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ABSTRACT. Density fluctuations in simple liquids are analysed in the context of three
different and widely used formalisms, whose equivalence in the hydrodynamic limit is
shown. We, furthermore, address the issue of the dispersion of the propagating modes
outside the hydrodynamics, by comparing three different definitions of the generalized sound
velocity. The first definition is standard in statistical mechanics. It relates the sound velocity
to the imaginary part of the complex conjugate poles of the so-called intermediate scattering
function. Other definitions, frequently used in the literature, identify the characteristic
frequencies of the inelastic excitations with the maxima of the inelastic features of the
dynamic structure factor, or with the maxima of the current function. The behaviour of these
three quantities in the hydrodynamic limit is discussed. Deviations from hydrodynamic
dispersion law are also considered with particular emphasis given to the analysis of different
sound propagation regimes related to different density fluctuations decay channels.

1. Introduction

Propagating density fluctuations can be measured in different regions of the Q−ω

(wave number – frequency) plane by Brillouin Light Scattering (BLS), Inelastic X-ray
Scattering (IXS) and Inelastic Neutron Scattering (INS) which span the range of wave
numbers from hydrodynamic (BLS) to short-wavelength region (INS/IXS). Traditionally,
the experimentalists identify the characteristic frequency of the density-fluctations modes
with the maxima of the dynamic structure factor, S(Q,ω), or, alternatively, with the maxima
of the longitudinal current, J(Q,ω). The maxima of the two functions S(Q,ω) and J(Q,ω)
coincide in the hydrodynamic region, but, they can, however, differ outside the small Q
region, as follows from the relation

J(Q,ω) =
ω2

Q2 S(Q,ω). (1)

On the theoretical side, the standard definition of collective excitations in statistical
mechanics is via the poles of the Green functions or of the dynamic response functions.
It has not yet been, however, established the exact correspondence between the analytical
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definition of the collective excitations and the direct observation of the peak in S(Q,ω) or
J(Q,ω) used by the experimentalists. One of the first studies in this direction was performed
by Bafile et al. (2006).

Before to analyze both the theoretical and empirical definitions of the speed of sound,
we will discuss three different theoretical frameworks aimed to describe density fluctuations
in a monoatomic fluid. Particular emphasis is deserved to their ability in modelling the
Rayleigh-Brillouin spectra.

The manuscript is organized as in the following. Section 2 describes how density
fluctuations can be characterized in the hydrodynamic region by providing the solution of the
phenomenological equations of macroscopic fluid mechanics (linearized hydrodynamics).
Characteristic parameters defining the fluid mechanics equations are the thermodynamic
quantities and the macroscopic transport coefficients. Standard treatment is exploited.
The expression of the dynamic structure factor related to density fluctuations is given in
this framework. Section 3 introduces two well-known and largely exploited approaches
aimed to generalizing the hydrodynamics results to the region of higher wavevectors and
frequencies, i.e., the Memory function and the Generalized Collective Modes (GCM)
frameworks. The second order memory function accounts for all the relaxation mechanisms
affecting longitudinal acoustic dynamics. The characteristic parameters are the amplitudes
and the characteristic times of the different decaying contributions entering the memory
function. Characteristic parameters of the GCM are instead the initial values and the time
integrals of the time correlation functions (which can be eventually obtained by Molecular
Dynamics simulations). As an original result of the present manuscript the two approaches
are compared between them, showing their equivalence in the hydrodynamic limit where
the results obtained in both the frameworks converge to the correct hydrodynamics results.
Section 4 analyses the expressions related to three different definition of speed of sound,
currently exploited in literature with particular emphasis to the transition between different
sound propagation regimes.

2. Linearized hydrodynamics

The nature of macroscopic sound propagation in fluids is very different from the case
of solids, where atoms are restricted to small oscillations around stable potential energy
minima. In liquid state instead one has to treat density fluctuations which are constrained by
local conservation laws (Landau and Lifshitz 1987). Hence, the existence of macroscopic
density fluctuations in simple fluids is governed by three general local conservation laws:
conservation of number of particles, total momentum and energy (Landau and Lifshitz
1987; Hansen and McDonald 1990; Boon and Yip 1991; Pecora 2013). This means that
once a macroscopic density fluctuation emerged in fluid, it cannot dissipate locally but
starts propagating due to local conservation laws, that is the essence of the hydrodynamic
mechanis of sound propagation in fluids. The basic variables of fluid mechanics are the
densities of conserved quantities: number density ρ(r, t), momentum density J(r, t) and
energy density e(r, t), given as functions of the space coordinate (r) and time (t). The
five balance equations for these quantities in terms of the flux densities associated to each
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variable read as

ρ̇(r, t)+∇ ·J(r, t) = 0; (2)
J̇(r, t)+∇ · σ̂(r, t) = 0; (3)
ė(r, t)+∇ ·Je(r, t) = 0, (4)

where σ̂(r, t) is the momentum flux, or stress tensor, and Je(r, t) is the energy flux. We
would like only to mention here, that for the case of n-component liquid mixtures the
number of conserved quantities, and corresponding balance equations, will be 5+(n−1),
because of additional conservation of n−1 local concentrations in liquid mixtures.

We will not repeat the standard procedure of obtaining the closed set of balance equations
by making use of the expression for the stress tensor and of thermodynamic relations
between macroscopic fluctuations of pressure, density and temperature (Landau and Lifshitz
1987; Hansen and McDonald 1990; Boon and Yip 1991). We only stress the convenience to
use temperature density instead of energy density, which ultimately results in a complete
set of equations (five equations) with respect to the variables ρ,T,J. These equations are
simplified by retaining only terms of leading order in the deviations of all the independent
variables from their average (linearization) and taking the double Fourier-Laplace transform
in space and time,

Ãq(z) =
∫︂

∞

0
dte−zt

∫︂ +∞

−∞

eiQ·r
δA(r, t) (5)

(A = ρ , J, T). One last step follows, consisting in the separation of the longitudinal and
transverse part of J̃q(z) with respect to the direction defined by the momentum Q, by
convention directed along the z-axis. The matrix of coefficients of the linear system of
equations obtained in the Fourier-Laplace domain, is known as hydrodynamic matrix (Boon
and Yip 1991). The hydrodynamic matrix, T , is block-diagonal, the transverse current
fluctuations being completely decoupled from the fluctuations of other variables. The
analysis can be thus focused on the remaining three variables: density, temperature and
longitudinal current (Jl) (Boon and Yip 1991). The system of linear equations for these
variables in the Fourier-Laplace space can be written as⎛⎝ z iQ 0

γ−1c2
SiQ [z+νQ2] γ−1αc2

SiQ
0 α−1(γ −1)iQ [z+ γDTQ2]

⎞⎠⎛⎝ ρ̃q(z)
J l̃

q(z)
T̃ q(z)

⎞⎠=

⎛⎝ ρq
Jl

q
Tq

⎞⎠ , (6)

where cs, DT, ν are adiabatic speed of sound, thermal diffusivity and longitudinal kinematic
viscosity, and γ =CP/CV, α are ratio of specific heats and thermal expansion coefficient,
respectively. No approximation, but linearization, has been done in writing Eq. (6). It is
clear from (6) that the fluctuations of ρ , Jl and T are coupled together, we can thus refer
to longitudinal modes referring to the decay mechanisms of fluctuations in these three
variables.

