
Andrology. 2020;00:1–17.	﻿�    |  1wileyonlinelibrary.com/journal/andr

 

Received: 5 June 2020  |  Revised: 31 July 2020  |  Accepted: 28 September 2020

DOI: 10.1111/andr.12918  

R E V I E W  A R T I C L E

Somatotropic-Testicular Axis: A crosstalk between GH/IGF-I 
and gonadal hormones during development, transition, and 
adult age

Marta Tenuta1  |   Francesco Carlomagno1  |   Biagio Cangiano2  |    
George Kanakis3  |   Carlotta Pozza1  |   Emilia Sbardella1  |   Andrea M. Isidori1  |   
Csilla Krausz4  |   Daniele Gianfrilli1

© 2020 American Society of Andrology and European Academy of Andrology

1Department of Experimental Medicine, 
Sapienza University, Rome, Italy
2Department of Clinical Sciences and 
Community Health, University of Milan, 
Milan, Italy
3Athens Naval and Veterans Affairs Hospital, 
Athens, Greece
4Department of Experimental and Clinical 
Biomedical Sciences "Mario Serio”, 
University of Florence, Florence, Italy

Correspondence
Daniele Gianfrilli, Department of 
Experimental Medicine, Sapienza University 
of Rome, Viale Regina Elena 324, Rome 
00161, Italy.
Email: daniele.gianfrilli@uniroma1.it

Funding information
Sapienza University of Rome

Abstract
Background: The hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-
somatotropic (HPS) axes are strongly interconnected. Interactions between these 
axes are complex and poorly understood. These interactions are characterized by 
redundancies in reciprocal influences at each level of regulation and the combination 
of endocrine and paracrine effects that change during development.
Objectives: To comprehensively review the crosstalk between the HPG and HPS axes 
and related pathological and clinical aspects during various life stages of male subjects.
Materials and methods: A thorough search of publications available in PubMed was 
performed using proper keywords.
Results: Molecular studies confirmed the expressions of growth hormone (GH) and 
insulin-like growth factor-I (IGF-I) receptors on the HPG axis and reproductive or-
gans, indicating a possible interaction between HPS and HPG axes at various levels. 
Insulin growth factors participate in sexual differentiation during fetal development, 
indicating that normal HPS axis activity is required for proper testicular develop-
ment. IGF-I contributes to correct testicular position during minipuberty, determines 
linear growth during childhood, and promotes puberty onset and pace through gon-
adotropin-releasing hormone activation. IGF-I levels are high during transition age, 
even when linear growth is almost complete, suggesting its role in reproductive tract 
maturation. Patients with GH deficiency (GHD) and insensitivity (GHI) exhibit de-
layed puberty and impaired genital development; replacement therapy in such pa-
tients induces proper pubertal development. In adults, few studies have suggested 
that lower IGF-I levels are associated with impaired sperm parameters.
Discussion and conclusion: The role of GH-IGF-I in testicular development remains 
largely unexplored. However, it is important to evaluate gonadic development in chil-
dren with GHD. Additionally, HPS axis function should be evaluated in children with 
urogenital malformation or gonadal development alterations. Correct diagnosis and 
prompt therapeutic intervention are needed for healthy puberty, attainment of com-
plete gonadal development during transition age, and fertility potential in adulthood.
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1  | INTRODUC TION

Growth hormone (GH) and insulin-like growth factor-I (IGF-I) receptors 
are present in gonads1 and can modulate the activity of sex hormones.2 
The hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pitu-
itary-somatotropic (HPS) axes are more strongly interconnected than 
that generally perceived, working to fine-tune each other's activities. 
During puberty, GH secretion proportionally increases with sex hor-
mone secretion,3-5 whereas in late adulthood, both total testosterone 
and GH secretions mutually decrease over time.6

Interactions between the two axes have not been entirely elu-
cidated. The redundancy of reciprocal influences at each level of 
regulation, which changes during different developmental stages, 
and the combination of endocrine and paracrine effects make the 
crosstalk particularly complex. Although studies using animal mod-
els provide some insights, studies based on the in vivo effects of 
GH and IGF-I on gonadal development, steroidogenesis, and fertility 
report controversial findings.

In this review, we discuss physiological mechanisms of the cross-
talk between HPG and HPS axes and their clinical presentation and 
implications in function of various stages during development from 
infancy through puberty, transition age and, finally, adult life stages 
of male subjects.

A computerized literature search was performed using the 
following keywords: “adolescence,” “fertility,” “GH,” “ghrelin,” 
“IGF-I,” “Leydig cell,” “puberty,” “Sertoli cell,” “spermatogenesis,” 
“steroidogenesis,” “testis,” “testosterone,” and “transition age.” 
Keywords were properly combined with Boolean operators to op-
timize the search.

2  | PHYSIOLOGY OF CROSSTALK: THE 
CHICKEN AND THE EGG

The interaction between HPS and HPG axes is observed at various 
stages and is likely to be mutual. GH and IGF-I receptors are found in 

