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Dear Associate Editor, 

 

we thank you for all the suggestions, comments and remarks. The points you raised and the 

corrections we made are discussed below (your points are in a different font). 

 

 
Thank you for submitting a revised version of your manuscript 

entitled "Bootstrap confidence intervals for principal covariates 

regression" to the British Journal of Mathematical and Statistical 

Psychology.  I now have received comments from two reviewers with 

expertise in the area and have read your paper myself.  The 

reviewers’ comments are appended below. 

 

As you can see, both reviewers consider the manuscript to have 

improved following the changes you applied, but both reviewers 

feel further improvement is necessary before the manuscript is 

ready to be published in the British Journal of Mathematical and 

Statistical Psychology.  Therefore, I again invite you to attend 

to the matters identified by the reviewers, address the issues 

raised and when appropriate changes have been made, submit the 

revised manuscript.  On receiving this third version of the 

manuscript, I shall send it to the same reviewers to obtain their 

opinion as whether it is suitable for publication in the British 

Journal of Mathematical and Statistical Psychology.  So please 

give sufficient attention to the issues raised and the 

modifications made. 

 

As before, I would like to take this opportunity to thank you for 

considering BJMSP as a possible outlet for your work, and I hope 

that you will continue to do so in future. 

 

 

We have revised the manuscript following all the matters identified by the Reviewers as you can see 

in our point-to-point replies to the two Reviewers. For easy comparison of versions, we made all 

changes using the Word option “track changes” (including slight modifications that we found 

desirable ourselves, without being requested by the Reviewers). 

  

Anonymous list of changes
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Dear Reviewer 1, 

 

we thank you for all the suggestions, comments and remarks. The points you raised and the 

corrections we made are discussed below (your points are in a different font). Note that, for easy 

comparison of versions, in the revised manuscript we made all changes using the Word option 

“track changes” (including slight modifications that we found desirable ourselves, without being 

requested by the Reviewers). 

 

 
Reviewer #1: First I would like to thank the Authors for heavily 

revising and substantially improving the paper! There are still 

many issues mainly regarding how they write. Below I give a couple 

of examples but the manuscript need to go through to make sure the 

text is good enough. 

 

We have carefully reconsidered the entire manuscript by conducting our own check in addition to 

your comments and those made by the other Reviewer. 

 

 
1."If so, X is (close to) rank deficient implying that the 

estimates of the regression coefficients grow as well as the 

variances of the corresponding estimators." Wording, "grow" 

implies that something happens which is not the case as X is 

fixed. Rewrite stating that if X becomes closer to be rank 

deficient then... 

 

We rewrote it by, in particular, replacing the term “grow” by “tend to be large”. 

 

 
2.I have problem understanding the following: "The primary goal of 

RRR is the prediction of Y by looking for the components of X such 

that the prediction error of Y is minimized, even if they may 

synthesize X in a poor way. We must note that such predictor 

components may not explain the criterion variables reasonably 

well. This occurs when the variables in X have very limited 

predictive power." The problem I have is that if X has limited 

predictive power then it doesn't matter which method you use. So, 

how is this a drawback of RRR and implies an advantage of PCOVR? 

 

To avoid ambiguities, we decided to remove this sentence so that the objective of PCOVR is seen as 

a compromise between those of PCR and RRR. 

 

 
3."When the multi-normality assumption is violated, as is often 

the case, analytic results are no longer available." I fully 

understand what you try to say here but there is a huge literature 

on misspecification and how this affects parameter estimates and 

standard errors, see e.g. White (1982) for consistency conditions 

etc. There are two main reasons for using the bootstrap. The first 

is that there is no need to specify the distributions needed to 

calculate the proper version of the sandwich estimator for correct 
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inference, and that the bootstrap distribution often is a better 

approximation to the small sample distribution than the standard 

asymptotic approximation. 

 

At the beginning of Section 3.1, we mentioned the issue of misspecification and cited White (1982). 

Later, just after formula (11), we added some comments in order to motivate the use of the 

bootstrap. 

 

 
4."Several data sets have been randomly generated in order to 

assess the quality of the different strategies for computing 

bootstrap...". Please rewrite as it is obvious when doing a 

simulation study to generate several data sets. 

 

Done 

 

 
5.The Monte Carlo simulation setup needs to be better motivated. 

The setup is well explained but a reader needs to know in what 

sense the setup is empirically relevant, i.e. when doing empirical 

research what lessons can be learned from this simulation? 

Further, they need to motivate the number of replicates and 

similar choices. 

 

We did this. In particular, in Section 4, in the set-up of the two simulation studies, we now 

motivated all the choices we made for the levels of the design variables. In the Discussion (Section 

5), we discussed the relevance of the studies by explaining why they are helpful when doing 

empirical research. Essentially, we think that “The simulation experiment offered recommendations 

on the computation of CIs for the PCOVR parameters when doing empirical research. In fact, some 

differences in the statistical behavior of the CIs emerged with respect to the adopted variant, the 

parameter matrix, and the characteristics of the data. In some cases, the obtained CIs appeared to be 

reasonably good estimates, in some others, the quality degraded” (see page 29) 

 

 
6.Dufour and Kiviet (1998) shows that the number of replicates 

should be selected such that (B+1)α should be an integer. As 

B=1000 this makes minor difference. 

 

The use of B = 1000 bootstrap sample was chosen according to Timmerman et al. (2007). We 

specified it in the revised version of the manuscript and we cited the result by Dufour and Kiviet 

(1998). 

 

 
    Dufour, J-M. and Kiviet, J.F. (1998) Exact inference methods 

for first-order autoregressive distributed lag models, 

Econometrica 66 (1), 79-104. 

    White, H. (1982) Maximum likelihood estimation of misspecified 

models, Econometrica 50 (1), 1-25. 
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Dear Reviewer 2, 

 

we thank you for all the suggestions, comments and remarks. The points you raised and the 

corrections we made are discussed below. (your points are in a different font). Note that, for easy 

comparison of versions, in the revised manuscript we made all changes using the Word option 

“track changes” (including slight modifications that we found desirable ourselves, without being 

requested by the Reviewers). 

 

 
Reviewer #2: BJMSP.19.0085_R1 Bootstrap confidence intervals for 

principal covariates regression 

The paper has been improved considerably compared to the previous 

version. The theoretical background and the bootstrap strategies 

are much more clearly explained. The simulation studies seem 

proper and offer useful insight into the behavior of the four 

strategies examined. I like the addition of Simulation study 

number 2, assessing the behavior under the extraction of fewer and 

equal numbers of components than present at the population level. 

 

Thanks 

 

 
        To facilitate the application of the strategies discussed, 

it is necessary that code is made available to estimate the CIs 

for PCOVR, e.g., in R and/or Matlab. Further, in view of the 

transparency it would be good to make publicly available (or 

alternatively upon request) the code that was used for the 

simulation study and analysis. 

 

All the analyses have been carried out by using R. In the revised version of the manuscript, we 

explicitly stated it in several occasions (pages 6, 15, 17). We also added that the code and the 

functions to obtain CIs are available upon request. 

 

 
Specific comments 

p. 1, Abstract: Please be explicit in what the four strategies for 

estimating bootstrap confidence intervals (CIs) entail. Make also 

explicit what the 'few exceptions' are to the appropriate 

statistical behavior. 

 

Done 

 

 
p. 3, l. 9: The phrasing '…several alternative methods are 

available…' suggest to me alternatives to the bootstrap. Please 

rephrase such that it is clear that you mean are variants of the 

bootstrap (or I am mistaken: make explicit what alternatives you 

mean). 

 

We meant variants of the bootstrap. To this purpose, we rewrote the sentence. 
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p. 6, Section 2.1: I missed what software was used to perform the 

PCOVR analysis. I have the same remark for the simulation study. 

 

As clarified above, we used R, in particular the package PCovR. 

 

 
p. 8, l. 14 (and at other places): Replace 'multi-normality' by 

'multivariate normality' (i.e., I do not know the term, and even 

Google does not help me further). 

 

Done 

 

 
p. 21, l. -3 to -8: The explanation of the unsatisfactory behavior 

of the QSPB does not belong in the Results section, but to the 

Discussion section. Please remove here, and devote attention to 

this in the Discussion section. 

 

We moved this explanation to Section 5 (Discussion section). 

 

 
p. 23, l. 7: Replace 'forth' by 'fourth'. 

 

Thanks 

 

 
p. 23, l. 14-15: Please clarify what the figures exactly mean, for 

example by explicating what '4% vs 46%' implies precisely, and to 

what condition this complies. To me it is not clear exactly what 

this entails - maybe I would after consulting Vervloet et al. 

(2016), but the text should be understandable without that. 

 

We added an example in order to better explain their meaning (see page 24) 

 

 
p. 24, l. 17-19: I do not understand the sentence 'Namely … level' 

- please rephrase. I guess it should be something like '… 

parameter matrices, except for p_y for which…'? 

 

Done: the term “except” was missing. 