We define the vector F(Q, t) =
(︁
ρ(Q, t),Jl(Q, t),T (Q, t)

)︁
and its conjugate in time-

Laplace transform F̃(Q,z). The i-th component of F̃(Q,z) is found to be:

F̃ i(Q,z) = [detT (Q,z)]−1
∑

j
Pij(Q,z)Fj(Q, t = 0) (7)
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The algebraic functions Pij(Q,z) are the elements of minors of T (Q,z). The matrix of
correlation functions can be computed as⟨︁

F̃ i(Q,z)F∗
l (Q)

⟩︁
= [detT (Q,z)]−1

∑
j

Pij(Q,z)
⟨︁
Fj(Q)F∗

l (Q)
⟩︁
, (8)

where ⟨...⟩ is the ensemble average over the initial values of the variables. The intermediate
scattering function for ρ fluctuations, F̃(Q,z), is given by⟨︁

ρq(z)ρ∗
q
⟩︁⟨︁

ρqρ∗
q
⟩︁ =

F̃(Q,z)
S(Q)

=
z2 +Az+B

z3 +Az2 +Cz+D
, (9)

where
A = γDTQ2 +νQ2

B = γDTνQ4 + γ−1
γ

c2
SQ2

C = γDTνQ4 + c2
SQ2

D = DTc2
SQ2

(10)

The dynamic structure factor, S(Q,ω), can be found according to the relationship (Boon
and Yip 1991)

S(Q,ω) =
1
π

ReF(Q,z = iω). (11)

It can be expressed as a function of the poles of the intermediate scattering function, requir-
ing that we find the roots of the denominator of Eq. (9) when it is set to zero (dispersion
equation). This will be discussed in Sec. 4. We report here the standard approximated
expression for S(Q,ω). Usually, in treating the hydrodynamic limit it is adopted an ap-
proximate expression for the roots of the dispersion equation in order to skip algebraic
complexity (Boon and Yip 1991). They are valid when DTQ/cS and νQ/cS are small. The
poles of F̃(Q,z), z0 and z±, at the first order in such small quantities (or to order Q2) are
(Boon and Yip 1991)

z0 =−DTQ2

z± =±icSQ− 1
2 [ν +(γ −1)DT]

(12)

The dynamic structure factor becomes (Boon and Yip 1991)

S(Q,ω) =
NKBT
2πV

kT

γ

[︃
2(γ −1)DTQ2

ω2 +D2
TQ4 +

ΓQ2

(ω + cSQ)2 +Γ2Q4 +
ΓQ2

(ω − cSQ)2 +Γ2Q4+

+ [Γ+DT(γ −1)]
Q
cS

(︃
ω + cSQ

(ω + cSQ)2 +Γ2Q4 − ω − cSQ
(ω − cSQ)2 +Γ2Q4

)︃]︃
(13)

being Γ = 1
2 (ν +DT(γ −1)) and kT =− 1

V

(︂
∂V
∂P

)︂
T

the isothermal compressibility. Eq. (13)
is the sum of a zero frequency centered Lorentz function, associated to the elastic response
of the system to an external perturbation, plus two Lorentz functions centered at ω =±cSQ,
providing a representation for the inelastic response of the system. They are characterized
by a full width at half maximum (FWHM) ΓQ2, the so-called damping coefficient, to which
they contribute both viscous processes and thermal diffusion (this contribution is small if
γ ∼ 1).
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It is important to recall that these hydrodynamic results reflect macroscopic treatment of
dynamics of fluids (no atomistic structure, no microscopic forces acting between particles).
However, any simple liquid must obey these expressions in the long-wavelength limit,
because they are the direct consequence of the fundamental local conservation laws. Another
important point concerns the adiabatic speed of sound and the role of thermal processes
in macroscopic dynamics of fluids. Since the sound propagation (pressure waves) is
faster process than the thermal diffusivity (diffusion of local temperature) the adiabatic
propagation means that pressurized/rarefied regions in the pressure wave will have different
local temperature, that immediately gives rise to thermal relaxation, see real eigenvalue in
Eq. (12) , in order to equalize the temperature difference. That is why always in the long-
wavelength region the adiabatic speed propagation comes together with thermal relaxation,
responsible for the central peak of S(Q,ω) in Eq. (13) .

3. Beyond hydrodynamics

3.1. Memory function approach. The theoretical framework developed by Zwanzig
(1960) and Mori (1965) (see also Hansen and McDonald 1990; Boon and Yip 1991;
Zwanzig 2001), based on the introduction of a so-called memory function, constitutes the
starting point for an extension of hydrodynamic results to finite value of wavevector. The
time-evolution of the autocorrelation function of a generic dynamic variable is given by
an integro-differential equation whose kernel is the memory function. It describes all the
relevant processes contributing to the decay of the autocorrelation function. Details can be
found in the papers by Hansen and McDonald (1990), Boon and Yip (1991), and Balucani
and Zoppi (1995). It is shown on the following that, when applied to hydrodynamics regime,
the memory-function formalism permits to retrieve the correct hydrodynamics results.

Given a dynamic variable A(t), its equation of motion in the phase-space reads as

dA(t)
dt

= {A,H }P
.
= iL A, (14)

where H is the hamiltonian of the system, {·}P denotes the Poisson brackets, A = A(0)
and L , implicitly defined by Eq. (14) , is the Liouville operator. In the space defined by all
the dynamic variables it is defined an inner product and thus a projection operator P . The
action of P on the variable B(t) is

PB(t) .
=

⟨B(t)A∗⟩
⟨AA∗⟩ A, (15)

where ⟨B(t)A∗⟩ is the time correlation function between B(t) and A defining their inner
product. The projector on the subspace orthogonal to A is Q = 1−P . Exploiting the
projection operators, it is possible to decompose the equation of motion in two equations
describing respectively the time-evolution of the components of A(t), parallel and orthogonal
to A (Hansen and McDonald 1990; Balucani and Zoppi 1995). The first one, outlined below,
rules the time-evolution of the self-correlation function of A, see Eq. (15). If C(t)= ⟨A(t)A∗⟩,
it is (Boon and Yip 1991)

Ċ(t)− iΩC(t)+
∫︂ t

0
M(t − t ′)C(t ′)dt ′ = 0, (16)
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with M(t) = ⟨R(t)R∗⟩
⟨AA∗⟩ ; R(t) = ei(QL )tQȦ is the so called random force, a dynamical variable

itself, representing the time-evolution of the orthogonal component of Ȧ. Its time correlation
function is the memory function, M(t). The quantity Ω, with the dimensions of a frequency,
is defined as Ω =< AȦ∗

>< AA∗ >−1. In the present case it is equal to zero due to the
properties of time correlation functions.

