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Deep convolutional networks have become a powerful tool for medical imaging diagnostic. In pathology, most efforts have been
focused in the subfield of histology, while cytopathology (which studies diagnostic tools at the cellular level) remains
underexplored. In this paper, we propose a novel deep learning model for cancer detection from urinary cytopathology
screening images. We leverage recent ideas from the field of multioutput neural networks to provide a model that can efficiently
train even on small-scale datasets, such as those typically found in real-world scenarios. Additionally, we argue that calibration
(i.e., providing confidence levels that are aligned with the ground truth probability of an event) has been a major shortcoming of
prior works, and we experiment a number of techniques to provide a well-calibrated model. We evaluate the proposed
algorithm on a novel dataset, and we show that the combination of focal loss, multiple outputs, and temperature scaling

provides a model that is significantly more accurate and calibrated than a baseline deep convolutional network.

1. Introduction

Bladder cancer is a widely diffused life-threatening risk for
people in between 65 and 84 years of age, with men being
targeted two to three times more than women [1]. In Italy,
it is the fourth most common cancer in men (12%) and the
fifth most common in the total population (8%), with 5-
year survival estimated to be around 79% (http://www
.salute.gov.it, 2019). Urinary cytology (UC) is an essential
screening test in the detection of urinary tract cancers, most
notably urothelial carcinomas [2]. Its main purpose is the
surveillance and detection of urothelial neoplasms, with its
strength being its specificity for the detection of high-grade
carcinomas. In particular, today the examination of UT speci-
mens in the cytopathology laboratory is typically used to screen
for urothelial neoplasms in two populations: patients with new-
onset and patients with a history of urothelial neoplasia, as
urothelial carcinomas have high recurrence rates [3]. UC
samples constitute a significant percentage of daily nongyneco-
logic cases in any cytopathology laboratory and are one of the
most difficult specimens that pathologists encounter [4].

As a result, trained clinicians have to analyze a very large
number of UC samples daily, a process which is generally
considered complex, time-consuming, and prone to strong
intervariability. Because of this, a large amount of work has
gone into the definition of precise criteria and methods to
analyze UC samples and maximize their cost-effectiveness.
Among them, the Paris System for Reporting Urinary Cytol-
ogy (PSRUC) is currently the most successful categorization
[5, 6]. While the categorization is considered efficient in
practice [7], interpretation of UC images is still limited by a
certain degree of subjectivity, large variations in interpreta-
tions, eye fatigue, and, most notably, time requirements,
and the field could highly benefit from more effective support
tools for partially automating, e.g., the diagnosis of easy,
high-grade carcinomas.

In cytopathology, the combination of image analysis and
deep learning could be the key to reduce the factors that can
cause diagnostic errors, including the great variability of
morphological features in the sample, the similarity between
normal and suspicious forms, morphological alterations in
the inflammatory context, and the difficulty of interpreting
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cellular alterations in case of inexperience. While the use of
neural networks in cytopathology dates back at least to
1998 [8], recent progress in deep learning promises to pro-
vide more effective support tools in healthcare [9], with deep
neural networks having obtained numerous high-profile
successes ranging from diabetic retinopathy [10] to chest
radiography and detection of skin cancer in dermatology
[11]. Support tools for clinicians with high accuracy and
sensitivity promise to significantly increase the cost-
effectiveness of medical analyses in multiple fields, including
cytology [12]. Still, multiple constraints and challenges need
to be faced in order to make deep learning a suitable UC tool
in support of clinicians, as described next.

1.1. Contributions of the Paper. This paper explores the use-
fulness of deep convolutional neural networks (CNNs) in
the context of automatic detection of urothelial cancer cells
from UC screenings. While a small number of preliminary
works have explored similar ideas (see in particular the over-
view of related literature in Deep Networks for Medical Imag-
ing), we identify a pair of shortcomings in past literature that
we use as objectives when building the proposed architecture.

