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ABSTRACT

A celebrated impossibility result by Myerson and Satterthwaite
(1983) shows that any truthful mechanism for two-sided markets
that maximizes social welfare must run a deficit, resulting in a
necessity to relax welfare efficiency and the use of approximation
mechanisms. Such mechanisms in general make extensive use of
the Bayesian priors. In this work, we investigate a question of
increasing theoretical and practical importance: how much prior
information is required to design mechanisms with near-optimal
approximations?

Our first contribution is a more general impossibility result stat-
ing that no meaningful approximation is possible without any prior
information, expanding the famous impossibility result of Myerson
and Satterthwaite.

Our second contribution is that one single sample (one number
per item), arguably a minimum-possible amount of prior informa-
tion, from each seller distribution is sufficient for a large class of
two-sided markets. We prove matching upper and lower bounds
on the best approximation that can be obtained with one single
sample for subadditive buyers and additive sellers, regardless of
computational considerations.

Our third contribution is the design of computationally efficient
blackbox reductions that turn any one-sided mechanism into a
two-sided mechanism with a small loss in the approximation, while
using only one single sample from each seller. On the way, our
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blackbox-type mechanisms deliver several interesting positive re-
sults in their own right, often beating even the state of the art that
uses full prior information.
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1 INTRODUCTION

Two-sided markets play an increasingly important role in practice,
with applications ranging from internet trading platforms (such
as eBay), to ridesharing platforms (such as Uber or Lyft), to ad ex-
changes (such as AppNexus). A canonical two-sidedmarket consists
of sellers that provide certain services or goods to the market, and
buyers that consume these services or goods. It is natural to assume
that both sides of the market have private information about their
production costs and willingness to pay.

The design of such two-sided markets with private information
has a long tradition in economics [33, 43]. One typically strives to
find mechanisms that guarantee individual rationality (IR), domi-
nant strategy incentive compatibility (DSIC), budget balance (BB)
(i.e., that the mechanism collects more money from the buyers
than it gives to the sellers), all while also maximizing social wel-
fare. Designing such mechanisms, however, turns out to be rather
challenging. Consider, for example, the celebrated Vickrey-Clarke-
Groves (VCG) mechanism [12, 25, 43]. This mechanism chooses an
allocation that maximizes social welfare, and charges each agent the
amount by which the agent’s presence reduces the social welfare of
the other agents. Already Vickrey [43] observed that when applied

1452

https://doi.org/10.1145/3406325.3451076
https://doi.org/10.1145/3406325.3451076


STOC ’21, June 21–25, 2021, Virtual, Italy P. Dütting, F. Fusco, P. Lazos, S. Leonardi, and R. Reiffenhäuser

to two-sided markets, this mechanism is IR, DSIC, and maximizes
social welfare, but may produce a deficit.

Example 1 (Two-sided VCG for a single good). Consider a
seller owning a single indivisible good, which she values at vs , and
two interested buyers willing to payvb1 andvb2 , respectively. Assume

vs < vb1 > vb2 , so that the socially efficient outcome is to give the item

to b1, achieving a welfare of vb1 . The VCG mechanism will assign the

item to b1, whose participation keeps the item from being assigned to s
or b2, so she will pay max{vs ,vb2 }. For the seller s , in her absence no

one can get the item and welfare is reduced by vb1 , so the mechanism

will pay her this amount. Recall that max{vs ,vb2 } −vb1 < 0, so the
mechanism runs a deficit.

This example is actually fairly robust, extending to settings with
Bayesian priors on multiple buyers and multiple sellers. A famous
impossibility result of Myerson and Satterthwaite [33] in fact shows
that this is not just a problem of VCG, it is a more fundamental
incompatibility: any mechanism that is IR and DSIC and maximizes
social welfare must violate budget balance even if the mechanism
knows the Bayesian priors of the buyers and sellers. In this paper,
we explore the fundamental information-theoretic as well as com-
putational requirements for achieving near-optimal IR, DSIC, and
BB mechanisms.

1.1 Information-Theoretic Barrier: Necessity

of Some Prior Dependence

Since information about the underlying distributions of the agents’
valuations is often scarce, it would be ideal to find an approximation
mechanism that guarantees close to optimal welfare without the use
of such prior information. However, this is impossible: extending
the famous inefficiency theorem of Myerson and Satterthwaite [33],
we prove that without prior information, the welfare cannot be
approximated up to any constant:

Theorem 1 (Impossibility; Section 3). No mechanism M for

bilateral trade (or richer variants of it) without prior information,

where agents’ valuations for a single item take arbitrary values in

[0, ∞), can be IC (in expectation), IR, BB and also guarantee an α-
approximation to the optimal social welfare, for any fixed value α > 1.

As mentioned above, this crucial necessity of prior information
is bad news: even when there is some information available on the
priors, it usually presents itself as a limited amount of incomplete
data and assuming to indeed know the underlying distributions
exactly is often unrealistic.

1.2 Information-Theoretically Optimal

Mechanisms

In light of our new impossibility result: (Theorem 1), an important
question is how much information about the priors is needed to
enable approximately welfare-maximizing IR, DSIC, and BB mecha-
nisms. Various forms of limited access to the priors are conceivable.
A standard vehicle in Algorithmic Game Theory—and the lens we
adopt here—is sample complexity (e.g., [3, 13, 18, 19, 31, 38]). That
is, we assume that the mechanism designer has access to samples,
possibly from both the buyers’ and sellers’ distributions, and can
use this knowledge when setting up the mechanism.

Our first result is that for the very general class of subadditive
buyers and additive sellers, a single sample from each seller (and no

samples from the buyers) suffices for a factor 2 appproximation to
the optimal social welfare.

To this end we consider the following adjusted-objective VCG

mechanism: it takes a single sample from each seller distribution,
and offers the sellers the sample as price. Afterwards, it runs the
(one-sided) VCG on the buyers and items of sellers who accepted
their price. But instead of considering the usual objective of welfare
maximization, it selects an allocation and payments based on the
adjusted welfare (= total value of the buyers minus sampled value
of the respective items).1

Theorem 2 (Adjusted VCG; Section 4). For subadditive buyer
valuations and unit-supply/additive sellers, the social welfare out-

put by the adjusted-objective VCG mechanism which uses a single

sample from each seller and no samples from the buyers yields a 2-

approximation to the optimal welfare, in expectation. The mechanism

is IR, DSIC, and BB.

This result is in fact fairly robust, and generally needs only a
certain form of “approximate location oracle” for the seller distri-
butions: a single sample is a particular economic way to obtain
such an oracle, but other aggregate statistics such as the median or
other quantiles (possibly at the expense of worse approximation
guarantees) also suffice.

Theorem 2 yields poly-time mechanisms for settings where the
adjusted VCG can be computed efficiently. This includes gross
substitutes valuations for the buyers [35], so we obtain an IR, DSIC,
BB 2-approximation for this class of valuations with a single sample
from each seller. Another special case is bilateral trade, where our
theorem implies the existence of a 2-approximate IR, DSIC, and BB
single-sample mechanism.

We complement our positive result concerning the adjusted VCG
mechanism with the following lower bound, which shows that the
factor 2 is best possible for mechanisms that—just as the adjusted
VCG mechanism—are deterministic, in that the only randomness in
these mechanisms stems from the randomness in the sample they
receive.

Theorem 3 (Lower Bound; Section 4). Every deterministic

IC, IR and BB mechanism for bilateral trade that receives as sole

prior information a single sample from the seller’s distribution has

approximation ratio at least 2.

We note that [8, 9] previously showed a factor 2-approximate IR,
DSIC, and BB mechanism for bilateral trade—the median mecha-

nism—and that no deterministic mechanism that uses only informa-
tion from one side of the market can yield a better approximation.2
Formore general valuations, the state of the art is a 6-approximation
for XOS valuations [14, 15] and a 8-approximation for subadditive
valuations [8].