K E Y W O R D S
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F I G U R E  1   Schematic representation of the crosstalk between growth and gonadal hormones. Effects of growth on gonadal hormones 
(arrows in light blue): Pituitary somatotroph cells produce GH that stimulate liver to produce IGF-I. Somatostatin is the main negative 
regulator of GH secretion. IGF-I acts at many levels: (1) on hypothalamus activating GnRH neurons and kisspeptin neurons for puberty 
development, (2) on the pituitary gland activating gonadotroph cells, (3) on the testicles (for details, see Figure 2), and (4) on penis ad 
prostate probably influencing growth and development; GH can also directly act on prostate and penis. Effects of gonadal on growth 
hormones (arrows in green): FSH and LH released from gonadotroph pituitary cells directly stimulate the testicle (for details, see Figure 2); 
testosterone released from the testes and E2 trough aromatization are important facilitators of GH release from pituitary somatotroph cells; 
E2 is able to inhibit liver production of IGF-I. Effects of ghrelin (arrows in orange): Ghrelin is able to stimulate GH release from somatotroph 
cells and inhibits LH release from gonadotroph cells; moreover, ghrelin can act directly on the testes inhibiting both steroidogenesis and 
spermatogenesis (for details, see Figure 2)
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the reproductive tract, on gonadotropin-releasing hormone (GnRH) 
neurons, and in pituitary gonadotroph cells.7-10 On the other hand, 
sex steroids act on the HPS axis for both neuroendocrine regulation 
of GHRH secretion and modulation of peripheral responsiveness to 
GH. Because these reciprocal influences change during develop-
ment, which axis acts first and which axis is dominant remain un-
clear. Acquiring knowledge on this issue has clinical implications, 
especially in terms of treatment. A summary of this complex cross-
talk is presented in Figure 1.

2.1 | How GH and IGF-I influence the HPG axis

GH and IGF-I have a central effect on hypothalamic GnRH neurons, 
kisspeptin neurons, and gonadotropin-secreting cells in the pituitary 
gland. Injection of IGF-I into rats, either centrally in the cerebrospi-
nal fluid or peripherally, results in activation of the kisspeptin neu-
rons in the anteroventral periventricular nucleus.11 Moreover, IGF-I 
seems to facilitate LH secretion from pituitary cells both in rats and 
in bovines.12-14

In mouse models, knockout (KO) of GH receptors (GHR) or IGF-
I or IGF-I receptor (IGF-IR) genes impairs sexual development and 
delays the onset of puberty.9,15,16 This phenotype overlaps with that 
observed in Kisspeptin1R KO mice,17 suggesting that IGF-IR signal-
ing is vital for GnRH neuron maturation and synaptogenesis needed 
for pubertal onset.18 Although inhibition of systemic GH/IGF-I hor-
mone levels does not prevent animals from achieving reproductive 
competence, a significant slowing down of gonadal development is 

observed, as detailed below.19,20 These findings suggest the exis-
tence of paracrine or alternative signals that keep receptor signaling 
active, although at a lower level.

The testis produces GH and IGF-I both in Leydig cells (LCs) and 
in Sertoli cells (SCs) (Figure 2). In the human testis, immunostaining 
for IGF-I is mainly observed in SCs and to a lesser extent in LCs. 
GHR and IGF-IR are expressed both by LCs and SCs as well as germ 
cells (primary spermatocytes, secondary spermatocytes and early 
spermatids).21 Testicular GH, and more importantly, locally pro-
duced IGF-I generate many paracrine and autocrine signals involved 
in both spermatogenesis and steroidogenesis. This ultrashort para-
crine loop appears to be controlled by FSH and LH, which stimulate 
IGF-I.22,23

The effect of IGF-I on steroidogenesis has been widely demon-
strated. Administration of IGF-I alone in dwarf mice with growth 
hormone deficiency (GHD) has a mild effect on basal steroidogen-
esis, but it increases the number of hCG receptors on LCs, thereby 
indicating that IGF-I may potentiate gonadotropin-induced ste-
roidogenesis.24 IGF-I also stimulates proliferation of LC progenitors 
and their differentiation.25 Similarly, GH enhances steroidogenic 
acute regulatory protein (StAR) and increases 3β-HSD gene expres-
sion26-28 in LCs.

As stated above, IGF-I may act as an autocrine factor for the 
regulation of spermatogenesis. Further, GHR-KO mice show reduced 
fertility, which supports this conclusion. However, spermatogenesis 
is not abolished, probably because of a GH-independent production 
of IGF-I within the seminal tubules.29 In addition, IGF-I treatment 
increases sperm motility in the same mouse model.30

F I G U R E  2   Schematic representation of the crosstalk between growth and gonadal hormones in the testis. Both Leydig (LC) and Sertoli 
cells (SC) are able to produce GH and—even more—IGF-I, under the control of FSH and LH. Ghrelin has an inhibitory function on growth 
hormone release from LC and SC and also on spermatogenesis. Locally produced IGF-I is able to generate many paracrine and autocrine 
signals involved in both spermatogenesis and steroidogenesis (arrows in green). Effects on steroidogenesis: IGF-I is also able to stimulate the 
proliferation of LC progenitors and their differentiation; GH enhances steroidogenic acute regulatory protein (StAR) and increases 3β-HSD 
gene expression in LC. IGF-I action on spermatogenesis is not yet fully confirmed and is not shown in the figure
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2.2 | How sex hormones can shape the HPS axis

The influence of sex steroids on the somatotropic axis can be de-
scribed by two major activities: central neuroendocrine regulation 
of GH secretion and peripheral modulation of GH responsiveness.

Testosterone and estradiol (E2) are important facilitators of 
GH secretion. Testosterone replacement therapy increases GH re-
lease by the pituitary gland in hypogonadal patients3,31 by increas-
ing the amplitude of GH secretion bursts during puberty.32 This 
effect observed in these patients is due to testosterone and its 
aromatization to E2. Moreover, the role of estrogens is supported 
by impaired GH and IGF-I secretion33 in males with congenital aro-
matase deficiency.