 

 
p. 26-28: The Discussion section is a bit meagre. The summary of 

the aims, the study and the results is rather long. In my view, 

this should be shortened. Further, I miss critical reflections on 

1) the smaller accuracy of the CIs for W and WP_Y, compared to P_X 

and P_Y; 2) the smaller accuracy of QSPB, especially in the 

complex condition. 
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We reconsidered the Discussion section by shortening the summary and focusing in more detail on 

critical reflections. To this purpose, we moved here the explanation about QSPB (point 2). 

Concerning point 1, we believe that the smaller accuracy of WPY can be explained by the fact that 

it indeed refers to two sources of uncertainty, i.e., those for W and PY. The smaller accuracy of W 

is more obscure to us: it deserves future research. 

 

 
p. 52, Fig. S7: The figure is incorrectly displayed. That is, only 

pink filled circles are visible in my figure - which is unlike the 

description. 

 

Corrected 
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Bootstrap confidence intervals for principal covariates regression 
 

 

Abstract: Principal Covariate Regression (PCOVR) is a method for regressing a set of criterion 

variables with respect to a set of predictor variables when the latter ones are many and/or collinear. 

This is done by extracting a limited number of components that simultaneously synthetize the 

predictor variables and predict the criterion ones. So far, no procedure has been offered for 

estimating statistical uncertainties of the obtained PCOVR parameter estimates. The present article 

shows how this goal can be achieved, conditionally on the model specification, by means of the 

bootstrap approach. Four strategies for estimating bootstrap confidence intervals (CIs) are derived 

and their statistical behavior in terms of coverage is assessed by means of a simulation experiment. 

In general, apart from a few exceptionsSuch strategies are distinguished by the use of the varimax 

and quartimin procedures and by the use of Procrustes rotations of bootstrap solutions towards the 

sample solution. In general, the four strategies showed appropriate statistical behavior with 

coverage tending to the desired level for increasing sample sizes. The main exception involved 

strategies based on the quartimin procedure in cases characterized by complex underlying structures 

of the components. The appropriateness of the statistical behavior was higher when the proper 

number of components was extracted. 

 

 

Keywords: Principal Covariate Regression, Confidence intervals, Bootstrap. 

 

 

1. Introduction 

 

Main document (incl. figs and tables)
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There exist several methods for analyzing the dependence between two sets of variables, say Y and 

X, observed on the same group of units. The simplest strategy is to perform multivariate linear 

regression. However, such an approach may lead to poor results, especially when the number of 

predictor variables in X is large, due to a high risk of multicollinearity of the predictor variables. If 

so, X is (close to) rank deficient implying that the estimates of the regression coefficients growtend 

to be large as well as the variances of the corresponding estimators. For this reason, alternative 

methods have been developed. At least two main classes of methods can be distinguished (see, e.g., 

Hastie, Tibshirani, & Friedman, 2001, pp. 55-75). The first one involves regularization methods 

such as the well-known Ridge regression, proposed by Hoerl, & Kennard (1970) following 

Tikhonov (1943). These techniques consider different regularizations of the regression coefficients 

in order to prevent the estimates and the variances from growing. The second class involves the use 

of dimension reduction techniques in order to reduce the space of the predictor variables by means 

of a limited number of underlying components. For an overview, the interested reader may refer to 

De Jong, & Kiers (1992), Kiers, & Smilde (2007) and Vervloet (2017). A popular technique 

belonging to this class is Principal Component Regression (Jolliffe, 1982), briefly PCR, where 

components are firstly extracted from X and then the variables in Y are regressed on the scores of 

these components. On the one hand, this solves the multicollinearity problem because the 

components are orthogonal. On the other hand, it is not guaranteed that the components explain the 

criterion variables in Y reasonably well, hence the prediction error of Y may be large. An 

alternative strategy is represented by Reduced-Rank Regression (Anderson, 1951; Anderson, 1958; 

Izenman, 1975), briefly RRR. The primary goal of RRR is the prediction of Y by looking for the 

components of X such that the prediction error of Y is minimized, even if they may synthesize X in 

a poor way. We must note that such predictor components may not explain the criterion variables 

reasonably well. This occurs when the variables in X have very limited predictive power.  

BothTherefore, both PCR and RRR extract components, but differ in the way the components are 

found. The former approach gives components accounting for the variance of X at best (regardless 
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of the correlation with Y), the latter one gives components correlated with Y as much as possible 

(regardless the explained variance of X). In order to take into account both the objectives, Principal 

COVariates Regression (De Jong, & Kiers, 1992), briefly PCOVR, has been proposed. In PCOVR, 

the components are found by minimizing a linear combination of the two previously-described 

criteria. In this way, the PCOVR components are able to summarize X and predict Y.  

The effectiveness of PCOVR, also in comparison with its potential competitors, has been shown in 

several papers. See, for instance, Kiers, & Smilde (2007) and Vervloet, Van Deun, Van den 

Noortgate, & Ceulemans (2016). To judge to what extent the PCOVR estimates can be generalized 

to the population, inferential statistics are needed. In this paper, we examine a bootstrap procedure 

to estimate confidence intervals for PCOVR parameters. The use of bootstrapping is motivated by 

the fact that it works well in Principal Component Analysis and, therefore, we expect the same for 

PCOVR. In principal component methods, several alternative methodsvariants of the bootstrap are 

available; see, e.g., Timmerman, Kiers, & Smilde (2007). The most relevant ones are recalled and 

applied to the PCOVR domain; furthermore, a simulation experiment is carried out in order to 

assess their quality. The paper is structured as follows. In the next section, PCOVR is presented. 

Section 3 focuses on some strategies for estimating confidence intervals of the PCOVR parameter 

estimates. The results of the simulation experiment are reported in Section 4. A final discussion in 

Section 5 ends the paper. 

 

 

2. Principal COVariates Regression 

 

Let Y and X be two matrices of order (N × K) and (N × J), respectively, where N denotes the 

number of units and K and J (usually, but not necessarily, K < J) are the number of criterion 

variables and that of predictor variables, respectively. In PCOVR, R (< J) components, expressed as 

a linear combination of X, are sought: 
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 T = XW, (1) 

 

where T is the component score matrix of order (N × R) and W is the component weight matrix of 

order (J × R). The component scores in T play the role of explaining both Y and X, namely, 

 

 Y = TPY + EY, (2) 

 X = TPX + EX, (3) 

 

where PY of order (R × K) is the matrix of the regression weights for the K criterion variables on the 

R components and PX of order (R × J) is the matrix of the component loadings for the J predictor 

variables on the components. Finally, EY and EX are the error matrices for Y and X, respectively. 

The parameter matrices PY, PX and T (and implicitly W according to (1)) are estimated by 

minimizing a linear combination of the sum of squares of EY and EX, expressed as:  

 

 𝑓(𝐏𝐘, 𝐏𝐗, 𝐓) = (1 − 𝛼)
‖𝐘 – 𝐓𝐏𝐘‖

2

‖𝐘‖2 +  𝛼
‖𝐗 – 𝐓𝐏𝐗‖

2

‖𝐗‖2 , (4) 

 

where the symbol || · || denotes the Frobenius norm of matrices and α  [0, 1] is a tuning parameter 

for the variances of X and Y explained by T. When α = 0, PCOVR reduces to RRR, whilst setting α 

= 1 leads to PCR. The automatic selection of α has been widely investigated in several papers. See, 

De Jong, & Kiers (1992), Kiers, & Smilde (2007), Vervloet, Van Deun, Van den Noortgate, & 

Ceulemans (2013), and Vervloet, Van Deun, Van den Noortgate, & Ceulemans (2016). 

Given α and R, the estimation of the parameter matrices can be found in closed form. To do it, we 

observe that (4) can be rewritten as 
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 𝑓(𝐏𝐘, 𝐏𝐗, 𝐓) = ‖[

(1−𝛼)1 2⁄

‖𝐘‖
𝐘

𝛼1 2⁄

‖𝐗‖
𝐗

] –  𝐓 [

(1−𝛼)1 2⁄

‖𝐘‖
𝐏𝐘

𝛼1 2⁄

‖𝐗‖
𝐏𝐗

]‖

2

. (5) 

  

De Jong & Kiers (1992) showed that T contains in its columns the first R eigenvectors of 

 

 (1 − 𝛼)
𝐇𝑿𝐘𝐘′𝐇𝑿

‖𝐘‖2
+  𝛼

𝐗𝐗′

‖𝐗‖2
, (6) 

 

where HX = X(XX)–1X, the role of which is to project Y on the space spanned by the columns of 

X. Once the estimate of T is found, PY and PX are estimated by 

 

 PY = TY, (7) 

 PX = TX. (8) 

 

Finally, the component weights are estimated by 

 

 W = (XX)–1XT. (8) 

 

See, for further details, De Jong, & Kiers (1992).  