1 This idea of a penalty modifying the objective of the VCG mechanism is also used by
Blumrosen and Dobzinski [8] (however with the median instead of a sample), which
directly applied to our problems results in an 8−approximation given subadditive
buyer valuations, and with some modification to the proof one can show a factor of 4.
2Our lower bound is similar, but it does not immediately follow from their result.
The reason is that mechanisms that use only one sample cannot be simulated by a
deterministic mechanism using prior information.
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We extend the factor 2 of [9] for bilateral trade to single-sample
mechanisms, and the much more general problem with subadditive
buyers and additive sellers.

While these results nicely illuminate the information-theoretical
situation, the approach of adjusting the objective of a one-sided
mechanism to accomodate seller payments has important limita-
tions. Essentially, it can be applied only via (generalized) VCG
because of its properties as an affine maximizer, but VCG is not
necessarily computationally feasible and cannot be used, e.g., in
online environments.

1.3 Poly-Time Near-Optimal Single-Sample

Mechanisms

We next address the shortcomings and limited flexibility of the
adjusted objective approach. In general, it is not even clear what it
means “to run a given one-sided approximation mechanism on the
adjusted objective.” We will instead use that for several subclasses
of subadditive (such as XOS or GS) we can adjust buyer valuations
by deducting item prices, and the resulting valuations will still
be within that same class. We leverage this as follows: As in our
approach in Section 1.2 we use a single sample from each seller
distribution. We offer this sampled price to the sellers. Then we run
the given one-sided approximation mechanism on the buyers and
the items of those sellers who accepted their sampled price, with
buyer valuations reduced by the respective item prices. We charge
the buyers whatever the one-sided mechanism would charge them
plus the sum of the sampled prices of the items they receive; the
sellers whose items were assigned to buyers receive the sampled
price.

The constructed mechanism is BB by design. We show that if the
one-sided mechanism is DSIC then so is the two-sided mechanism.
From the approximation guarantee of the one-sided mechanism
we get a guarantee with respect to the buyer surplus (w.r.t. the
original valuations and sampled prices), and we show that this
translates (approximately) to the actual objective we are interested
in. Moreover, if the one-sided mechanism is online, then so is the
two-sided mechanism (for the buyers).

Theorem 4 (Black Box I; Section 5). Denote by α the approxi-

mation guarantee of any one-sided IR, DSIC offline/online mechanism

for maximizing social welfare for XOS valuations. We give a two-sided

mechanism for XOS buyers and unit-supply sellers that is IR, DSIC,

BB, uses a single sample from each seller and provides a max{2α, 3}
approximation to the optimal social welfare. The two-sided mecha-

nism inherits the offline/online properties of the one-sided mechanism

on the buyer side and is offline on the seller side.

Two implications of Theorem 4 are: for matching constraints
(unit demand valuations), we can apply the poly-time truthful secre-
tary algorithm of [37]; this yields a IR, DSIC, and BB 2e-approximate
single-sample mechanism that is online random order on the buyer
side and offline on the seller side. For general XOS functions we
obtain a poly-time IR, DSIC, and BB O((log logm)3)-approximate
single-sample mechanism by plugging in the state of the art truthful
approximation mechanism for this class [1, 2, 20]. Both of these
are the first single-sample mechanisms for the respective settings.
They compare to a 6-approximation which can process buyers in
any order, but requires additional information [14, 15].

Our second reduction is more restricted since it applies only to
unit-demand buyers and unit-supply sellers with identical items, but
it improves on the first reduction in two ways: it yields a strongly
BB mechanism in which the total payments collected from the
buyers exactly match those to the sellers, and it additionally allows
online random arrival of the sellers.

The reduction runs the given one-sided mechanism to select
buyers and tentative payments for the buyers, it draws a single sam-
ple from each seller distribution, and then randomly matches the
selected buyers and sellers offering them to trade at the maximum
of the two prices.

Theorem 5 (Black Box II; Section 6). Denote by α the approxi-

mation guarantee of any one-sided IR, DSIC offline/online mechanisms

for the intersection of a downward closed set system I with a uniform

matroid that may or may not use information on the priors. We give

a two-sided mechanism for unit-demand buyers, unit-supply sellers

with identical goods, and constraints I on the buyers, that is IR, DSIC,

SBB, has the same information requirements on the buyer side as

the one-sided mechanism and uses a single sample from each seller,

and yields a (1 + 1/(2 −
√

3) · α) ≈ (1 + 3.73 · α) approximation to

the optimal social welfare. The mechanism inherits the online/offline

properties of the one-sided mechanism on the buyer side and it is

online random order on the seller side.

Theorem 5 leads to additional results for double auctions. We
specifically obtain a 1 + 3.73(1 + o(1))-approximate mechanism
for a k-uniform matroid constraint on the buyers by using the
truthful secretary algorithm of [27]. The mechanism admits random
order arrivals of buyers and sellers, and requires a single sample
on the seller side. We also obtain a 1 + 3.73(1 + o(1))-approximate
mechanism for a k-uniform matroid with fixed order arrivals of
the buyers and random order arrivals from the sellers by using
the single sample prophet inequality algorithm of [3]. This second
mechanism requires a single sample from each buyer and seller.
(All our other mechanisms only use samples from the sellers.)

Note that besides this variety of results for different valuation
classes, arrival models, and even prior information assumptions
on the buyer side, any future contribution regarding the one-sided
problems will also yield a new result for the two-sided version via
our constructions.

1.4 Related Work

A landmark result in economics/mechanism design is Myerson and
Satterthwaite’s impossibility result [33], which states that there
can be no IC (BIC or DSIC) mechanism that is budget balanced
and maximizes social welfare. The same paper also describes the
“second best” mechanism which maximizes social welfare subject
to the other constraints.

In a sequence of papers Satterthwaite et al. [39–41] considered
the non-truthful buyer’s bid mechanism for double auction settings
with identical items, and showed that with i.i.d. buyers and i.i.d. sell-
ers as the number of buyers and sellers n,m → ∞ equilibrium bids
converge to truthful bids and the corresponding allocation con-
verges to an efficient allocation. In a very elegant paper, McAfee [29]
proposed the DSIC and budget balanced trade reduction mechanism

for double auction settings with identical items. This mechanism
allows all but the least efficient trade. Thus, when ℓ is the number
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of trades in an efficient solution, it achieves a 1−1/ℓ approximation.
McAfee’s trade reduction idea has since been extended to a variety
of considerably more general settings (see, e.g., [5, 6, 21]).

A pioneering paper by Blumrosen and Dobzinski [8] proposed
the median mechanism for bilateral trade, which sets a posted price
equal to the median of the seller’s distribution and shows that
this mechanism obtains a 2-approximation to the optimal welfare.
Subsequent work by the same authors [9] has shown that this fac-
tor 2 is actually optimal for deterministic mechanisms that only
use information about the seller distribution, and improved the
approximation guarantee to e/(e − 1) through a randomized mech-
anism whose prices depend on the seller distribution in a more
intricate way. Colini-Baldeschi et al. [14] gave a fixed-price mecha-
nism that achieves a 25/13 ≈ 1.92 approximation, and show a lower
bound of ≈ 1.3360 that applies to any DSIC and strongly budget
balanced mechanism. Most recently, Kang and Vondrák [26] gave a
e/(e − 1) − ϵ approximate mechanism for bilateral trade.

Colini-Baldeschi et al. [14, 15] also develop DSIC and strongly
budget balanced mechanisms for more general settings with com-
binatorial buyers and unit-supply sellers, using ideas from prophet
inequalities and posted-price mechanisms for one-sided markets.
The first paper gives a 16-approximate DSIC and strongly budget
balanced mechanism for double auction settings where the buyers
can be subject to a matroid constraint. This mechanism is online
fixed order on the buyer side, and online random order on the seller
side. The second paper gives a 6-approximate DSIC and strongly
budget balanced mechanism for XOS buyers and unit-supply sellers
that is online fixed order on the buyer side and offline on the seller
side.

