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Abstract: We present a general series representation formula for the local solution of the Bernoulli
equation with Caputo fractional derivatives. We then focus on a generalization of the fractional
logistic equation and present some related numerical simulations.
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1. Introduction

Interest in time fractional evolutive systems has progressively grown in recent years.
Models arising with aspects related to non-local behavior need to be studied in the fractional
setting; see [1,2] for an overview and [2,3] for fractional growth models for social and
biological dynamics. The fractional derivatives are indeed non-local operators, that is,
convolution-type operators. In the applied sciences, the main interest in fractional models
is due to the fact that such models introduce the so-called memory effect. This effect is
mainly justified by the non-locality of the time-fractional derivative, and it seems to be
relevant in the characterization of many applied models. A second reading is given in
terms of the delaying effect. Indeed, the time-fractional derivative introduces a different
clock for the underlying model, as in the case of the relaxation equation. When the order of
the fractional derivative is one, the underlying model emerges.

Here, we locally solve the following Cauchy system, involving a fractional Bernoulli
equation of the form

CD
β
t u + a0u = a1up+1, u(0) = u0 (1)

where p ∈ N, with p ≥ 1, a0 and a1 are real numbers and CDβ
t denotes the Caputo deriva-

tive. If β = 1 then CDβ
t u = u′ and (1) is the Bernoulli equation, studied by Jacob Bernoulli

(1695). We remark that Bernoulli equations (with β = 1) arise in non-linear models of
production and capital accumulation, in particular when polynomial production functions
are considered, see ([4] Chapter 6.3). As an example of an application to mathematical
bio-medicine, we refer to ([5] Chapter 4), where the parameter p is associated with the
exponential growth rate of a homogeneous avascular tumor.

As a particular case, the exact solution in the case a0 = a1 = −1 and β = 1 is given by

u(t) =
et

p
√

c0 + ept
; where c0 := u−p

0 − 1.

Moving to the fractional setting, we have similar approaches that cannot be followed.
As it is well known, the solution of the fractional logistic equation—corresponding to
p = 1 and a0 = a1 = −1 in (1)—was an open problem, and in [6], the first and the third
author were able to solve the fractional logistic equation by series representation, giving
a detailed formula involving Euler numbers for u0 = 1/2. The use of a logistic equation
to model population dynamics dates back to the mid-19th century when Pierre François
Verhulst devoted a series of papers [7–9] to the description of a model of population growth.
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Since then, the logistic equation is largely used in bio-mathematical modeling, for instance,
to describe cancer growth models and epidemic models. In the particular case of social
dynamics, the need to model memory effects and non-local behavior lead to a decline of
the above models in a fractional setting. At this early stage, the problem of addressing
non-linear dynamics and series expansions proved, at least in a local setting, to be a viable
approach. This methodology was applied to SIS epidemic models in [10] (a compartmental
epidemic model in which the population is split into susceptible and infective individuals)
and also further investigated in [11]. The present study extends the result in [6] to general
initial data and to Bernoulli equations of general degree p + 1: we present a recursive
formula for the coefficients of the solutions and explicit closed formulas for the first terms.
Note that the relation with Euler numbers for general initial data, even in the logistic case
p = 1, appears to be lost, but the general recursive formula preserves its structure, based
on generalized binomial coefficients that were introduced in [6] and further investigated
in [12]. Then the proposed method is applied to the particular case a0 = a1 = ±1, related
to the fractional logistic equation, and we present a qualitative analysis of the solutions
based on numerical simulations—see Figure 1.
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Figure 1. On the (left), solutions of the logistic equation CDβu− u = −u2 (on the left) with β = 1/2
and u0 = 1/2, 1/3, 1/4, 1/5; darker lines correspond to bigger u0s. On the (right), solutions of the
logistic equation CDβu− u = −up+1 with β = u0 = 1/2 and p = 1, 2, 3; darker lines correspond to
bigger ps.