In the following we keep as dynamical variable the number density, whose time and
space fluctuations determine the dynamic structure factor, see Eqs. 9 and 11. The relevant
relaxation processes, determining the decay of hydrodynamic longitudinal fluctuations, can
conveniently be expressed by introducing a second-order memory function, M(2)(Q, t), as
shown in the following. We will refer to the previously introduced memory function, Eq.
(16) as the first order memory function M(1)(Q, t). From Eq. (16) it follows that M(1)(Q, t)
enters the following balance equation for the density autocorrelation function (Hansen and
McDonald 1990; Boon and Yip 1991)

Ḟ(Q, t)+
∫︂ t

0
M(1)(Q, t − t ′)F(Q, t ′)dt ′ = 0 (17)

The problem of solving Eq. (17) reduces to the task of deriving an analytical expression
for M(1)(Q, t), which is practically impossible to obtain from the definition of the memory
function (Hansen and McDonald 1990; Boon and Yip 1991) in term of the random force.
However, once noticed that M(1)(Q, t) is itself an autocorrelation function, one can use
another balance equation for M(1)(Q, t) and introduce a second order memory function
(Boon and Yip 1991)

Ṁ(1)
(Q, t)+

∫︂ t

0
M(2)(Q, t − t ′)M(1)(Q, t ′)dt ′ = 0 (18)

The procedure can be generalized up to an arbitrary order n, leading to a series of chained
equations all of the same form. To our task, however, a second order expansion revealed
to be sufficient. Equations (17) and (18) form a system of two coupled equations. Under
Laplace transforming of Eqs. (17) and (18) it is finally obtained

F̃(Q,z) =
F(Q,0)

z+ M̃1
(Q,0)

z+M̃(2)
(Q,z)

=
S(Q)

z+ ω2
0

z+M̃(2)
(Q,z)

, (19)

where ω2
0

.
= M(1)(Q, t = 0) is the normalized second frequency moment of S(Q,ω) and

S(Q) = F(Q, t = 0) is the static structure factor. It can be as well easily verified that Eq. (19)
in the direct time space corresponds to the second order integro-differential equation,

F̈(Q, t)+ω
2
0 (Q)F(Q, t)+

∫︂ t

0
M(2)(Q, t − t ′)Ḟ(Q, t ′)dt ′ = 0. (20)

Considering further orders, F̃(Q,z) can be expressed by a continued fraction expansion,
with coefficients depending on the initial values of the memory functions up to any desired
order (Hansen and McDonald 1990; Boon and Yip 1991; Balucani and Zoppi 1995), i.e.,
taking into account higher frequency moments of S(Q,ω), in time domain to a systematic
improvement of the short-time behaviour of the density-density time correlation function.
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Note, that already the fourth frequency moment of S(Q,ω), directly related to the ini-
tial value of the second order memory function, takes into account microscopic forces
acting between particles, i.e., extension of the treatment of density fluctuations beyond
hydrodynamics.

One can ask why it is useful to introduce a second order memory function and truncate
the continued fraction representation instead of expressing F̃(Q,z) in terms of higher order
memory functions. An answer to this question lies in the form of the second order memory
function associated to the correct hydrodynamic solution for the density autocorrelation
function. We will look in the following for an expression of the so-called “hydrodynamic“
second order memory function, i.e., the one which inserted in Eq. (20) gives the hydrody-
namic intermediate scattering function, Eq. (9). Such a function has a simple expression as
well as a direct physical interpretation and it allows an extension of hydrodynamics to high
Q values. By equating Eqs. (19) and (9) we find

F̃(Q,z)
S(Q)

=

{︄
z+

ω2
0

z+ M̃2
(Q,z)

}︄−1

=

{︄
z+ M̃(2)

(Q,z)

z2 + zM̃2
(Q,z)+ω2

0

}︄
(21)

=
z2 +(γDTQ2 +νQ2)z+(γDTνQ4 + γ−1

γ
c2

SQ2)

z3 +(γDTQ2 +νQ2)z2 +(DTνQ4 + c2
SQ2)z+(DTc2

SQ4)

leading to the following “hydrodynamic” second order memory function (Bafile et al. 2006)

M̃(2)
(Q,z) = νQ2 +

c2
S(γ −1)

γ

Q2

z+ γDTQ2 . (22)

In the time domain Eq. (22) reads as

M(2)(Q, t) = 2νQ2
δ (t)+

c2
S
γ

Q2(γ −1)e−γDTQ2t . (23)

This expression is valid for low Q. Its physical interpretation is straightforward: the second
order memory function displays two relevant processes ruling the decay of the density
autocorrelation function, one, acting on a timescale of order τth =

1
γDTQ2 , represents the

decay channel of thermal fluctuations, and another acting on timescales shorter than those
probed in the hydrodynamic region, due to viscous relaxation (Balucani et al. 1993; Cunsolo
et al. 2001; Ruocco and Sette 2001; Bencivenga et al. 2007; Gorelli et al. 2009; Cunsolo
2015). Equation (23) can be easily generalized by introducing more appropriate decay
channels in the form of instantaneous or exponentially decaying contributions (Levesque
et al. 1973; Li et al. 1992; Scopigno et al. 2000b,c, 2002; Monaco et al. 2004; Scopigno
et al. 2005; Gorelli et al. 2006; Schirmacher and Sinn 2008; Bafile et al. 2009; Cunsolo
2016).

3.2. Generalized Collective Modes (GCM) approach. The GCM approach is closely
related to the memory function methodology, also having its roots in the Generalized
Langevin Equation (GLE). Its advantage is that it treats not a single autocorrelation function
F(Q, t) beyond hydrodynamics, but a set of all time correlation functions between conserved
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and introduced extended dynamic variables via the solution of the GLE in matrix form
(Mryglod et al. 1995). Instead of making a continued fraction expansion for each variable-
related memory function, however, a Markovian approximation is adopted, which permits
to describe the elements of the memory matrix as instantaneous functions of time. Such an
approximation results in a solvable equation, so in this case the correlation functions of each
dynamical variables of the set can be written down. The formulation based on GLE appeared
to be in perfect agreement with similar approach derived from kinetic theory by Schepper
et al. (1988). The GCM approach leads to a concept of non-hydrodynamic modes (Bryk
2011), which do not survive on macroscopic scales, however on mesoscopic and molecular
scales they strongly contribute to the time correlation functions and corresponding spectral
functions.

The essence of the GCM approach is in obtaining the n eigenmode solutions of the n×n
generalized hydrodynamic matrix T(Q), which is the generalization of the hydrodynamic
matrix (6) to the case of coupled fluctuations of hydrodynamic (nhyd = 3 for longitudinal
dynamics) and n− nhyd non-hydrodynamic quantities. The simplest non-hydrodynamic
quantities are longitudinal component of stress tensor and energy (or heat) density flux,
because they are equal to the first time derivatives of the corresponding fluctuations of
conserved quantities in (2) and therefore they are orthogonal dynamic variables to the
hydrodynamic current and energy ones. The idea to extend the hydrodynamic set of
equations by adding to them balance equations for the orthogonal non-hydrodynamic
quantities appeared to be very fruitful for understanding the dynamic processes outside the
hydrodynamic region in various simple and many-component liquids (Bryk et al. 1997;
Cazzato et al. 2008; Bryk and Mryglod 2009; Bryk and Ruocco 2011; Bryk and Klevets
2012, 2013; Bryk and Ruocco 2013; Bryk et al. 2014; Bryk and Wax 2016).

In the following we define a link between the GCM and the second order memory
function approach in the hydrodynamics region. This will furthermore permit to show how
hydrodynamics results are correctly reproduced by the GCM approach. We’ll treat only
the simple case of a monatomic fluid. We start by discussing a many-variables extension
of the GLE formalism. We assume to be interested to the decay mechanisms of the time
correlation function of a given dynamical variable and to be able to identify a set of other
dynamical variables, independent one from the other but all strongly coupled to the reference
dynamical variable. We introduce an extension of the formalism discussed in Sec. 3.1 by
generalizing it to a multi-variable case (Schepper et al. 1988; Hansen and McDonald 1990).