A parallel line of work [4, 10, 11, 16, 30, 42] has considered the re-
lated but different objective of optimizing the gain from trade, which
measures the expected increase in total value that is achievable by
applying the mechanism, with respect to the initial allocation to the
sellers. Gain from trade is harder to approximate than social welfare,
and O(1) approximations of the optimal Bayesian mechanism are
only possible in BIC implementations.

Goldner et al. [23] recently suggested an alternative, resource
augmentation approach to gains from trades in two-sided markets.
They ask how many buyers (resp. sellers) need to be added into
the market so that a variant of McAfee’s trade reduction mecha-
nism yields a gain from trade superior to the optimal gains from
trade in the original market. As a side product they obtain a 4-
approximate single-sample mechanism for gains from trade under
natural conditions on the distributions.

Another related line of work considers the problem of maximiz-
ing revenue in double auction settings, either in static environments
[24, 34] or in dynamic environments [7]. A variation where both
buyers and sellers arrive dynamically and the mechanism can hold
on to items was investigated in [22, 28]. On a higher level, our
work is related to prior work that has shown how having a single
sample enables the design of mechanisms that achieve near-optimal
revenue (e.g., [19]) or prophet inequalities and posted-price mecha-
nisms with near optimal welfare (e.g., [3, 17, 18]). It is also related to
prior work on composing mechanisms in an incentive compatible
manner, such as [32] for one-sided markets and [21] for two-sided
markets.

2 MODEL AND DEFINITIONS

Two-Sided Markets. In a two-sided market we are given a set of
n buyers B and a set ofm sellers S. Each seller s is unit supply, i.e.,
she has a single indivisible item for sale, and a private valuation
vs ∈ R≥0 for the item she sells. Each buyer b has a private valuation
function vb : 2S → R≥0, mapping each set of sellers to a non-
negative real. All results hold also for the equivalent case of sellers
with additive valuations. We write vB and vS for the vector of
buyer valuations and seller valuations, respectively. Buyer and
seller valuations are drawn independently from distributions Fb
for b ∈ B and Fs for s ∈ S.

The valuation functions of the buyers will be constrained to
come from some class of functionsV . Buyers are unit demand if for
each buyer b and set of sellers S ,vb (S) = maxs ∈S {vb ({s})}. Buyers
have subadditive valuations if for each b and sets of sellers S1, S2,
vb (S1 ∪ S2) ≤ vb (S1)+vb (S2). Buyers have fractionally subadditive
(or XOS) valuations if for each buyer b and every set of sellers S ,
vb (S) = maxa∈Ab

∑
s ∈S a(s), whereAb is a set of additive valuation

functions. We say that items are identical if the valuation function
vb (S) of all buyers b only depends on the cardinality of the set S
they receive, i.e., for all b and all S, S ′ ⊆ S with |S | = |S ′ | we have
vb (S) = vb (S

′). Otherwise, items are non-identical.
We also allow for constraints on which buyers can trade simulta-

neously.We express these constraints through set systemsIB ⊆ 2B .
We require these set systems IB to be downward closed. That is,
whenever X ⊆ Y and Y ∈ IB , then also X ∈ IB . Of particular
interest for our work will be matroids, i.e., downward-closed set
systems that additionally satisfy a natural exchange property. For-
mally: whenever A,B ∈ I and |A| > |B | then there exists a ∈ A \ B
such that B ∪ {a} ∈ I. A special case are k-uniform matroids where
A ∈ I whenever |A| ≤ k .

An allocation is a partition of the sellers S into n disjoint sets
(S1, . . . , Sn ), i.e.,

⋃
i Si ⊆ S and Si ∩ Sj = ∅ for all i , j, with the

interpretation that buyer bi for 1 ≤ i ≤ n receives the items of the
sellers in Si . An allocation A = (S1, . . . , Sn ) is feasible if the set of
buyers BA = {bi ∈ B | Si , ∅} that receive a non-empty allocation
is admissible (i.e., BS ∈ IB ). The social welfare of an allocation
A = (S1, . . . , Sn ) is given by the sum of the valuations that buyers
bi for 1 ≤ i ≤ n have for the items of the sellers in their respective
sets Si plus the valuations of the sellers that are not assigned to any
buyer, i.e.,

SW(A) = SW(S1, . . . , Sn ) =
∑
bi ∈B

vbi (Si ) +
∑

s ∈S,s<
⋃
i Si

vs .

We use OPT(vB,vS) to denote the feasible allocation that maxi-
mizes social welfare.

Mechanisms. A (direct revelation)mechanismM = (x,p) receives
bids bidb : 2S → R≥0 from each buyer b ∈ B and bids ∈ R≥0
from each seller s ∈ S. The bids of the buyers are constrained to be
consistent with the class of functionsV of their valuations. Bids
represent reported valuations, and need not be truthful. In analogy
to our notation for valuations, we use bidB and bidS for the vector
of bids of all buyers or all sellers, respectively.

A mechanismM is defined through an allocation rule x : Vn ×

Rm
≥0 →

>n
i=1 2S and a payment rule p : Vn × Rm

≥0 → Rn+m .
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The mapping from bids to feasible allocations can be randomized,
in which case x(bidB,bidS) is a random variable. The payments
can also be randomized. We interpret the vector of payments as
the payments that the buyers need to make to the mechanism, and
that the sellers receive from the mechanism. We use the shorthand
pb (bidB,bidS) and ps (bidB,bidS) to refer to the payment from
buyer b to the mechanism and from the mechanism to seller. We
require that ps = 0 if seller s keeps her item.

A mechanism is single-sample if the only information it is given
about the two sets of distributions Fb for b ∈ B and Fs for s ∈ S is
a single sample from each of these distributions.

Utilities. We assume that buyers and sellers have quasi-linear
utilities, and that they are utility maximizers. It means that the
utility uMb (vb , (bidB,bidS)) of buyer b with valuation function vb
in mechanism M = (x,p) under bids (bidB,bidS) is given by her
valuation for the items she receives minus payment. That is,

uMb (vb , (bidB,bidS)) = E [vb (xi (bidB,bidS)) − pb (bidB,bidS)] ,

where the expectation is over the randomness in the mechanism.
The utility uMs (vs , (bidB,bidS)) of a seller s in mechanism M =
(x,p) under bids (bidB,bidS) is the payment she receives if she
sells the item and her valuation for her item otherwise. Formally,
uMs (vs , (bidB,bidS)) is equal to

E
[
I{s ’s item is sold} · ps (bidB,bidS) + I{s ’s item is not sold} · vs

]
,

where the expectation is over the randomness in the mechanism.

Goals. We seek to design mechanisms, and specifically single-
sample mechanisms, with the following desirable properties:

(1) Individual Rationality. MechanismM = (x,p) is individually
rational (IR) if for all b ∈ B uMb (vb , (vB,vS)) ≥ 0 and for all s ∈ S,
uMs (vs , (vB,vS)) ≥ vs .

(2) Incentive Compatibility.MechanismM = (x,p) is (dominant-

strategy) incentive compatible (DSIC) or truthful if for each buyer
b and each seller s , all valuation functions vb and vs , all possible
bids bidB by the buyers, and all possible bids by the sellers bidS , it
holds that

uMb (vb , ((vb ,bidB\{b }),bidS)) ≥ uMb (vb , (bidB,bidS)),

uMs (vs , (bidB, (vs ,bidS\{s }))) ≥ uMs (vs , (bidB,bidS)),

where bidB\{b } denotes the set of all the buyer bids but b’s and
bidS\{s } denotes the set of all the seller bids but s’s.

(3) Budget Balance. A truthful mechanism M = (x,p) is weakly
budget balanced (BB or WBB) if

E

[ ∑
b ∈B

pb (vB,vS) −
∑
s ∈S

ps (vB,vS)

]
≥ 0,

and it is strongly budget balanced (SBB) if the above holds with
equality.

