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Abstract: A novel architecture and design approach which make it possible to boost the bandwidth
and slew-rate performance of operational transconductance amplifiers (OTAs) are proposed and
employed to design a low-power OTA with top-of-class small-signal and large-signal figures of merit
(FOMs). The proposed approach makes it possible to enhance the gain, bandwidth and slew-rate
for a given power consumption and capacitive load, achieving more than an order of magnitude
better performance than a comparable conventional folded cascode amplifier. Current mirrors with
gain and a push–pull topology are exploited to achieve symmetrical sinking and sourcing output
currents, and hence class-AB behavior. The resulting OTA was implemented using the 130 nm
STMicroelectronics process, with a supply voltage of 1 V and a power consumption of only 1 µW.
Simulations with a 200 pF load capacitance showed a gain of 92 dB, a unity-gain frequency of 141 kHz,
and a peak slew-rate of 30 V/ms, with a phase margin of 80◦, and good noise, PSRR and CMRR
performance. The small-signal and large-signal current and power FOMs are the highest reported in
the literature for comparable amplifiers. Extensive parametric and Monte Carlo simulations show
that the OTA is robust against process, supply voltage and temperature (PVT) variations, as well as
against mismatches.

Keywords: OTA; CMOS; low-power; low-voltage; analog integrated circuits

1. Introduction

Nowadays, society is reliant on portable and lightweight devices. Biomedical and
Internet-of-Things (IoT) applications are among the most relevant topics in the research
community [1–3]. A large variety of biomedical products have been proposed for monitor-
ing people’s health [4–8]. Many of these devices require lightweight building blocks able
to operate with low supply voltages (LV) and low power (LP) consumption, to improve
battery life in portable devices and allow the use of energy harvesting techniques [9–11].

In this scenario, one of the most useful, and challenging, building blocks is the
operational transconductance amplifier (OTA) [12]. Many ideas have been proposed in
the literature to develop LV-LP amplifiers with supply voltages of 1 V or less. Besides
new architectures, new operating regions, notably sub-threshold and deep sub-threshold
operation, have been considered. Indeed, the strong inversion region is not a good choice in
energy-harvested systems, because it requires higher supply voltages than weak inversion
operation, which is considered the best solution for power consumption optimization,
showing good gain and appropriate bandwidth for IoT and biomedical applications [13,14].

In References [13–17], several techniques to enhance low-voltage OTA performance
were analyzed. In Reference [18], Algueta Miguel et al. presented an OTA with floating
gate and quasi floating-gate techniques. Moreover, OTAs with class-AB behavior were
presented in [19,20], showing significant improvement in both common-mode rejection
ratio (CMRR) and slew-rate performance. By reducing the supply voltages, one of the
most challenging aspects of OTA design is the CMRR. Thus, in [21–23], new approaches
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to attain high CMRR were advocated, considering low-voltage restrictions. Additionally,
threshold lowering techniques have been investigated to obtain a significant reduction
of minimum supply voltages [24–26]. Supply voltages lower than 0.6 V set stringent
constraints in terms of the maximum available voltage for each transistor. At such scanty
voltages, the trend is to replace tail generators, setting the current with body-biasing or
gate-biasing techniques. As a result, gate-driven (GD) OTAs cannot ensure a well-defined
bias point, since the body terminal has insufficient signal swing to control the biasing point.
Thus, body-driven (BD) OTAs have become more popular over the years. Indeed, BD
amplifiers employ the bulk as an input terminal to achieve rail-to-rail input common-mode
range (ICMR) and at the same time a well-defined bias point, thanks to gate biasing [27–34].
However, BD-OTAs aren’t suitable for switching applications, due to their input impedance.
Furthermore, a variety of ultra low voltage (ULV) and ultra low power (ULP) inverter-
based amplifiers have been proposed in the literature [35,36]. Moreover, body-driven
configurations show lower bandwidth than gate-driven ones, and therefore their usage is
limited to sub-kHz applications (such as brain–computer interfaces, electrocardiograms
and so on) [34]. Finally, many dc-dc converters used in IoT devices, including smartwatches
and earbuds, require low-drop-out regulators (LDO) [37–39] which employ OTAs with
high drive capabilities and bandwidth [39]. LV-LP OTAs are often based on multiple-
stage Miller compensation [39–41], and more recently on digital approaches to analog
amplification [42–45].

In this paper, we present a novel architecture and design approach that enable the
bandwidth, slew-rate and DC gain performance of LV-LP OTAs to be boosted. The tech-
nique is based on current mirrors with gain, which improve gain and bandwidth without
creating low-frequency poles. Unlike conventional multi-stage amplifiers, the proposed
architecture makes it possible to achieve multi-stage gain without the need for Miller
compensation, as only low-impedance nodes are added. Furthermore, a noticeable im-
provement of slew-rate performance is achieved by combining the proposed technique
with a complementary push–pull topology. As a result, for the same capacitive load and
power consumption, the amplifier shows an approximately symmetrical class-AB behavior
on both edges, improved DC gain, and higher bandwidth. The class-AB architecture is
required to fully exploit the benefits of the novel technique, as it also allows boosting the
peak slew-rate. Analysis of biasing, small-signal, slew-rate and noise performance were
carried out, showing that the improvement can be of greater than one order of magnitude
for the same load and power consumption. The technique is used in conjunction with other
low-power techniques, such as class-AB and sub-threshold biasing, but is independent of
them, since the performance improvement occurs for the same technology node and bias-
ing point. As analytically demonstrated in the manuscript, by employing current mirrors
with gain as intermediate stages, the proposed OTA architecture allows increasing gain,
bandwidth and slew-rate by a factor that is polynomial in the current mirrors’ gain and
number of intermediate stages. To the authors’ knowledge, no similar OTA architecture
has previously been proposed in the technical literature.