Animal models have shown sex-related differences in sex hor-
mone-driven somatotropic secretion. Male mice have more regular 
GH secretory pulses of high amplitude, whereas females show irreg-
ular secretory peaks of lower amplitude but higher interpulse GH lev-
els.34,35 This sex-related effect seems to be mediated by somatostatin, 
the primary negative regulator of GH secretion, which exhibits a simi-
lar sex-specific secretion pattern.36-39 Studies in rats indicate that sig-
nal transduction may also contribute to the dimorphic effects of GH 
on growth. The rhythmic GH release typical in males is more efficient 
in activating the STAT5b signaling cascade, which when switched off 
in male STAT5b-KO rats, determines female-like growth despite the 
persistence of a male-like GH secretion pattern.40

Additionally, GH secretion in humans is sexually dimorphic: larger 
nocturnal pulses and relatively smaller daily pulses are observed in 
males than in females who display more continuous secretion and 
frequent irregular pulses.41 Sexual dimorphism in GH secretion likely 
contributes to differences in body growth: sex hormone levels during 
prepuberty are extremely low, and the HPS axis mediates skeletal 
growth without distinct differences between boys and girls. During 
puberty, sex hormones accelerate truncal growth more than appen-
dicular growth until growth plate closure and cessation of growth. 
This process is principally mediated by E2, which explains why boys 
are taller than girls and display a longer growth period.42

Furthermore, the two sex hormones appear to influence the HPS 
axis also in adulthood. Testosterone positively modulates ghrelin, a 
hormone that stimulates GH release, in inducing higher GH bursts.43 
Moreover, recent findings suggest that E2 is an important regulator of 
GH secretion in adult males.44 Pituitary receptors ERα and ERβ can syn-
ergistically act with the pituitary-specific transcription factor Pit1 to 
activate pituitary Gh gene transcription through high-affinity binding.45

Sex hormones also play a major role in regulating peripheral re-
sponsiveness to GH, which is also gender related. In prepubertal age, 
both GH and IGF-I levels are comparable between boys and girls.46,47 
Evidences from studies on adults show that GH circulating levels are 
lower in males than in females, which can be explained, at least in 
part, by higher GH clearance in males than in females owing to an-
drogenic effects.46 IGF-I levels instead are higher in adult males48 
than in females, also in GHD condition.49 This observation is mainly 
owing to the effect of E2 for lowering liver sensitivity to GH on the 
release of IGF-I. This is possibly the reason why males with GHD 

likely respond better to lower doses of rhGH with greater increases 
in IGF-I and bone mass than females.50,51 Similarly, normal49 or even 
acromegalic52 females tend to show lower IGF-I/GH ratios than their 
male counterparts.

The underlying mechanism of lower GH sensitivity in females is 
the estrogenic upregulation of cytokine signaling-2 suppressors and/
or phospholipase C (PKC) activation in the liver,53,54 both concurring 
to reduce Janus kinase 2 (JAK-2) phosphorylation and thus downreg-
ulate GH signal transduction.55 The final result is an E2-dependent 
inhibition of IGF-I secretion from hepatocytes.

2.3 | How the extratesticular effects of GH and 
IGF-I impact the reproductive system

Apart from the above effects on testicular function, the HPS axis 
plays a role in the development of other reproductive organs. 
GH appears to be involved in penile growth in children because 
some studies have reported GHD- and GH-resistant subjects 
with reduced penis size, which was partially improved with GH 
therapy.56-58

Further, GH may have a beneficial role in erectile function, facili-
tating smooth muscle relaxation and reducing venous leakage, possi-
bly through a stimulating effect on cyclic guanosine monophosphate 
(cGMP) generation in human cavernous smooth muscle.58 This bio-
logical mechanism was suggested through an in vivo human study 
that demonstrated that ED is associated with low levels of GH as 
well as NO and cGMP in cavernosal blood59,60.

Finally, an in vitro model of mouse organ cell cultures showed 
that anti-rGH antibody blocked Wolffian duct differentiation, spe-
cifically in the presence of fetal cells, and GH therapy reversed this 
condition. This observation indicates a possible role of GH/IGF-I in 
the fetal development of Wolffian duct-derived structures, such as 
the prostate and seminal vesicles,61 through an endocrine, a para-
crine, or an autocrine mechanism that has not yet been defined.

The HPS axis has a more clearly defined role in adult prostatic dis-
ease: through its actions in promoting cell growth and survival,62,63 it 
appears to increase prostatic volume (PV), raising the risk of benign 
prostatic hyperplasia (BPH). GHD patients, in fact, show a reduced 
PV,64,65 while the opposite is true in acromegalic patients65,66 com-
pared with healthy age-matched controls. In particular, in acromegaly, 
PV mostly correlates with duration of disease, rather than patients’ 
age.65 Indeed, BPH is reported in approximately half the acromegalic 
subjects65,67 and the prevalence of parenchymal alterations (ie, cysts, 
calcifications and nodules) is also increased.65,66,68 Slight increase in 
PSA levels and International Prostate Symptom Scores (IPSS) are also 
reported in these patients, although prostatic symptoms are often 
absent.67,69 Moreover, as results from a large population study, pros-
tatic cancer (PCa) incidence is increased both in healthy individuals 
with IGF-I levels in the upper reference range70,71 and in acromegalic 
patients.72 However, a recent meta-analysis of 23 studies in acro-
megaly reveals some potential sources of bias in the association be-
tween acromegaly and PCa: for example, cancer incidence was more 
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pronounced in smaller and single-center studies (selection bias) and 
the enlarged PV in acromegaly may lead to more frequent US exam-
ination (diagnostic workup bias).73

In GHD patients, replacement therapy restores prostate size to 
normal, with no increase in prostate abnormalities or PSA levels; an 
even greater increase in PV is observed in hypogonadal patients also 
receiving concurrent testosterone replacement therapy.64 On the 
other side, effective pharmacological treatment of acromegaly for 
1-2  years via somatostatin analogs results in a reduction of PV in 
young subjects (<50 years old), but not in older ones, despite a rise 
in testosterone levels.66,74