(4) Efficiency. Finally, a truthful mechanism M = (x,p) provides
an α-approximation to the optimal social welfare, for some α ≥ 1,
if it holds that α · E[SW(x(vB,vS))] ≥ E[SW(OPT(vB,vS))].

Remark. Our mechanisms will actually satisfy even stronger IR
and BB properties in that they will satisfy these conditions “ex post”
(i.e., pointwise).

3 IMPOSSIBILITY OF APPROXIMATION

WITHOUT PRIOR INFORMATION

In this section we show that at least a tiny amount of information
about the priors is needed in order to obtain meaningful approxi-
mations of the social welfare with IR, DSIC, and BB mechanisms.

We present here the proof of Theorem 1 for deterministic mech-
anisms, which nicely illustrates the difficulties at the core of this
statement. The considerably more technical, detailed proof for the
general theorem can be found in Appendix A.

Theorem 1 (Impossibility). No mechanismM for bilateral trade

(or richer variants of it) without prior information, where agents’

valuations for a single item take arbitrary values in [0, ∞), can be IC

(in expectation), IR, WBB and also guarantee an α-approximation to

the optimal social welfare, for any fixed value α > 1.

Proof. Fix any constant approximation ratio α , and assume that
M is an IR, weakly budget-balanced, truthful α-approximation for
the problem. For the ease of exposition assumeM is deterministic:
the same proof strategy works in the most general case.

Assume now that vb > α · vs . The only way M can guarantee
this ratio is by trading the item from s to b. Doing this truthfully
and in an individually rational fashion without running a deficit
implies that for the price pb charged from the buyer, and ps paid to
the seller, it holds that vs ≤ ps ≤ pb ≤ vb .

Recall that intuitively, the only play here is to set ps = vb and
pb = vs . In fact, for truthfulness, an agent should not be able to
influence the price she pays, and when determining said price, the
only value we therefore know for sure will be in the feasible interval
is the reported valuation of the opposite agent. Our argument is
close to this intuition, however a bit more intricate.

We assumedM to be truthful, i.e., if vs is a fixed value, then b’s
utility will be at least as good when she reports the truevb as when
reporting some v ′

b . Since otherwise, whenever vb is actually the
value with the higher price, the agent is incentivized to make a false
report. Note thatM is forced to make a trade for both of the values
in order to preserve an α-approximation. We have established so far
that the buyer price p∗b will be a single value for all buyer reports
in (α · vs , ∞), and for all of those buyer reports, there also needs
to be a trade. By budget balance, when this is the case it holds
p∗b ∈ [vs , α · vs ] which means that even the smallest buyer for
whichM has to trade will be willing to accept p∗b .

This shows that whenever the seller reports a fixed value vs , the
price for each critical buyer will come from a fixed interval starting
at vs .

We can do the same from the other direction. Start fixing some
buyer report vb ; since M is an α-approximation, it will have to
make a trade whenever vs ∈ [0,vb/α). BecauseM is truthful also
for the sellers, each seller report in this interval must result in the
same price p∗s . To be acceptable for all sellers in the critical interval,
similarly as above, it must be that p∗s ∈ [vb/α,vb ]. We put this
together with the fact that, due to weak budget balance, p∗s cannot
exceed p∗b , i.e., [vb/α, vb ] ∋ p∗s ≤ p∗b ∈ [vs , α ·vs ]. This goes awry
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for any choice of numbers p∗s , p∗b once vs and vb are such that the
possible intervals for p∗s , p∗b do not overlap. Setting for example
v∗s = 1 and v∗b = α3 violates the previous inequality. □

4 TWO-APPROXIMATION FOR

SUBADDITIVE BUYERS

In this section, we present a single-sample, IR, BB and DSIC 2-
approximation for subadditive buyers. Our mechanism is essentially
the generalized VCG mechanism, which we use as a blackbox.

Given a sample v ′
s for each seller, we do the following:

• For each s ∈ S , offer a price v ′
s to s and if she accepts, add s

to the set Ŝ of available items.
• On the instance (B, Ŝ), run VCG with the objective of max-
imizing the affine function

∑
b ∈B vb (Sb ) −

∑
s ∈

⋃
b∈B Sb v

′
s ,

where Sb denotes the items assigned to b.
• Assign the items in

⋃
b ∈B Sb to their respective buyers, then

charge them the price determined by VCG and pay each
according seller a price of v ′

s . All other sellers keep their
item.

Note that VCG outputs an optimal assignment according to above
objective because of its well-known properties as an affine maxi-
mizer. Showing that our mechanism is DSIC, IR, and BB is not too
hard and has been done before, see [8] for more details. Intuitively
it is IR because we ask the sellers if they want to trade and for the
buyers, VCG is of course IR. It is DSIC for the sellers since they can
refuse, and for the buyers because VCG is DSIC.

Finally, it is BB because for every buyer b, the sum of her VCG
payments equals at least the sum of her items’ samples, which is
what we pay to the sellers. This is true because the loss introduced
to the other agents by b’s presence in the VCG routine is at least
the sum of samples of items Sb : by not assigning those at all in a
solution without b, we gain exactly this amount according to our
adjusted objective.

Proving that the mechanism is also a 2-approximation is consid-
erablymore involved andwill need some preparation. For simplicity,
we use notation for an allocation and its welfare interchangeably.
Let OPTmax denote an allocation on (B, S) which maximizes the
adjusted objective

∑
b ∈B

©­­«vb
(
SOPTmax
b

)
−

∑
s ∈SOPTmax

b

max{vs ,v ′
s }

ª®®¬ .
Further, for any allocation A over sets (S,B) with valuations vs , vb ,
respectively, its correspondingwelfare is

∑
s ∈S vs+

∑
b ∈B T

A
b , where

TA
b = vb (A(b))−

∑
s ∈A(b)vs . For use in the proof, we further define

the adjusted buyer gains T̂A
b = vb (A(b)) −

∑
s ∈A(b) max{vs ,v ′

s }.
In order to prove the approximation, we first show three prelim-

inary statements which we then combine. The first one, Lemma 1,
reports a folklore insight on subadditive functions and sampling. A
proof is added for completeness.

Lemma 1. Let f : 2N → R be a subadditive set function, and let

X be a random subset of the base set N where each element appears

independently with probability
1
2 , then E [f (X )] ≥ 1

2 f (N).

Proof. Every subset X ′ ofN is realized with the same identical
probability p = 2−|N | . Therefore we have the following:

E [f (X )] =
∑

X ′⊆N

p · f (X ′) =
1
2

∑
X ′⊆N

p ·
(
f (X ′) + f (N \ X ′)

)
≥

1
2

∑
X ′⊆N

p · f (N) =
1
2
f (N).

Notice that the inequality is given by subadditivity. □

The other two lemmas we need are more technical and spe-
cific to our problem. Lemma 2 states that the loss in buyer value
when replacing seller valuations with max{vs ,v ′

s } is not too large,
i.e., the buyers’ contribution to OPTmax is closely related to their
contribution to OPT .

Lemma 2. The following inequality holds true:∑
b ∈B

E
[
T̂OPTmax
b

]
≥

∑
b ∈B

E
[
TOPT
b

]
−

∑
s ∈S
E

[ (
v ′
s −vs

)
+

]
Proof. Define the set of items assigned to any buyer by the

optimal assignment OPT to be SOPT ⊆ S . Let Bmax ⊆ B be those
buyers for which their endowments SOPT

b ⊆ SOPT satisfy

vb (S
OPT
b ) >

∑
s ∈SOPT

b

max{vs ,v ′
s }

and call the set of items sold byOPT to these buyers Smax . Consider
the assignment A+ implied by sets Bmax , Smax . This assignment
clearly is feasible under the adjusted objective, which we can model
for the purpose of finding an assignment by replacing all seller
valuations with max{vs ,v ′

s } in VCG. Recall we denote with T̂b the
according, adjusted buyer gains Tb . We have∑
b ∈B\Bmax

T̂A+
b = 0 , while

∑
b ∈B\Bmax

TOPT
b ≤

∑
s ∈S\Smax

(
v ′
s −vs

)
+ .