L1.1. Objective 1: Accuracy in the Small-to-Medium Data
Regime. A standard pipeline for applying CNNs to medical
imaging (shared by most prior works) is to leverage deep
architectures originally designed for large-scale object recog-
nition (e.g., the VGG, Inception, or ResNet families of
models) and their pretrained weights originated from one
or more real-world datasets [13]. We argue that this is subop-
timal in our domain, where most datasets are relatively small
in magnitude. To this end, we leverage recent work in multi-
exit deep networks (see Multioutput Deep Networks) to
design a model that is more data-efficient in the regime under
consideration. The basic idea is to endow a simple CNN with
multiple auxiliary classifiers, which are able to process and
predict a label at multiple scales and whose predictions are
then adaptively combined during training, as depicted later
on in Figure 1.

1.1.2. Objective 2: Strong Calibration. Calibration refers to the
match between the confidence of a model and the actual like-
lihood of the corresponding event in the ground truth data.
Recent work has shown that deep CNNs tend to be poorly
calibrated and overconfident on a number of examples [14].
In the medical domain, for systems that are used in support
to the clinician, this is a problem insofar as a poorly cali-
brated confidence level cannot be used in a proper risk
assessment procedure [15]. To this end, we explore two tech-
niques to drastically improve the calibration of our model:
training with a focal loss instead of the standard cross-
entropy loss [16] and performing a posttraining calibration
using temperature scaling [14].

To evaluate the proposed model, we collect a novel UC
dataset with a retrospective study design on 60 patients,
which we manually grade according to the PSRUC guidelines
in normal and abnormal cells. The data collection and
preprocessing pipelines are detailed next in Data Collection.
In our experimental section, we show on our UC dataset
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and on a benchmark cell classification dataset that our multi-
exit, calibrated deep CNN strongly outperforms a baseline
CNN both in terms of accuracy and in terms of calibration
in all scenarios that we considered.

1.2. Organization of the Paper. The paper is structured as
follows. In Related Works, we provide an overview of related
works. Materials and Methods describes our proposed
approach, both in terms of problem setup and model archi-
tecture (i.e., multiexit deep networks) and in terms of the
steps we consider to calibrate the overall model. Data Collec-
tion details the procedure we followed to collect our UC
dataset. Finally, Experimental Results provides a thorough
experimental evaluation of the model, and we conclude in
Conclusions with some final remarks.

2. Related Works

We organize our review of related works in three sections. In
Deep Networks for Medical Imaging, we provide an overview
on the application of CNNs to the medical domain and to
urinary cytopathology in particular. In Calibrating Deep
Networks, we overview recent work on evaluating the
calibration of modern deep networks and improving their
calibration during and after training. Finally, in Multioutput
Deep Networks, we describe the reference literature for the
field of multiexit deep networks.

2.1. Deep Networks for Medical Imaging. The interest in
applying deep learning to healthcare stems from the large
successes obtained by convolutional architectures on stan-
dard image classification benchmarks, such as ImageNet
[17]. In the last years, CNNs have obtained several high-
profile results in a variety of medical fields, ranging from
classification of skin cancer in dermatology [11] to detecting
diabetic retinopathy [10]. Further interest has been gained
with the emergence of powerful methods for performing
automatic segmentation of 2D [18] and 3D [19] biomedical
data and for exploiting heterogeneous sources of informa-
tion [20]. We refer the interested reader to specific surveys
[12, 21-24] for an overview of CNN applications in medical
histology and cytology. In the context of urinary cytopathol-
ogy, a number of works [4, 25, 26] have shown promising
preliminary results in automatically detecting carcinomas
from urinary imaging. All of them, however, have focused
on using out-of-the-box CNNs that are fine-tuned to the
medical domain, while in this paper we design a more
sophisticated architecture based on the two objectives
described in Introduction.