An amplifier exploiting these techniques was designed in the STMicroelectronics
130 nm technology to validate the idea. The resulting amplifier is robust to process, supply
voltage and temperature (PVT) variations, as well as to mismatches; it exhibits good
noise performance, good power-supply rejection ratio (PSRR) and CMRR performance;
and has top-of-class small-signal and large-signal figures-of-merit (FOMs) with respect to
comparable amplifiers from the literature.

The paper is organized as follows: Section 2 explains the theoretical idea behind the
proposed amplifier, and shows how gain, bandwidth and slew-rate performance can be
improved for a given power consumption and capacitive load; Section 3 summarizes the
design process of the amplifier; Section 4 summarizes the simulation results; Section 5
concludes and shows a comparison with the relevant literature.
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2. Proposed Architecture and Design Approach

This section describes the theoretical idea behind the proposed OTA architecture and
design approach. Small-signal, slew-rate, and noise analyses are performed to highlight
the advantages of the technique.

A simplified schematic of the proposed OTA architecture is presented in Figure 1a
together with a single-transistor, common-source amplifier, shown in Figure 1b. All the
devices in Figure 1 are assumed to have a channel length L and a unit width WX, with
X = N, P for NMOS and PMOS devices, respectively, and to be biased with a unit current IB,
set by the bias voltages VBX . Unit devices are then scaled by the integer factors K, H, S ≥ 1.
The scaling factors can be implemented by placing more devices in parallel, to ensure
maximum matching. With the above assumptions, the unit device has transconductance
gmX, input capacitance CGSX, and output resistance r0X. The scaling factors increase the
transconductance and capacitance and lower the output resistance proportionally.
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Figure 1. (a) Simplified topology of the amplifier, (b) conventional common-source amplifier.

The following analysis in this section proves that there is a clear advantage in gain,
bandwidth, and slew-rate, and a moderate worsening of noise performance, for the circuit
in Figure 1a with respect to the circuit in Figure 1b. This demonstrates that the use of
current mirrors with gain allows excellent figures of merit to be achieved, as shown in the
rest of this paper.

For the two circuits above to have the same power consumption, we set S = 2K + H
for the amplifier in Figure 1b. We also assume the two amplifiers to have the same load
capacitance CL. In the following, we compare these two topologies to explain how the
topology in Figure 1a improves gain, bandwidth and slew-rate, with a slight penalty in
noise performance. We will also show in Section 3 that this latter penalty is much lower in
the actual (differential-input, push–pull output) amplifier.

2.1. Small-Signal Analysis

For the computation of DC gain, we assume that the output conductance g0 = r−1
0

of MOS devices is much lower than their transconductance gm, so that the two current
mirrors M3–M4 and M6–M7 in Figure 1a exhibit current gains of K and H, respectively. If
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the output resistances were taken into account, the current gain would be slightly lower.
However, in the actual implementation of the OTA architecture, cascode current mirrors
can be used, and in this case, due to the increased output resistance (gmr2

0), the current
mirrors will exhibit a current gain very close to the ideal one.

To simplify the calculations and to gain insight into circuit behavior, it is convenient
to split the DC gain of the amplifier in Figure 1a as follows:

vo

vi
=

vo

vy

vy

vx

vx

vi
(1)

Hence, the proposed OTA can be seen as a three-stage amplifier, where the first
two stages are loaded by a diode-connected MOS device. Since the diode-connected load
transistors are smaller than the common-source devices which drive them, both the first and
second stage exhibit a DC gain approximately equal to K. Starting from these assumptions
and performing simple calculations, the expression of the DC gain of the proposed OTA in
Figure 1a (new) is found to be:

Anew ≈
K·gmN

gmP

K·gmP
gmN

H·gmN
H·g0N + H·g0P

=
K2gmN

g0N + g0P
(2)

whereas the DC gain of the conventional common-source amplifier in Figure 1b (CS) can
be expressed as:

ACS =
S·gmN

S·g0N + S·g0P
=

gmN
g0N + g0P

(3)

From Equations (2) and (3) it is evident that the proposed architecture exhibits a
DC gain which results in enhancement by a factor of K2 with respect to the conventional
common-source amplifier (about 20 dB higher gain can be achieved for factors K in the range
of 3). The additional DC gain results in better feedback performance at low frequencies,
such as for example higher linearity and more accurate closed-loop gain.

