fixed.

match the coherent state of a quantum mechanical harmonic
oscillator. However, many other dynamical behaviors have
also been predicted [17]. The aim of the present section is to
investigate these regimes in details.

We suppose here for the sake of simplicity that the gain and
absorber share the same region centered on the potential mini-
mum with a width w = 5x	, as shown by the semitransparent
region of Fig. 1(a). The lifetime of the gain and the absorber
are respectively 1 ns and 10 ps [13,26]. The ratio of saturation
energies is taken to be RE = Isat,gτg/Isat,aτa = 25 [13]. In such
a noninstantaneous gain and absorber saturation situation,
several different dynamical behaviors are observed when the
values of g0 and a0 are tuned, as summarized by the phase
diagram Fig. 5(a).

This diagram can be divided into four regions: (0) corre-
sponds to no lasing (deep blue), (1) to Q-switching operation
(light blue), (2) to Q-switched mode-locked operation (green),
and (3) to cw mode locking (red). The borders between these
regions look like straight lines in the {g0, a0} plane.

The influence of the linear loss rate γ0 on the transition
from Q-switched mode-locked operation to cw mode locking
is investigated in Figs. 5(c) and 5(d). The critical value gc of
g0 at which it occurs [see Fig. 5(a)] increases with γ0 and
also with ra, as can be seen from Fig. 5(c). The vertical cross
section in Fig. 5(c) for 2πγ0/	 = 0.1 corresponds to the line
separating the green region labeled (2) from the red region

FIG. 6. Q-switched laser behavior. (a) Mode intensities as a
function of time. (b) Time evolution of field intensity |A(x, t )|2 at
different locations x at three instants labeled (1), (2), and (3) in
(a). (c) Corresponding time-space map of the intensity |A(x, t )|2.
The parameters are rg = g0/γ0 = 12, ra = a0/γ0 = 10, w = 5x	,
τg = 1 ns, τa = 10 ps.

labeled (3) in Fig. 5(a). The plot of Fig. 5(d) is similar to the
one of Fig. 5(c) with a smaller value of RE .

These four different regions can also be visualized by
plotting the peak intensity for the field traveling in the +x
direction inside the cavity when the laser is in the steady-state
regime. This is presented in Fig. 5(b) as a function of g0 for
a fixed value of a0 equal to 10 γ0. In each situation, after
steady state is reached in the simulation, the field A+(x, t )
propagating in the +x direction is calculated by taking the
spatial Fourier transform A(k, t ) of A(x, t ) in the k-space, then
filtering the part of the field field with k > 0, and transforming
it back into A+(x, t ). The peak values of the field intensity
|Ap+|2 propagating in the +x direction at the cavity center
x = 0 are then detected within a time duration of 10 ns and
are plotted in Fig. 5(b), which is thus a bifurcation diagram
of the laser dynamics. The different regimes are described in
detail in the following subsections.

A. Q-switched operation

In the Q-switching region labeled (1) in Fig. 5(b), one can
see that there are three points. This corresponds to a periodic
series of three pulses of three different peak powers, as shown
in Fig. 6. One example of steady-state laser behavior in this
region, corresponding to rg = g0/γ0 = 12, ra = a0/γ0 = 10,
and x/x	 = 5, is shown in detail in Fig. 6. Q switching hap-
pens here when the resonator losses are kept at a relatively
high level compared with gain, allowing the active medium
to accumulate a large gain before Q switching occurs. Once
the laser starts, the pulse builds up very quickly and suddenly
saturates the absorber down to small absorption values.

Figure 6(a) shows the time evolution of mode intensities
|Cn|2 in red steady state, calculated using Eq. (9) by projecting
field A(x, t ) on the basis of HG modes. One can see the first
three modes, corresponding to n = 0, 1, and 2, alternately
oscillate. The delay between two pulses is about 10 ns, but
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it is slightly shorter between modes 0 and 2 than between
the other modes. One can also notice that the intensity of
mode 0 is slightly smaller than the other modes, because this
mode is spatially smaller than the other ones (see Fig. 1) and
thus bleaches the gain for smaller peak energies. Thus, after
emission of a pulse in mode 0, some gain is left available for
mode 2, which can oscillate a bit earlier.

Figure 6(b) reproduces the time evolution of the total inten-
sity |A(x, t )|2 at the cavity center x = 0 for pulses labeled (1)
and (2) and at x = 1.05x	 for pulse labeled (3). The detailed
evolution of |A(x, t )|2 versus x and t for these three pulses are
shown in Fig. 6(c). The duration of each pulse is of the order
of 0.1 ns. The pulse rise time is shorter than its decay time, as
is typically obtained in a Q-switched laser.