2.2. Calibrating Deep Networks. Roughly, a calibrated
network outputs confidences that are in line with the actual
likelihood of the event, which is fundamental for a realistic
risk assessment in a medical domain [15]. For neural net-
works, small models are generally well calibrated [3], while
[14] was the first to observe that this rapidly degenerates in
deeper architectures. Methods to recalibrate a binary classifi-
cation model after training include histogram binning [27],
isotonic regression [28], and Platt scaling [29]. Most of these
methods can also be adapted to multiclass or regression
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FiGure 1: Example of the proposed architecture using a VGG-16 as a backbone network and 5 early exits included after each max-pooling
operation. Exit 6 is the original exit from the backbone, and exit 7 the combined output from (7).

scenarios. In particular, an extension of Platt scaling called
temperature scaling [14] has become a de facto standard in
deep networks, thanks to the possibility of improving the cal-
ibration at no cost in terms of accuracy. Temperature scaling
is also widely used whenever the unnormalized probabilities
of a network need to be smoothed, such as in knowledge
distillation [30] and semisupervised learning [31]. Alterna-
tively, it is possible to design proxy formulations for the
calibration error [16] to be included inside the training
process. Recently, [16] advocated for improving calibration
by exploiting the so-called focal loss [32], which can be seen
as training on a regularized criterion that increases the
entropy of the predictions. In this work, we combine the focal
loss with a posttraining calibration strategy to achieve a
maximally calibrated model.

2.3. Multioutput Deep Networks. Before the introduction of
batch normalization and residual connections, having several
auxiliary classifiers at intermediate points in an architecture,
to facilitate the flow of the gradient to early layers, was a com-
mon practice, e.g., in the Inception family of models [33].
However, these were removed afterwards, and only the last
layer was used for predictions. Deeply supervised nets [34]
were one of the earliest works to consider multiple exits to
actually boost the accuracy of the model, especially in low-
regime scenarios. A number of similar variants were
proposed over the years, including BranchyNet [35], IDK
Cascades [36], Adaptive Early Exit Networks [37], Deep
Cascade Learning [38], and anytime predictions [39]. Part
of these works is motivated by the possibility of training these
architectures layer-wise (e.g., [38, 40, 41]). Another common
thread is the idea of selecting an adaptive depth of the
network independently for every input, which accelerates
inference and can be beneficial especially in an edge context
[35, 37]. Multiexit architectures also introduce challenges
that are beyond the scope of this work, such as selecting the
proper exit for each input [42]. By contrast, we adaptively
combine all the exits in the proposed model with an addi-
tional linear layer, which is trained by backpropagation.
Along this line, [43] considers soft combining all the outputs
with an additional gating network. A tangential problem is
selecting where to place the early exits [44, 45], which is a

combinatorial problem of extreme importance whenever
one faces energy and/or power constraints in IoT environ-
ments. For a more complete survey on the topic of multiexit
neural networks, we refer the interested readers to [43].

3. Materials and Methods

3.1. Problem Setup. Denote by x a generic input image to the
classification system. In this paper, the input is a fixed-size
H x W x 3 crop of the original medical scan (in particular,
H =W =128 in the experimental section). The task is to train
a suitable classification model f(x) that can diagnose the
input image into C distinct classes, e.g., describing the type
of cancerous cells present in the cropped portion of the
image. Most deep learning models define f as the composi-
tion of L differentiable operations f = f* o f*'o...of', which
can be either convolutional mappings, pointwise nonlinear-
ities, pooling layers, batch normalization, or several others
[46]. For example, a convolutional block is defined as

Kl = ¢(w*hf), (1)

where h; is the activation map from the previous layer,
denotes cross-correlation with the set of trainable weights
w, and ¢ is a nonlinearity, typically ReLU (i.e., ¢(s) = max
(0,s)). Without loss of generality, the last operation of the
network is always assumed to include a softmax normaliza-
tion, in order to provide a suitably scaled probability distri-
bution in output.

Given a set of N input-output examples {x;, yi}ﬁl, with y,
being the index of the class for the i-th input, the model f is
trained by minimizing a per-example cost to maximize its
training accuracy:

where [ is generally chosen as the cross-entropy loss:



1, f(x)) = =D (3 ¢) log (f(x)). (3)

with f (x) denoting the probability assigned by the network
to class ¢ (the c-th value of the output vector), and (g, b) is
an indicator function whose value is 1 whenever 4 and b
are the same; otherwise, 0. Equation (2) can be optimized
efficiently by performing stochastic optimization on mini-
batches of the full dataset.