However, the two additional nodes x and y in Figure 1a complicate the frequency
response of the amplifier. In fact, neglecting the output conductances and the gate-drain
parasitic capacitances of MOS devices, it can be shown that the proposed OTA exhibits
three poles: a dominant pole at the output node, also present in the conventional common-
source amplifier, and two additional poles which arise at nodes x and y. Then, in order
to compute the frequency response of the amplifier, we observe that the equivalent con-
ductance and the equivalent capacitance at node x are gmP and (1 + K)CGSP, respectively,
whereas the conductance and capacitance at node y are gmN and (1 + H)CGSN . Under
these assumptions, the frequency response of the proposed architecture is:

Fnew(s) ≈
K2·H·gmN

sCL

1

1 + (1+K)sCGSP
gmP

1

1 + (1+H)sCGSN
gmN

(4)

whereas the frequency response of the conventional common-source amplifier is:

FCS(s) =
S·gmN

sCL
(5)

Here we notice that the proposed amplifier has two additional poles, at frequencies
fTP/K and fTN/H, where fTX is the transition frequency of the NMOS (X = N) and PMOS
(X = P) devices. This is the cost of using this topology.

However, there is a great advantage in terms of bandwidth, because the unity-gain
frequencies of the two amplifiers are:

ωU,new =
K2·H·gmN

CL
(6)
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ωU,CS =
S·gmN

CL
(7)

These relations show another fundamental property of the proposed circuit. The
condition for the two amplifiers to have the same biasing current and power consumption
is S = 2K + H, which is a linear function of the scaling factors K and H. However, the
bandwidth of the propsed amplifier increases by a factor K2H, which is polynomial in the
scaling factors. Hence, a very high bandwidth can be achieved for the same capacitive load
and power consumption, by choosing K, H � 1.

For instance, for K = 3 and H = 12, and thus S = 18, the ratio between the bandwidth
of the proposed and the reference single-transistor amplifier is:

ωU,new

ωU,CS
=

K2·H
S

= 6 (8)

The proposed amplifier is thus (in this case) 6 times faster than a common-source
amplifier implemented in the same technology, with the same load, biasing point, and
power consumption. The disadvantage of the proposed topology is the presence of two
additional poles. In this case, a well-behaved frequency response requires that the unity-
gain frequency is lower than the two additional poles, which, however, are at fairly high
frequencies, proportional to the transition frequency of the devices, with scaling factors K
and H. Hence, the amplifier is compensated when the load capacitor is sufficiently large to
push the unity-gain frequency at sufficiently low frequencies. The compensation technique
is similar to that of cascode amplifiers, except for the presence of two additional poles
instead of one, and at lower frequencies, owing to the scaling factors.

2.2. Slew-Rate Analysis

The circuit in Figure 1a is in class-A on the rising edge, owing to the current source at
the output. A push–pull complementary structure is thus needed to implement class-AB
behavior on both signal edges. In this subsection, we consider the circuits in Figure 1 to
be half-circuits, and we only consider the falling edge, because the rising edge behaves
similarly in the complementary push–pull architecture that has actually been implemented,
and which will be detailed in Section 3.

We assume that the input stage is a differential pair, so that the current flowing in
the transistors can vary from 0 to 2IB (multiplied by the respective scaling factor). The
slew-rate of the common-source amplifier is thus limited to:

SRCS =
2·S·IB

CL
(9)

The slew-rate of the proposed amplifier (on the falling edge) can be computed by
assuming that the current flowing in the input transistor is twice the biasing current, i.e.,
2KIB. Because of the PMOS current source above, only (K + 1)IB flows in the PMOS diode.
The corresponding current mirror has a gain of K, bringing the current to K(K + 1)IB. The
NMOS current source removes (K− 1)IB, so that the NMOS diode’s current is

(
K2 + 1

)
IB.

The gain of the second current mirror is H, and the final sinking current of the output stage
is thus K2HIB, also considering the current sourced by the PMOS current source at the
output. Hence:

SRnew =
K2·H·IB

CL
(10)

Once again, we notice that the proposed amplifier has a much higher peak output
current than the conventional common-source stage, for K, H � 1. For K = 3, H = 12,
the slew-rate improvement is a factor of 3. Hence, for the same load and total power
consumption, the proposed amplifier has a much larger slew-rate than the common-source
amplifier.
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We point out again that the above slew-rate analysis only holds true for the sinking
output current, as the source output current is limited by the current generator. However,
the complementary push–pull architecture, which will be detailed in Section 3, will have a
symmetrical slew-rate behavior, and the slew-rate improvement will occur symmetrically
on both the rising and falling signal edges.

2.3. Noise Analysis

While the gain, slew-rate and bandwidth performance of the proposed amplifier
increase polynomially with the gain of the current mirrors, noise can be shown to increase
linearly, as in the single-stage amplifier. For the two amplifiers in Figure 1, the proposed
one has a higher noise power density by a (small) constant factor, as the noise in both
amplifiers is approximately linear with the scaling factors.

To derive a simple formulation, we neglect the output resistance ro of all MOS tran-
sistors and only consider white thermal noise, with a given excess noise factor γ ≥ 1 for
both NMOS and PMOS devices to consider short-channel effects. We further assume both
PMOS and NMOS devices to have the same transconductance.