2.4 | The additional control level: ghrelin

Ghrelin, which is among the primary activators of the HPS axis, is 
a peptide produced by the stomach that increases food intake and 
decreases energy consumption. Upon binding of its receptor, the GH 
receptor-secretagogues (GHS-R) ghrelin potently stimulate GH re-
lease. Ghrelin is found in the human testis in both interstitial LCs and 
also SCs, even if in lower amounts. GHS-R is detectable in germ cells, 
mainly pachytene spermatocytes, and in somatic SCs and LCs.75 
Ghrelin has been proposed to link the neuroendocrine system and 
somatic growth with metabolism and reproduction.76

Ghrelin acts centrally, inhibiting LH production, and peripherally, 
reducing testosterone synthesis (Figure 1). In addition, ghrelin exerts 
a negative effect on germ cell development and LC proliferation77 
(Figure 2) through the inhibition of the gene encoding stem cell fac-
tor (SCF), a c-Kit ligand,78,79 with implications on extragonadal ef-
fects of GH, such as cardiovascular function.80,81 Thus, the hormone 
may act as an inhibitor of spermatogenesis and steroidogenesis. 
Evolutionarily, this action could depend on the need to inhibit repro-
ductive function under conditions of fasting, underweight, and inad-
equate calorie uptake: ghrelin, indeed, is found at high levels under 
all these conditions.76 Likewise, leptin, an adipose tissue-derived 
anorexigenic hormone, acts on the reproductive tract, and its re-
ceptors are indeed expressed in the gonads.82-84 Leptin mainly acts 
as a permissive factor in the hypothalamus, where a minimum level 
is required for normal HPG axis activity; however, at higher levels, it 
inhibits LC steroidogenesis.85

In summary, fertility appears to be strictly linked to metabolic 
balance through leptin and ghrelin, and its full potential is achieved 
only in favorable nutritional environment after the completion of the 
transition age.

3  | GROWING UP: FROM SE XUAL 
DIFFERENTIATION TO TR ANSITION AGE

3.1 | Fetal development and infancy

The interaction between the HPS and HPG axes starts in the first 
weeks of gestation, during which IGF-I and insulin-like family of 

growth factors play important roles in gonadal development and 
sexual differentiation.86 XY mice KO for Igf1r and Insr show reduced 
expression of Sry and lack of activation of some genes crucial for 
testicular differentiation, such as Sox9, Fgf9, and Ptgds. SCs and 
LCs fail to develop as a result.87 A second study by the same group 
showed that selective Igf1r-Insr inactivation in SC impairs their pro-
liferation during late fetal and early neonatal development, resulting 
in smaller testes and lower sperm output later in life.88 However, 
mutant mice are fertile, demonstrating that the absence of IGF-I 
signaling restricted to SC does not have a severe effect on spermat-
ogenesis. Lower testes volume is likely to be related to reduced SC 
number. Notably, FSH amplifies IGF-I-mediated PI3K/AKT protein 
kinase signaling in SCs, highlighting the importance of this signal for 
SC proliferation.89

Shortly after birth, GnRH activation stimulates gonadotropin 
secretion as well as testosterone, inhibin B, and anti-Müllerian 
hormone (AMH) production in boys. This process, called minipu-
berty, occurs approximately between months 1 and 6 of postna-
tal life: a rise in testosterone levels is considered responsible for 
greater linear growth observed in males than in females.90 This 
effect is synchronous with that of the activation of the HPS axis; 
IGF-I also increases shortly after birth and continues to escalate 
linearly until puberty.91

A recent study attributes a permissive role to IGF-I during 
minipuberty, along with LC and SC function, in consolidating 
testicular position in the scrotum to a low-enough location from 
which the testes are unlikely to ascend to high scrotal or supras-
crotal position during childhood.92 IGF-I levels during minipuberty 
strictly correlate with testicular distance to the pubic bone (TDP) 
and thus with a lower testicular location in a linear mixed-effect 
model.92 After minipuberty, IGF-I levels slowly and linearly in-
crease throughout infancy as a function of insulin levels and nu-
tritional status.91 After the first year of life until late childhood, a 
deceleration of height velocity growth is observed, which is re-
versed only when puberty starts.

3.2 | Puberty and transition age

The GnRH pulse generator is activated at pubertal onset to trigger 
the hormonal cascade necessary for sexual maturation. This ac-
tivation is strictly related to body mass and nutritional state; thus, 
anabolic hormones such as insulin and IGF-I contribute to GnRH 
pulsatiliy.9 At the same time, the amplitude of GH secretion bursts 
increases, along with the overall daily output of pituitary GH.32 Both 
are needed for linear and pubertal development.

Mechanisms underlying HPS axis activation during puberty are 
not entirely clear but likely involve augmented hypothalamic re-
lease of GHRH mediated by testosterone surge93; kisspeptin neu-
rons that activate pituitary somatotroph cells and increase their 
sensitivity to GHRH stimulation80 are also likely to be involved.

Transition age is defined as the phase between the end of puberty 
and young adulthood. The beginning of transition corresponds to the 
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achievement of Tanner stage V, while the end of transition corresponds 
to the achievement of peak bone mass.94 Transition age is therefore a 
crucial period as of the maturation of HPG and HPS axes95 and their 
mutual influence is especially relevant during this period.