Preliminaries on Fractional Calculus

Let us consider the set AC([a, b]) of continuous functions with a derivative in L1([a, b]).
Thus, v ∈ AC([a, b]) is continuous and such that v′ = g ∈ L1([a, b]), that is, v has
the representation

v(t) = v(a) +
∫ t

a
g(s)ds, t ∈ [a, b]. (2)

We notice that the space AC([a, b]) coincides with the Sobolev space

W1,1([a, b]) = {v ∈ L1([a, b]) : v′ ∈ L1([a, b])}

endowed with the norm

‖v‖W1,1 = ‖v‖L1 + ‖v
′‖L1 .

For v ∈ AC([a, b]) and β ∈ (0, 1), we introduce the Riemann–Liouville derivative of v,

Dβ
t v(t) :=

1
Γ(1− β)

d
dt

∫ t

a
v(s)(t− s)−βds, t ∈ [a, b] (3)

and the Caputo derivative of v,

CD
β
t v(t) :=

1
Γ(1− β)

∫ t

a
v′(s)(t− s)−βds, t ∈ [a, b]. (4)
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Further on, we use the following relation between derivatives

Dβ
t v(t) =

1
Γ(1− β)

v(a)
(t− a)β

+ CD
β
t v(t). (5)

The relation (5), together with the existence of the derivatives (3) and (4), hold a.e. on
[a, b] and Dβ

t v ∈ Lq([a, b]) with 1 ≤ q ≤ 1/β (see for example ([13] page 28)).
In this study, we consider the fractional equations on [0, b). Let us emphasize that

if v(0) = 0, then Formula (5) gives the equivalence

Dβ
t v = CD

β
t v.

2. Fractional Bernoulli Equations

Let us introduce

u(t) = ∑
n≥0

c(1)n
tβn

Γ(βn + 1)
, t ∈ (0, r) (6)

where r > 0 is the radius of convergence and c(1)n are real coefficients.
Next, we introduce the generalized binomial coefficient[

n
k

]
β

=
Γ(nβ + 1)

Γ(kβ + 1) Γ((n− k)β + 1)
, 0 ≤ k ≤ n, k, n ∈ N, β ∈ (0, 1).

Theorem 1. The unique continuous solution on [0, b) ⊂ [0, r) to

CD
β
t u + a0 u = a1 up+1, u(0) = u0, p ∈ N, a0, a1 ∈ R, β ∈ (0, 1)

has the series representation (6) on [0, b) where

c(1)0 = u0

c(1)n+1 = −a0 c(1)n + a1

n

∑
k=0

[
n
k

]
β

c(p)
k c(1)n−k for n ≥ 0. (7)

Proof. We consider

CD
β
t u + a0u = a1up+1, u(0) = u0

where CDβ
t denotes the Caputo derivative. Let us denote the power of u as follows

u(t) = ∑
n≥0

c(1)n
tβn

Γ(βn + 1)
, (8)

u2(t) = ∑
n≥0

c(2)n
tβn

Γ(βn + 1)
,

u3(t) = ∑
n≥0

(
n

∑
k=0

[
n
k

]
β

c(2)k c(1)n−k

)
tβn

Γ(βn + 1)
= ∑

n≥0
c(3)n

tβn

Γ(βn + 1)
,
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where

c(2)k =
k

∑
s=0

[
k
s

]
β

c(1)s c(1)k−s ⇒ c(3)n =
n

∑
k=0

[
n
k

]
β

c(2)k c(1)n−k

and, by further iterations,

up+1(t) = ∑
n≥0

c(p+1)
n

tβn

Γ(βn + 1)

where

c(p+1)
n =

n

∑
k=0

[
n
k

]
β

c(p)
k c(1)n−k. (9)

Note that for p ∈ N
c(p)

0 =
(

c(1)0

)p
.