Under these hypotheses it is straightforward to compute the total input-referred
voltage noise of the common-source amplifier in Figure 1b, considering the noise of both
the main transistor and the active load:

v2
n,CS =

8γKBT
3gm

2
S

[
V2

Hz

]
(11)

where KB is the Boltzmann constant, and T denotes the absolute temperature.
To compute the equivalent input voltage noise for the proposed amplifier in Figure 1a,

we refer to the simplified scheme shown in Figure 2, where we notice that the noise injected
at node x is amplified by KH, the noise injected at node y is amplified by H, and the noise
injected at the output is not amplified. Furthermore, the total transconductance of the stage
is K2Hgm. Hence:

v2
n,new =

(
i2D1 + i2D2 + i2D3

)
K2H2 +

(
i2D4 + i2D5 + i2D6

)
H2 +

(
i2D7 + i2D8

)
K4H2g2

m
. (12a)

v2
n,new =

8γKBT
3gm

2
(
1 + KH + K3H

)
K4H

[
V2

Hz

]
(12b)
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For K � 1, Equation (12b) can be simplified as:
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2
K

[
V2
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(12c)
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Hence, the proposed amplifier has higher noise power density only because the first
stage devices have a width K, which is lower than S = 2K + H (for the same power
consumption). This means that noise only increases linearly:

v2
n,new

v2
n,CS

≈ S
K

=
2K + H

K
= 2 +

H
K

(12d)

However, this is a worst-case scenario, because we are comparing the baseline pro-
posed amplifier with a single-transistor amplifier. As will be better shown in Section 3,
the actual implementation of amplifiers in Figure 1 will have a differential input stage, so
that more devices (and more power consumption) are required. Furthermore, to achieve
sufficient gain, a folded cascode amplifier is usually employed in place of the conventional
common-source stage, resulting in more current branches and thus a reduction in the value
of S that is necessary to have the same power consumption.

3. Amplifier Design

The analysis in Section 2 showed that, by using current mirrors with gain, a potentially
large increase in gain, bandwidth and slew-rate performance can be achieved, with at
most a slight cost in terms of noise, and the creation of two high-frequency poles limiting
stability for small capacitive loads.

In this section, we present the actual push–pull implementation of the novel OTA archi-
tecture analyzed in Section 2. The proposed implementation is based on a complementary-
input push–pull topology with class-AB behavior and exploits input stages with current
mirror active loads that improve the common-mode rejection ratio (CMRR). Finally, we
compare this implementation against a conventional, class-A, folded cascode topology,
with complementary inputs, which serves as reference for the simulations in Section 4.

Figure 3 shows the detailed schematic of the proposed OTA. It is made up of two
input differential pairs with active load based on a current mirror. All current mirrors are
realized as high-swing cascode current mirrors (HSCCMs) to boost the output resistance,
increase the small-signal gain and improve the mirroring accuracy.
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The devices in panel (a) form the input differential pairs, whose CMRR is boosted both
by the use of tail current generators and by the active load, which cancels the common-
mode current by mirroring it to the output with opposite signs (while the differential input
is doubled). The devices in the differential pairs have size K. The devices in panel (b) are
the load of the first stage, whose size is 1, and sets the gain for node x. Panel (c) shows
the second stage, of size K, with current generators of size K− 1 and diode loads of size 1,
ending at node y. Finally, the output stage has size H and is shown in panel (d).

The use of complementary inputs allows rail-to-rail behavior, and improves gain,
noise and bandwidth performance. The most important advantage, however, is that the
slew-rate behavior is now approximately symmetric, so that both on the positive and
negative edges the peak output currents will be very large.

The use of cascoding increases the gain to K2g2
mr2

0, still K2 times higher than that of
a conventional folded cascode OTA. There will be further poles (also in the conventional
cascode) due to the use of HSCCM mirrors, but the main high-frequency poles will still
be those at nodes x and y, because they will be at frequencies fT/(K + 1) and fT/(H + 1),
while the poles of the HSCCM are at frequencies fT ( fT denotes the transition frequency
of the MOS devices). The tail current generators of the input differential pairs were not
cascoded, due to limitations in the voltage headroom.

Figure 4 shows the topology of the complementary-input folded cascode OTA assumed
to be the actual implementation of the conventional common-source amplifier used as a
reference in Section 2. It has to be noted that a telescopic (Arbel, for a complementary
input) cascode is better than the folded cascode in terms of power efficiency, but it is hard
to bias and has limited output signal swing; therefore, we consider the folded cascode to
be the most appropriate reference for comparisons.
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Figure 4. Topology of the implemented folded cascode amplifier used as reference.