B. Q-switched mode locking

By increasing the unsaturated gain g0, the recovery time of
the gain between two Q-switch pulses is reduced, thus reduc-
ing the time between two such pulses. This then allows several
modes to oscillate simultaneously during one Q-switch pulse,
and the phases of these modes can lock, leading to the Q-
switched mode-locked operation regime labeled as (2) in
Fig. 5. One example of such a behavior is shown in greater de-
tail in Fig. 7 for rg = g0/γ0 = 45. Figure 7(a) reproduces the
time evolutions of the intensities |Cn|2 of the five lowest order
modes. It shows that the delay between two Q-switch pulses
is now reduced to less than 1 ns, and that the five lowest order
modes oscillate simultaneously during each pulse. Moreover,
the relative phases �φn = 2φn − φn+1 − φn−1 between the
modes with n = 1, 2, 3 are locked to values close to 0, as
evidenced in Fig. 7(b).

The resulting intensities |A+,−|2 = |A±(0, t )|2 for the part
of the fields at the cavity center x = 0 propagating to the +x
(red line) and −x (blue line) directions are plotted in Fig. 7(c).
The shape of the Q-switch pulses is again asymmetric, like
in Fig. 6, but one can see that every Q-switch pulse contains
many much shorter pulses, which are formed by mode lock-
ing. The zoom in Fig. 7(d) shows actually that, as a result of
the phase locking of the five HG modes, a single pulse with
a duration of the order of 2 ps is bouncing back and forth
inside the cavity during every Q-switch pulse. This is also
clearly visible in the intensity color map of Fig. 7(e). More-
over, Fig. 7(f) shows that the period between two Q-switch
pulses decreases with the laser excitation rate, as expected in
standard Q-switched lasers.

C. Continuous-wave mode locking

By further increasing the pumping rate g0, cw mode lock-
ing can be observed. One example with rg = g0/γ0 = 49 is
shown in Fig. 8. This figure shows the whole laser time
evolution, from the noisy initial conditions to steady state.
Figure 8(a) shows the evolution of the mode intensities and, in
the inset, the evolution of the phase difference of the modes,
while Fig. 8(b) shows the corresponding evolution of the in-
tensities |A+,−|2 = |A+,−(0, t )|2 at x = 0 propagating in both
directions. The small figures labeled (1)–(6) in Fig. 8(c) give
snapshots of the laser behavior at several moments during
laser buildup.

FIG. 7. Q-switched mode locked regime. Time evolutions of
(a) the intensities of modes n = 0, . . . , 4 (b) the relative phases
�φn = 2φn − φn+1 − φn−1 between these modes and (c) the inten-
sities |A+,−|2 propagating in the ±x directions (plotted in red and
blue lines, respectively) at cavity center x = 0 in (c). (d) Zoom
on one of the pulses of (c). The red full line (blue dashed line)
corresponds to propagation in the +x (−x) direction. (e) False color
map of the intensity |A(x, t )|2 versus t and x. The parameters are
rg = g0/γ0 = 45, ra = a0/γ0 = 10, w = 5x	, τg = 1 ns, τa = 10 ps.
(f) Evolution of the Q-switching period with the gain.

The whole transient process can be divided into several
steps:

Noise regime. The initial field is a random noise with very
low intensities. The gain and absorber are activated at time
t = 0 ns. The gain thus starts to amplify the field after t =
450 ps, as shown in (1). The gain goes on increasing and leads
to significant amplification at around t = 500 ps, as can be
seen in (2).

Transient regime. From t = 700 ps to t 
 6 ns, the laser
emits a series of spikes followed by relaxation oscillations.
All first five modes oscillate simultaneously. The phase dif-
ferences between the modes are locked around t = 3 ns, as
can be seen from the inset in Fig. 8(a) or by comparing the
snapshots labeled (4) and (5) in Fig. 8(c). One can see that
the pulse is not yet present in (4) while it is clearly there
in (5). Furthermore, we notice that mode locking occurs at
t 
 3 ns, much before the intensities of the modes reach
their steady-state values (t 
 6 ns). For example, the snapshot
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FIG. 8. Laser behavior during buildup of cw mode locking. (a) Time evolution of the modes intensity and phase differences (inset).
(b) Time evolution of the intensity |A+,−|2 at cavity center x = 0. (c) Snapshots at six successive instants labeled as numbers in (b). 3D plot
of the intracavity intensity |A(x, t )|2 versus x and t and time evolution of the counterpropagating intensities |A+,−|2 at cavity center x = 0.
Parameter values are rg = g0/γ0 = 49, ra = a0/γ0 = 10, w = 5x	, τg = 1 ns, τa = 10 ps. The red full line (blue dashed line) corresponds to
propagation in the +x (−x) direction.