Therefore,

a0u− a1up+1 =u(a0 − a1up) = ∑
i

c(1)i
tβi

Γ(βi + 1)
·
(

a0 − a1 ∑
j

c(p)
j

tβj

Γ(βj + 1)

)

=a0 ∑
i

c(1)i
tβi

Γ(βi + 1)
− a1 ∑

i
c(1)i

tβi

Γ(βi + 1) ∑
j

c(p)
j

tβj

Γ(βj + 1)

=a0 ∑
j

c(1)j
tβj

Γ(βj + 1)
− a1 ∑

n
c(p+1)

n
tβn

Γ(βn + 1)

=∑
n

(
a0c(1)n − a1c(p+1)

n
) tβn

Γ(βn + 1)

=∑
n

(
a0c(1)n − a1

n

∑
k=0

[
n
k

]
β

c(p)
k c(1)n−k

)
tβn

Γ(βn + 1)
.

On the other hand, from (5), we have that

CD
β
t u(t) = −u0

t−β

Γ(1− β)
+Dβ

t ∑
n≥0

c(1)n
tβn

Γ(βn + 1)

where, after some calculation, from (3),

Dβ
t

tβn

Γ(βn + 1)
=

tβ(n−1)

Γ(β(n− 1) + 1)
, t ∈ [0, b).

Thus, we obtain

CD
β
t u(t) =− u0

t−β

Γ(1− β)
+ ∑

n≥0
c(1)n

tβ(n−1)

Γ(β(n− 1) + 1)

=− u0
t−β

Γ(1− β)
+ c(1)0

t−β

Γ(−β + 1)
+ ∑

n≥1
c(1)n

tβ(n−1)

Γ(β(n− 1) + 1)
.
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From the fact that u0 = c(1)0 by construction, we write

CD
β
t u(t) = ∑

n≥0
c(1)n+1

tβn

Γ(βn + 1)
, t ∈ [0, b].

Then the solution to

CD
β
t u = −a0u + a1up+1 = −u(a0 − a1up)

can be written in terms of the coefficients c(1)n , n ∈ N given by

c(1)n+1 = −a0c(1)n + a1c(p+1)
n

= −c(1)n
(
a0 − a1c(p)

0
)
+ a1

n

∑
k=1

[
n
k

]
β

c(p)
k c(1)n−k,

= −a0c(1)n + a1

n

∑
k=0

[
n
k

]
β

c(p)
k c(1)n−k for n ≥ 0.

Some Closed Formulas

The first few elements of the sequence c(p)
n , p ∈ N (over the index p) are

c(1)n , n ∈ N

c(2)n =
n

∑
s=0

[
n
s

]
β

c(1)s c(1)n−s

c(3)n =
n

∑
k=0

[
n
k

]
β

k

∑
s=0

[
k
s

]
β

c(1)s c(1)k−s c(1)n−k.

We compute the first terms of c(1)n . Fix p ≥ 1 and note that c(1)0 = u0 and if n = 1 then

c(1)1 = −u0(a0 − a1up
0 ). (10)

To compute c(1)2 we need c(h)1 for h = 1, . . . , p. By (9) one can prove by induction that
for h ∈ N

c(h)1 = −huh
0(a0 − a1up

0 ).

Hence, we apply (7) and we get

c(1)2 = −c(1)1
(
a0 − a1c(p)

0
)
+ a1

[
1
1

]
β

c(p)
1 c(1)0

from which we deduce by a direct computation

c(1)2 = u0(a0 − a1up
0 )(a0 − a1(p + 1)up

0 ). (11)

To compute c(1)3 , we also need c(h)2 for h = 1, . . . , p. Using (9), we obtain

c(h)2 =
2

∑
k=0

[
2
k

]
β

c(h−1)
k c(1)2−k
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and, by an inductive argument, using also the fact that c(p)
0 = up

0 for all p ≥ 1, one can
prove the closed formula for all h ≥ 1

c(h)2 = uh
0(a0 − a1up

0 )

(
h(a0 − a1(p + 1)up

0 ) +
h(h− 1)

2

[
2
1

]
β

(a0 − a1up
0 )

)
.