The columns of T are usually normalized so that, in each column, the elements have variance fixed 

at 1. In this case, when X contains standardized data and the extracted components are orthogonal, 

the component loadings in PX are equal to the correlations between components and variables. Such 

a normalization of T is not sufficient to fully identify the solution. In fact, equally fitting solutions 

can be found by premultiplying PY and PX by a rotation matrix B, provided that this rotation is 

compensated by postmultiplying T by B–1. Letting PY
R = BPY, PX

R = BPX and TR = TB–1, we have 

 



 

 6 

 Y = TRPY
R + EY = TB–1BPY + EY = TPY + EY, (9) 

 X = TRPX
R + EX = TB–1BPX + EX = TPX + EX. (10) 

 

The rotational freedom can be exploited in order to simplify the interpretation of the components by 

means of, e.g., the (normalized or non-normalized) Varimax procedure (Kaiser, 1958). Throughout 

the present paper, we opted for the non-normalized version.  

For practical purposes, the applicability of PCOVR is enhanced by the availability of the R (R Core 

Team, 2020) package PCovR (Vervloet, Kiers, Van den Noortgate, & Ceulemans, 2015). It was 

used to perform the PCOVR analysis in the following example as well as in the simulation 

experiment of Section 4. 

 

2.1. Example  

 

A PCOVR analysis is applied to the Rohwer data (Timm, 1975) for illustrative purposes. The data 

refer to an experiment on N = 69 children. The research interest lies in assessing whether and how a 

set of J = 5 paired-associate (PA) tasks predicts the performance on K = 3 measures of aptitude and 

achievement. The PA tasks, labelled named (N), still (S), named still (NS), named action (NA), and 

sentence still (SS), vary in how the stimuli are presented. The three measures are a student 

achievement test (SAT), the Peabody Picture Vocabulary test (PPVT) and the Raven Progressive 

matrices test (RPMT). The need for PCOVR arises because several predictor variables are highly 

correlated (see Table 1). 

 

TABLE 1 HERE 

 

PCOVR is run on such data varying R in the set {2, 3, 4} and setting α following the sequential 

procedure proposed by Vervloet, Van Deun, Van den Noortgate, & Ceulemans (2013). First, the 
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value of α is determined on the basis of maximum likelihood principles. Then, by using the selected 

weighting value, a generalization of the well-known scree test is used to determine R. We get the 

optimal values R = 3 and α = 0.91. In order to interpret the solution, we inspect the varimax rotated 

component loading matrix reported in Table 2. 

 

TABLE 2 HERE 

 

We can see that Component 1 has high positive loadings for all the tasks with particular reference to 

SS, NS and NA. Components 2 and 3 are mainly related to the remaining two tasks. Specifically, 

Component 2 is positively related to S and Component 3 to N. In order to assess how the 

components predict the criterion variables, we observe the regression weight matrix given in Table 

3. 

 

TABLE 3 HERE 

 

We can discover that positive relations emerge. PPVT are well predicted by Component 1. 

Therefore, good performances of SS, NS and NA are predictors of good performances in PPVT. 

The predictions of SAT and RPMT are more complex. SAT appears to be related most to 

Components 2 and 3. Hence, good performances of SAT primarily reflects good performances for S 

and N. Concerning RPMT, to a certain extent a connection with Components 1 and 2 is visible. To 

explicitly inspect the relationship between the criterion and predictor variables, the matrix WPy can 

be analyzed. This matrix gives the regression weight for estimating Y from X bypassing the 

interpretation of the components. We have the weights reported in Table 4. 

 

TABLE 4 HERE 
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Obviously, by inspecting Table 4 we can draw conclusions consistent with those based on Tables 2 

and 3. Furthermore, we can highlight the role of S in predicting RPMT. The matrix T (not reported 

here) may also be considered to study how the units take different scores with respect to the 

extracted components. 

 

3. Bootstrap methodology in Principal COVariates Regression 

 

Once the PCOVR solution has been obtained, it would be interesting to assess the inferential 

properties of the obtained estimates. In particular, a relevant point to address is whether the 

obtained solution represents a good estimate of the population one. This can be done by computing 

either Standard Errors (SEs) or Confidence Intervals (CIs) for the parameter matrices. In the 

particular domain of PCOVR, this problem has not been covered yet. Therefore, we will use the 

results in the PCA framework as a starting point taking into account the existing connection 

between PCOVR and PCA reported in (5). For this purpose, we rely strongly on the paper by 

Timmerman et al. (2007). We must note that our results are developed conditionally on the PCOVR 

model specification. Specifically, on the basis of the available data, we first choose the value of α 

and the number of components R. Then, given this specification, we study uncertainty of the 

parameter estimates.  

The computation of SEs or CIs in PCA can be done following at least two strategies depending on 

the multi-multivariate normality assumption. If it holds, assuming that the scores are independently 

randomly sampled from identically distributions (iid), analytic results can be derived (see, for an 

overview, Anderson, 1984). Refinements for particular cases are also available. For instance, 

Ogasawara (2000) studies asymptotic SEs for component loadings when data are standardized. The 

same author investigates SEs for rotated component loadings (Ogasawara, 1999, 2002). 
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3.1. Bootstrap 

 

When the multi-multivariate normality assumption is violated, as is often the case, analytic results 

are no longer available. A more flexibleIt must be noted that several studies on the problem of 

misspecification and how it affects parameter estimates and standard errors (see, e.g., White, 1982). 

An alternative approach, adopted in this paper, is represented by the use of resampling techniques 

such as the bootstrap, originally introduced by Efron (1979). Let θ be a population parameter to be 

estimated. It can be estimated by the sample statistic t that represents the realization of the estimator 

T. The bootstrap leads to an assessment on the uncertainty associated with T by computing SEs or 

CIs. This is done by mimicing the sampling process by using the observed sample.  

Let tb be the estimate of θ obtained by using the b-th bootstrap sample (b = 1, …, B), where B is the 

number of bootstrap samples. The bootstrap SE of T is 

 

𝑆𝐸(𝑇) = √∑ (𝑡𝑏 −
∑ 𝑡𝑏

𝐵
𝑏=1

𝐵
)

2
𝐵
𝑏=1 𝐵⁄ . (11) 

 

The use of the bootstrap is motivated by at least two main reasons. First of all, there is no need to 

specify the unknown distribution for correct inference. Moreover, the bootstrap distribution can be 

expected to be a better approximation to the small sample distribution than the standard asymptotic 

approximation. 

Given the confidence level 1 –  (usually  = 0.05), the bootstrap CI can be computed according to 

at least three approaches. The bootstrap Wald CI can be built by using the bootstrap SE defined in 

(11) as, for instance, t  z1 – /2SE(T), where z1 – /2 denotes the 100(1 – /2)th percentile of the 

standard normal distribution. The Wald CI is not invariant under monotonic transformations of the 

sample statistic t and its values are not confined to the range of what is to be estimated. The 

bootstrap percentile CI is based on the percentiles of the bootstrap distribution of tb, b = 1, …, B. 
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The CI is then defined as (t/2, t1 – /2), where t/2 and t1 – /2 are the 100(/2)th and 100(1 – /2)th 

percentiles of the bootstrap distribution, respectively. Differently from the Wald CI, the percentile 

CI interval is transformation respecting and range preserving. The bias-corrected and accelerated 

percentile bootstrap CI, proposed by Efron (1987), represents an enhancement of the percentile one. 

In detail, Efron (1987) improves the accuracy of the percentile CI by using adaptive percentiles for 

bias corrections and acceleration adjustments in order to correct the standard percentile CI for bias 

and skewness in the bootstrap distribution. A description of the procedure is provided in the 

appendix. The bias-corrected and accelerated percentile bootstrap CI, henceforth denoted as BCa 

percentile CI, is transformation respecting, range preserving and has a lower coverage error in 

comparison with percentile CI (see, e.g., Efron, & Tibshirani, 1993).  

 

3.2. Bootstrap confidence intervals in Principal COVariates Regression 

 

Timmerman et al. (2007) illustrate different strategies for estimating confidence intervals in PCA. 

They show that the bootstrap approach should be preferred in comparison with the asymptotic 

approach and, among the various alternatives to estimate CIs by bootstrapping, the BCa percentile 

method performed best by far. Since the PCOVR solution coincides with the PCA one of a 

particular matrix, we reasonably expect that BCa percentile CI works well also in the PCOVR 

domain and hence we have used it in the present paper. As described by Timmerman et al. (2007), 

bootstrapping can be fruitfully applied in order to estimate CIs of the component loadings. By 

means of these estimated CIs, we hope to find intervals of values that contain the true population 

parameter with probability 1 – .  

The main difficulty relies in the non-identifiability of the PCA solution in terms of sign and axis 

position because the bootstrap component loadings must be made consistent with the loadings from 

the observed sample. Timmerman et al. (2007) discuss the non-identifiability of the PCA solution 

by presenting three different cases related to different interpretations of the component loadings. 
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The first one consists of limiting the attention to the principal axes, i.e., the component loadings 

corresponding to the eigenvectors associated with the largest eigenvalues of the 

covariance/correlation data matrix. In such a case, the non-uniqueness of the PCA solution is related 

to the sign indeterminacy. In practice, the bootstrap component loadings must be multiplied by ±1 

such that they optimally resemble the ones obtained from the observed sample and the same must 

be done for the population component loadings. In this case, the interpretation involves the 

unrotated component loadings. This is rarely done in psychology, where one usually applies 

rotations of the component loadings in order to simplify their interpretation. For this reason, we are 

not going to consider such a strategy in the present paper.  