Let A be a set of independent variables, A = {A1, A2, . . . , An}. The n×n matrix of
correlation functions F .

= [Fij] =
⟨︁
Aj(t)A∗

i
⟩︁

and the equation ruling its time evolution can be
derived by the same passages leading to Eq. (16) (Balucani and Zoppi 1995),

Ḟ(t)− iΩΩΩ ·F(t)+
∫︂ t

0
M(t − t ′) ·F(t ′)dt ′ = 0 (24)

Note that now Ωij =< AiȦ
∗
j >< AiA∗

j >
−1 is different from zero and cannot be neglected.

By Laplace-transforming Eq. (24) we obtain

F̃(z) =
[︁
zI− iΩΩΩ+M̃(z)

]︁−1 F(0). (25)

The memory matrix describes the decay of the time correlation of the random force, which is
in turn a vector orthogonal at any time to A. If A is properly chosen such that it includes all
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PROPAGATING DENSITY FLUCTUATIONS IN HYDRODYNAMICS AND BEYOND A2-9

the slowly decaying variables coupled to the reference one, the Markovian approximation for
the memory function can be used. The elements of M becomes, under this approximation,
instantaneously time-decay functions and, in the Laplace space, constant functions of z.
The hydrodynamic matrix T(Q) is defined as

T(Q)
.
=−iΩΩΩ(Q)+M̃(Q,z = 0), (26)

where the memory function matrix has been represented by its value at zero time times an
instantaneously decaying function of time. The Markovian approximation states that

F̃(Q,z) = [zI+T(Q)]−1 F(Q,0) = T −1F(Q,0) (27)

A generalization of the concept of dispersion introduced in Sec. 2 is possible in terms
of the poles of the inverse of T . The equation DetT = 0, corresponds to the eigenvalue
equation for T in the variable ζ =−z. The Q-dependent imaginary parts of its m<n non-real
eigenvalues correspond to m dispersion relations ω(k)(Q), k = 1,. . . , m. In general, including
also the purely relaxing modes, i.e., purely real eigenvalues, we can speak of n generalized
collective modes (Bryk and Mryglod 2000). The problem of solving Eq. (27), i.e., to assign
an explicit z dependence to the elements of F̃(Q,z) in Markovian approximation, is trivial.
Let zα be the eigenvalues of T, and Xiα be the matrix whose i-th column represent the α-th
eigenvector of T,

n

∑
j

Tij(Q)Xjα = zα(Q)Xiα . (28)

The matrix X is the change of basis matrix from A to the diagonal basis for T. Let F̃′
(z) and

F′ be the matrices representing F̃(z) and F in the new coordinates, while T′ is the diagonal
matrix with elements δijzj(Q). In the new representation Eq. (27) has a straightforward
solution,

F̃ ′
ij(Q,z) =

F ′
ij

z+ zi(Q)
(29)

Since F̃(Q,z) = XF̃′X−1 we find

F̃ ij(Q,z) = ∑
αk

Xiα F̃ ′
αk
[︁
X−1]︁

k j = ∑
αk

Xiα
∑lm[X−1]αlFlmXmk

z+ zα

[︁
X−1]︁

kj

= ∑
α

Gα
ij (Q)

z+ zα(Q)
,

(30)

where they have defined the weight coefficients describing the relevant contributions from
each mode zα(Q) (Bryk and Mryglod 2000), i.e,

Gα
ij (Q) =

n

∑
l=1

Xiα
[︁
X−1]︁

αl Flj (31)
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A2-10 S. CAZZATO ET AL.

In the time representation the Markovian expression for the correlation matrix is a sum,
with the weights Gα , of n exponential terms, each one associated with the α-th collective
mode zα(Q), i.e,

Fij(Q, t) =
n

∑
α=1

Gα
ij (Q)e−zα (Q)t (32)

The expression of the hydrodynamic matrix in its Markovian approximation can be derived
by fixing Fij(Q, t = 0) =

⟨︂
AiA∗

j

⟩︂
and F̃ ij(Q,z = 0) =

∫︁
∞

0 Fij(Q, t)dt. From Eq. (27) with
z=0 it is obtained

T(Q) = F(Q, t = 0) ·
[︁
F̃(Q,z = 0)

]︁−1
. (33)

We turn to the problem of deriving the hydrodynamic correlation functions in Markovian
approximation. A reasonable choice for A would be the set of conserved densities A =
{ρ,J,e}, i.e., number density, longitudinal current and energy. An equivalent but more
convenient choice to easy calculations is to define a local temperature as a linear combination
of energy and density: (Q, t) = e(Q, t)− ⟨ρe∗⟩

⟨ρρ∗⟩ρ(Q, t). The expression for the zero-time

correlation function can be easily obtained by considering that Jl
q is orthogonal both to ρq

and eq because of its different simmetry under time reversal, while ρq and hq are orthogonal
by construction,

F(Q, t = 0) =

⎛⎝ ⟨ρρ∗⟩ 0 0
0 ⟨JJ∗⟩ 0
0 0 ⟨hh∗⟩

⎞⎠ (34)

Given the selected set of dynamical variables the elements of the matrix F̃(Q,z = 0) can
be obtained by exploiting, where possible, the continuity equations. Taking into account
density and longitudinal current, for instance, it is found

F̃ρJ(Q,0) =
∫︂

∞

0
dt
⟨︂

ρJl∗(t)
⟩︂
=− i

Q

∫︂
∞

0
dt ⟨ρρ̇(t)⟩

= − i
Q
⟨ρ(0) [ρ∗(∞)−ρ

∗(0)]⟩= i
Q
⟨ρρ

∗⟩ . (35)

We furthermore define the following quantities with the dimensions of a time,

τij(Q) =
1

Fij(Q,0)

∫︂
∞

0
Fij(Q, t)dt (36)

The matrix F̃(Q,z = 0) takes finally the expression

F̃(Q,0) =

⎛⎝ τρρ ⟨ρρ∗⟩ i
Q ⟨ρρ∗⟩

(︁
τρe − τρρ

)︁
⟨ρe∗⟩

i
Q ⟨ρρ∗⟩ 0 0(︁

τρe − τρρ

)︁
⟨ρe∗⟩ 0 τhh ⟨hh∗⟩

⎞⎠ (37)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 98, No. S1, A2 (2020) [24 pages]



PROPAGATING DENSITY FLUCTUATIONS IN HYDRODYNAMICS AND BEYOND A2-11

The hydrodynamic matrix is then easily obtained from Eq. (33). We note that ⟨JJ∗⟩Q2/⟨ρρ∗⟩
= KBT Q2/mS(Q). In the hydrodynamic limit KBT/mS(Q → 0) = c2

T is the isothermal
sound speed, thus

⟨JJ∗⟩
⟨ρρ∗⟩

Q→0−→ γ
−1c2

S. (38)

The following expression for the hydrodynamic matrix is thus retrieved

T(Q)=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −iQ 0

−iQγ−1c2
S γ−1c2

SQ2
[︃

τρρ −
(τρe−τρρ)

2

τhh
· ⟨ρh∗⟩2

⟨ρρ∗⟩⟨hh∗⟩

]︃
iQγ−1c2

S
(τρe−τρρ)