VBN and VBP are the biasing voltages, which set the biasing currents across the ampli-
fier, whereas VCN and VCP are the biasing voltages for the gates of the common-gate stages
in the cascoded devices. They are generated by a straightforward biasing network (not
shown), which can be common to both amplifiers, and is composed of HSCCM current
mirrors (both NMOS and PMOS) and an ideal current source.
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The total current consumption of the folded cascode in Figure 4 is 6SIB, while the total
current consumption of the proposed amplifier in Figure 3 is 6K + H + 2, and hence, to
have the same current consumption:

S =
6K + H + 2

6
(13)

For the design choice of K = 3, H = 12, we have S = 16/3. We chose S = 6 to have
an integer scaling factor. Since the disadvantage in noise performance was mostly due to
the large value of S (in Section 2.3), the much lower S for the actual amplifier will yield
much better bandwidth and slew-rate performance, with a negligible penalty in noise
performance, for the proposed amplifier.

4. OTA Design and Simulation Results

This section reports details about the OTA design and the simulation results. Simu-
lations in typical conditions confirm the theoretical result that gain, bandwidth and peak
slew-rate improve significantly for the same load and power consumption, while noise
density increases slightly. The results of Monte Carlo and parametric simulations also show
very good robustness to PVT variations and mismatches.

The proposed OTA, whose topology is shown in Figure 3, was designed in a commer-
cial 130 nm CMOS technology from STMicroelectronics with a supply voltage of 1 V and a
total power consumption of about 1 µW. Table 1 shows the sizing of the devices together
with the main design parameters.

Table 1. Device sizing and design parameters.

Parameter Value Unit Note

CL 200 pF Load capacitor
VDD/VSS +0.5/−0.5 V Dual supply voltage

IB 30 nA Per unit transistor
K 3 - Current mirror gain, intermediate stage
H 12 - Current mirror gain, output stage
L 1 µm Device length, all devices

Wn 1 µm Device unit width, NMOS
Wp 3 µm Device unit width, PMOS

Several considerations need to be taken into account to minimize area occupation. The
proposed architecture, as well as the folded cascode, employ stacked transistors. Using a
single body-voltage for all NMOS and all PMOS devices, area occupation is minimized
with respect to body-driven amplifiers, where separate wells are needed for each input
device, requiring space for well isolation. The proposed architecture employs PMOS
body terminals connected to VDD and NMOS body terminals connected to −VSS, further
reducing area occupation.

We define the following Figures of Merit, which are often used in the literature to
compare different amplifier designs:

SFOM =
BWCL
Pdiss

(14a)

SFOMN =
BWCL

Pdiss · Area
(14b)

LFOM± =
SR± CL

Pdiss
(14c)

LFOMN± =
SR± CL

Pdiss · Area
(14d)
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where BW is the closed-loop unity-gain bandwidth, CL the load capacitance, SR± are the
positive and negative slew-rate, and Pdiss (Itot) is the total power (current) consumption. L
and S in (14) stand for large-signal and small-signal, while the S(L)FOMN are normalized
with respect to the layout area of the OTA. We consider both positive and negative slew-rate
large-signal FOMs, to take into account OTAs with asymmetric slew-rate behavior, while
our design, being complementary, is almost symmetrical.

4.1. Results of Typical Simulations

The open-loop frequency response of the proposed OTA from 1 Hz to 10 MHz is
shown in Figure 5. The response has a dominant pole at a very low frequency and all
higher-frequency poles are beyond the unity-gain frequency, so that the phase margin is
high (80◦). There are at least three poles at frequencies beyond 1 MHz.
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Figure 6 shows the closed-loop frequency response in unity-gain configuration. The
high phase margin causes the frequency response to be monotonic, and the high DC gain
results in a low-frequency closed-loop gain very close to 0 dB.
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The DC transfer characteristic and the DC gain versus the amplitude of the input
signal for values ranging from the negative supply voltage VSS to the positive supply
voltage VDD are shown in Figure 7. The non-inverting buffer is critical for large-signal
performance because the input common-mode signal varies together with the input signal,
so that rail-to-rail behavior proves that both the output and the input common-mode are
rail-to-rail. This is mostly due to the complementary input; at least one differential pair is
active at each input signal level. Furthermore, linearity is significantly improved by the
large DC gain, so that even at −0.45 V and 0.45 V, just 50 mV from the supplies, gain is
still 0.95, i.e., −0.45 dB. The folded cascode OTA reported in Figure 4, even if it adopts
complementary input differential pairs, exhibits lower linearity (not shown), owing to the
much lower DC open-loop gain.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 6. Closed-loop frequency response. 

The DC transfer characteristic and the DC gain versus the amplitude of the input 

signal for values ranging from the negative supply voltage 𝑉𝑆𝑆  to the positive supply 

voltage 𝑉𝐷𝐷 are shown in Figure 7. The non-inverting buffer is critical for large-signal 

performance, because the input common-mode signal varies together with the input sig-

nal, so that rail-to-rail behavior proves that both the output and the input common-mode 

are rail-to-rail. This is mostly due to the complementary input; at least one differential pair 

is active at each input signal level. Furthermore, linearity is significantly improved by the 

large DC gain, so that even at −0.45 V and 0.45 V, just 50 mV from the supplies, gain is still 

0.95, i.e., −0.45 dB. The folded cascode OTA reported in Figure 4, even if it adopts comple-

mentary input differential pairs, exhibits lower linearity (not shown), owing to the much 

lower DC open-loop gain. 