In order to achieve simplicity, the second strategy naturally arises. It consists of applying the same 

rotation method to the sample component loadings as to the bootstrap ones. For instance, if the 

sample component loadings are varimax rotated, the varimax rotation is also applied to the 

bootstrap component loadings. For comparative purposes, the sign indeterminacy and the ordering 

of the components should be checked. The previously described approach is usually referred to as 

the bootstrap fixed rotation method in order to emphasize that a fixed rotation method (e.g., the 

varimax) is employed for all the (bootstrap) samples. In this case, particular emphasis in the 

interpretation is put on the selected rotation method. This strategy will be referred to as ‘Fixed 

criterion’. 

Finally, the third approach consists of first rotating the original sample component loading matrix to 

simplicity, and then rotating the bootstrap component loading matrices in such a way that they 

resemble the (simplicity rotated) original one as much as possible. The idea is that each bootstrap 

solution just spans the space of a class of infinitely many rotated loadings matrices, and from these 

we wish to identify one that is interpreted (as much as possible) similar to the (simplicity rotated) 

sample loading matrix. This can be done by means of Procrustes rotation of each bootstrap loading 

matrix towards the (simplicity rotated) sample loading matrix as a target. Hence, the strategy can be 

called bootstrap target rotation method. Such a case implies that the rotation method as such is no 
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longer relevant for interpretative purposes of the bootstrap solutions. In fact, all attention is paid to 

the outcome of the simple structure rotation procedure for the sample loading matrix only, and this 

sample solution is taken very seriously, and serves as the target for the other ones. The rationale is 

that this sample loading matrix supposedly is well interpretable, and therefore serves as a good 

reference basis. This strategy will be referred to as ‘Procrustes rotation’. 

The performances of alternative strategies for computing CIs in PCA have been deeply investigated 

by Timmerman et al. (2007), who focused on CIs for varimax rotated component loadings. In the 

study, the authors considered both bootstrap and asymptotic CIs and analyzed their quality in terms 

of coverage. Specifically, the coverage of a CI is appropriate when the probability of a 100(1 – )% 

CI not covering the true population parameter θ from above and below is equal to /2. Setting  = 

0.05, this means that the true population parameter θ belongs to the CI with a probability equal to 

0.95 (the confidence level). With probability equal to 0.025, θ is lower (higher) than the lower 

(higher) bound of the interval.  

It is important to note that the non-identifiability of the PCA solution implies that it is not clear 

what the population parameters are. In fact, the above-recalled different interpretations of the 

component loadings and the related rotation variants also imply a different stance on the population 

component loadings, because also the population loading matrix actually spans the space of a class 

of infinitely many rotated loadings matrices. Because in the current approach, we have decided that 

the (simple structure rotated) sample loading matrix serves as a reference matrix, the population 

loading matrix must be transformed optimally towards the sample loading matrix in order to 

identify it, and in order to see to what extent the CIs we set up as estimates of confidence intervals 

cover comparable population values. This must be done in the same way as for the bootstrap 

component loadings because the rotation applied to the population component loadings must 

comply with the one applied to the bootstrap component loadings. See, for a deeper discussion, 

Kiers (2004).  
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Timmerman et al. (2007) found that the bootstrap CIs performed better than asymptotic CIs. 

Furthermore, among the different methods to estimate CIs by means of bootstrapping, the BCa 

percentile CIs generally performed best. 

The results of Timmerman et al. (2007) represent the starting point for estimating CIs in PCOVR. 

However, such results cannot be straightforwardly applied to PCOVR due to its higher level of 

complexity. With respect to PCA, the scope of the bootstrap is broadened. In fact, it is reasonable to 

estimate CIs for several parameter matrices, namely: 

 the component loading matrix for the predictor variables on the components (PX),  

 the regression weight matrix for the criterion variables on the components (PY),  

 the component weight matrix (W),  

 the regression weight matrix for estimating the criterion variables from the prediction 

variables (WPY).  

We decided to limit our attention to the bootstrap approach and, in particular, to the BCa percentile 

method due to its valuable performances. Moreover, we extended the analysis by considering not 

only the (orthogonal) varimax rotation, but also the (oblique) quartimin one (Carroll, 1953). Such 

criteria will be considered for both the ‘Fixed criterion’ and the ‘Procrustes rotation’ strategies.  

In order to compute bootstrap CIs, the following ordered steps for managing the indeterminacy of 

the PCOVR solution should be made. Let us consider the varimax case. 

1. The sample component loading matrix, say PXS, is rotated to simple structure according to 

the varimax criterion and the rotation is compensated in the remaining parameter matrices.  

2. The bootstrap samples solution, setting R and α as for the sample case, is rotated to be 

consistent with the rotated sample solution. This can be done by means of two alternative 

strategies. 

a. In the ‘Fixed criterion’ strategy, the component loading matrix for the b-th bootstrap 

sample (b = 1, …, B), say PXb, is varimax rotated. It is not yet guaranteed that PXS and 

PXb are comparable because of the signs and the ordering of the components (in the 
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rows), but this can be fixed easily by adjusting signs and order of the rows of PXb such 

that they optimally resemble those of PXS in terms of the Tucker congruence coefficient 

(Tucker, 1951). All these transformations are finally compensated in the remaining 

parameter matrices. 

b. In the ‘Procrustes rotation’ strategy, PXb is rotated by means of an orthogonal rotation 

matrix B so as to resemble the sample component loading matrix PX as much as 

possible. Since the rows refer to the different components, the Procrustes rotation is 

applied to PXb with respect to 𝐏𝐗. Hence, the function  

 

 ‖𝐏𝐗𝑏𝐁 − 𝐏𝐗‖
2 (16) 

 

is minimized over B. The minimization problem in (16) is usually referred to as 

orthogonal Procrustes rotation (Cliff, 1966). Once B is found, the rotation is 

compensated in the remaining parameter matrices, i.e., by postmultiplying T by (B)–1 

provided that PYb is premultiplied by B. 

 

In the quartimin case, the previously described steps still hold provided that the varimax rotation is 

replaced by the quartimin one in the ‘Fixed criterion’ strategy and the minimum of (16) is achieved 

with respect to an oblique rotation matrix B (oblique Procrustes rotation problem, Jennrich, 2002) in 

the ‘Procrustes rotation’ strategy. 

In this paper we are going to compute CIs based on either the varimax or quartimin rotation and 

either the ‘Fixed criterion’ or ‘Procrustes rotation’ strategy. This leads to the following four 

variants: 

 Varimax rotated Sample and Bootstrap solutions (VSB); 

 Quartimin rotated Sample and Bootstrap solutions (QSB); 

 Varimax rotated Sample and Procrustes rotated Bootstrap solutions (VSPB); 
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 Quartimin rotated Sample and Procrustes rotated Bootstrap solutions (QSPB). 

These four methods have been implemented in R (R Core Team, 2020) and are available upon 

request from the corresponding author. It must be underlined that the above list is not exhaustive. 

Many other variants could be used, adopting different rotational criteria. 

 

3.3. Example  

 

In order to assess the statistical uncertainty of the PCOVR solution for the Rohwer data reported in 

Section 2.1, we estimate the BCa percentile CIs for the parameter matrices given in Tables 2 to 4. 

Since the sample solution is varimax rotated, and we now apply the variants VSB and VSPB. 

Setting  = 0.05 and B = 1000, we get the CIs given in Tables 5 to 7. 

 

TABLE 5 HERE 

TABLE 6 HERE 

TABLE 7 HERE 

 

From Table 5, the inspection of the CIs for PX highlights that the variability of the estimates is quite 

large. This especially occurs for Component 1 and for the low loadings in absolute sense of 

Components 2 and 3. The variables playing a relevant role in interpreting the components are well 

captured by the observed sample. In fact, all these estimates are clearly above zero, but for 

Component 1, these values are highly uncertain. The most stable component loadings appear to be 

the one of S on Component 2 and the one of N on Component 3. Such findings hold for both the 

fixed varimax and the Procrustes varimax strategies, although the bounds of the CIs differ 

considerably. The analysis of the CIs for PY and WPY reported in Tables 6 and 7 can be carried out 

in a similar way as for PX.  
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Apart from the CIs for WPY (any rotation does not alter WPY: WPY = WB–1BPY), the use of VSB 

and VSPB leads to different CIs. This occurs because the former CIs consider sampling fluctuations 

due to the rotation criterion (varimax) and the latter CIs express sampling fluctuations related to the 

chosen target loading matrix. As such, CIs estimated by VSB are expected to be wider than those 

estimated by VSPB. This comment also holds for QSB and QSPB, with the difference involving the 

use of the (oblique) quartimin criterion. 

Summing up, since different CIs are obtained when considering the four strategies summarized in 

Table 5, it appears to be important to assess their statistical behavior. For this purpose, we carried 

out a simulation experiment, the results of which are reported in the next section. 