labeled (5) in Fig. 8(c) shows that the pulsed mode-locked
regime is already well established although the laser power
is still increasing versus time. The duration of this transient
damped oscillatory regime depends on the pump rate g0

and the absorption a0. A stronger unsaturated gain g0 leads
to a faster transient, while a strong absorption a0 reduces
the damping, thus lengthening the duration of the transient
regime. If the absorption rate a0 becomes too strong, the
transient regime does not damp anymore and one retrieves the
Q-switched mode-locked regime of the preceding subsection
(see Fig. 7).

Stable mode locking. cw mode locking is formed, where
all mode intensities reach time independent values, phase
differences between the modes are equal to 0. A pulse with
stable intensity oscillates inside the cavity, with a repetition
rate equal to 10 ps, as shown in the snapshot labeled (6) in
Fig. 8(c).

The cw mode locking is obtained thanks to an equilibrium
between the effects of saturable gain and saturable absorber.
As we have seen in Sec. III, noninstantaneous gain satura-
tion favors multimode operation, which is a very important
first step towards self-starting mode locking. Without any
saturable absorber, mode locking can also occur [27] through
the nonlinearity of the saturable gain. But such a phase-locked
operation does not always mean pulsed operation, for which
one needs the relative phase difference �φ between adjacent
modes to be close to 0. This pulsed operation is strongly
favored by the introduction of the saturable absorber. But if
saturable absorption is too strong, the damping of relaxation

oscillations does not occur, leading to instability of mode
locking, i.e., appearance of Q-switched mode-locking.

Finally, let us mention that the buildup of a mode-locked
soliton in the harmonic cavity has some similarities with the
buildup of a soliton in mode-locked fiber lasers, which can
also be divided into several steps: noise, beat note, Q-switched
beat note, mode locking [28,29].

V. DISCUSSION

In this section, we discuss several features related to the
mode-locked oscillation regime of the harmonic photonics
cavity nanolaser, namely (i) the role of the Henry factor in
the gain and absorber media, (ii) the possibility of spatially
separating the gain and the absorber, and (iii) the peculiarities
of these lasers with respect to ordinary semiconductor lasers.

A. Role of Henry’s factor

The Henry factor quantifies the coupling between the vari-
ations of the real and imaginary parts of the active medium,
which are respectively linked to the phase and amplitude
variations in the laser. In semiconductor lasers, it plays an im-
portant role due to the particular dependence of the refractive
index on the carrier density. If it is too large, the Henry factor
can impede mode locking [30].

The robustness of mode locking to the Henry factor in the
harmonic photonic cavity laser is investigated here by looking
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FIG. 9. Influence of the Henry factor on the laser steady-state
behavior. (a) Intensity peaks for the field propagating in the +x
direction at cavity center x = 0 as a function of the Henry factor
αg = αa. (b) Mode frequency difference � fn = 2 fn − fn+1 − fn−1.
(c) Mode frequency shifts from the empty cavity frequencies fn,0 =
(n + 1/2) × 100 GHz. (d) Mode separation fn − fn−1. The parame-
ters are g0/γ0 = 70, a0/γ0 = 5, w = 5x	, τg = 1 ns, τa = 10 ps.

at the evolution of the spectrum of the laser in the steady-state
regime when the Henry factor increases.

To this aim, the laser field spectrum S( f ) is calculated by
the following expression:

S( f ) =
∫ +∞

−∞

∣∣∣∣
∫ +∞

−∞
A(x, t )ei2π f t dt

∣∣∣∣
2

dx. (18)

The mode frequencies fn can be obtained by extracting the
peaks of the spectrum S( f ).