Note that the output p = f(x) of the network provides a
probability over classes, from which a prediction is generally
made as y=argmax{p}. Then, we say that a model is

calibrated whenever [14]

Py=ylp=p)=p, Vpe[0.1]. (4)
Similarly, we can define a calibration error (CE) that our
model is incurring as

CE=E[IP(F=y | p=p)-pI]. ()

In practice, both (4) and (5) need to be estimated from
the data. The aim of this paper is to obtain a classification
model for UC screening images which has simultaneously a
high accuracy and a low calibration error, as described next.

3.2. Architecture. As a first point, in this paper, we propose
to leverage the framework of multioutput models [43] to
provide a more data-efficient model in the case in which
N is in the small-to-medium range, which is common in
medical applications. The general idea is to add a number
of auxiliary classifiers departing from a set of middle points
of f, such that the combined accuracy of all classifiers can
improve over the accuracy of f alone. In this setup, we call
f the backbone network, while we refer to each auxiliary
classifier as an early exit.

More formally, denote by & ¢ {1, ---, L} a subset of layers
of f after which we plan to insert an auxiliary classifier. While
the choice of the optimal & is in general a combinatorial
problem [43], we consider here a simplified scenario wherein
an early exit is added after each “macroblock” of f. All com-
mon deep learning models, such as residual networks [46],
easily provide a way of identifying such macroblocks. For
each i € €, we can obtain an early prediction as

fA(x)=¢ (hi) , (6)

where h' = f'(f7!(---f'(x))) is the intermediate output of f
up to layer i and ¢ is the auxiliary classifier. Auxiliary classi-
fiers ¢ are chosen as small classification models in order to
introduce a negligible overhead in terms of computation
and/or number of parameters (e.g., a single linear layer).
Without loss of generality, we assume that L — 1 € &, so that
the original output of the network is included among the
early exits (slightly simplifying the notation to follow).

By denoting by E the number of early exits of the result-
ing model (E = |% | ), the set {fA'(x)},.x provides E possible
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classifications of the original image x (the original classifica-
tion of the backbone plus E — 1 early exits). A relatively open
problem in the field of multioutput NNs is how to properly
select early exits for each input sample, in order to, e.g.,
balance the accuracy with respect to a computational budget
[43]. In this paper, because our main aim is to boost the accu-
racy in a small-data regime, we propose a simple extension of
the ideas in [43] to perform an ensemble of all outputs. In
particular, denote by f(x) the vector concatenation of all early
exits; the final decision of the model is taken by adding an
additional linear layer:

f(x) = softmax (w" f(x)), (7)

where w € RF is a set of trainable coefficients to balance the
contribution of each early exit (an alternative to (7) that did
not provide significant gains in our experimental evaluation
is to stack the classification vectors depth-wise and apply a
set of 1x1 1D convolutions on top of them). The entire
model can be differentiated and trained end-to-end.

An example with VGG-16 [17] as the backbone and five
early exits is provided in Figure 1. In the figure, a “VGG
block” corresponds to the original definition of blocks from
[17],1i.e., a sequence of 1 or more convolutive layers, followed
by a max-pooling operation. Practically, we insert an early
exit after every pooling layer. Exit 6 corresponds to the orig-
inal exit from the backbone, while exit 7 is the combined
output from (7), which is used for predictions (in this config-
uration, exit 5 is similar to exit 6 (a single linear projection
applied on top of the last VGG block), but the parameters
of the two linear projections are different. In a preliminary
experimental evaluation, we have found a decrease in perfor-
mance when removing exit 5).

We can also extend the cost function / to provide a more
comprehensive error signal to the network by adding a loss
term for each early exit for a single input as

j(y,f(x)):“l( ,f(x))+ﬁl%l(y,fAi(x)>]’ (8)

where « and 8 are two nonnegative real values that balance,
respectively, the loss contribution from the combined output
and the loss contributions from each of the early exits
(including the original output of the backbone). Setting o =
0 (i.e., removing the combined output) recovers the deeply
supervised model from [34]. Alternatively, setting decreasing
rates for each loss term can help in rebalancing the gradient
variance [39].