IGF-I progressively increases in Tanner stages from I to III, con-
comitantly with the increase in testicular volume and then decreases 
during Tanner stages IV and V.47 These observations are confirmed 
by analysis of both bioavailable IGF-I and free IGF-I levels,96,97 thus 
excluding confounding factors. As recently highlighted in a short re-
view by Juul and Skakkebaek, IGF-I levels usually peak 2 years after 
pubertal spurt, but the levels remain elevated for few years after-
ward, suggesting that GH and IGF-I are important for longitudinal 
growth but likely play a role in full maturation of the reproductive 
system.98

As a matter of fact, HPS axis activation is needed for proper 
pubertal onset and maturation. For example, higher levels of serum 
IGF-I at 8 years of age are associated with early menarche in normal 
girls, even after adjustment for BMI, height, and prepubertal state.99 
Moreover, girls with central precocious puberty have markedly ele-
vated IGF-I levels compared with prepubertal peers, and their IGF-I 
levels gradually return to prepubertal levels after linear growth ceases 
or following GnRH agonist therapy.100 An interesting retrospective 
study conducted on prepubertal boys with constitutional delays in 
growth and puberty (CDGP)101 suggests a correlation between the 
degree of HPS axis activation and pubertal initiation. Lowest IGF-I 
levels were found in patients with hypogonadotropic hypogonadism, 
whereas highest IGF-I levels were found in patients with an early pu-
berty. Taken together, these studies suggest an important role of the 
HPS axis in the physiological activation of the HPG axis (Table 1).

Conversely, HPS axis impairment during childhood and puberty 
can affect genital development. Conditions such as micropenis,102,103 
hypospadias, and cryptorchidism104 frequently occur in patients 
with isolated GHD. Patients with Laron syndrome, GH insensitivity 
(GHI) due to a mutation in GH-receptor105 or STAT5b106 genes, offer 
an ideal model to study this crosstalk. All affected patients have de-
layed pubertal onset and a prolonged pace.107,108 Interestingly, treat-
ment with recombinant human IGF-I (rhIGF-I) stimulates testicular 
and penile growth in these boys.109,110 Similarly, delayed puberty 
was observed in a 15-year-old boy born short for gestational age 
who harbored a mutation in the IGF-1 gene111 and in patients with 
mutations in genes encoding for other components of the HPS axis, 
such as IGF-2,112 IGF-1R,113 and ALS114 (Table 2). Several studies on 
rhGH therapy in boys with GHD have reported faster progression of 
pubertal maturation115 compared with those with untreated GHD. 
Boys with GHD more frequently exhibited delayed puberty.116-120 
In treated patients, age at onset of spontaneous puberty positively 
correlated with the commencement of GH therapy, as observed in 
319 boys with idiopathic and non-congenital GHD.121

A retrospective study examined 37 prepubertal children (boys 
and girls) with congenital isolated growth hormone deficiency122 
who were treated with rhGH. The authors observed delayed pu-
bertal onset to be more evident in boys with age at first ejacula-
tion occurring 3.5-4 years later than in the reference population.123 

The authors once more suggested a positive correlation between 
age at initiation of treatment and age at pubertal onset. Stretched 
penile length at the end of puberty was shorter than that of the 
reference population average, although it significantly increased 
following rhGH therapy.56-58 Testicular volume was normal at the 
end of therapy, positively correlating with treatment duration and 
negatively with age at initiation of treatment. Age at first ejaculation 
was significantly higher than that in normal boys, and rhGH ther-
apy induced a greater increase in testicular volume in patients who 
started therapy before 10 years of age; these observations empha-
size that rhGH promotes pubertal development, even if it does not 
normalize it. These studies appear to confirm that better responses 
on puberty and sexual differentiation result when replacement ther-
apy is promptly started at an early age. However, no clear evidence 
emerges on the correlation with treatment duration or dosage. One 
study observed a negative correlation between GH dose and pu-
bertal onset but no correlation with treatment duration.124 In addi-
tion, a more recent study that evaluated pubertal onset in 111 GHD 
children aged 3-16 years after 48 months of rhGH administration at 
different doses (25, 50, and 100 µg/kg/day) did not find any signifi-
cant differences, even if the wide age range of inclusion and lack of 
control group may bias the findings125 (Table 1).

It remains controversial whether sex steroid priming during pu-
bertal development improves the specificity of GH stimulation test 
for GHD diagnosis, thus reducing false-positive results. However, 
adjusted data on cut-off values post-priming are missing, and there-
fore, no clear consensus exists regarding the use of sex steroids out-
side of delayed puberty.126

Apart from children with GHD, rhGH is also used in children af-
fected by idiopathic short stature (ISS). Data on the onset and pace 
of puberty and/or genital development after therapy in this setting 
are conflicting (Table 1). Some studies showed that treated children, 
as opposed to control patients, have an earlier pubertal onset and/
or pace of puberty127,128 and faster progression of bone age. Kawai 
et al128 in a small population treated with 24 µg/kg/day of rhGH and 
Kamp et al in a larger (26 boys) population127 randomized to receive 
70 µg/kg/day of rhGH for 2-4 years before puberty or no treatment, 
observed that a prepubertal exposure to rhGH can accelerate pu-
bertal development.

Nevertheless, a number of larger studies found no effects.129-132 
A controlled study of 91 boys with ISS randomized to receive rhGH 
or no therapy reported no differences in the timing of pubertal 
onset, age at which maximum mean testicular volume was reached, 
or duration of puberty in the treated population. However, at the 
end of puberty, significantly larger testicular volume was observed 
in GH-treated boys than in controls, but smaller testicular volume 
was observed in GH-treated boys than the expected value when 
compared to that of the national reference population.130 Other 
studies observed no difference in age at pubertal onset, pace of 
pubertal progression,131 or duration of puberty in GH-treated boys 
compared with untreated subjects, even across different dosages132

Finally, results of a large multicentric study129 showed that dif-
ferent replacement regimens do not seem to influence pubertal 
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development. In 158 prepubertal boys, randomized to receive 34 or 
74 µg/kg/day, no differences were found in age at onset, duration, 
or testicular volume during pubertal development between the two 
groups (Table 1).