 

Figure 7. Closed-loop large-signal input/output characteristic and gain. 

Figure 8 shows the response to a sinusoidal input in time and frequency. The output 

is 500 mVpp, i.e., 50% of the supply rail, and the frequency is 10 kHz. For this input and a 

capacitive load of 200 pF, the peak output current is 3.1 µA, which is 8.6 times larger than 

the biasing current of the output stage (360 nA), highlighting the class-AB behavior of the 

Figure 7. Closed-loop large-signal input/output characteristic and gain.

The DC transfer characteristic and the DC gain versus the amplitude of the input
signal for values ranging from the negative supply voltage VSS to the positive supply
voltage VDD are shown in Figure 7. The non-inverting buffer is critical for large-signal
performance, because the input common-mode signal varies together with the input signal,
so that rail-to-rail behavior proves that both the output and the input common-mode are
rail-to-rail. This is mostly due to the complementary input; at least one differential pair is
active at each input signal level. Furthermore, linearity is significantly improved by the
large DC gain, so that even at −0.45 V and 0.45 V, just 50 mV from the supplies, gain is
still 0.95, i.e., −0.45 dB. The folded cascode OTA reported in Figure 4, even if it adopts
complementary input differential pairs, exhibits lower linearity (not shown), owing to the
much lower DC open-loop gain.

Figure 8 shows the response to a sinusoidal input in time and frequency. The output
is 500 mVpp, i.e., 50% of the supply rail, and the frequency is 10 kHz. For this input and a
capacitive load of 200 pF, the peak output current is 3.1 µA, which is 8.6 times larger than
the biasing current of the output stage (360 nA), highlighting the class-AB behavior of the
circuit. This also explains why the folded cascode, in class-A, cannot produce a decent
output for this signal swing and frequency.
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Simulations at 1 kHz from 300 mVpp to 900 mVpp input signal swing show rail-to-rail
behavior with high linearity (54 dB at 900 mVpp).

The step response is shown in Figure 9. The transient is monotonic, owing to the large
phase margin, and the peak current is significantly larger than output biasing current. In
fact, the slew-rate is 30 V/ms on both rising and falling edges, which corresponds to 6 µA
over a 200 pF load, 17 times larger than the quiescent current.
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The output noise spectral density is shown in Figure 10. The noise density for white
noise is slightly higher than in the reference cascode amplifier (not shown), because the
input stage is smaller in the proposed OTA: K = 3, S = 6. However, the average spectral
noise density (total output noise power divided by the closed-loop bandwidth) is better
in the proposed amplifier, due to its much larger bandwidth. In fact, in the conventional
folded cascode amplifier, the contribution of flicker noise is dominant, since the noise
corner frequency is at several kHz and therefore very close to the amplifier bandwidth.
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Finally, PSRR and CMRR performance are reported in Figure 11. The CMRR and PSRR
are very good, thanks to the small common-mode and supply gains, and the large differen-
tial gain. Positive and negative PSRR are almost symmetrical, owing to the complementary
push–pull architecture.
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The results of the simulations in typical conditions are summarized in Table 2, where
A0, fu, mϕ, ITOT , Vos, VoPP, Von, HDx, SNR, SNDR denote the DC gain, unity-gain fre-
quency, phase margin, total bias current, offset voltage, peak-to-peak output voltage ampli-
tude, output noise integrated between 1 Hz and 10 MHz, x-th order harmonic distortions,
signal-to-noise ratio and signal-to-noise-and-distortions ratio, respectively.
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Table 2. Typical 27 ◦C simulation results.

- Proposed
OTA

Conventional
Folded Cascode -

A0 92 67 dB
fu 141 7.8 kHz

mϕ 79 90 deg
PSRR+ 86 52 dB
PSRR− 86 53 dB
CMRR 87 80 dB

ITOT 990 1100 nA
Vos −14 88 µV

VoPP 500 - mV
Von 71.3 18 µV

HD2 56 - dB
HD3 46 - dB
HD5 53 - dB
SNR 68 - dB

SNDR 45 - dB
SR+ 29.8 0.94 V/ms
SR− 31.0 0.96 V/ms
Area 1.46k 1.03k µm2

The reference folded cascode amplifier has S = 6 in order to have roughly the same
power consumption, but bandwidth and slew-rate performance are insufficient for process-
ing the 10 kHz 500 mVpp input sinusoid and the 500 mVpp 10 kHz input square wave,
so transient data are not reported in Table 2. Gain is also significantly lower, whereas the
stability margins are better, owing to the lower number of high-frequency poles, and the
much lower unity-gain frequency.

The results in Table 2 show that the proposed OTA exhibits 25 dB higher gain, 18 times
larger bandwidth, and 30 times larger peak slew-rate with respect to the reference folded
cascode OTA, even with a slightly lower power consumption and the same capacitive load.
CMRR and PSRR (positive and negative) data are also very good, owing to the low common-
mode and supply voltage gains toward the output. Closed-loop offset (Vos) is lower in our
design, owing to the higher DC gain. The PSRR of the proposed amplifier is significantly
better than that of the reference folded cascode, because amplification is obtained by current
mirroring, and current mirrors are insensitive to supply voltage variations. Moreover, the
area-normalized FOMs prove the effectiveness of the approach also when area consumption
is a concern; the slight penalty in area is more than compensated by the large improvement
in bandwidth and slew-rate.