We simulate the behavior of the laser with g0/γ0 = 70,
a0/γ0 = 5, w = 5x	, τg = 1 ns, τa = 10 ps, and for vary-
ing values of the Henry factors αg and αa of the gain and
absorber media that we suppose to be equal (αg = αa) for
the sake of simplicity. Figure 9 shows the evolution of the
steady-state laser behavior as a function of αg = αa. Fig-
ure 9(a) reproduces the peak intensity |Ap+|2 of the field
propagating in the +x direction detected within a 10 ns
time interval. It shows that the laser remains mode locked
as long as αg = αa � 5. For larger values, the phases of the
modes unlock, leading to the multiple blue dots. This behavior
is confirmed by the evolution of the frequency differences
� fn = 2 fn − fn+1 − fn−1 between the modes reproduced in
Fig. 9(b). Mode locking corresponds to � fn very close to
0. The corresponding evolution of the difference fn − fn,0

between the laser mode frequencies and the empty cavity fre-
quencies fn,0 = (n + 1/2) × 100 GHz shows that the Henry
factor shifts the comb frequencies towards high frequencies
[see Fig. 9(c)]. This corresponds to a reduction of the mode
separation fn − fn−1 of the comb, as can be seen in Fig. 9(d).

B. Asymmetric scheme for the gain and the absorber

Implementing a nanolaser based on a harmonic photonic
resonator in which the gain and the saturable absorber are

FIG. 10. (a),(b) Steady-state mode-locked laser behavior for
(a) superimposed and (b) separated gain and absorber regions. All
other parameters are the same, with rg = 70 and ra = 10. (1) Time
evolutions of the intensities |A+,−|2 of the fields traveling in the
+x (red full line) and −x (blue dashed line) directions at cavity
center (x = 0). (2–4) False color maps of (2) intensity |A(x, t )|2, (3)
gain g(x, t ), (4) absorption a(x, t ). (c) Phase diagram representing
the different steady-state regimes for separated gain and absorber
regions as a function of the unsaturated gain and absorption: 0© below
threshold; 1© multimode operation; 2© Q switching; 3© cw mode
locking. (d) Corresponding bifurcation diagram: peak values |Ap+|2
of the field intensity propagating in +x direction at x = 0 in steady
state as a function of rg. The absorption is fixed at ra = 10. Other
parameter values are w = 5x	, τg = 1 ns, τa = 10 ps.

located at the same place is not always easy to do. We thus
wonder in this subsection whether a laser in which the gain
and the absorber are spatially separated may exhibit similar
properties, in particular when it comes to the mode-locked
regime, as in the scheme where gain and absorber overlap.

With the same parameters as before, we now consider the
situation where the gain and the absorber no longer overlap.
The gain region is located in the region −2.5x	 � x � 0 and
the absorber in the region 0 � x � 2.5x	.

Figure 10 shows a comparison of the laser steady-state
mode-locked operation between the cases where the gain and
absorber regions overlap [Fig. 10(a)] and where they are sep-
arated [Fig. 10(b)]. All other parameters are the same, and
in particular rg = 70 and ra = 10. In both cases, the panels
labeled (1) show the time evolution of the intensities |A+,−|2
of the fields traveling in the +x (red line) and −x (blue line)
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directions at cavity center (x = 0). Those labeled (2), (3), and
(4) are false color maps of the intensity |A(x, t )|2, the gain
g(x, t ), and the absorption a(x, t ), respectively.

One can see that the behaviors of the laser are similar for
the two cases. The only significant difference is the difference
between the peak values of |A+|2 and |A−|2 in case (b), and
the reduction of the laser power due to the reduction of the
size of the gain region.

Another interesting feature can be seen by comparing pan-
els (3) with panels (4): since the absorber is much faster thaN
the gain, the “tracks” of the pulse can be seen in the former
one but only hardly in the latter one.

In the case where the gain absorber regions are separated,
the phase diagram obtained by tuning the gain g0 and absorp-
tion a0 is shown in Fig. 10(c). It is very similar to the former
one (see Fig. 5) and exhibits different behaviors, namely 0© no
lasing, 1© multimode beating operation, 2© Q switching, and
3© cw mode locking.

Region 1©, which corresponds to cw multimode operation,
happens when ra and rg are small, because in this case the sat-
urable absorption and the intracavity power are not sufficient
to sustain self-pulsing operation. Although Q switching is
observed in region 2©, we notice that Q-switched mode-locked
operation does not occur due to asymmetry between gain and
absorption.

Compared with the case of Fig. 5 where the gain and ab-
sorber overlap, we also notice that the transition line between
regions 2© and 3© is shifted a little bit to higher gains. This
is clear also on the bifurcation diagram shown in Fig. 10(d)
with the fixed absorption coefficient ra = 10. Compared with
Fig. 5, the peak values of the mode-locked pulse are about half
of the overlapping scheme, and the transition point shifts from
rg = 48 to rg = 51.