τhh

⟨ρe∗⟩
⟨hh∗⟩

0 iQ (τρe−τρρ)
τhh

⟨ρe∗⟩
⟨ρρ∗⟩

1
τhh

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(39)

We give in the following the expression of the second order memory function corresponding
to a Markovian first order memory matrix, i.e, that function of Q and t that, if inserted in
Eq. (20) yields the correct expression for the intermediate scattering function as computed
in the GCM framework when the hydrodynamic matrix Eq. (39) is used,

M(2)
m (Q, t) =2ω

2
0

(︄
τρρ −

(︁
τρe − τρρ

)︁2

τhh
· ⟨ρe∗⟩2

⟨ρρ∗⟩⟨hh∗⟩

)︄
δ (t)+

ω
2
0

(︁
τρe − τρρ

)︁2

τhh
· ⟨ρe∗⟩2

⟨ρρ∗⟩⟨hh∗⟩
·

(︄
e−t/τhh

τhh

)︄ (40)

The expression above of the second order memory function is isomorphic to the hydrody-
namic form with respectively an instantaneous and an exponential decaying contribution.
It should be compared with Eq. (23) in order to establish a correspondence between the
coefficients entering the two expressions of the second order memory function. A direct
comparison shows that

τhh = ⟨hh∗⟩−1 ∫︁ ∞

0 ⟨h(t)h∗⟩dt = 1
γDTQ2

τρρ = ⟨ρρ∗⟩−1 ∫︁ ∞

0 ⟨ρ(t)ρ∗⟩dt = γν

c2
S
+ (γ−1)

γ

1
DTQ2

[⟨ρρ∗⟩⟨hh∗⟩]−1/2 |
∫︁

∞

0 ⟨ρ(t)h∗⟩dt|= (γ−1)1/2

γ

1
DTQ2

(41)

The second of Eqs. (44) can be derived by noting that∫︂
∞

0

F(Q, t)
S(Q)

dt =
F̃(Q,0)

S(Q)
(42)

Again, starting from the hydrodynamic matrix Eq. (6) via the solution Eq. (8) for
⟨h(Q,z)h(Q)∗⟩/⟨h(Q)h∗(Q)⟩ we are able to derive the first of Eqs. 41.
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The fact that we able to derive the correct hydrodynamic behaviour of the density autocor-
relation function in Markovian approximation means that the first order memory matrix,
written for the set A, has exactly the Markovian form of an instantaneously decaying func-
tion of time in the long wavelength limit. Such a property stems from our choice of three
quasi-conserved variables, i.e, variables becoming constant functions of time in the Q → 0
limit. The continuity equation for Ai ∈ A indeed reads

Ȧi(Q, t) = iQ ·Ji(Q, t). (43)

Ai approaches thus the limit of a slowly decaying function of time in the limit Q → 0,
while the elements Mij(Q, t) of the memory matrix, which can be eventually considered as
time correlation functions, keep the decaying properties of correlations of non-conserved
variables and their rate of change is much greater than the one of Ai. The Markovian
description for Mij thus becomes exact when Q → 0.

Similar results than Eqs. (41) can be obtained by using the analytical hydrodynamic
asymptotes of the time correlation functions of the conserved dynamical variables and
exploiting Eq. (36) . We note that in the present treatment of hydrodynamics an approximate
solution of the roots of the dispersion equation is used leading to correlation functions where
terms of the order aQ

cs
, being a a generic transport coefficient, are neglected (Mountain and

Deutch 1969; Cohen et al. 1971). These terms give rise to non-Lorentzian contributions to
the Rayleigh-Brillouin spectra. By taking into account also those terms the times τhh and
τρρ , directly calculated from the hydrodynamic correlation functions, are

τhh = ⟨hh∗⟩−1 ∫︁ ∞

0 ⟨h(t)h∗⟩dt = 1
γDTQ2 +

γ−1
γ

2Γ−DT(γ+1)
c2

s+Γ2Q2

τρρ = ⟨ρρ∗⟩−1 ∫︁ ∞

0 ⟨ρ(t)ρ∗⟩dt = γ−1
γDTQ2 +

1
γ

4Γ−ν

c2
s+Γ2Q2

(44)

Going beyond the hydrodynamics, the analytical expression for the first correction to
the hydrodynamic linear dispersion law can be obtained within the five-variable thermo-
viscoelastic model of GCM approach (Bryk et al. 2010), and results in

ωs(Q) = csQ+βQ3 + ..., (45)

which gives evidence of the first correction proportional to Q3 with analytical expression for
coefficient β (Bryk et al. 2010), responsible for positive sound dispersion (Bryk et al. 2017)

4. Sound speed

In the previous section it has been derived the hydrodynamic expression of the interme-
diate scattering function within the scheme of three equivalent frameworks, Eq. (9), which
yields, according to Eq. (11), an expression for the dynamic structure factor S(Q,ω). In the
following we will introduce and compare three different “definitions” of the generalized
velocity of sound and discuss the implications of the three different definitions on the
analysis of hydrodynamic and generalized hydrodynamic sound dispersion.

The dynamic structure factor can be expressed as a function of the poles of the interme-
diate scattering function (Boon and Yip 1991). Such poles can be derived by solving the
equation DetT = 0, being T the hydrodynamic matrix (6), i.e.:

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 98, No. S1, A2 (2020) [24 pages]



PROPAGATING DENSITY FLUCTUATIONS IN HYDRODYNAMICS AND BEYOND A2-13

DetT = z3 +Az2 +Cz+D = 0 (46)
A = γDTQ2 +νQ2

C = γDTνQ4 + c2
SQ2

D = DTc2
SQ4

We already looked the poles in the limit Q → 0, now we turn to the general case, so that we
have to solve Eq. (46). We define the quantities

ψ =
2

27
A3 − AC

3
+D

ϕ =C− A2

3
and the discriminant

∆ =
(︂

ψ

2

)︂2
+
(︂

ϕ

3

)︂3
=− 1

180
[γDTν(ν − γDT)]

2 Q12+

2
108

DTc2
S

[︂
3
(︁
ν

3 +(γDT)
3)︁− (ν + γDT)

3
]︂

Q10 +

(︃
DTc2

S
2

)︃2

Q8
(47)

For small values of Q the discriminant ∆ =
(︂

DTc2
S

2

)︂2
Q8+O

(︁
Q10
)︁

is positive, which implies
that Eq. (46) admits one real, z0, and two complex conjugate roots, z± = zS ± iωS, where

z0 =
(︂
−ϕ

3

)︂ 1
2
[︂
(coshθ + sinhθ)

1
3 +(coshθ − sinhθ)

1
3

]︂
− A

3

Re(z±) =
(︂

ϕ

6

)︂ 1
2
[︂
(coshθ + sinhθ)

1
3 +(coshθ − sinhθ)

1
3

]︂
±Im(z±) =

(︂
−ϕ

4

)︂ 1
2
[︂
(coshθ + sinhθ)

1
3 − (coshθ − sinhθ)

1
3

]︂
(48)

θ =
1
2

ln
ψ +2

√
∆

ψ −2
√

∆

S(Q,ω) can now be written in terms of real, frequency independent, amplitudes Ah, As and
bs,

S(Q,ω)

S(Q)
=

1
π

[︄
Ah

zh

ω2 + z2
h
+As

zS +bS(ω +ωS)

(ω +ωS)
2 + z2

S

+As
zS −bS(ω −ωS)

(ω −ωS)
2 + z2

S

]︄
, (49)

where zh =−z0, zS =−Rez+ and ωS = |Imz+|. A first definition of generalized sound speed
arises quite naturally from Eq. (49), i.e, Ω(A) = ωS, and consequently c(A) =

ωS
Q . The other

two definitions, used in the literature, identify the frequencies of the inelastic excitations
with the maxima of inelastic features of S(Q,ω) (Belyayev et al. 1989; Witte et al. 2017;
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Harbour et al. 2018), Ω(B), or the maxima of the current function J(Q,ω) (Scopigno et al.
2000a; Cunsolo et al. 2001; Scopigno et al. 2005; Bolmatov et al. 2015; Bryk et al. 2017;
Kryuchkov et al. 2019), called Ω(C). In the following we will analyze the behaviour of these
three quantities in the hydrodynamic case. We will first calculate Ω(A), Ω(B) and Ω(C) in the
simple case γ = 1. Subsequently we will remove this approximation, and finally we will
treat the case of non hydrodynamic limit in a specific example.