4.2. Temperature and Supply Voltage Simulations

Parametric simulations in temperature were performed at −30, 0, 30, 60, 90, 120 ◦C,
and the best and worst results of the main performance indicators of the OTA in this tem-
perature range are reported in Table 3, confirming the robustness of the OTA with respect
to temperature variations, despite the adopted sub-threshold operation of MOS devices.
The bandwidth variation is compatible with subthreshold operation, given the inverse
relation between the temperature and the transconductance in subthreshold MOS devices.
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Table 3. Temperature variations in the −30 ◦C to 120 ◦C range.

T −30 120 ◦C

A0 91 92 dB
fu 160 110 kHz

BCL
W 200 130 kHz

mϕ 79 80 Deg
ITOT 990 1030 nA
Vos 20 −40 µV

VoPP 500 500 mV
Von 62 87 µV

HD2 49 55 dB
HD3 50 43 dB
HD5 47 53 dB
SNR 69 66 dB

SNDR 47 42 dB
SR+ 31 30 V/ms
SR− 29 30 V/ms

Parametric simulations were also performed for supply voltages equal to 0.9, 1.0 and
1.1 V, i.e., over a 10% variation of the nominal supply voltage. Results for 0.9 V and 1.1 V
are reported in Table 4, showing that the amplifier is fundamentally insensitive to supply
voltage variations, except for a slight dependence of slew-rate behavior on supply voltage,
owing to the larger VGS voltages allowing larger currents in the devices.

Table 4. Supply voltage variations in the 0.9 V to 1.1 V range.

VDD 0.9 1.1 V

A0 92 93 dB
fu 140 145 kHz

BCL
W 174 178 kHz

mϕ 79 79 deg
mG 25 25 dB

ITOT 985 993 nA
Vos −12 −15 µV

VoPP 500 500 mV
Von 71 71 µV

HD2 47 56 dB
HD3 44 49 dB
HD5 46 53 dB
SNR 68 68 dB

SNDR 43 45 dB
SR+ 28 30 V/ms
SR− 30 32 V/ms

4.3. Process and Mismatch Monte Carlo Simulations

Monte Carlo simulations were carried out using accurate statistical models of MOS
transistors provided by the IC manufacturer, to assess the robustness of the proposed
OTA to process and mismatch variations. Tables 5 and 6 show the results of Monte Carlo
simulations referring to process and mismatch variations, respectively. Table 5 also reports
process corner simulations with fast (F) and slow (S) CMOS devices. The amplifier is
fundamentally insensitive to process variations, as the load capacitor is ideal (200 pF) and
the transconductance depends on transistor ratios (K, H) and on the biasing current (owing
to subthreshold biasing). Sensitivity to mismatches is higher, mostly due to mismatches in
the current mirrors, causing variations in the total biasing current (and an offset voltage
of 2.6 mVrms). Still, the amplifier is also robust and reliable under mismatch variations,
thanks to the large size of the MOS devices.
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Table 5. Monte Carlo simulation results (process only) and corner simulations.

- Mean Std FF FS SS SF Unit

A0 92.4 0.1 91.2 92.1 92.4 92.2 dB
fu 141 1 144 141 138 141 kHz

BCL
W 178 1 182 178 174 178 kHz

mϕ 79.1 0.2 78.8 78.9 79.3 79.2 Deg
mG 25.4 0.2 25.4 25.2 25.6 25.4 dB

ITOT 990 1 993 991 985 987 nA
Vos −14 1 −16 −18 −12 −11 µV

VoPP 499 0 499 499 499 499 mV
Von 71 1 69 71 73 72 µV

HD2 55.6 1.0 53.5 51.1 57.7 53.5 dB
HD3 46.0 0.7 44.7 49.0 48.7 45.2 dB
HD5 53.1 0.3 52.4 53.5 52.4 52.5 dB
SNR 67.9 0.1 68.1 68.0 67.7 67.8 dB

SNDR 44.8 0.6 43.5 46.0 46.7 44.0 dB
SR+ 31.0 100 29.9 29.4 29.5 29.9 V/ms
SR− 29.7 100 31.4 31.4 30.5 30.6 V/ms

Table 6. Monte Carlo simulation results (mismatch only).