Despite transition age being a crucial period for the full matura-
tion of the reproductive system, few data are available for this spe-
cific age range. One report of four males aged 17-25 years treated 
with rhGH for ISS133 showed reduced testicular volume, hypergo-
nadotropic hypogonadism, and impaired spermatogenesis. These 
findings were not replicated in other studies, thus allowing to ex-
clude a detrimental effect of rhGH therapy on male gonadal func-
tion. A large study involving 111 boys treated with rhGH for GHD 
or ISS134 for at least 4 years and in which treatment began at least 
1 year before pubertal onset showed normal testicular size and nor-
mal serum testosterone levels. Similar results have been reported 
in another study on eight young males aged 16-18 years previously 

treated with rhGH for ISS or CDGP135 evidenced by normal testicu-
lar volume and endocrine function as well as mostly “normal” semen 
parameters at follow-up.

In conclusion, published data are very heterogeneous. Some 
studies were conducted in children with known congenital or ac-
quired GHD and others in ISS children without GHD. Additionally, 
some boys were treated during infancy, whereas others were treated 
just before or during puberty. Combining all data, it can be con-
cluded that a minimum HPS axis basal activity is needed to achieve 
most HPG effects on sexual maturation, but once this is achieved, 
additional doses of exogenous GH do not provide any additional 
benefit. Another limitation of the available studies is that the criteria 
for idiopathic GHD diagnosis varied with respect to the provocative 
test(s) and serum GH cut-off(s) used or with respect to sex steroid 
priming. An alternative hypothesis is that GH has a narrow time- and 
dose-dependent window for effects on puberty. Time dependency 

TA B L E  2   Case reports of mutation in genes associated with GH insensitivity presenting with impaired genital development and puberty

n Mutation
Age at 
diagnosis (ys)

Growth 
(height SDS) Clinical presentation Genital characteristics

Castilla-Cortazar 
et al 2017103

M: 1 IGF1R (hom) & 
IGFALS (het)

14.8 −14 VLBW (born at 26 wks of gestation)
Respiratory difficulties at birth

Micropenis
Hypospadias
Tanner stage I

Kofoed et al
2003106

F: 1 STAT5b (hom) 16.5 −7.5 VLBW (born at 33 wks of gestation)
Facial dysmorphism
Respiratory difficulties at birth
Failure to thrive
Lymphoid interstitial pneumonia
Severe hemorrhagic varicella,
Recurrent herpes zoster
Pneumocystis carinii pneumonia

Delayed puberty
Tanner stage III

Walenkamp 
et al 2005111

M: 1 IGF1 (hom) 55 yr −8.6 VLBW (born at 32 wks of gestation)
Failure to thrive
Microcephaly
Deaf-mutism
Motor unrest
IQ < 40
Arterial hypertension
Bilateral cataract
Severe osteoporosis

Small penis
Delayed puberty
(pubarche and 

gonadarche at 20 yrs 
of age)

Begemann 
et al 2015112

M: 2
F: 2

IGF2 (het)a  7.1 (m) R: −1.6, −4 (V)LBW
SRS-like facial dysmorphism
Feeding difficulties during infancy
Ulnar ray defects
High-pitched voice
Intellectual disability

Delayed puberty
Hypospadias
Cryptorchidism

Gannagé-Yared 
et al 2013113

F: 1 IGF1R (hom) 13.5 yr −4.4 LBW (born at 41 wks of gestation)
Facial dysmorphism
Mild intellectual disability
Cardiac malformations
High-pitched voice
Acanthosis nigricans
Hypertriglyceridemia

Delayed puberty

Domené et al
2004114

M: 1 ALS (hom) 14.6 yr −2.1 Micrognathia
Truncal obesity

Delayed puberty

Abbreviations:: (V) LBW, (very) low birthweight; F, female; het, heterozygosis; hom, homozygosis; IQ, intelligent quotient; M, male; m, mean; R, range; 
SRS, Silver-Russell syndrome; ys, years.
aIGF-2 is a maternally imprinted gene. 
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is suggested by the correlation between the age at which therapy 
starts and the age of pubertal onset in patients with GHD.127 Dose 
dependency is supported by positive results of some studies not 
definitively refuted by Crowe et al.129 In this regard, recent guide-
lines136 define therapeutic dosages in a range of 22-35 mcg/kg/day 
for GHD and 34-67 mcg/kg/day for ISS. However, these ranges are 
established considering linear growth as the main outcome and not 
gonadal development. In several studies examined so far, higher 
doses were used instead because the aim was to observe possible 
effects on gonadal development. Standardization of dosages in this 
context would help to obtain more homogeneous results.

Finally, most studies did not employ proper control groups of 
untreated children, examined broad age ranges (ie, enrolled both 
prepubertal and pubertal children), and most importantly, were not 
adequately powered to clarify the role of rhGH therapy in pubertal 
pathophysiology.