4.1. The special case γ = 1. In the case γ = 1 the coefficients of Eq. (9) become

A = DTQ2 +νQ2

B = DTνQ4

C = DTνQ4 + c2
SQ2

D = DTc2
SQ4.

(50)

The expression of F̃(Q,z) simplifies to

F̃(Q,z)
S(Q)

=
z+νQ2

z2 +νQ2z+ c2
SQ2 . (51)

Simple, exact expressions, follow for the poles of F̃(Q,z),

Rez+ =− νQ2

2

Imz+ =

√︃
c2

SQ2 −
(︂

νQ2

2

)︂2
(52)

We notice that Eq. (51) corresponds to reducing the hydrodynamic second order memory
function to the simple form M(2)(Q, t) = 2νQ2δ (t), yielding for the dynamic structure
factor the expression

S(Q,ω)

S(Q)
=

1
π

2Γω2
0(︁

ω2 −ω2
0

)︁2
+4ω2Γ2

(53)

where ω0 = cSQ is the second frequency moment, i.e, the longitudinal current maximum
because for a the Damped Harmonic Oscillator function, Eq. (53), the two quantities
coincide, and Γ = νQ2

2 . This expression corresponds to Eq. (49) with Ah = 0, AS = 1/2 and
bS = zS/ωS, i.e,

S(Q,ω)

S(Q)
=

1
π

[︄
1
2

zS +bS(ω +ωS)

(ω +ωS)
2 + z2

S

+
1
2

zS −bS(ω −ωS)

(ω −ωS)
2 + z2

S

]︄

=
1
π

2zs(ω
2
s + z2

s )

[ω2 − (ω2
s + z2

s )]
2 +4z2

s ω2
(54)

By comparing Eq. (53) and Eq. (54) we find Γ = zs =−Rez+, ω2
0 = ω2

S + z2
S. The maxima

of the dynamic structure factor and of the longitudinal current can be now easily found
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basing on Eq. (54). In conclusion it is found,

Poles of the hydrodynamic matrix Ω(A)(Q) =

√︃
c2

SQ2 −
(︂

νQ2

2

)︂2

Dynamic structure factor maxima Ω(B)(Q) =

√︃
c2

SQ2 − (νQ2)
2

2

Longitudinal current maxima Ω(C)(Q) = cSQ

(55)

4.2. The general γ case. If γ ̸= 1 it occurs a coupling between the thermal fluctuations
and the density fluctuations. As a consequence, two distinct sound propagation regimes can
be recognized: the low-Q adiabatic regime, characterizing the hydrodynamic behaviour, and
the high-Q isothermal regime, occurring in a region of Q beyond the hydrodynamic limit. In
particular, by defining the characteristic decay time of thermal diffusion as τth =

1
DTQ2 , the

adiabatic regime occurs when the decay time of thermal fluctuations is much slower than
the time scale of the density fluctuations, i.e, in the limit ωτth ≫ 1. In the case ωτth ≪ 1,
the characteristic time scale of the propagation of the density fluctuations is much slower
than the decay time of thermal fluctuations, τth, so that local thermalization is allowed.
In this limit we expect an isothermal regime to occur (Bencivenga et al. 2006; Bolmatov
et al. 2015) We shall see that Ω(A), Ω(B) and Ω(C) have the same simple expressions (55)
in the adiabatic limit, while a simple generalization can be derived in the opposite limit
of isothermal regime. For our purpose it is convenient to define a frequency-dependent
parameter ε , which is much lower or much greater than 1 in the two limits of interest,

ε =
DTQ2

ω
, (56)

so that ε ≪ 1 if ωτth ≫ 1 and ε ≫ 1 if ωτth ≪ 1.

4.2.1. Current maxima. We remove the dependence from the thermal diffusion coefficient
DT in J(Q,ω) and replace it by ε . After some algebra one finds:

J(Q,ω) =
ω(cSQ)2

γ
·

ε2(γ2ων)+ εc2
S(γ −1)+ων

ε2F̂(Q,ω)+ εĜ(Q,ω)+ Ĥ(Q,ω)
, (57)

dJ(Q,ω)

dω
=

2(cSQ)2

γ
· ε4Â(Q,ω)+ ε3B̂(Q,ω)+ ε2Ĉ(Q,ω)+ εD̂(Q,ω)+ Ê(Q,ω)[︁

ε2F̂(Q,ω)+ εĜ(Q,ω)+ Ĥ(Q,ω)
]︁2 ,

(58)
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where

Â(Q,ω) = γ
2
ων
[︁
(cSQ)4 − γ

2
ω

4]︁
B̂(Q,ω) =

[︁
(ω2

γ)2 − (cSQ)2]︁(1− γ)c2
S

Ĉ(Q,ω) = 2
[︁
γω

2(cSQ)2(γ −1)+((cSQ)4 − γ
2
ω

4)
]︁

ων

D̂(Q,ω) =
[︁
2(ωc2

SQ)2 +(ωνcSQ2)2 −2(ω2cS)
2]︁(γ −1)

Ê(Q,ω) = ων
[︁
(cSQ)4 −ω

4]︁
F̂(Q,ω) = (γω

2 − (cSQ)2)2 +(ωνγQ2)2

Ĝ(Q,ω) = 2ωc2
SνQ4(γ −1)

Ĥ(Q,ω) = (ω2 − (cSQ)2)2 +(ωνQ2)2. (59)

In the limit of diverging ωτth (adiabatic regime), ε becomes infinitesimal and

lim
ε→0

dJ(Q,ω)

dω
=

2(cSQ)2

γ
· Ê

Ĥ2 =
2(cSQ)2

γ
·

ων
[︁
(cSQ)4 −ω4

]︁
[(ω2 − (cSQ)2)2 +(ωνQ2)2]2

. (60)

In this limit the equation dJ
dω

= 0 has one solution at ω = 0 representing a minimum of

the current, being d2J(Q,ω)
dω2 |0 = 2 (cSQ)2

γ(νQ2)2 > 0, and two degenerate solutions at ω = ±cSQ

representing two maxima, being d2J(Q,ω)
dω2 |cSQ = −8 (cSQ)2

γ(νQ2)4 < 0. On the other hand in an
isothermal regime, when ωτth → 0, ε diverges and

lim
ε→∞

dJ(Q,ω)

dω
=

2(cSQ)2

γ
· Â

F̂2 = 2(cSQ)2 ·
γων

[︁
(cSQ)4 − γ2ω4

]︁
[(γω2 − (cSQ)2)2 +(ωνγQ2)2]2

. (61)

In this limit the equation dJ
dω

= 0 has one solution at ω = 0 representing a minimum, and
two solutions at ω =±cTQ =± cS√

γ
Q representing maxima. We can easily recognize that

the dispersion is always linear for each finite value of ε . In this case, indeed, each term in
the numerator of (58) becomes zero or proportional to ω

[︁
(cSQ)4 −ω4

]︁
, in particular

Â =
1
2

Ĉ = Ê = ων [(cSQ)4 −ω
4]

B̂ = D̂ = 0
F̂ = Ĥ = [ω2 − (cSQ)2]2 +(ωνQ2)2

Ĝ = 0, (62)

and dJ
dω

does no longer depend on ε . This was somehow expected, since Eq. (9) can be
decomposed according to Eq. (51), so that any dependence from DT disappears.