For the other items, i.e., those in Smax , we have∑
b ∈Bmax

T̂A+
b =

∑
b ∈Bmax

vb (S
OPT
b ) −

∑
s ∈Smax

max{vs ,v ′
s }

=
∑

b ∈Bmax

TOPT
b −

∑
s ∈Smax

(
v ′
s −vs

)
+ .

Putting both together, this yields∑
b ∈B

T̂A+
b ≥

∑
b ∈B

TOPT
b −

∑
s ∈S

(
v ′
s −vs

)
+

and sinceOPTmax maximizes the sum of T̂b , also
∑
b ∈B T̂

OPTmax
b ≥∑

b ∈B T̂
A+
b . □

Our next lemma, Lemma 3, will allow us to relate our adjusted
VCG mechanism to OPTmax . Let us denote the output of adjusted-
objective VCG as ALG.

Lemma 3. The following inequality holds true:

E

[∑
b ∈B

TALG
b

]
≥

1
2
E

[∑
b ∈B

T̂OPTmax
b

]
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Proof of Lemma 3. Fix buyer b and her assigned set SOPTmax
b .

Let for each b the assignment S1/2
b be constructed by erasing each

s ∈ SOPTmax
b with probability 1/2, independently from everything

else. It holds by definition

T̂OPTmax
b = vb (S

OPTmax
b ) −

∑
s ∈SOPTmax

b

max{vs ,v ′
s }.

With subadditivity and Lemma 1, this implies for the assignment
defined by the S1/2

b and the according T̂ 1/2:

E
[
T̂

1/2
b

]
≥

1
2
vb (S

OPTmax
b ) −

1
2

∑
s ∈SOPTmax

b

max{vs ,v ′
s }

since every item is simply erased with fixed probability 1/2, in both
the left and the right hand side. Note that the expectation is only
with respect to the erasing process, while the valuations are fixed.

Let ALG ′ be the solution OPTmax restricted to those items for
which vs ≤ v ′

s , which is the case for each s with probability at
least 1/2, independently. Note that since OPTmax only cares about
max{vs ,v ′

s }, it is oblivious to which value realizes the maximum.
We infer E[T̂ALG′

b ] ≥ E[T̂
1/2
b ] for each b, because ALG ′ can be seen

as simply fixing a certain way of flipping the coins for S1/2
b , and

then retaining some extra items (alternatively, we could employ
a random tie breaking). Next, we note that every subset SALG

′

b
assigned to a buyer inALG ′ is contained in Ŝ , and for the objective of
our algorithm, assigning it is advantageous, i.e., yields nonnegative
contribution. ALG might deviate from these assignments, but it
holds that∑
b ∈B

vb (S
ALG
b )−

∑
s ∈

⋃
b∈B SALGb

v ′
s ≥

∑
b ∈B

vb (S
ALG′

b )−
∑

s ∈
⋃
b∈B SALG′

b

v ′
s

simply because ALG maximizes the objective. Also, due to our
assumption vs ≤ v ′

s for all items assigned by ALG ′, we get that the
right side is equal to

∑
b ∈B T̂

ALG′

b , yielding∑
b ∈B

vb (S
ALG
b ) −

∑
s ∈

⋃
b∈B SALGb

v ′
s ≥

∑
b ∈B

T̂ALG′

b .

Further, since ALG only assigns items in Ŝ , i.e., with vs ≤ v ′
s , we

can replace the left side in the same way and get∑
b ∈B

T̂ALG
b ≥

∑
b ∈B

T̂ALG′

b .

Now taking the expectations, it holds

E

[∑
b ∈B

T̂ALG
b

]
≥ E

[∑
b ∈B

T̂ALG′

b

]
≥ E

[∑
b ∈B

T̂
1/2
b

]
because for eachb, abovewe showedE[T̂ALG′

b ] ≥ E[T̂
1/2
b ]. Plugging

in our bound E
[∑

b ∈B T̂
1/2
b

]
≥ 1

2E
[∑

b ∈B T̂
OPTmax
b

]
implies

E

[∑
b ∈B

T̂ALG
b

]
≥ E

[
1
2

∑
b ∈B

T̂OPTmax
b

]
Finally, we conclude the proof by observing that∑

b ∈B

TALG
b ≥

∑
b ∈B

T̂ALG
b . □

With these lemmas at hand, we can now prove the claimed
approximation guarantee.

Theorem 2 (Adjusted VCG). For subadditive buyer valuations,
the social welfare output by the adjusted-objective VCG mechanism

yields a 2-approximation to the optimal welfare, in expectation. More-

over, the mechanism is IR, DSIC, and BB.

Proof. Note that we are interested in the welfare of the alloca-
tion, not its adjusted objective. It holds

E [ALG] =
∑
b ∈B

E
[
TALG
b

]
+

∑
s ∈S
E [vs ]

≥
1
2
E

[∑
b ∈B

T̂OPTmax
b

]
+

∑
s ∈S
E [vs ]

≥
1
2

∑
b ∈B

E
[
TOPT
b

]
−

1
2

∑
s ∈S
E

[ (
v ′
s −vs

)
+

]
+

∑
s ∈S
E [vs ]

≥
1
2

∑
b ∈B

E
[
TOPT
b

]
+

1
2

∑
s ∈S
E [vs ] =

1
2
E [OPT ] .

Here, for the first inequality we used Lemma 3, and for the second
Lemma 2. Finally, the last inequality is true because for each seller
s , it holds that E

[ (
v ′
s −vs

)
+

]
≤ E [vs ] . In fact, (v ′

s − vs )+ ≤ v ′
s

and vs and v ′
s share the same distribution. □

We conclude this section by showing that the result in Theorem 2
is best-possible in the sense that no deterministic mechanism with
one seller sample as sole prior information can achieve a better
approximation.

Theorem 3. Every deterministic IC, IR, and BB mechanism for

bilateral trade that receives as sole prior information a single sample

from the seller’s distribution has approximation ratio at least 2.

Proof. Because the mechanism is DSIC, the reported bid of the
seller cannot affect how much she is paid for a given outcome. Her
price can however depend on the sample and the buyer’s report.
By DSIC, WBB and IR we also know that the price the buyer needs
to pay whenever she gets the item does not depend on her report
and needs to be higher than the seller price but below her own
valuation. Using this we construct different cases where the opti-
mum is to always trade, but show that the mechanism cannot do
so in all of them. First, we assume that there exist a sample ŝ and a
buyer report b ≥ 2ŝ + ϵ such that the price paid to the seller for a
trade is greater than b ≥ 2ŝ + ϵ . This suggests that the mechanism
overcharges: indeed, by taking advantage of DSIC, WBB and IR we
can show that a buyer with value 2ŝ + ϵ/2 would miss the trade.
This implies that the mechanism doesn’t charge more than twice
the seller sample when a trade has to be made to guarantee the
2−approximation. We can therefore fix the buyer value to be very
high and construct a probability distribution for the seller rang-
ing over many small, exponentially decreasing values. Since the
mechanism cannot increase the price too much (given the sample
observed), with probability approaching 0.5 the seller will reject
the trade.

Let’s now formalize the above argument. Let vb and vs denote
the random variables corresponding to the seller and the buyer
valuations and let ps (s,b) be the price paid to the seller in the event
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of a trade when the mechanism receives sample s ∼ Fs and report
b from the buyer. We distinguish two cases:

Case 1: ∃ ŝ,b, ϵ > 0 such that ps (ŝ,b) ≥ 2 · ŝ +ϵ and b ≥ 2 · ŝ +ϵ .
In this case consider a seller whose value is always exactly ŝ and
a buyer whose value is exactly 2 · ŝ + ϵ/2. Clearly, a trade should
always happen and the optimal welfare is 2 · ŝ +ϵ/2. Assuming that
trade happens: by weak budget balance and individual rationality,
the price pb (ŝ, 2 · ŝ + ϵ/2) paid by the buyer must satisfy:

ŝ ≤ ps (ŝ, 2 · ŝ + ϵ/2) ≤ pb (ŝ, 2 · ŝ + ϵ/2) ≤ 2 · ŝ + ϵ/2.