4  | THE GROWN-UP: CROSSTALK IN THE 
YOUNG ADULT

Crosstalk between HPS and HPG axes is essential for sexual matu-
ration during growth, but evidence in adult life is fragmentary and 
inconclusive. Sample sizes are often very low. Most studies included 
less than 10 patients,137-142 and larger studies were retrospective and 
observational.143,144 Few available prospective interventional stud-
ies were often under-powered and used very different protocols. 
Some trials focused on patients with GHD139,144-146 (post-surgical, 
adult GHD, childhood-onset GHD, and panhypopituitarism) and oth-
ers on infertile males137,138,147-149 (oligoasthenoteratozoospermia,  
azoospermia, and idiopathic infertility) as well as on hypogonadal pa-
tients.140,142 Most studies addressed GHD and only few addressed 
GH excess. A report on reproductive function in acromegalic males 
showed lower androgen concentration and sperm parameters that 
improved after pharmacological or surgical control of the disease.150 
This observation is consistent with that of animal studies.151

GH replacement studies used different durations and dosages 
that do not permit the determination of whether non-significant re-
sults could be owing to insufficient treatment duration or insuffi-
cient dose regimen.

Furthermore, GH therapy was often associated with gonadotro-
pin treatment,137-140 masking the effects ascribed to one or the other 
replacement. Finally, outcomes of interest were not homogeneous. 
Some studies evaluated only sperm parameters, whereas others 
evaluated IGF-I levels in the seminal fluid or only hormonal profiles. 
Only few investigations on adult populations considered testicular 
volumes.140,142,143,145,146

4.1 | Endocrine function

Both LCs and SCs can produce local GH and IGF-I involved in parac-
rine and autocrine effects.

A recent study conducted using gas chromatography/mass spec-
trometry revealed that if GHD is associated with hypogonadotropic 
hypogonadism, it has an additional lowering effect on testosterone, 
DHT, and E2 levels compared with isolated hypogonadotropic hypo-
gonadism. This finding suggests a synergistic effect of GH on basal 
LC function.143 From these assumptions, one would expect that GH 
therapy would increase testosterone levels. However, the literature 
in this regard is not univocal.

With regard to GH therapy, the only studies that showed an 
increase in testosterone levels included azoospermic140 or hypo-
gonadal patients139 who were also receiving gonadotropin therapy. 
Other studies on GHD patients showed no change in total testoster-
one levels after GH therapy.144,148 However, Carani et al, observed 
that even if total testosterone levels did not change after treatment, 
CG-stimulated testosterone levels increased after GH therapy 
compared with baseline.145 However, non-GHD patients with oli-
gozoospermia displayed no change in testosterone levels after GH 
therapy.138,148 Interestingly, in an experimental study on healthy 
volunteers receiving alternating rhGH and Pegvisomant therapy,141 
Andreassen et al reported stable testosterone levels. For complete-
ness, one study with a very small sample size found a reduction of 
total testosterone levels after GH therapy in patients with isolated 
GHD.152

As previously reported, E2 rather than testosterone plays a 
major role in regulating the HPS axis in males, increasing pulsatile 
GH secretion,44 while inhibiting liver IGF-I response at a peripheral 
level.153 In healthy volunteers, GH and IGF-I were positively cor-
related with serum E2.141 In contrast, a placebo-controlled study 
reported an increase in E2 levels after GH therapy, but no changes 
were found in GnRH-stimulated gonadotropins, basal or hCG-stim-
ulated androgens, or inhibin B levels.146 The authors hypothesized 
that E2 levels are probably linked to an increase in aromatase activ-
ity (both testicular and peripheral). Conversely, males with congen-
ital aromatase deficiency have reduced GH and IGF-I levels.33 The 
central role of E2 in HPS regulation and vice versa is evident even for 
biological actions, which are traditionally attributed to testosterone 
in males. In a recent review, starting from the evidence that E2 circu-
lates at higher levels in males than in post-menopausal females, the 
authors concluded that E2 has a central role in HPG axis regulation 
and reproductive function in males.42

None of the previously cited study reported a change in gonad-
otropin levels.144-146,148 Andreassen et al indicated that AMH levels 
dropped after GH treatment in healthy controls, suggesting a mat-
uration effect on SCs probably owing to intratesticular sex steroid 
syntheses and/or local estrogen increase.141

Thus, GH might reduce SHBG concentration by a direct action on 
liver receptors. Both males with acromegaly152,154,155 and those with 
obesity with continuous GH infusion156 showed low SHBG levels. 
In contrast, other studies observed no changes in SHBG concentra-
tions after GH therapy.141,145,146

Only few studies described the HPG function in acromeg-
aly: commonly, HPG axis dysfunction is described in both male 
and female acromegalic patients.65,157,158 Although the underlying 
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pathophysiology has not been evaluated in detail, possible mecha-
nisms include gonadotropin deficiency, hyperprolactinemia (in mixed 
GH/prolactin pituitary adenomas), and tumor mass effect (in mac-
roadenomas). They are therefore mostly indirect mechanism rather 
than related to GH excess itself. Males typically show a hypogonad-
otropic hypogonadal picture with reduced FSH, testosterone, and 
DHT levels compared with age-matched controls.150,159 A decrease 
in sexual desire together with an impairment of erectile function are 
frequent findings in patients with active acromegaly.160-162 Disease 
control via somatostatin analogs (or clomiphene) is effective in in-
creasing testosterone and DHT levels in these patients in the short 
term (6 months), while LH and FSH levels only increase in patients 
achieving disease control.150

4.2 | Reproductive function

The effect of GH and IGF-I on spermatogenesis is even more in-
triguing and under-explored than that on endocrine function. 
IGF-I is secreted by SCs, but IGF-IR is found on SCs themselves,163 
secondary spermatocytes, spermatids, and spermatozoa.164,165 
Moreover, IGF-I stimulates sperm maturation and influences 
sperm motility.166