4.2.2. Dynamic structure factor maxima. The function S(Q,ω) can be expressed as

S(Q,ω)

S(Q)
=

c2
SQ4

γω
·

ε2(γ2ων)+ εc2
S(γ −1)+ων

ε2F̂(Q,ω)+ εĜ(Q,ω)+ Ĥ(Q,ω)
(63)
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dS(Q,ω)

dω
=

2c2
SQ4

γω2 · ε4Â(Q,ω)+ ε3B̂(Q,ω)+ ε2Ĉ(Q,ω)+ εD̂(Q,ω)+ Ê(Q,ω)[︁
ε2F̂(Q,ω)+ εĜ(Q,ω)+ Ĥ(Q,ω)

]︁2 ; (64)

Â(Q,ω) = γ
3
ω

3
ν
[︁
2(cSQ)2 − γν

2Q4 −2γω
2]︁

B̂(Q,ω) = γ(γ −1)ω2 [︁−3γ(cSQ)2(νQ)2 −2γω
2c2

S +2c4
SQ2]︁

Ĉ(Q,ω) = ων
[︁
2γ

2
ω

2 [︁2(cSQ)2 −2ω
2 − (νQ2)2]︁− (γ −1)(3γ −1)(cSQ)4]︁

D̂(Q,ω) =
[︁
2(ωcSνQ2)2 +3c2

Sω
4 +(c2

SQ)2((cSQ)2 −4ω
2)
]︁
(1− γ)

Ê(Q,ω) = ω
3
ν
[︁
2(cSQ)2 −2ω

2 − (νQ2)2]︁
F̂(Q,ω) = (γω

2 − (cSQ)2)2 +(ωνγQ2)2

Ĝ(Q,ω) = 2ωc2
SνQ4(γ −1)

Ĥ(Q,ω) = (ω2 − (cSQ)2)2 +(ωνQ2)2 (65)

In the adiabatic region, when ωτth → ∞ and ε → 0:

lim
ε→0

dS(Q,ω)

dω
=

2c2
SQ4

γ
·

ων
[︁
−2ω2 +2(cSQ)2 −ν2Q4

]︁
[(ω2 − (cSQ)2)2 +(ωνQ2)2]2

. (66)

The dynamic structure factor maxima are at ω = ±
√︂
(cSQ)2 − (νQ2)2

2 . In the isothermal
regime, when ωτth → 0 and ε → ∞:

lim
ε→∞

dS(Q,ω)

dω
= 2c2

SQ4
γ

2 ·
ων
[︁
−2γω2 +2(cSQ)2 − γν2Q4

]︁
[(γω2 − (cSQ)2)2 +(γωνQ2)2]2

. (67)

The dynamic structure factor maxima are at ω =±
√︂
(cTQ)2 − (νQ2)2

2 .

4.2.3. Poles. We define the complex quantity

ε =
DTQ2

z
. (68)

The adiabatic and isothermal limits are now obtained respectively when |ε|→ 0 and |ε|→∞.
The equation DetT = 0 becomes

z3 +Az2 +Cz+D = 0
A = γεz+νQ2

C = γεzνQ2 + c2
SQ2

D = zεc2
SQ2

(69)

In the adiabatic limit |ε| → 0, Eq. (69) becomes, neglecting terms O(|ε|):

z
(︁
z2 +νQ2z+ c2

SQ2)︁= 0, (70)
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thus z± =− νQ2

2 ± i

√︃
c2

SQ2 −
(︂

νQ2

2

)︂2
. In the isothermal limit |ε| → ∞, Eq. (69) becomes,

retaining only terms O(|ε|):

zε
(︁
γz2 + γνQ2z+ c2

SQ2)︁= 0 (71)

and now z± =− νQ2

2 ± i

√︃
c2

TQ2 −
(︂

νQ2

2

)︂2
.

4.2.4. Comparison between different definitions of hydrodynamic sound speed. Summa-
rizing, the dispersion relations derived in the case γ ̸= 1 in the two limiting situations of
adiabatic and isothermal regime are

ε → 0 ωτth → ∞

Poles of the hydrodynamic matrix ΩS
(A)(Q) =

√︃
c2

SQ2 −
(︂

νQ2

2

)︂2

Dynamic structure factor maxima ΩS
(B)(Q) =

√︃
c2

SQ2 − (νQ2)
2

2

Longitudinal current maxima ΩS
(C)(Q) = cSQ

(72)

ε → ∞ ωτth → 0

Poles of the hydrodynamic matrix ΩT
(A)(Q) =

√︃
c2

TQ2 −
(︂

νQ2

2

)︂2

Dynamic structure factor maxima ΩT
(B)(Q) =

√︃
c2

TQ2 − (νQ2)
2

2

Longitudinal current maxima ΩT
(C)(Q) = cTQ

(73)

Note that Ω(C)(Q) > Ω(A)(Q) > Ω(B)(Q). At the first order in Q the three definitions of
adiabatic dispersion reduce to the same linear one, Ω(Q) = cSQ+O(Q2), and this is what
is usually presented as hydrodynamic dispersion, derived both from the poles of T or from
the maxima of the Brillouin doublet at O(Q2). For intermediate Q values (around Q ≈ cS

DT
)

a transition between the limiting behaviours takes place. The general case γ ̸= 1 can be view
as an extension of the special case γ = 1, accounting also for the adiabatic to isothermal
transition. It has to be noted, however, that the previous treatment holds in the hydrodynamic
limit, while for all nonmetallic fluids, due to the low thermal diffusivity, this transition
occurs at Q values well outside the long wavelength limit in a strictly non-hydrodynamic
region.
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4.3. The case γ = 1 with non-Markovian M(2)(Q, t). We will derive the expressions
for the different definitions of the velocity of sound at finite values of Q and ω . In the
generalized hydrodynamics frame a model for describing density fluctuations in a simple
liquid at finite values of Q and ω stems from the modification of the simple viscoelastic
ansatz, by allowing a more sophisticated decay of the longitudinal part of M(2)(Q, t). For
instance, the following two exponential-decay ansatz for the longitudinal second order
memory function proved to be a convenient model for describing experimental IXS spectra
of liquid metals (Scopigno et al. 2000b,c, 2002; Scopigno et al. 2005):

ML(Q, t) = ∆
2
L(Q)