 

 

 

4. Simulation experiment 

 

The aim of the simulation experiment was to assess how the statistical behavior of the bootstrap CIs 

was affected by the data structure. To this purpose, we explored different situations to see whether 

good results were obtained and also to discover whether under such conditions differences in the 

quality of the CIs emerged. These situations seemed reasonably representative of what one might 

encounter in practice and, therefore, the simulation experiment offers practical recommendations 

and suggestions on the computation of bootstrap CIs for the PCOVR parameter matrices. These 

recommendations and suggestions concern, among others, the required sample size and, in general, 

highlight particular data structures leading to a poorer quality of the CIs. 

The simulation experiment was split into two studies. In the first study, we considered the case with 

more than one criterion variable. Data were generated according to different scenarios with a given 

number of components, which were expected to have similar relevance and strength. PCOVR 

solutions and bootstrap CIs were estimated by using the true number of components. In the second 
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study, taking inspiration from Vervloet et al. (2016), a different set-up was considered where the 

relevance and strength of the components varied and PCOVR solutions and bootstrap CIs were 

estimated by using fewer components than those used for generating the data. The R (R Core Team, 

2020) code that was used for the simulation experiment is available upon request from the 

corresponding author. 

 

4.1. Simulation study n. 1 

 

4.1.1. Set-up 

 

Several data sets have been randomly generated inIn order to assess the quality of the different 

strategies for computing bootstrap BCa percentile CIs for the PCOVR solutions, Wwe assumed to 

deal with a population of 10,000 units on which K criterion and J predictor variables were observed. 

We simulated population data according to the PCOVR model in (2) and (3). Denoting by R the 

number of components, we had: 

 

 YPOP = TPOPPY
POP + εYEY

POP, (17) 

 XPOP = TPOPPX
POP + εXEX

POP, (18) 

 

where YPOP, of order (10,000 × K), and XPOP, of order (10,000 × J), were the population data 

matrices for the criterion and predictor variables, respectively, TPOP was the population component 

score matrix of order (10,000 × R), PY
POP of order (R × K) was the population matrix of the 

regression weights for the criterion variables on the components and PX
POP of order (R × J) was the 

population matrix of the component loading for the predictor variables on the components. 

Furthermore, EY
POP and EX

POP were the population error matrices for YPOP and XPOP, of orders 

(10,000 × K) and (10,000 × J), respectively. Thus, the population data matrices can be split into a 

structural part (either TPOPPY
POP or TPOPPX

POP) and an error part (either EY
POP or EX

POP). The 
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elements of EY
POP and EX

POP were randomly generated from the standard normal distribution and 

multiplied by a scalar (one for each matrix) such that || TPOPPY
POP || = || EY

POP || and || TPOPPX
POP || = 

|| EX
POP ||. The scalars εY and εX tuned the amount of noise in the population data matrices. We 

considered two levels of noise for YPOP (εY = 0.1, low noise Y, and εY = 0.3, high noise Y) and for 

XPOP (εX = 0.1, low noise X, and εX = 0.3, high noise X).) in order to assess whether a larger amount 

of noise deteriorated the statistical behavior of the CIs. Concerning the structural part, we operated 

as follows. We set K = 6 and we considered two levels for the ratio between criterion and prediction 

variables, i.e., in the small ratio case, J/K = 2, hence J = 12, in the large ratio case, J/K = 3, hence J 

= 18. This choice was made to assess whether differences in the numbers of prediction and criterion 

variables affected the quality of CIs. The number of components was set to R = 2 (two-component 

case) or R = 3 (three-component case).) in order to inspect whether the selection of the number of 

components had impact on the obtained CIs. The elements of TPOP were randomly drawn from the 

standard normal distribution. Two levels of simplicity for PY
POP and PX

POP were assumed. In the 

simple case the matrices were constructed in such a way that every (criterion or prediction) variable 

was related to only one component and every row of PY
POP and PX

POP contained 50% (if R = 2) or 

66% (if R = 3) of zero elements. For instance, when K = 6, the structure of PY
POP with, respectively, 

R = 2 and R = 3, was 

 

 PY
POP = [

𝑥 𝑥 𝑥 0 0 0
0 0 0 𝑥 𝑥 𝑥

], (19) 

 

 PY
POP = [

𝑥 𝑥 0 0 0 0
0 0 𝑥 𝑥 0 0
0 0 0 0 𝑥 𝑥

], (20) 

 

where the symbol ‘x’ denotes randomly generated values from the uniform distribution in [0.5, 1]. 

Such a case for PY
POP and PX

POP was labelled simple structure. In the complex case, variables were 
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related to at least one component (exactly two when R = 3) and every row had 33% of zero 

elements. Thus, (19) and (20) were replaced by 

 

 PY
POP = [

𝑥 𝑥 𝑥 𝑥 0 0
0 0 𝑥 𝑥 𝑥 𝑥

], (21) 

 

 PY
POP = [

𝑥 𝑥 𝑥 𝑥 0 0
0 0 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 0 0 𝑥 𝑥

]. (22) 

 

The complex structure case for PY
POP and PX

POP was referred to as complex structure. Hence, by 

considering simple and complex structures for the component loadings and the regression weights 

we were interested in assessing whether and how the quality of the estimated CIs was affected by 

situations where some criterion and prediction variables are influenced by more than one 

component. In fact, we expected this leads to less accurate estimated CIs. 

Once the population data were available, we randomly generated the sample data by varying the 

sample size that was equal to N = 50 (small size), N = 100 (medium size) and N = 500 (large size). 

By this, we aimed at studying whether a limited number of units would prevent us from obtaining 

good results in the CIs. For each sample size, 1,000 sample data sets were randomly generated from 

the population data. The design was fully crossed leading to 2 (low noise Y and high noise Y) × 2 

(low noise X and high noise X) × 2 (small ratio and large ratio) × 2 (two-component and three-

component) × 2 (simple structure and complex structure) × 3 (small size, medium size and large 

size) × 1,000 (sample replications) = 96,000 sample data sets. 

 

4.1.2. Quality criteria 

 

The simulation study aimed at assessing the statistical behavior of the estimated CIs in terms of 

coverage of the proportion of observations outside them.  
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For coverage, we checked whether the probabilities of the 100(1 – )% CIs covering the true 

population parameter θ were equal to (1 – ) or not. This was assessed for the estimated CIs of PX, 

PY, W and WPY. The true population parameter matrices were the ones estimated by applying 

PCOVR to the population data by using the proper number of components and selecting α 

according to Vervloet, Van Deun, Van den Noortgate, & Ceulemans (2013). Note that the overall 

average value of α was 0.70. Following Kiers (2004), the population solutions were transformed 

optimally towards the sample ones in order to interpret the CIs we set up as estimates of confidence 

intervals. This was done by either the ‘Fixed criterion’ (varimax or quartimin) or the ‘Procrustes 

rotation’ strategy applied to PX consistently with the four examined strategies for computing CIs 

(VSB, QSB, VSPB, QSPB) so that the same type of rotations was applied to the population and 

bootstrap solutions. Note that, as pointed out by Timmerman et al. (2007), the coverage was 

assessed with respect to the estimated parameters using the population data and not those used to 

generate the population data, because the bootstrap is not adopted for compensating a model mis-

specification and the related systematic bias. 

For each sample data set, we performed the PCOVR analysis by using the same values of R and α 

found for the corresponding population data and the solution was rotated to simple structure by 

applying either the varimax or the quartimin procedure to PX consistently with the choice made for 

the population solution. Then, we estimated the bootstrap BCa percentile CIs by means of the 

above-mentioned four strategies. This was done by considering B = 1,000 bootstrap samples. Such a 

value should be chosen in order to reduce the simulation error to an acceptable level. In doing so, 

we followed the choice made by Timmerman et al. (2007). However, as a reviewer observed, 

Dufour & Kiviet (1998) showed that the number of bootstrap samples should be such that (B + 1)  

is an integer. However, since B = 1,000, differences are negligible. For instance, in the QSPB case, 

PX of the sample solution was quartimin rotated and the component loadings for the predictor 

variables of the population and bootstrap solutions were obliquely Procrustes rotated towards the 
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sample ones. Obviously, in each solution, the rotation was compensated in the remaining parameter 

matrices for getting an equally fitting solution.  

Once the solutions were rotated, we could properly evaluate the coverage because the rotated 

population solution was fully comparable with the bootstrap CIs. Exactly like Timmerman et al. 

(2007), the coverage was calculated as the percentage of times for which the true rotated parameter 

was inside the 100(1 – )% estimated CIs. In practice, setting  = 0.05, we calculated the 

percentages of times for which the true parameter was lower than the 2.5% bound or higher than the 

97.5% bound of the CI. Denoting these exceeding percentages by 2.5% EP and 97.5% EP, 

respectively, the coverage was determined as 

 

 Coverage = 100% – 2.5% EP – 97.5% EP. (23) 

 

Note that this percentage was computed for every condition, i.e., for every combination of all the 

levels of all the design variables, by using the 1,000 replications. Coverages close to 95% indicate 

good statistical behavior.  