Then

c(1)3 =− a0c(1)2 + a1c(p+1)
2

=− a0u0(a0 − a1up
0 )(a0 − a1(p + 1)up

0 )

+ a1up+1
0 (a0 − a1up

0 )

(
(p + 1)(a0 − a1(p + 1)up

0 )

+
p(p + 1)

2

[
2
1

]
β

(a0 − a1up
0 )

)
=− u0(a0 − a1up

0 )(a0 − a1(p + 1)up
0 )

2

+
p(p + 1)

2

[
2
1

]
β

a1up+1
0 (a0 − a1up

0 )
2

=− u0(a0 − a1up
0 )

(
(a0 − a1(p + 1)up

0 )
2

− p(p + 1)
2

[
2
1

]
β

a1up
0 (a0 − a1up

0 )

)
.

(12)

3. Fractional Logistic Equations

Here, we extend some of the results established in [6] for the fractional logistic equation
with initial datum u0 = 1/2 to the case of general initial data u0 ∈ (0, 1). Applying the
above method, if p = 1 and a0 = a1 = −1, then the solution of

CD
β
t u = u− u2; u(0) = u0 (13)

can be represented in series form

u(t) = ∑
n≥0

c(1)n
tβn

Γ(βn + 1)

where

c(1)0 = u0; c(1)n+1 = c(1)n −
n

∑
k=0

[
n
k

]
β

c(1)k c(1)n−k.

Note that, as shown in [6], when u0 = 1/2, the above formula reduces to
c(1)0 =

1
2

; c(1)1 =
1
4

;

c(1)2n = 0; c(1)2n+1 = −
n

∑
k=0

[
2n

2k + 1

]
β

c(1)2k+1 c(1)2(n−k)−1 for n ≥ 1.

Keeping a0 = a1 = −1 and considering the equation with generic p, we have that the
solution of

CD
β
t u = u− up+1; u(0) = u0 (14)
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can be represented in series form

u(t) = ∑
n≥0

c(p)
n

tβn

Γ(βn + 1)

where 
c(1)0 = u0 c(1)1 = u0(1− up

0 );

c(1)n+1 = c(1)n −
n

∑
k=0

[
n
k

]
β

c(p)
k c(1)n−k.

Remark 1 (On the null coefficients in the general case). Note that if u0 = p
√

1/(p + 1)

then, in view of (11), c(1)2 = 0, in agreement with the case p = 1. However, it is not possible to

deduce that c(1)2n ≡ 0 as in the case p = 1, because even for p = 2, choosing u0 =
√

1/3 one can

numerically verify that c(1)2 = 0 and c(1)4 6= 0. Then, one may look for some other generalization,

for instance imposing c(1)p+1 = 0 and guess whether c(1)n(p+1) = 0 for some n ≥ 1. Furthermore, in

this case, the answer is negative. Indeed, using the last equality (12) to solve the equation c(1)3 = 0

with respect to the initial datum u0, we get by a direct computation that if u0 = 12+6π+
√

144+96π
24+18π

and if p = 2 then c(1)3 = 0, but symbolic numerical computations yield c(1)n 6= 0 for n = 3, . . . , 30.

Consider now the case a0 = a1 = 1. Then the solution of

CD
β
t u = u− u2; u(0) = u0 (15)

can be represented as

u(t) = ∑
n≥0

c̄(p)
n

tβn

Γ(βn + 1)

where

c(1)0 = u0 c(1)1 = −u0(1− up
0 ), (16)

c(1)n+1 = −c(1)n +
n

∑
k=0

[
n
k

]
β

c(p)
k c(1)n−k. (17)

We compare the coefficients c(1)n and c̄(1)n . We have c̄(1)0 = c(1)0 , c̄(1)1 = −c(1)1 and,

by induction, c̄(p)
1 = −c(p)

1 . Moreover, c̄(1)2 = −c(1)2 . However, this symmetry breaks as

soon as we consider c̄(2)2 ; indeed, we have

c̄(2)2 = −c(2)2 + 2
[

2
1

]
β

(c(1)1 )2.

Numerical Simulations

Our tests rely on a direct application of the above explicit formulas. Coefficients are
calculated via Wolfram Mathematica software. In our tests, we focused on the logistic
case a0 = a1 = −1 and on the case a0 = a1 = 1. We computed the coefficients c(1)n using
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the recursive Formulas (9) and (10), and we approximated the solution of (1) with the
partial sum

u(t) =
N

∑
n=0

c(1)n
tβn

Γ(βn + 1)

with N = 200, the parameter N was tuned so that no appreciable difference can be noted
with respect to higher-order approximations. The method was validated by comparison
with the exact solutions of (1), which can be explicitly computed in the ordinary case β = 1.