- Mean Value Standard Deviation -

A0 91.7 4.9 dB
fu 138 16 kHz

BCL
W 180 18 kHz

mϕ 77 6 Deg
mG 25.3 1.7 dB

ITOT 1000 200 nA
Vos 0 2.6k µV

VoPP 499 1 mV
Von 72 2 µV

HD2 52.5 7.8 dB
HD3 46.0 3.2 dB
HD5 53.8 1.5 dB
SNR 67.8 0.3 dB

SNDR 43.4 2.4 dB
SR+ 30.5 1.4 V/ms
SR− 29.6 0.5 V/ms

5. Conclusions and Comparisons with the Literature

This paper proposes a novel architecture and design approach to boost gain, band-
width and slew-rate performance of operational transconductance amplifiers. It shows
remarkable improvements with respect to a conventional folded cascode with the same load
capacitor and power consumption. Adding intermediate stages employing current mirrors
with gain allows a polynomial (in the current mirrors’ gain and number of additional
stages) increase in gain, bandwidth, and peak slew-rate performance to be obtained for the
same power consumption and load. Hence, the use of current-mode gain stages allows the
design of OTAs with extremely high FOMs. The resulting amplifier is shown to be robust
to PVT variations and mismatches, to have good CMRR and PSRR performance, good
noise performance, and very high gain (25 dB higher than a comparable folded cascode),
bandwidth (20 times higher) and slew-rate (30 times higher), with a slight improvement
also with respect to average noise power density. Table 7 shows a comparison with state-
of-the-art OTAs taken from the literature. The proposed amplifier has the highest reported
FOMs (both small- and large-signal) in the literature, large gain, and small area footprint.
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Table 7. Comparison with the literature (best values shown in bold).

Unit This
Work [28] [34] [31] [42] [30] [29] [46] [27] [25] [17] [32] [39] [47]

Year − 2021 2021 2021 2020 2020 2020 2020 2018 2018 2017 2016 2015 2015 2007
Process nm 130 130 130 180 180 180 180 65 180 350 180 65 350 350

Measured - N N N Y Y Y N N Y Y Y Y Y Y
VDD V 1 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.9 0.7 0.5 1 0.6

DCgain dB 92 40.8 64.6 64.7 30 98.1 69.5 60 65.8 65 57 46 120 70
CL pF 200 40 50 30 150 30 15 5 20 10 20 3 200 15

GBW kHz 141 18.65 3.58 2.96 0.25 3.1 36 70 2.78 1k 3k 38k 20 11.35
mϕ deg 79 51.39 53.76 52 90 54 65 53 61 60 60 57 54 65

SR+ V/ms 30 10.83 1.7 1.9 0.068 14 9.7 25 6.44 250 2.8k 43k 7.4 14.6
SR− V/ms 30 32.37 0.15 6.4 0.101 4.2 9.7 25 7.8 250 2.8k 43k 2.9 14.6

SRavg V/ms 30 21.60 0.93 4.15 0.085 9.1 9.7 25 7.12 250 2.8k 43k 5 14.6
THD % 0.20 1.4 0.84 1 2 0.49 0.27 − 1 ? 0.99 0.4 − 0.13

@ViPP % of VDD 90 80 100 85 90 83.33 80 − 93.33 ? 57.14 − − 86.67
CMRR dB 87 67.94 61 110 41 60 90 126 72 80 19 35 70 74.5
PSRR dB 86 45 26 56 30 61 81/90 90/91 62 50 52.1/66.4 37 184/198 53.7

Spot noise µV/ √Hz 0.22 2.12 2.61 1.6 − 1.8 0.91 2.82 1.85 0.065 0.1 0.94 4.85 0.29
@ f Hz 10k 1k 100 − − − 1k 1k 36 − 1M − 1k 1k

Pdiss nW 990 73 11.4 12.6 2.4 13 60 51 15.4 24.3k 25k 182k 195 550
MODE − GD BD BD BD DIGITAL BD BD BD BD GD BD BD GD BD
SFOM kHz·pF/µW 35.1k 10.2k 15.7k 7.05k 15.6k 7.15k 9k 2.45k 3.61k 411 2.4k 630 20.5k 310

SFOMN kHz · pF/mW ·µm2 24.04 2.83 2.44 0.83 15.92 0.73 2.65 0.82 0.44 0.029 0.12 0.126 4.66 0.005
LFOMWC V·pF/ms·µW 6.06k 5.93k 0.66k 4.52k 4.25k 6.3k 2.43k 2.45k 8.36k 100 2.24k 710 5.0k 398

LFOMWCN V · pF/mW ·ms ·µm2 4.15 1.65 0.1 0.53 4.34 0.64 0.71 0.82 1.02 0.007 0.11 0.142 0.68 0.006

Area µm2 1.46k 3.6k 6.4k 8.5k 0.98k 9.8k 3.4k 3k 8.2k 14.0k 19.8k 5.0k 4.4k 60k

It is evident that the FOMs of the proposed amplifiers are much larger than any
comparable amplifier. The best in the literature so far, [6], has about one half of the
small-signal FOM, and 17% lower large-signal FOM. Simulations show that the theoretical
idea behind the proposed architecture allows achieving record-breaking bandwidth and
slew-rate performance, besides large gain increases, for low-power amplifiers. Moreover,
the proposed architecture shows remarkable improvement in terms of area-normalized
FOMs. Indeed, the gate-driven approach allows the minimization of the layout area, given
that, unlike body-driven amplifiers, it does not require separate wells for the devices. As
a result, the proposed architecture shows the highest S(L)FOMN , therefore proving to
be an excellent choice when both bandwidth and slew-rate and area consumption are
important requirements.
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