Abnormal sperm parameters seem to correlate with lower 
serum IGF-I levels but not to seminal plasma IGF-I levels,167 
implying a more endocrine rather than paracrine function. 
Shimonovitz et al, reported that azoospermic patients are more 
likely to have a low GH response after clonidine administration 
compared with oligozoospermic and normozoospermic males.168 
However, other authors reported normal GH and IGF-I levels 
both in basal condition and after clonidine administration in 
azoospermic patients affected by either primary or secondary 
hypogonadism.169

A series of prospective intervention studies explored the im-
pact of GH therapy on seminal parameters in infertile males. Some 
studies confirmed a beneficial effect in patients with fertility 
problems. Hypogonadotropic hypogonadal patients who failed to 
respond adequately to conventional treatment showed increased 
testosterone secretion and improved sperm production and fer-
tility outcomes after GH cotreatment with gonadotropins.142 
Infertile males or patients with idiopathic severe oligoasthenoter-
atozoospermia also displayed an improvement in sperm concen-
trations,149 and asthenozoospermic patients showed an increase 
in sperm motility.148 Unfortunately, these latter studies had a very 
low sample size.

In contrast, other studies found no influence of GH replacement 
in males with hypogonadotropic hypogonadism cotreated with GH 
and gonadotropins,138 in males with idiopathic oligozoospermia,147 
or in normogonadotropic patients with severe oligoasthenotera-
tozoospermia.145 Moreover, in a small group of hypogonadotropic 
hypogonadal azoospermic patients, 6  months of GH replacement 
therapy after previous 6 months of gonadotropin treatment, while 
increasing testicular volume and testosterone levels, failed to induce 

the appearance of spermatozoa.140 Finally, a number of studies 
showed an increase in seminal volume, suggesting a synergistic 
effect with testosterone but without improvement in other sperm 
parameters.140,145,148

The only two published studies on semen quality in acromegalic 
patients report discordant data. In 35 patients with active disease 
seminal volume, sperm count, total motility (and forward progres-
sion), normal morphology, and vitality were all significantly lower 
than in controls; 6 months of treatment with somatostatin analogs 
were able to ameliorate sperm number (and total motility in those 
achieving disease control). Post-treatment IGF-I levels were also 
found to inversely correlate with total motility, implying a noxious 
effect of GH/IGF-I excess on spermatogenesis.150 More recently, 
a study on 10 acromegalic men revealed no differences in semen 
parameters with healthy controls, despite severely reduced serum 
testosterone and calculated free testosterone levels.170 In contrast, 
hypogonadotropic hypogonadal patients without GH excess had re-
duced motile spermatozoa, possibly supporting a positive effect of 
GH/IGF-I on sperm motility.

5  | CONCLUSIONS

The evidence reviewed herein supports the existence of a crosstalk 
between the HPG and HPS axes. Molecular studies confirmed the 
expressions of both GH and IGF-I receptors at each level of the HPG 
axis and on reproductive organs. IGF-I signaling may be necessary 
for GnRH neuron maturation and timely pubertal onset, acting di-
rectly and indirectly through kisspeptin neurons and LH-secreting 
cells. Moreover, a paracrine network of locally produced GH and 
IGF-I by LC and SC functions within the testis to produce measur-
able effects on steroidogenesis and probably with less clear results 
on spermatogenesis.

In turn, sex hormones regulate HPS activity. First, GH secretion 
and receptor sensitivity exhibit a clear sex-related pattern. Second, 
both testosterone and E2 seem to control GH secretion, with E2 
apparently being the dominant regulatory hormone at the central 
level, where it exerts a stimulatory effect, and at the peripheral level, 
where it inhibits IGF-I production.

The complexity of the interaction is further increased by the 
emerging role of ghrelin, which is an orexigenic hormone and one 
of the main drivers of HPS axis activation, but it also inhibits 
LH secretion, spermatogenesis, and steroidogenesis. Fertility 
and gonadal maturity strictly depend on metabolic balance and 
reach their full potential only after the completion of the tran-
sition age.

The actual in vivo effects of the somatotropic axis on the repro-
ductive system and sexual organs are not entirely clear, but available 
literature suggests that physiological levels of activity of the HPS 
axis are required for proper testicular development from the early 
stages of fetal development throughout childhood. Insulin growth 
factors play an essential role in sexual differentiation. Moreover, 
during minipuberty, IGF-I seems to be decisive for the consolidation 
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of the correct testicular position and contributes to linear growth 
during childhood.

IGF-I actively contributes to GnRH activation, puberty onset, 
and pubertal pace. Patients with GHD and GHI show delayed pu-
berty and often impaired genital development. In these patients, 
prompt replacement therapy with rhGH/rhIGF-I may contribute to 
timely pubertal onset, correct pubertal development, and achieve-
ment of higher testicular volumes and penile lengths compared with 
controls. IGF-I levels during transition age remain high, even when 
linear growth is almost completed, suggesting a role in the matura-
tion of the reproductive tract. Lower IGF-I levels in adult males seem 
to correlate with worse sperm parameters, but no solid evidence is 
available regarding whether therapy can improve semen character-
istics and fertility outcomes in both GHD and idiopathic infertility. 
Long-term follow-up of GHD patients and studies on infertile males 
are definitely needed.

The role of GH-IGF-I interactions in sexual maturation and 
development during puberty and even more during transition 
age has not received sufficient attention and requires further 
investigation.

Nevertheless, evaluation of gonadal development in children 
with GHD is always important to initiate prompt therapy aimed 
at accurate gonadal maturation. Furthermore, investigation of the 
function of the HPS axis in children with alterations of the urogenital 
tract and gonadal development (micropenis, cryptorchidism, and hy-
pospadias) may prove important for therapeutic intervention.

In conclusion, correct diagnosis and prompt therapy are needed 
for healthier puberty, attainment of complete gonadal development 
during the transition age, and fertility in adulthood.
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