[︂
(1−α(Q))e−t/τµ (Q)+α(Q)e−t/τα (Q)

]︂
= ∆

2
µ(Q)e−t/τµ +∆

2
α(Q)e−t/τα

(74)

where the time τα(Q) is larger than τµ(Q) and the dimensionless quantity α(Q) measures
the relative weight of slow and fast decay channels. Moreover, we require the total amplitude
of the longitudinal memory function to be related to the longitudinal viscosity, i.e,

νQ2 = ∆
2
L(Q)

[︁
(1−α(Q))τµ +α(Q)τα

]︁
. (75)

In order to simplify the task, we assume γ = 1, thus neglecting the thermal part of M(2)(Q, t).
We furthermore restrict the treatment to the case ωτµ << 1 so that

M(2)(Q, t) = 2∆
2
µ(Q)τµ δ (t)+∆

2
α(Q)e−t/τα . (76)

Such a model is indeed well suited for treating the spectra of glass forming materials in the
Brillouin Light Scattering window where the condition ωτµ << 1 holds. The analytical
form of Eq. (76) is exactly the same of Eq. (23). The calculation of the inelastic frequency
in the hydrodynamic case with γ ̸= 1 thus provides a solution also in this case, once the
parameters are properly redefined. We thus find:

ωτα → ∞

Poles of the hydrodynamic matrix ΩS
(A)(Q) =

√︂
c2

TQ2 −
[︁ 1

2 ∆2
µ(Q)τµ(Q)

]︁2
Dynamic structure factor maxima ΩS

(B)(Q) =
√︂

c2
TQ2 − 1

2

[︁
∆2

µ(Q)τµ(Q)
]︁2

Longitudinal current maxima ΩS
(C)(Q) = cTQ

ωτα → 0

Poles of the hydrodynamic matrix ΩT
(A)(Q) =

√︂
c2

TQ2 +∆2
α(Q)−

[︁ 1
2 ∆2

µ(Q)τµ(Q)
]︁2

Dynamic structure factor maxima ΩT
(B)(Q) =

√︂
c2

TQ2 +∆2
α(Q)− 1

2

[︁
∆2

µ(Q)τµ(Q)
]︁2

Longitudinal current maxima ΩT
(C)(Q) =

√︂
c2

TQ2 +∆2
α(Q)

(77)

Being related to the structural relaxation process (i.e, the usual diffusion process of the
atoms in a liquid) the time τα(Q) shows a roughly constant Q-trend and it is generally of
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the order of ps, as for instance in the case of liquid metals under criticality. This means that
the condition ωτα >> 1 holds in the hydrodynamic limit, i.e, for Q << (τα cT)

−1 .
= Q1,

in which case we recover no effects on the usual hydrodynamic sound speed as defined
from Ω(A), Ω(B), Ω(C) arising from the α relaxation (Balucani et al. 1993; Ruocco and Sette
2001; Bolmatov et al. 2015; Cunsolo 2015). A contribution to Ω(A) and Ω(B) is instead due,
in the hydrodynamic limit, to the µ , fast, relaxation process. This is a reminiscence of what
was found to hold in the long wavelength limit with the viscosity term entering Eqs. (55),
(72) and (73).

If the approximation γ = 1 is removed, effects related to thermal relaxation enters into
play. Since the timescales involved in thermal and structural processes always are several
orders of magnitudes apart, Eqs. (77) are modified by the presence of a further relaxation
process well separated from the α-process, causing the transition from cS to cT, at Q values
around Q0 ∼ cS

DT
<< Q1. In the case of simple liquid metals, e.g., Q0 ∼ 0.1 nm−1 and

Q1 ∼ 1 nm−1.

5. Conclusions

We derived the hydrodynamic intermediate scattering function from the linearized Navier-
Stokes equations, by which it is possible to account for the decay of density fluctuations
in the limit of small exchanged momentum and small energy exchange. The features
of a Raileigh-Brillouin spectrum can be derived. Nevertheless, this result is no longer
valid for higher Q and ω values, as is the case in typical IXS or INS experiments, and
an extension is necessary. We introduced two more, somehow complementary techniques
for computing time correlation functions, based on Mori’s generalized Langevin equation
framework, i.e, the memory function approach and the Generalized Collective Modes
approach. Both the techniques have been applied to the relevant hydrodynamic variables
in order to compute hydrodynamic correlation functions. It was furthermore demonstrated
that the two approaches are equivalent in the hydrodynamic limit where the hydrodynamics
results are retrieved. In particular, the second order memory function approach reduces
to simple hydrodynamics when the second order memory function takes the form of two
distinct decaying contributions, an exponential one related to thermal diffusion processes,
and an instantaneous one, related to microscopic structural relaxation characterized by
timescales much shorter than the times probed in the hydrodynamic region. The Generalized
Collective Modes approach reduces to simple hydrodynamics if the set of hydrodynamic
quasi-conserved variables A =

{︁
ρ,Jl,e

}︁
of density, longitudinal current and energy, is

chosen. These results are relevant when the two approaches are used in order to set up an
extension of hydrodynamics to higher values of Q and ω because any method setting this
objective shall retrieve the correct hydrodynamics results in the hydrodynamic limit.

Three different expressions of sound of speed are usually found in literature, respectively
related to the characteristic frequencies of inelastic excitations defined through the poles of
the intermediate scattering function, Ω(A), maxima of the dynamic structure factor, Ω(B), or
maxima of the current, Ω(C). For all these definitions we obtained the related expressions as
a function of the characteristic quantities characterizing the dynamic structure factor related
to density fluctuations both within and outside the hydrodynamic region. A comparison of
the three different expressions is also provided. Since the speed of sound shall be sensitive
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to those relaxation processes which take place on time scale shorter than the charcteristic
period of the acoustic excitations its dispersion can be used to pinpoint the crossover
between different regimes where different decay channels are activated. The special cases of
transition from adiabatic to isothermal regimes as well as the viscoelastic transition related
to the structural relaxation are here treated explicitly, but similar stages can be developed
for any relaxation process coupled to density fluctuations. Special care thus should be
paid when dispersions obtained by different experimental studies, in particular in different
wavevectors region, are compared because the same definition of speed of sound should be
used. Furthermore, the more convenient definition in order to emphasize the phenomenon
to be analyzed can be chosen. In a generalized hydrodynamic context the dispersion defined
Ω(A) splits into many branches, each of which associated to some kinetic mode, with the
exception of the lower three branches approaching the hydrodynamic dispersion behaviour
for Q → 0. This choice can be thus the more suitable when one aim to detect the presence
of non-hydrodynamic propagating modes. The dispersion obtained through Ω(B) as well as
through Ω(C) simply deviates from its hydrodynamic Q dependence, as soon as the region
of small Q is left. From the experimental point of view the insight one can gain about
microscopic dynamics of a liquid (i.e, the dynamic structure factor), cannot usually account
for the different contributions of each generalized mode. Ω(B) and Ω(C) can in principle
always be derived from experimental inelastic scattering spectra. A convenient definition of
the generalized velocity seems to be the one related to the current maxima, for at least two
reasons of practical interest. First, in this case any deviation from hydrodynamic dispersion
is more easily identified because it will be a deviation from linearity. Secondly, any elastic
feature is absent in the current spectrum, so that two symmetric inelastic maxima are always
well defined up to values of Q even near the main peak position of the static structure factor.
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