 

4.1.3. Results 

 

The results on the coverages of the BCa percentile CIs for PX, PY, W and WPY are reported by 

distinguishing with respect to the levels of the design variables and to the four strategies. Moreover, 

concerning PX and PY we also distinguished the coverage with respect to the ‘high’ and ‘low’ 

values, i.e., those denoted by, respectively, ‘x’ and ‘0’ in (20)-(23). The mean 95% coverage levels 

computed with respect to all the 96,000 datasets and distinguished by parameter matrix are 

displayed in Figure 1.  

 

FIGURE 1 HERE 
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First of all, we can see that a more or less pronounced undercoverage was registered on average. 

Such a comment especially holds for the CIs estimated by QSPB. For the remaining three strategies, 

mean coverages were very similar. The estimated CIs for PY were, on average, the best ones in 

terms of coverage. For VSB and QSB, these were almost equal to the desired level (94.83% and 

94.81%, respectively). With respect to PX, VSB (93.10% on average), QSB (92.78%) and VSPB 

(92.77%) had essentially the same mean coverages. Virtually no differences emerged for the mean 

coverages of the CIs estimated for W ranging from 92.73% for VSB to 92.94% for VSPB. Finally, 

the estimated CIs for WPY (the same for all strategies) were characterized by a quite large 

undercoverage (91.65% on average). 

A deeper insight into the assessment of the statistical behavior of the estimated CIs was attained by 

analyzing the mean coverages distinguished by the levels of the design variables. In particular, we 

checked whether, for each scenario, the mean coverages became closer to 95% for increasing values 

of N. There were in total 25 = 32 scenarios corresponding to the combinations of the levels of noise 

Y, noise X, ratio, component and structure. Figure 2 contains the results for PX, while outcomes for 

the remaining parameter matrices are reported in Figures S1-S7 as Supplementary Material. Note 

that the mean coverages for PX and PY are also distinguished by high and low loadings. By 

inspecting Figure 2, we can see an appropriate statistical behavior, i.e., the mean coverage tends to 

95% when the sample size N increases. Except for QSPB, for all the remaining three variants, this is 

often visible when N = 500 and, sometimes, even when N = 100. Specifically, in scenarios 

characterized by large ratio, three-component and complex structure, the mean coverages for VSB, 

QSB and VSPB were slightly lower than 95% for samples of size N = 100. Conversely, in such 

scenarios, CIs computed by QSPB presented undercoverage, even more severe when N = 500. In 

general, the statistical behavior of CIs built according to QSPB was not satisfactory in complex 

structure scenarios. Possibly, this is because the simple structure rotated sample loadings in the 

complex condition were rather unstable, because in these cases different rotations may lead to fairly 



 

 23 

similar quartimin values. Since these matrices were taken as references to which population and 

bootstrap loading matrices were rotated, it is conceivable that this instability led to weaker quality 

confidence intervals for QSPB. 

The previous comments also hold for the mean coverages of CIs referring to the high and low 

loadings in PX (Figures S1 and S2, respectively). Some minor differences were visible in the mean 

coverages, but, as far as we saw, no general trends emerged. The mean coverage levels for PY are 

displayed in Figures S3-S5, where the latter two figures concern the high and low regression 

weights. All in all, as we already observed, for each variant, the mean coverages of the CIs for PY 

were by far the best ones in comparison with the other parameter matrices. Consistently with the 

results for PX, appropriate statistical behaviors were observed for all the variants except for QSPB. 

Specifically, as for Px, a pattern of undercoverage occurred. The mean coverage levels for W are 

reported in Figure S6. The differences in the performances of the four criteria were less noticeable 

with respect to PX. However, similar statistical behaviors as with PX emerged. Finally, the mean 

coverage levels for WPY are plotted in Figure S7. As already observed, the same CIs were found 

for all the criteria since WPY is not affected by rotations. In general, we observed undercoverage for 

the CIs independently of the design variables. 

 

4.2. Simulation study n. 2 

 

A smaller simulation study has also been implemented aiming at assessing the quality of the 

estimated CIs when the components underlying the data had different relevance and strength. In 

doing so, we were interested in studying what happened when fewer components than those used to 

generate the data were extracted. In fact, in the previous simulation study, we used the true number 

of components for fitting PCOVR to the data. In the current simulation study, we checked whether 

and possibly how a wrong choice of R affected the quality of the estimated CIs. 
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4.2.1. Set-up 

 

The set-up of this simulation study took inspiration from the one of “Simulation study 1” of 

Vervloet et al. (2016). We assumed to deal with a population of 10,000 units. on which K = 1 

criterion and J = 24 or J = 48 predictor variables were observed. Following the usual notation, we 

simulated population data as: 

 

 yPOP = TPOPpY
POP + εYeY

POP, (24) 

 XPOP = TPOPPX
POP + εXEX

POP, (25) 

 

where yPOP and ePOP are now vectors of length 10,000 and pY
POP is a vector of length 4, i.e., R = 4 

components were used to generate data. The vector pY
POP was constructed according to three cases. 

Namely, R/2 (= 2) elements (the second and the fourth) were always set to 0 and the remaining R/2 

values (respectively, the first and the third) were equal to 0.71 and 0.71 (case labelled no 

difference), 0.60 and 0.80 (case small difference) and 0.44 and 0.90 (case large difference). As in 

Vervloet et al. (2016), this structure of pY
POP allowed for varying the relevance of the components. 

In the current study, we were interested in assessing whether and how this affected the quality of the 

obtained CIs. The matrix PX
POP was such that, for every variable, one loading was equal to 1 and 

the other ones were 0. For every component, the numbers of loadings equal to one differed in order 

to consider various levels of strength of the components. Such numbers were chosen in the same 

way as in Vervloet et al. (2016) and reported in Table 8 leading to six cases labelled ‘4% vs 46%’, 

‘8% vs 42%’, ‘13% vs 38%’, ‘17% vs 33%’, ‘21% vs 29%’ and ‘25% vs 25%’. For instance, ‘4% vs 

46%’ means that, when J = 24, two components had (1/24)×100%  4% of loadings equal to 1 and 

the other two components (11/24)×100%  46% loadings equal to 1. When J = 48, such percentages 

corresponded to about (2/48)×100% and (22/48)×100%, respectively. Such a design variable 

allowed us to see whether under such conditions differences between the quality of the CIs could be 
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discerned. The elements of TPOP were randomly drawn from the standard normal distribution and 

the same was done for the elements of eY
POP and EX

POP. Next, these were normalized such that || 

eY
POP || = || TPOPpY

POP ||, and || EX
POP || = ||TPOPPX

POP ||, respectively. In addition, to tune the amount 

of noise in the population data matrices, eY
POP and EX

POP were also multiplied by the scalars εY and 

εX. These two scalars took three levels (0.05, 0.25 and 0.45).  

 

TABLE 8 HERE 

 

Once the population data were available, we randomly generated sample data with N = 200. For 

each condition, 25 sample data sets were randomly generated from the population data. The design 

was fully crossed leading to 3 (levels of noise for y, εY) × 3 (levels of noise for X, εX) × 2 (numbers 

of predictor variables, J) × 3 (levels of relevance: no difference, small difference, large difference) 

× 6 (levels of strength: ‘4% vs 46%’, ‘8% vs 42%’, ‘13% vs 38%’, ‘17% vs 33%’, ‘21% vs 29%’, 

‘25% vs 25%’) × 25 (sample replications) = 8,100 sample data sets. 

 

4.2.2. Results 

 

The PCOVR analysis (including the selection of α) and the assessment of the coverage of the CIs of 

PX, pY, W and WPY was done as described in Section 4.1.2. The most relevant difference is that the 

true population parameter matrices and the sample ones were the ones estimated by applying 

PCOVR to the population data by extracting not only the proper number of components (R = 4), but 

also a lower number (R = 3) to assess whether this affected the coverage. 

The mean 95% coverage levels computed with respect to all the 8,100 datasets and distinguished by 

parameter matrix are displayed in Figure 3. 

 

FIGURE 3 HERE 
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The results were consistent with those registered for the previous simulation study. Namely, once 

again, we observed undercoverage on average with respect to the CIs for all the parameter matrices 

except for pY for which the mean coverage was around the desired level. Although some differences 

occurred, such a comment largely holds for all the estimation strategies. An interesting finding was 

that, in case of misspecified model, i.e., fewer components extracted than the true number, 

undercoverage was more severe on average. This was mainly observed for W and WpY and, to a 

limited extent, for Px and pY. Given the impact of a wrong number of components on the coverage, 

we further inspected this situation. For this purpose, we considered a subset of 3 × 3 × 2 × 3 × 6 = 

324 randomly generated data sets corresponding to the first replication of every scenario and 

studied the width of the CIs for pY. Note that the components have been ordered with respect to the 

CI widths for the elements of pY, in increasing order. Figure 4 contains the boxplots of the CI 

widths for pY distinguished by the number of extracted components R and the criterion for 

estimating CIs. 