C. Comparison with conventional semiconductor lasers

There exist significant differences between the harmonic
photonic cavity laser and the conventional Fabry-Perot semi-
conductor laser. The first one comes from the spatially
inhomogeneous energy distribution of HG modes. A Fabry-
Perot cavity sustains standing modes with equally spaced
frequencies, the same length as the cavity, and their intensity
is, apart from the nodes and antinodes, homogeneously dis-
tributed inside the resonator.

In contrast, the harmonic photonic cavity sustains HG
modes whose spatial extension ranges with the square root of
the mode order, as shown in Fig. 1(a).

The number of excited modes also depends on the width of
the gain area due to the spatial inhomogeneity of the modes.
Therefore, the length of the laser is mainly determined by the
length of the active medium and does not affect the FSR of
the cavity. This second difference is very helpful to reduce the
size of the mode-locked laser while keeping a fixed value of
the repetition rate.

In contrast, in a Fabry-Perot cavity, the FSR depends on the
cavity length, and the orders of the excited modes are related
to the gain spectrum. For example, a laser with FP cavity
length equal to 430 μm, center wavelength of 1.55 μm, and
refractive index equal to 3.5, can sustain oscillation of modes
of order surrounding 1940.

Taking the same value for the FSR (100 GHz), we can il-
lustrate the compactness of the concept of harmonic photonic
cavity laser by considering that only very low order modes
oscillate and are phase locked. This makes it feasible to reduce
the scale of such a mode-locked semiconductor laser from
submillimeter to few a micrometers. For example, the size of
the cavity in the preceding examples is equal to 5x	 = 42 μm.

Despite the strong differences between the modes of the
two types of lasers, we find some similarities in their dynamic
regimes, such as Q switching, Q-switched mode locking, and
cw mode locking [30–32]. The reason behind these similar-
ities is that mode locking is induced by the same physical
mechanism in the two types of systems.

To summarize this discussion, we believe that the inter-
esting aspect of harmonic cavity nanolasers is that they are
complementary to usual Fabry-Perot lasers, in the sense dis-
cussed above. Indeed, although different oscillation regimes,
such as, e.g., passive mode locking can be achieved in those
nanolasers for the same reasons as in Fabry-Perot lasers
(equally spaced modes and saturable absorption), the scaling
of the pulse parameters (duration and repetition rate) with the
cavity parameters are completely different in the two types of
cavities.

VI. CONCLUSIONS

We have derived and analyzed the possible dynamical be-
haviors of a nanolaser exhibiting Hermite-Gaussian modes
created by a harmonic photonic cavity. Its special proper-
ties make it a promising candidate for the realization of
mode-locked nanolasers. The FSR of the laser, and thus the
repetition rate of the mode-locked pulses, is independent
of the cavity length, but governed by the curvature of the
photonic potential, so that the laser size mainly depends on
the length of the active medium, giving this type of laser a
strong advantage in terms of miniaturization. In addition, the
fact that the Hermite-Gaussian modes that are locked are the
lowest-order ones, i.e., the smallest ones, is very helpful to
reduce the size of the mode-locked laser from submillimeter
to micrometer range for a 100 GHz repetition rate.

A model based on the GPE with dissipative terms has been
used to describe the effect of the harmonic cavity and of the
active media, taking into account the spatial distribution of the
gain, absorber, and HG modes.

To understand the saturation properties of the spatially
inhomogeneous HG modes, we have compared the saturation
matrices of the harmonic cavity nanolaser and the FP cavity
laser, thus revealing that cross-saturation of HG modes is
predominant on adjacent modes only. This has allowed us
to understand the peculiarities of mode competition in such
lasers. The steady-state behavior under noninstantaneous gain
response depends on the gain length that limits the number of
HG modes that can be excited and the mode intensity distribu-
tion. Strong differences have been observed with respect to the
case of instantaneous gain saturation in which multistability
has been observed. The transition from one regime to the other
is related to the respective values of the gain lifetime and the
laser repetition time 2π/	.

Finally, we have isolated the different possible dynamical
behaviors of the mode-locked nanolaser obtained by varying
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the gain and the absorption. These different regimes, including
the Q switching, Q-switched mode locking, and cw mode
locking, were fully described, illustrating the rich physics
of this nonlinear system. In addition, the influence of the
Henry factor on the mode locking has been discussed. More-
over, similar dynamical behaviors using spatially separated
gain and absorber sections inside the cavity have been ob-
served, which can simplify practical implementations. Finally,
a general comparison between harmonic cavity lasers and the
traditional FP cavity lasers has been given.
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