However, by DSIC and given that a trade also needs to happen for
vb = b, we have that:

pb (ŝ,b) ≥ 2 · ŝ + ϵ > 2 · ŝ + ϵ/2 ≥ pb (ŝ, 2 · ŝ + ϵ/2).

This violates the DSIC condition, as the buyer can obtain a better
price by misreporting, leading to a contradiction. Therefore, one of
the two trades doesn’t occur and the approximation is at least 2.

Case 2: ∀ ŝ,b ps (ŝ,b) ≤ 2·ŝ orb ≤ 2·ŝ . Consider a seller whose
valuationvs takes a uniformly randomvalue in {1/3, 1/32, . . . , 1/3k }
and a buyer with fixed value vb = 1. Clearly, the optimal welfare is
1. Notice that the probability of a trade happening is:

P (ps (ŝ, 1) ≥ vs ) =
k∑
i=1
P

(
p

(
1
3i
, 1

)
≥ vs

)
· P

(
ŝ =

1
3i

)
=

k∑
i=1
P

(
p

(
1
3i
, 1

)
≥ vs

)
·

1
k

≤

k∑
i=1

k − i

k
·

1
k
=

k − 1
2 · k

where we used that p(1/3i , 1) < 1/2i−1 therefore the price posted
does not reach the next possible valuation. Clearly, this converges
to a 2-approximation as k grows to infinity. □

5 COMPUTATIONALLY EFFICIENT

COMBINATORIAL MECHANISMS

In this section we study the Surplus Mechanism, which achieves
the property described in Theorem 4. In Section 5.1 we present the
algorithm and in Section 5.2 we show how it achieves the claimed
properties. Finally, in Section 5.3 we discuss computational aspects.

5.1 The Surplus Mechanism

The basic idea behind our Surplus Mechanism (Algorithm 1) is
to run the given truthful one-sided mechanismMα on discounted

buyer valuations and on a subset of the sellers. Note that the problem
can be viewed as finding a hypermatching in a bipartite hypergraph
G = (B ∪S, E,vB) with hyperedge set E defined as all tuples (b, S)
s.t. b ∈ B, S ⊆ S.

First, given valuations vS and samples v ′
S
for each seller, we

determine a subset of the sellers Ŝ as follows. For each s ∈ S we put
s in Ŝ ifvs ≤ v ′

s . Otherwise, we will drop s from our considerations.
Next we determine discounted valuations. For a given buyer b and
a given set of sellers S ⊆ S let ab ,S denote the additive supporting
function of buyer b for set S . We define the discounted valuation

that buyer b has for the set of sellers S ⊆ Ŝ as:

v̂b (S) =
∑
s ∈S̄

(ab ,S̄ (s) −v ′
s ), where S̄ = argmax

S⋆⊆S∩Ŝ

{
vb (S

⋆) −
∑
s ∈S⋆

v ′
s

}
.

(1)

Adjusting the valuations like this retains the XOS property of the
original valuations, as shown in the following Proposition.

Proposition 1. The adjusted valuations defined in Equation (1)
are XOS.

Proof. The definition of v̂b in Equation (1) captures the fact
that only items in Ŝ are available for trade, and whenever a buyer is
assigned some item s , she will be required to pay an additional v ′

s
later. Therefore, her valuation for S is no more than her valuation
for the best subset of it in Ŝ , minus the sum of the accordingv ′

s . This
function is XOS because it can be described as the maximum over
the following XOS-support: for all a from the support of the original
vb and s ∈ S, define â(s) = (a(s) −v ′

s )+ if s ∈ Ŝ, and 0 otherwise.
For the v̄ , defined as

v̄b (S) =
©­«

∑
s ∈S∩Ŝ

(
ab ,S (s) −v ′

s
)ª®¬+ ,

we define the XOS support ā(s) = (a(s)−v ′
s ) if s ∈ Ŝ , and 0 otherwise,

and add an additonal function a0 which is 0 for any s ∈ S . □

Analogously, one can prove that the same holds for the gross
substitutes class: after the adjustment, GS valuations remain GS.

Given these closure properties, we run the one-sided mechanism
Mα on the resulting hypergraph Ĝ = (B ∪ Ŝ, Ê, v̂B) consisting of
all buyers, only the sellers in Ŝ , and hyperedge valuations v̂B . This
will lead to an allocation S1, . . . , Sn and payments pMα

b (Si ) for each
bi ∈ B.

Afterwards, we assign sets S1, . . . , Sn to buyer b1, . . . ,bn increas-
ing buyer bi ’s payment relative to the payment in the one-sided
mechanism by the sum of the samples v ′

s for s ∈ Si and pay each
seller s ∈ Ŝ whose item has been sold the respective sample v ′

s .
The construction given in our mechanism is stated in the value-

oracle model, and direct computation of the adjusted valuations
would be inefficient. We provide a discussion on how to implement
the mechanism efficiently in Section 5.3. For purposes of our analy-
sis, we assume that the one-sided mechanismMα always assigns
each buyer an inclusion-minimal set of items giving the according
buyer at least the same utility (this can, e.g., be ensured by employ-
ing a simple type of tie-breaking which favors small sets over larger
ones).

5.2 Analysis of Surplus Mechanism

We start by restating Theorem 4, then we prove it by arguing in
Lemma 4 that the two-sided mechanisms inherit the IR and DSIC
properties from the one-sided mechanism and finally showing the
welfare approximation in Lemma 5.

Theorem 4 (Black Box I). Denote by α the approximation guar-

antee of any one-sided IR, DSIC offline/onlinemechanism for maximiz-

ing social welfare for XOS valuations. We give a two-sided mechanism
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Algorithm 1: Surplus Mechanism

Set Ŝ = ∅, Ê = ∅

for all s ∈ S do

Propose to s a price of v ′
s

if s accepts then
Set Ŝ = Ŝ ∪ {s}

for all (b, S) ∈ B × 2Ŝ do

v̂b (S) =
∑
s ∈S̄ (ab ,S̄ (s) −v ′

s ),

where S̄ = argmaxS⋆⊆S∩Ŝ
{
vb (S

⋆) −
∑
s ∈S⋆ v ′

s
}

Ê = Ê ∪ {(b, S)}
Let A be the assignment on Ĝ induced by runningMα on
the hypergraph Ĝ = (B ∪ Ŝ, Ê, v̂B), with hyperedge
weights v̂B , presenting buyers toMα according to its
input requirements (e.g., offline or in random order)
for all (b, S) ∈ A do

b pays price p(b ,S ) = p
Mα
b (S) +

∑
s ∈S v

′
s , where p

Mα
b (S)

is the price charged to b byMα
b gets assigned the items in S
for each s ∈ S do

s receives a payment of v ′
s

for XOS buyers and unit-supply sellers that is IR, DSIC, BB, uses a sin-

gle sample from each seller and provides a max{2α, 3}-approximation

to the optimal social welfare. The two-sided mechanism inherits the

offline/online properties of the one-sided mechanism on the buyer side

and is offline on the seller side.

We start by establishing the individual rationality, truthfulness,
and budget balance properties of the two-sided mechanism claimed
in Theorem 4.

Lemma 4. Given that an IR and DSIC one-sided mechanismMα is

used, the two-sided Surplus Mechanism is DSIC, IR, and WBB.

Proof. Let’s fix any realization of the valuations. We start by
showing truthfulness. Fix a seller s ∈ S: the only interaction s has
with the algorithm is by accepting or rejecting the posted price
v ′
s , which is independent of vs , in exchange for her item, which is
clearly truthful and individually rational.