3.3. Model Calibration. The architecture described in the pre-
vious section helps in maximally exploiting the training
information from the training dataset, by adaptively combin-
ing information at different scales in the network, as long as it
propagates different types of error signals during the back-
propagation phase. In this section, we consider the second
objective from Introduction, i.e., the design of a maximally
calibrated model. In particular, we speculate that the multi-
exit design can exacerbate the miscalibration problem
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discussed in Introduction. For this reason, apart from its
importance in the context of medical risk assessement, cali-
bration can also potentially improve the overall performance,
as evidenced in the experimental section.

We consider a two-level calibration procedure, by (i)
modifying suitably the loss function and (ii) applying a
turther posttraining calibration operation on the (combined)
output of the network. For the former, we leverage the ideas
from [16], and we substitute the classical cross-entropy loss
in (2) and (8) with the more calibrated focal loss:

1, f(x) = 200 0 (1 = f(x) log (fo(x)),  (9)

where y is a hyperparameter that is optimized on the valida-
tion set. An informal explanation for the performance of the
focal loss is that it tends to favour points which have a low
confidence, thus reducing the amount of overfitting on
points either correctly predicted or wrongly predicted with
strong confidence from the model [16]. In fact, it can be
shown that while the cross-entropy is maximizing an upper
bound on the Kullback-Leibler divergence KL(pl|p) between
the predicted distribution p and the true one, the focal loss
is maximizing a regularized upper bound [16]:

KL(p||p) - yHIp, (10)

where H[p| denotes the entropy of the predicted distribution
D. We refer to [14, 32] for a more complete discussion on the
properties of the focal loss.

To further improve the calibration strength of the model,
we combine training on the focal loss to a postcalibration
temperature scaling (TS) procedure [14]. Denoting by ¢ =
wlf(x) the combined output in (7) before the softmax, we
replace after training the softmax with a scaled version of it:

~ exp (t./T)
Fi0)= 5 e (T ()
where T is a separate hyperparameter, called temperature,
that we optimize by minimizing the mean cross-entropy on
the validation set (we have found no advantage in optimizing
the temperature parameter directly on the focal loss over the
validation set). TS has the advantage of slightly improving
the calibration of the model, at no cost with respect to the
accuracy, since the relative order of the predicted probabili-
ties is not modified.

3.4. Data Collection. In order to evaluate the proposed archi-
tecture, we collect a novel UC dataset for testing the model.
To this end, we take into consideration a retrospective study
design on a dataset composed of images representing bladder
tissue slides of 60 patients. Within the last 2 years, we
collected material from the archive of the Cytopathology
Laboratory Unit hosted in the Sant’Andrea Hospital from
the Sapienza University of Rome, using the laboratory’s
electronic record system. Archived and well-preserved slides
of urinary cytology with good material were chosen for the
purpose of the study. All samples were prepared with con-

ventional systems and stained with the Papanicolaou proce-
dure. A digital still camera DP27 (Olympus) with a x40
objective lens attached to a microscope BX45 (Olympus)
was used to take the pictures focusing on the areas of interest
in the smear. Criteria for inclusion in the dataset included
having cells in monolayer arrangement that were well pre-
served and the exclusion of areas with excess of red blood
cells, debris, and inflammation cells.

An expert cytopathologist reviewed all sets of achieved
urine slides and manually identified representative categories
of cells. The Paris system criteria [6] were used to classify
urothelial cells. From this procedure, we obtained 274 images
of urothelial normal cells and 416 abnormal cells. Among
abnormal cells, we included atypical cells wherein the nuclear
cytoplasmatic ratio was greater than 0.5 and when criteria
such as nuclear hyperchromasia or irregular chromatin were
detected. Suspicious cells were selected if the nuclear cytoplas-
matic ratio was greater than 0.7 (i.e., associated with hyper-
chromasia, chromatin, and nuclear irregularity). Finally, we
included high-grade urothelial cells with hyperchromasia,
irregular nuclear contours, and coarse chromatin. The UC
slides were prepared similarly using conventional systems
and stained as described above. We show in Figures 2 and 3
a few representative examples from both classes.