In Figure 2, we evaluated u(t) with fixed initial datum u0 = 1/2 and p = 1 and
several orders of fractional derivatives. We may note the expected damping effect of
fractional derivation.
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Figure 2. Numerical solutions of CDβu− u = −u2 (on the left) and of CDβu = −u + u2 (on the
right) with u0 = 1/2 and β = 1, 1/2, 1/3, 1/4. Darker lines correspond to bigger β’s.

Figure 3 compares the solutions u(t) with different initial data, setting β = 1/2 and
p = 1. The resulting set of ordered curves suggests the local uniqueness of the solutions;
however, the investigation of this is beyond the purpose of the present paper.
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Figure 3. Solutions of CDβu − u = −u2 (on the left) and of CDβu + u = u2 (on the right) with
β = 1/2 and u0 = 1/2, 1/3, 1/4, 1/5. Darker lines correspond to bigger u0’s.

We then investigated higher degree fractional Euler equations, setting β = u0 = 1/2
and letting p vary between 1 and 3, see Figure 4. At least near 0, from a qualitative point of
view, the solutions display a similar behavior, and no intersections between the solutions
are detected.

For the sake of comparison, we collected some of the above results in Figure 5, showing
the combined effect of varying initial data u0 and degrees p.

Finally we propose some numerical estimations for the radius of convergence of the
series (8), by computing the sequence

rn :=

(
Γ(βn + 1)

|c(1)n |

) 1
βn

.

In Figures 6 and 7, we plotted the first 300 terms of rn with varying degrees p and
orders of derivation β. The asymptotic behavior of rn suggests an exponential increase
for the series coefficients c(1)n in all the cases under exam. Furthermore, their comparison
shows the radius of convergence r := lim rn to be decreasing with respect to both the
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degree p (Figure 6) and order of derivation β (Figure 7). Finally, no substantial difference
between the case a0 = a1 = −1 and the case a0 = a1 = 1 emerged.
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Figure 4. Solutions of CDβu− u = −up+1 (on the left) and of Dβu + u = up+1 (on the right) with
β = u0 = 1/2 and p = 1, 2, 3. Darker lines correspond to bigger p’s.
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Figure 5. Solutions of CDβu + u = up+1 (on the left) and of CDβu = u− u(p+1) (on the right) with
β = 1/2 and u0 = 1/2, 1/3, 1/4, 1/5 and p = 1, 2. Darker lines correspond to bigger u0’s; continuous
lines correspond to p = 2 and dashed lines correspond to p = 1.
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Figure 6. Asymptotic behavior of the sequence approximating the radius of convergence rn for
a0 = a1 = −1 (on the left) and a0 = a1 = 1 (on the right) with β = 1/2, u0 = 1/3 and p = 1, 2, 3 in
blue, orange, and green, respectively.
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Figure 7. Asymptotic behavior of the sequence approximating the radius of convergence rn for a0 =

a1 = −1 (on the left) and a0 = a1 = 1 (on the right) with u0 = 1/3, p = 1, and β = 1, 1/2, 1/3, 1/4
in blue, orange, green, and red, respectively.

4. Conclusions

Although the fractional differential calculus is as old as the ordinary one (the first
introduction of a fractional derivative dates back to Leibniz in 1695), the complexity of the
computations involved still prevents a full exploitation of its applicative potential. Here,
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we consider the Caputo fractional derivative. The presence of a singular kernel introduces
a memory, and it gives a non-local character to the dynamics. These non-local aspects are
realistic in the applications. By introducing fractional derivatives, we obtain a global effect,
which may slow down the underlying dynamics. In particular, for non-linear equations,
we still observe the classical delaying effect introduced by the fractional derivative for
linear equations. This motivates our analysis. Further directions include estimations of
the radius of convergence, global existence results, and possible generalization to other
non-linear fractional dynamics.
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