Fixing a buyer b: the algorithm will ask about her valuation and
modify it to

v̂b (S) =
∑
s ∈S̄

(ab ,S̄ (s)−v
′
s ), where S̄ = argmax

S⋆⊆S∩Ŝ

{
vb (S

⋆) −
∑
s ∈S⋆

v ′
s

}
,

reflecting that any item s will cost at least v ′
s . This is done because

Mα only involves items, not sellers, so the extra v ′
s is charged

afterwards.

argmax{vb (S ′) −
∑
s ∈S ′

v ′
s − pMα

b (S ′) | vb (S
′) ≥

∑
s ∈S ′

v ′
s + p

Mα
b (S ′)}

= argmax{v̂b (S ′) − pMα
b (S ′)|v̂b (S

′) ≥ pMα
b (S ′)}

where the argmaxs are restricted to available S ′ and with the left
hand side reflecting that Mα is truthful and the right hand side
being exactly what buyer b is trying to maximize. Given that no
trade is generated if for all sets vb (S ′) <

∑
s ∈S ′ v

′
s , the mechanism

is also individually rational. For any trade, the seller’s price is v ′
s

and the buyer’s v ′
s + p

Mα
b (s) ≥ v ′

s , so the mechanism is budget
balanced. □

We now give the proof of the approximation ratio in Theorem 4.

Lemma 5. Assuming that an α-approximate one-sided mecha-

nismMα is used, the two-sided Surplus Mechanism is max{3, 2α }-
approximate.

Proof. Recall that the adjusted buyer valuations in the graph
Ĝ were defined as in Equation (1). Fix a pair (b, S) of buyer and
set of items and a realization vB of buyers’ valuations. Then, in
expectation over the sellers’ valuations and samples, it holds that:

E[v ′
s |s ∈ Ŝ] = E[max{vs , v ′

s }] ≤ E[2vs ], (2)

where we used that s ∈ Ŝ if and only if vs ≤ v ′
s . Note that for every

pair (b, S ′), and every realization of buyer and seller valuations and
samples implies an according maximizing set in the definition of
v̂b (S

′), which we will denote as S̄(S ′). With this, we show

E [v̂b (S)] = E


∑

s ∈S̄ (S )

(
ab ,S̄ (S )(s) −v ′

s

)
≥ E


∑

s ∈S∩Ŝ

(
ab ,S (s) −v ′

s
)
+

 =
∑

s ∈S∩Ŝ

E
[ (
ab ,S (s) −v ′

s
)
+

]
=

∑
s ∈S
E

[ (
ab ,S (s) −v ′

s
)
+
|s ∈ Ŝ

]
P

(
s ∈ Ŝ

)
≥

1
2

∑
s ∈S
E

[
ab ,S (s) −v ′

s |s ∈ Ŝ
]
≥

1
2

∑
s ∈S
E

[
ab ,S (s) − 2vs

]
=

1
2

∑
s ∈S
E

[
ab ,S (s)

]
−

∑
s ∈S
E [vs ] =

1
2
vb (S) −

∑
s ∈S
E [vs ] .

The first inequality follows from the fact that since S̄ maximizes
vb (S

⋆) −
∑
s ∈S⋆ v ′

s , always choosing those s ∈ S ∩ Ŝ for which
ab ,S (s) − v ′

s ≥ 0 can only perform worse. Basic transformations
and the fact that every s ∈ S is included in Ŝ with probability at
least 1

2 result in the second inequality, at which point we simply
plug in Inequality (2).

For the social welfare induced by amaximum-welfare assignment
OPT in graph G, we have

SWOPT =
∑

(b ,S ′)∈OPT

vb (S
′) +

∑
s ∈S\OPT

vs .

Note that in our mechanism, each buyer will only be assigned a
valuation-maximizing, inclusion-minimal set S̄ from the definition
of v̂b . Denote by OPT1 an optimal assignment (hypermatching)
in the original graph G, i.e., an optimal solution to the one-sided
problem with original valuations vb . Then, for the social welfare
induced by our assignment A over Ĝ, it holds

E [SWA] = E


∑

(b ,S̄ )∈A

vb (S̄) +
∑

s ∈S\A

vs


≥ E


∑

(b ,S̄ )∈A

v̂b (S̄) +
∑
s ∈S

vs


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≥ E


∑

(b ,S )∈OPT1

1
α
v̂b (S) +

∑
s ∈S

vs


≥ E


∑

(b ,S )∈OPT1

1
α

(
1
2
vb (S) −

∑
s ∈S

vs

)
+

∑
s ∈S

vs


= E


∑

(b ,S )∈OPT1

1
2α

vb (S) −
∑

s ∈OPT1

1
α
vs +

∑
s ∈S

vs


≥ E


∑

(b ,S )∈OPT1

1
2α

vb (S) +

(
1 −

1
α

) ∑
s ∈S

vs


≥ E


∑

(b ,S )∈OPT

1
2α

vb (S) +

(
1 −

1
α

) ∑
s ∈S

vs

 .
Here, the first inequality stems from the fact that the v̂b are already
discounted by

∑
s ∈S̄ v

′
s ≥ vs . SinceMα is anα-approximation to the

optimum in Ĝ , also the second inequality also holds true. Finally, we
plug in the lower bound to v̂b proven above. The expectation here
is taken over all realizations of buyer valuations, seller valuations,
and samples of seller valuations. For α ≥ 3

2 , from the previous
inequality, one gets

E [SWA] ≥
1

2α
E [OPT ] .

For any other α ∈ [1, 3
2 ), we observe thatMα is also a 3

2 approxima-
tion and then the same calculation gives that E [SWA] ≥

1
3E [OPT ] .

So, all in all, we get a max{2α, 3}−approximation, as claimed. □

5.3 Computational Aspects

As already mentioned earlier, the adjusted valuations v̂B are stated
with an argmax over subsets of S , which—depending on the com-
putational model—may not be an efficient operation.

An alternative, which works for GS, is ,for all S ⊆ S, to define
v̄b (S) =

(∑
s ∈S∩Ŝ

(
ab ,S (s) −v ′

s
) )
+
. As before it can be shown that

if the original valuations are GS, then the modified valuations are
GS as well. A difference between v̄B and v̂B is that the former need
not be monotone, but monotonicity is not required by poly-time
algorithms for GS valuations (see, e.g., [36]). Moreover, the approx-
imation guarantee of the one-sided mechanism run on v̄B also
applies if the resulting assignment is evaluated with the original
adjusted valuations v̂B and the benchmark is the optimal alloca-
tion under the original adjusted valuations v̂B , which is the only
property of the one-sided mechanism that we used in our proof
above. This is clarified in the following proposition.

Proposition 2. Any inclusion-minimal assignment ALG made

by the algorithm run with adjusted valuations v̄ instead of v̂ provides

the same approximation to the optimum welfare.

Proof. Note that the v̄b are in the class XOS, soMα ’s approx-
imation guarantee holds up. Also, for any pair (b, S) with b ∈ B,
S ⊆ Ŝ : v̂b (S) ≥ v̄b (S) , since v̂b (S) results from picking an optimal
subset from S .

Let Sopt be an inclusion-minimal, utility-preserving set of items
assigned to buyer b, which is a subset of b’s assigned bundle Sb in

an optimal hypermatching OPT (Ĝ) of graph Ĝ as defined in our
algorithm, i.e.,

v̄b (S
opt ) =

∑
s ∈Sopt

(ab ,Sopt (s) −v ′
s ),

where Sopt = argmax
S⋆⊆Sb∩Ŝ

{
vb (S

⋆) −
∑
s ∈S⋆

v ′
s

}
.