3.5. Data Preprocessing. Because of the size of our dataset, we
have the necessity of increasing it by applying some image
preprocessing and data augmentation procedures. For this
purpose, we follow the pipeline from [47], where the cytolog-
ical images are initially cropped in 4 parts from the center
point, obtaining four separate cell images from each original
image in the dataset. We then randomly partition the dataset
using 60% of the patients for training, 20% of the patients for
validation (i.e., selection of all hyperparameters of the
models), and the remaining 20% for testing. Performing the
split at the level of each patient ensures that images (or crops)
belonging to a single patient are all assigned to either train-
ing, validation, or test. For the training part only, we followed
an additional data augmentation procedure and included, for
each image, the corresponding rotation by 90°, 180°, and
270°. No additional preprocessing was performed on the
data, in order to focus on the impact of the choice of the
architecture and training strategies. Some additional statistics
on the dataset are provided later on in Table 1.

4. Experimental Results

4.1. Experimental Setup. We evaluate the proposed multiexit,
calibrated architecture from Materials and Methods on the
UC dataset described in Data Collection. For completeness
of evaluation, we also consider a separate benchmark dataset,
the BCCD dataset of blood cell classification [48] (https://
github.com/Shenggan/BCCD_Dataset). The BCCD dataset
contains approximately 12,500 images of cells in four differ-
ent classes, namely, eosinophil, lymphocyte, monocyte, and
neutrophil. We consider this benchmark dataset in its origi-
nal multiclass formulation and a binary formulation where
we group all cells into granulocytes (neutrophils and eosino-
phils) and agranulocytes (lymphocytes and monocytes). We
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FIGURE 2: Representative examples from the normal portion of the dataset.
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FIGURE 3: Representative examples from the abnormal portion of the dataset (see the main text for a description of the data collection

procedure).

TABLE 1: Statistics of the three datasets in the experimental section.
UC refers to the custom dataset whose data collection procedure is
described in Data Collection.

Training Validation Test

Dataset . . .
classes images images images

ucC 2 2616 872 872

B-

BBCD 2 7509 2503 2503

BBCD 4 7509 2503 2503

denote this last dataset as B-BBCD. Some general statistics
about the three datasets that we consider, in terms of the
number of classes and images in each set, are given in Table 1.
Apart from the standard accuracy on the test set, we are
also interested in evaluating the overall calibration of the
models, for which we follow the standard protocol of binning
the output [14]. Specifically, we divide the interval of predic-
tions into M =10 equispaced bins, each of size 1/M. We
denote by 9%, the indexes of points in the test set falling into
the m-th bin and by B,, the corresponding cardinality (i.e.,
=|%,, | . We define the average accuracy over a bin as

acc(%,,) = Bi Z 135 :)- (12)

mie3RB,,

Similarly, we can define the average confidence of the
network on the bin as

1
conf(%,,) = B Z%; (13)

From these, we can compute the expected calibration error
(ECE), which is an approximation of (5) over the bins, as

M
B
ECE= ) ~ [2ce(B,,) - conf (8,,)|.

i=1

(14)

We will use the ECE over the test set to evaluate the
calibration of all models.

Our baseline model is VGG-16, a relatively common
model in the context of medical imaging. We note that our
main aim in the section is to evaluate the improvements in
accuracy and calibration of our calibrated, multiexit model,
which should be consistent over every choice of the backbone
(we return on this point in the conclusive section). The VGG
family provides a simple way of subdividing the main back-
bone into a number of blocks, which are identified by the
presence of max-pooling operations [33]. In particular, we
include 5 early exits into the model, each one composed of
a flattening operation and a linear classifier. The overall
architecture is described in Figure 1. To evaluate the impact
of our proposals, we consider four variants for each architec-
ture, by training with the cross-entropy loss or the focal loss
and by performing temperature scaling after training or not.
This gives us a total of eight variants. We train every variant
with the Adam optimizer with a learning rate of 10 over
minibatches of 32 images. Each experiment is averaged over
5 independent runs. All hyperparameters are optimized on
the validation set.