 

FIGURE 4 HERE 

 

We discovered that extracting a smaller number of components led to rather unstable solutions and, 

therefore, the CIs were relatively wide when R = 3 compared to when R = 4. In particular, one 

component (C3) appeared to be extremely unstable. Such a phenomenon occurred for all the 

criteria. Now one might think that such wider intervals would not lead to undercoverage, but rather 

to overcoverage (as wider intervals cover more values). However, the instability of the parameters 

can be expected to also make the estimates of the intervals less stable, and could therefore lead to 

more generally less predictable and desired behavior. Why then this led to undercoverage and not to 

overcoverage is not fully clear to us, but obviously, given that the nominal coverage should be 95% 

it can not easily get higher, whereas it can easily get lower. Furthermore, as expected, the use of 
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‘Fixed criterion’ strategies led to CIs wider than the corresponding ‘Procrustes rotation’ strategies, 

i.e., VSB vs VSPB and QSB vs QSPB. This was observed for both the cases with R = 3 and R = 4. 

To gather more information, we investigated whether and how the coverage differed with respect to 

the levels of the design variables. From the previous simulation study, we observed a slight impact 

on the estimated CIs by the number of (predictor) variables and the levels of noise. For this reason, 

we checked how such design variables affected the coverage. Such mean coverages for each 

parameter matrix are reported in Figures S8-S11 (Supplementary Material). All in all, the mean 

coverages remained stable even if a few minor differences were found especially for W and WpY. 

Based on this result, we then studied whether coverage depended on the different relevance and 

strength of the components.  

 

FIGURE 5 HERE 

 

Figure 5 contains the mean coverages for all the parameter matrices distinguished by all 

combinations of levels of the design variables relevance and strength. First, we noticed a more 

pronounced undercoverage on average when R = 3 components were extracted in comparison with 

the R = 4 case. This occurred for all the parameter matrices except for pY. As far as we saw, the 

relevance of the components had a negligible impact on the mean coverage levels. On the contrary, 

they appeared to be related to the strength. However, this especially holds for W and WpY. In 

particular, the mean differences in coverage between the R = 3 and R = 4 cases were larger when 

the components had almost the same strength (‘17% vs 33%’, ‘21% vs 29%’, ‘25% vs 25%’). If so, 

the model misspecification remarkably increased the risk of estimating CIs with undercoverage. 

Differences were smaller for the remaining levels of strength, in particular for ‘4% vs 46%’. In such 

a case, the mean coverages were essentially the same, apart from WpY in the no difference case. We 

also observed that, for the ‘4% vs 46%’ scenario, the worst mean coverage (severe undercoverage) 

of the CIs for W and WpY was registered. Hence, such CIs should be taken with a pinch of salt if 
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underlying components are expected to have rather different strength. Note that the previous 

comments hold for all the four criteria for estimating CIs.  

 

 

5. Discussion 

 

The paper discussed some variants for computing CIs for the parameter matrices of the PCOVR 

solution. In the PCA framework, this point has been investigated and there is a certain consensus 

towards the use of bootstrap CIs for making inference on the PCA solution. Among the various 

alternatives for computing CIs, those based on the bootstrap BCa percentile method, appear to be 

the most valuable choice (see Timmerman et al., 2007). In the PCOVR framework, as far as we 

know, no studies have been carried out yet. This stimulated us to study the performance of the 

bootstrap BCa percentile method for computing CIs for the parameter matrices of a PCOVR 

solution. By comparing PCA and PCOVR, some common and distinctive features are visible. The 

most important distinctive feature concerns the higher level of complexity for PCOVR because 

inference can be made for more than one parameter matrix, while for PCA attention is paid only to 

the component loading matrix. In fact, CIs can be computed for the matrices, i.e, PX and, PY, but 

also for the component weight matrix W and the combined matrix WPY expressing the regression 

weights. The most relevant common aspect involves. To handle the non-uniqueness of the PCOVR 

solutions. Thus, suitable strategies are needed. In the paper, we considered four variantsstrategies 

involving the varimax and quartimin rotations of PX and distinguishing the use of a fixed criterion 

and the Procrustes rotation. 

The results ofBy a simulation experiment aiming at assessing the quality of the four above-

mentioned variants for handling the rotational freedom in PCOVR solutions and analyzing their 

impact on the CIs for the four above-mentioned parameter matrices have been reported. In 

particular, by the simulation experiment, we studied whether the coverage of the CIs obtained by 
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using the four above-mentioned strategies tended to expected levels as the sample size increased. In 

doing so, we did not make a comparative assessment among the variants because the variants 

determine CIs expressing different types of uncertainty and, hence, are not comparable.  

TheThe simulation experiment offered recommendations on the computation of CIs for the PCOVR 

parameters when doing empirical research. In fact, some differences in the statistical behavior of the 

CIs emerged with respect to the adopted variant, the parameter matrix, and the characteristics of the 

data. In some cases, the obtained CIs appeared to be reasonably good estimates, in some others, the 

quality degraded. Going into details, the simulation experiment was split into two parts. In the first 

one, we considered the case with more than one criterion variable and studied the statistical 

behavior of the estimated CIs in different scenarios. We found that, in general, a relatively small 

number of units (about 100) allows for building CIs that are reasonably good in terms of coverage. 

When the underlying structure of the components is complex, i.e., with predictor and criterion 

variables related to more than one component, a larger number of units should be used for 

computing CIs. This seems to hold especially for those variants based on the quartimin rotation. In 

particular, in such complex scenarios, the statistical behavior of CIs built according to QSPB was 

quite poor. Possibly, this is because the simple structure rotated sample loadings in the complex 

condition were rather unstable, because in these cases different rotations may lead to fairly similar 

quartimin values. Since these matrices were taken as references to which population and bootstrap 

loading matrices were rotated, it is conceivable that this instability led to weaker quality CIs for 

QSPB. 

Apart from the adopted variant, some differences in the quality of the CIs for the parameter 

matrices emerged. In particular, we can state that the CIs for PX and PY are more accurate than 

those for W and WPY, especially, PY are more accurate than those for W and WPY. The lowest 

quality of the CIs for WPY can possibly be explained by the fact that such CIs are affected by a 

double source of uncertainty, i.e., those concerning the CIs for W and PY. The poorer quality of the 
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CIs for W in comparison with those for PX and PY is less easy to understand. Future research will 

be needed to understand this result in detail. 

The previous results were observed when PCOVR was applied by setting the true number of 

components and avoiding considering components having different relevance and strength. This 

point was addressed in the latter part where datasets involving one criterion variable were 

generated. We discovered that, to some extent, the relevance and strength of the components 

affected the coverage of the CIs, in particular, for W and WPY. A much more relevant role is 

played by the choice of the number of components. In fact, the quality of the CIs deteriorated when 

fewer components are used than those used to generate the data. This suggests that, if the number of 

components used is too low, one should be careful in interpreting CIs, because they may actually 

have coverages considerably lower than their nominal value. 
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Appendix 

 

The lower and upper bounds of the BCa percentile CIs, depend on the bootstrap distribution and on 

two parameters, z0 and a. The bias-correction parameter, z0, is determined by considering the 

proportion of bootstrap estimates that are less than the observed sample statistic t. It can be 

estimated as 

 

𝑧̂0 = Φ−1 (
∑ 𝐼(𝑡𝑏<𝑡)𝐵

𝑏=1

𝐵
), (A1) 

 

where ( · ) denotes the standard normal cumulative distribution function and 𝐼(𝑡𝑏 < 𝑡) is the 

indicator function equal to 1, if 𝑡𝑏 < 𝑡, and to 0, otherwise. The acceleration parameter, a, is 
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proportional to the skewness of the bootstrap distribution. A common way to estimate a is based on 

the jackknife method. The jackknife is another resampling method that estimates a parameter of 

interest by using the observed sample and adding or removing single units (positive and negative 

jackknife, respectively). According to Lambert et al. (1991), we can estimate a as 

 

𝑎̂ =
∑ [(𝑡+𝑖−𝑡) (𝑁+1)⁄ ]

3𝑁
𝑖=1

6{∑ [(𝑡+𝑖−𝑡) (𝑁+1)⁄ ]
2𝑁

𝑖=1 }
3 2⁄ =

∑ (𝑡+𝑖−𝑡)
3𝑁

𝑖=1

6{∑ (𝑡+𝑖−𝑡)
2𝑁

𝑖=1 }
3 2⁄ , (A2) 

 

where 𝑡+𝑖 is the positive jackknife estimate of θ computed by considering the original sample 

adding unit i, i = 1, …, N. By using (A1) and (A2), the lower and upper bounds of the BCa 

percentile CIs at the confidence level 1 –  are given by 

 

Φ (𝑧̂0 +
𝑧̂0+𝑧𝛾 2⁄

1−𝑎̂(𝑧̂0+𝑧𝛾 2⁄ )
) (A3) 

 

and 

 

Φ (𝑧̂0 +
𝑧̂0+𝑧1−𝛾 2⁄

1−𝑎̂(𝑧̂0+𝑧1−𝛾 2⁄ )
), (A4) 

 

respectively. For further details on the bootstrap refer to, e.g., Efron, & Tibshirani (1993). 
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Table 1. Correlation matrix for the PA tasks 

 

 N S NS NA SS 

N 1.00 0.25 0.51 0.49 0.46 

S  1.00 0.34 0.55 0.43 

NS   1.00 0.68 0.66 

NA    1.00 0.72 

SS     1.00 
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Table 2. Varimax rotated component loading matrix for the predictor variables (PX). Component 

loadings higher than 0.30 in absolute sense are in bold. 

 

 Component 1 Component 2 Component 3 

N 0.25 0.11 0.96 

S 0.20 0.96 0.10 

NS 0.83 0.09 0.32 

NA 0.74 0.45 0.27 

SS 0.84 0.26 0.21 
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Table 3. Regression weight matrix for the criterion variables on the components (Py). 

 

 Component 1 Component 2 Component 3 

SAT  0.15 0.23 0.24 

PPVT 0.47 0.17 0.25 

RPMT 0.23 0.26 0.16 
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Table 4. Regression weight matrix for the criterion variables on the predictor variables (WPy). 

 

 SAT PPVT RPMT 

N 0.20 0.11 0.09 

S 0.18 0.01 0.18 

NS 0.00 0.19 0.04 

NA 0.08 0.17 0.11 

SS 0.02 0.19 0.07 
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Table 5. BCa percentile CIs at the confidence level 0.95 for PX. 

 

VSB  VSBP 

Component 1 Component 2 Component 3  Component 1 Component 2 Component 3 

(0.16, 0.39) (–0.02, 0.22) (0.94, 0.98) N (0.15, 0.36) (–0.04, 0.22) (0.94, 0.99) 

(0.11, 0.30) (0.93, 0.99) (–0.01, 0.20) S (0.02, 0.34) (0.91, 1.00) (–0.02, 0.21) 

(0.35, 0.94) (–0.16, 0.27) (0.14, 0.66) NS (0.46, 0.96) (–0.10, 0.36) (0.02, 0.57) 

(0.47, 0.87) (0.24, 0.68) (0.11, 0.45) NA (0.54, 0.84) (0.30, 0.60) (0.12, 0.46) 

(0.48, 0.94) (0.10, 0.56) (–0.02, 0.59) SS (0.61, 0.95) (0.11, 0.46) (–0.08, 0.54) 
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Table 6. BCa percentile CIs at the confidence level 0.95 for PY. 

 

VSB  VSBP 

Component 1 Component 2 Component 3  Component 1 Component 2 Component 3 

(–0.15, 0.44) (0.01, 0.45) (–0.18, 0.47) SAT  (–0.09, 0.41) (0.00, 0.44) (–0.19, 0.48) 

(0.17, 0.65) (–0.04, 0.41) (0.04, 0.45) PPVT (0.23, 0.64) (–0.04, 0.38) (0.04, 0.50) 

(0.05, 0.44) (0.00, 0.44) (–0.04, 0.35) RPMT (0.05, 0.43) (0.00, 0.45) (–0.03, 0.35) 
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Table 7. BCa percentile CIs at the confidence level 0.95 for WPy. 

 

VSB & VSBP 

 SAT PPVT RPMT 

N (–0.23, 0.44) (–0.15, 0.32) (–0.12, 0.27) 

S (–0.08, 0.38) (–0.22, 0.19) (–0.10, 0.37) 

NS (–0.36, 0.13) (0.06, 0.30) (–0.18, 0.17) 

NA (–0.07, 0.13) (0.06, 0.25) (0.02, 0.18) 

SS (–0.18, 0.10) (0.08, 0.33) (–0.13, 0.15) 
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Table 8. Number of component loadings equal to 1 per component (Simulation study n. 2). 

 

  Comp. 1 Comp. 2 Comp. 3 Comp. 4 

J = 24 4% vs 46% 1 1 11 11 

 8% vs 42% 2 2 10 10 

 13% vs 38% 3 3 9 9 

 17% vs 33% 4 4 8 8 

 21% vs 29% 5 5 7 7 

 25% vs 25% 6 6 6 6 

J = 48 4% vs 46% 2 2 22 22 

 8% vs 42% 4 4 20 20 

 13% vs 38% 6 6 18 18 

 17% vs 33% 8 8 16 16 

 21% vs 29% 10 10 14 14 

 25% vs 25% 12 12 12 12 
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Figure 1. Mean 95% coverage levels of the CIs for the parameter matrices (Simulation study n. 1). 

The horizontal line indicates the desired coverage level.  
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Figure 2. Mean 95% coverage levels of the CIs for PX (Simulation study n. 1) for increasing 

sample sizes distinguished by all combinations of levels of the design variables. Levels for VSB, 

QSB, VSPB and QSPB are denoted by, respectively, blue filled squares, red filled circles, green 

filled triangles and orange filled diamonds. The horizontal line indicates the desired coverage level.  
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Figure 3. Mean 95% coverage levels of the CIs for the parameter matrices (Simulation study n. 2). 

The horizontal line indicates the desired coverage level.  
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Figure 4. Boxplots of the CI widths for pY (subset of 324 randomly generated data sets in 

Simulation study n. 2) distinguished by the number of extracted components R.  
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Figure 5. Mean 95% coverage levels of the CIs for all the parameter matrices (Simulation study n. 

2) distinguished by levels of relevance and strength of the components. Levels for VSB, QSB, 

VSPB and QSPB are denoted by, respectively, blue filled squares, red filled circles, green filled 

triangles and orange filled diamonds when R = 4 and by the corresponding empty symbols when R 

= 3. The horizontal line indicates the desired coverage level.   
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Figure S1. Mean 95% coverage levels of the CIs for PX (‘high’ values, Simulation study n. 1) for 

increasing sample sizes distinguished by all combinations of levels of the design variables. Levels 

for VSB, QSB, VSPB and QSPB are denoted by, respectively, blue filled squares, red filled circles, 

green filled triangles and orange filled diamonds. The horizontal line indicates the desired coverage 

level.  
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Figure S2. Mean 95% coverage levels of the CIs for PX (‘low’ values, Simulation study n. 1) for 

increasing sample sizes distinguished by all combinations of levels of the design variables. Levels 

for VSB, QSB, VSPB and QSPB are denoted by, respectively, blue filled squares, red filled circles, 

green filled triangles and orange filled diamonds. The horizontal line indicates the desired coverage 

level.  
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Figure S3. Mean 95% coverage levels of the CIs for PY (Simulation study n. 1) for increasing 

sample sizes distinguished by all combinations of levels of the design variables. Levels for VSB, 

QSB, VSPB and QSPB are denoted by, respectively, blue filled squares, red filled circles, green 

filled triangles and orange filled diamonds. The horizontal line indicates the desired coverage level.  
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Figure S4. Mean 95% coverage levels of the CIs for PY (‘high’ values, Simulation study n. 1) for 

increasing sample sizes distinguished by all combinations of levels of the design variables. Levels 

for VSB, QSB, VSPB and QSPB are denoted by, respectively, blue filled squares, red filled circles, 

green filled triangles and orange filled diamonds. The horizontal line indicates the desired coverage 

level.  
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Figure S5. Mean 95% coverage levels of the CIs for PY (‘low’ values, Simulation study n. 1) for 

increasing sample sizes distinguished by all combinations of levels of the design variables. Levels 

for VSB, QSB, VSPB and QSPB are denoted by, respectively, blue filled squares, red filled circles, 

green filled triangles and orange filled diamonds. The horizontal line indicates the desired coverage 

level.  
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Figure S6. Mean 95% coverage levels of the CIs for W (Simulation study n. 1) for increasing 

sample sizes distinguished by all combinations of levels of the design variables. Levels for VSB, 

QSB, VSPB and QSPB are denoted by, respectively, blue filled squares, red filled circles, green 

filled triangles and orange filled diamonds. The horizontal line indicates the desired coverage level.  
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Figure S7. Mean 95% coverage levels of the CIs for WPY (Simulation study n. 1) for increasing 

sample sizes distinguished by all combinations of levels of the design variables. Levels for VSB, 

QSB, VSPB and QSPB are denoted by, respectively, blue filled squares, red violet filled circles, 
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green filled triangles and orange filled diamonds. The horizontal line indicates the desired coverage 

level.  
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Figure S8. Mean 95% coverage levels of the CIs for PX (Simulation study n. 2) distinguished by 

the design variables. The horizontal line indicates the desired coverage level.   
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Figure S9. Mean 95% coverage levels of the CIs for pY (Simulation study n. 2) distinguished by the 

design variables. The horizontal line indicates the desired coverage level.   
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Figure S10. Mean 95% coverage levels of the CIs for W (Simulation study n. 2) distinguished by 

the design variables. The horizontal line indicates the desired coverage level.   
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Figure S11. Mean 95% coverage levels of the CIs for WpY (Simulation study n. 2) distinguished by 

the design variables. The horizontal line indicates the desired coverage level. 