4.2. Results and Discussion. Average results, in terms of test
accuracy and test ECE, are provided in Table 2. As a first con-
clusion, we note that the standard CNN setup (no early exits,
trained with a cross-entropy loss) has relatively poor perfor-
mance in all scenarios that we consider, either by looking at
the accuracy of the predictions and by looking at the average
calibration, highlighting the two objectives we set up in Intro-
duction. Simply performing a TS operation (second row of
Table 2) can improve the ECE in two out of three cases, while
maintaining a constant accuracy (by definition). The gain in
ECE, however, is not guaranteed, and in the BBCD dataset,
the average ECE only improves from 5.83% to 4.84%. Next,
training a standard model with the focal loss, as advised in
[14], can improve both the accuracy and the ECE in all sce-
narios. The improvement in ECE, however, is not consistent,
in particular in the B-BBCD case, where the average calibra-
tion error only improves from 3.57% to 3.11%. Combining
the focal loss with a posttraining TS provides a model that
is generally well calibrated and slightly more performing than
the standard one trained with a cross-entropy loss.
Importantly, our proposed multiexit model achieves
significant improvements in accuracy over the baselines in
all scenarios. In particular, when training with the cross-
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TaBLE 2: Results (in terms of test accuracy and test ECE) of all eight variants evaluated on the three datasets. TS refers to a posttraining

temperature scaling operation, as described in Model Calibration.

ucC B-BBCD BBCD
Architecture Loss TS Acc. ECE Acc. ECE Acc. ECE
No 86.60% 4.77% 82.25% 3.57% 78.00% 5.83%
Cross-entropy
Yes 86.60% 1.28% 82.25% 1.15% 78.00% 4.84%
Standard
Focal No 87.07% 1.50% 84.75% 3.11% 78.50% 3.72%
oca
Yes 87.07% 1.11% 84.75% 1.63% 78.50% 3.45%
No 89.13% 3.23% 85.09% 7.91% 84.00% 10.97%
Cross-entropy
L Yes 89.13% 2.30% 85.09% 2.78% 84.00% 521%
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FIGURE 4: Reliability diagrams for the variants without posttraining TS.

entropy loss, we improve over the baseline model by 2.53,
2.84, and 6 percentage points on the three datasets, respec-
tively. Similarly, when training with the focal loss, we
improve over the baseline models by 2.83, 2.32, and 6.54 per-
centage points, respectively. When considering the calibra-
tion of the models, we see from Table 2 that including the
auxiliary classifiers generally worsens the ECE of the models.
We conjecture, and we evaluate later on, that this is due to a
poorer calibration of the first early exits in the models, which
in general are only able to successfully predict a small num-
ber of simple examples [43]. While TS alone provides a good
improvement over the ECE of the models, the best configura-
tion (in terms of both test accuracy and test ECE) is always
our proposed model combining multiexits, focal loss, and
TS. In particular, we achieve the second-best ECE in the UC
and B-BBCD cases and a significantly lower ECE in the BBCD
case. Thus, we conclude that our proposed approach is a good

proposal for satistying the two objectives from Introduction in
the case of medical imaging, especially UC screening.

4.3. Analysis of Calibration. To further evaluate the calibra-
tion of the models, we make use of reliability diagrams [14],
a simple visual aid for understanding whether a model is cal-
ibrated and where it is making the most mistakes. In partic-
ular, in a reliability diagram, we plot the average confidence
for each bin (the same bins we use to compute the ECE),
highlighting with a red colour the gap with respect to a per-
fectly calibrated model, shown on the diagonal (i.e., a model
for which (4) holds). We plot the reliability diagrams for the
UC dataset (the one we are most concerned with) in Figure 4
for the models without TS and in Figure 5 for the models
after performing TS. Like what we noted in the previous sec-
tion, in the absence of TS, the standard model trained with
the focal loss is the most calibrated, although it tends to be
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FIGURE 5: Reliability diagrams after performing TS on the diagrams of Figure 4.
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FIGURE 6: Confidence histograms for the multiexit models trained on the UC dataset.

either overconfident or underconfident for the low-
confidence regions, possibly because of the unbalance in the
two classes in the dataset. For the models with TS, most var-
iants are generally well calibrated, although the standard
model with focal loss and the proposed model with the focal
loss are the most calibrated, as also evidenced by the ECE in
Table 2. Note, in particular, that while the former obtains a
better ECE in Table 2, the reliability diagram provides a more

comprehensive overview of the calibration of the model,
showing that the latter is generally more behaved in low-
confidence regions.

To provide even more insights, we consider a second
common visual tool for evaluating the calibration of a model,
called the confidence histograms, in Figure 6. The confidence
histogram is a histogram of the model confidence on its most
probable prediction, plotted alongside the average accuracy
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FIGURE 7: Accuracy and ECE for each early exit for the proposed model on the UC dataset.

and confidence (using yellow and red dashed bars, respec-
tively). The match between the two vertical lines provides a
visual representation of the calibration. In particular, focus-
ing our attention on Figure 6(c), we see that the reason for
the low ECE exhibited by the multiexit architecture with
the focal loss is the presence of a number of predictions made
with a medium level of confidence, a region in which the
model is significantly less calibrated (e.g., compare this with
Figure 4(d)). Temperature scaling is able to reverse this
behaviour by smoothing out these predictions, providing a
calibration histogram in line with its other calibrated variants
(e.g., Figure 6(b)).

Finally, we conclude by analyzing the average test accu-
racy and ECE for each early exit individually, focusing on
the model trained with the cross-entropy loss on the UC
dataset (results are similar for the other scenarios and are
omitted for brevity). While these early exits are never used
directly for the prediction (which is only obtained by the
adaptive combination from (7)), analyzing their output in
isolation provides some interesting information on the
behaviour of the model. We show this in Figure 7, where
the x-axis indicates the index of the early exit, with exit 6
being the original exit of the model (see Figure 1). We visual-
ize the behaviour in both the presence and absence of tem-
perature scaling. We already stated earlier that it is a known
fact that the first early exits, when taken in isolation, have
very poor test accuracy [43]. Here, we note that they also tend
to have a correspondingly poor calibration, as shown in
Figure 7(b). TS is able to uniform both the accuracy and
the calibration of the exits to an extremely strong degree, thus
contributing to an excellent trade-off between accuracy and
calibration. In fact, we hypothesize that calibration is a fun-
damental topic for multiexit networks, and a further study
in this context could provide valuable improvements even
beyond medical imaging.

For completeness, we visualize in Figure 8 the evolution
of the loss for the standard model compared to the multiexit
model on a representative execution of the algorithms.

0.40
0.35 4
L, 0301
k
0.25 1
0.20
0.15 1
0 2 4 6 8
Epoch
—— Standard
—— Multi-exit

F1GURE 8: Evolution of the loss of the standard and multiexit model
on the UC dataset.

5. Conclusions

In this paper, we showed that a combination of multiple early
exits, training with focal loss, and further calibrating the
output of the model with a temperature scaling procedure
produces models that are significantly more accurate and
calibrated than baseline CNN architectures on cell classifica-
tion problems. In particular, we evaluate the model on a
novel urinary cytology dataset collected with a retrospective
study design on 60 patients.

This study has a number of future works that we plan to
explore over the following months. First, we envision to
extend our data collection pipeline to include a more fine-
grained evaluation for the cell dataset in accordance with
the PSRUC guidelines and possibly extend beyond pure
classification to segmentation and detection tasks. Secondly,
attention-based models are currently achieving state-of-the-
art performance in a number of domains [49], and we plan
on investigating whether this gain extends to scenarios in
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medical imaging, particularly by endowing the transformer
architectures with a number of early exits as done in this
work. Finally, we envision to evaluate the interplay between
early exits, calibration, and interpretability of the resulting
activation maps, which is another major challenge in the
medical domain.
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