It holds by definition

v̄(Sopt ) =
∑

s ∈Sopt
(ab ,Sopt (s) −v ′

s )

and therefore, the weight of an optimal assignment is the same
for both v̄ and v̂ . Combining these facts, we get for the weight of
the hypermatching Av̄ returned by the algorithm when using the
valuations v̄B :∑

(b ,S )∈Av̄

v̂b (S) ≥
∑

(b ,S )∈Av̄

v̄b (S) ≥ c ·OPT (Ḡ) = c ·OPT (Ĝ)

and this is what we needed in the proof of the approximation
ratio. □

In addition, note that while our mechanism is stated for the case
of value queries, it can be formulated also for demand queries—
as required by poly-time mechanisms for XOS valuations such as
[1, 2, 20]—by adjusting the prices proposed instead of the buyer
valuations. Here, it is simply necessary to increase theMα -prices
of any S ⊆ S ∩ Ŝ by

∑
s ∈S v

′
s . This does not reflect the capping of

our adjusted valuations to a minimum contribution of 0 for each
seller, but—having the same effect—buyers will never demand the
according items.

Finally, observe that if we are allowed to use demand queries,
then we can also efficiently implement value queries (as required
by some demand-oracle algorithms) to the adjusted valuations v̂B :
first issue a demand query to find the set S⋆ in the argmax, and then
issue a value query to obtain the valuevb (S⋆) of the corresponding
set.

6 COMPUTATIONALLY EFFICIENT DOUBLE

AUCTIONS

We now move on to less general settings with unit-demand buyers
and unit-supply sellers with identical items. We present a general
technique for turning truthful one-sided mechanisms into truthful
two-sided mechanisms while enforcing the strong budget balance
property (in contrast to just weak budget balance from the previous
section).

The one-sided mechanisms we consider are for so-called binary
single-parameter problems. In such a problem, an agent i can either
win or lose, and has a value vi for winning. The set of agents that
can simultaneously win is given by a set system I. The social
welfare of a feasible set X ∈ I is simply the sum

∑
i ∈X vi of the

winning agents’ valuations.
Given two set systems I and I ′ on a ground setU , we define its

intersection to be the set system that contains all sets X ⊆ U such
that X ∈ I and X ∈ I ′.

Theorem 5 (Black Box II). Denote by α the approximation guar-

antee of any one-sided IR, DSIC offline/online mechanisms for the
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intersection of a downward closed set system I with a uniform ma-

troid that may or may not use information on the priors. We give

a two-sided mechanism for unit-demand buyers, unit-supply sellers

with identical goods, and constraints I on the buyers, that is IR, DSIC,

SBB, has the same information requirements on the buyer side as

the one-sided mechanism and uses a single sample from each seller,

and yields a (1 + 1/(2 −
√

3) · α) ≈ (1 + 3.73 · α) approximation to

the optimal social welfare. The mechanism inherits the online/offline

properties of the one-sided mechanism on the buyer side and it is

online random order on the seller side.

Instead of directly proving Theorem 5, we present the algorithm
for the following special case, and then argue how to generalize it.

Theorem 6. Let k = min{n,m}. There is an IR, DSIC, SBB, 1 +
1

2−
√

3
(1 +O(1/

√
k))-approximate single-sample mechanism for un-

constrained double auctions that approaches the buyers in online fixed

order and the sellers in online random order.

We give the explicit mechanism Reserve Rehearsal for The-
orem 6 in Algorithm 2. Reserve Rehearsal runs the one-sided
Rehearsal algorithm [3] to select the top k = min{n,m} buyers.
Azar et al. [3] show that the combined value of the buyers that beat
their price provides, in expectation, a 1 +O( 1√

k
) approximation to

the expected value of the k highest buyers.
Our twist to this mechanism is that we pair buyers b that would

be selected by the Rehearsal algorithm with a random seller s ,
offering them to trade at a price that is the max of the respective
buyer’s pmin and the respective seller’s sample v ′

s . This adds the
needed component to take into account the valuations on the seller
side of the market, and will serve as an insurance that any good

trade we propose has a good chance of actually happening.

Algorithm 2: Reserve Rehearsal

Let P be the set of the k − 2
√
k largest buyer samples,

together with 2
√
k copies of the (k − 2

√
k)th -largest buyer

sample
Let pmin be the smallest element of P
Fix any order on the buyers (or assume buyers arrive online)
for each bi , in this order do

if vbi > pmin then

Delete from P the highest value p ∈ P such that
vbi > p
Pick uniformly at random s ∈ S, delete s from S (or
assume sellers arrive online)
Propose a trade to (bi , s) for the price of
max{v ′

s ,pmin }

if bi and s both agree then
Make the trade at this price

For the more general result in Theorem 5 we run the given
one-sided mechanism on the intersection of the given feasibility
constraint (B,IB) with am-uniform matroid. This gives a set of
tentative buyers B′ along with tentative buyer prices pB . We can
then randomly match the tentative buyers to sellers, offering buyer-
seller pairs (b, s) to trade at price max{pb ,v ′

s }.

We begin by showing that our two-sided mechanism inherits
IR and DSIC from its one-sided counterpart, and that it is strongly
budget balanced.

Lemma 6. The Reserve Rehearsal mechanism is IR, DSIC, and

SBB.

Proof. In Reserve Rehearsal no money is ever received by the
mechanism itself. The only exchange of money happens between
buyer-seller pairs (bi , s) that also exchange an item. The mechanism
is therefore strongly budget balanced.

It is also clear that the mechanism is individually rational as
buyers and sellers would only accept trades at prices that are lower
resp. higher than their respective valuations.

Furthermore, the mechanism is truthful for agents on both sides
of the market. Each buyer is presented with a trading opportunity
once; and the price depends only on the samples and the valuations
of previously considered buyers. She can only accept or reject, but
never influence it—and will therefore not profit from reporting a
lower or higher value. Sellers, on the other hand, are also guaranteed
to be considered only once. They, too, have no means of influencing
the price they are presented with, and can only accept or reject. □

It remains to show the claimed approximation guarantee. Just as
in the case of bilateral trade, we will do the bulk of the work for
fixed buyer valuations.

In what follows, we use M = (x,p) to refer to the one-sided
version of Rehearsal, andM ′ = (x ′,p′) to refer to the two-sided
version. We use B′ to denote the set of tentative buyers chosen by
M , we use B′

+ to denote the set of buyers that end up with an item
in M ′, and we use S+ to denote the set of sellers that keep their
item inM ′. The expected social welfare achieved byM ′ is:

E[SW(x ′(vB,vS))] = E
[ ∑
b ∈B′

+

vb +
∑
s ∈S+

vs
]
.

The key bit in our proof is the following lemma, which relates the
performance of the one-sided mechanism to that of the two-sided
mechanism.

Lemma 7. Let B′
denote the set of tentative buyers chosen by the

one sided mechanismM , let B′
+ denote the set of buyers that trade in

the two-sided mechanismM ′
, and let S+ denote the set of sellers that

keep their item in the two-sided mechanismM ′
. Then,

E
[ ∑
b ∈B′

+

vb +
∑
s ∈S+

vs
]
≥ (2 −

√
3) · E

[ ∑
b ∈B′

vb

]
.

Proof. In order to prove the lemma we will show that for any
fixed buyer valuations vB , buyer samples v ′

B
, and corresponding

set of tentative buyers B′, in expectation over the seller valuations
vS , the seller samples v ′

S
, and the randomness in the pairing of

buyers and sellers,

E
[ ∑
b ∈B′

+

vb +
∑
s ∈S+

vs | B′,vB,v
′
B

]
≥ (2 −

√
3) ·

∑
b ∈B′

vb .

The actual claim then follows by taking expectation over buyer
valuations vB , buyer samples v ′

B
, and the corresponding set of

tentative buyers B′.
In order to do the analysis let’s fix any buyer b ∈ B′ with her

value vb and tentative payment pb . Let’s denote by s the random
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seller associated to b, and by vs and v ′
s two independent samples

from that seller’s value distribution. Note that from buyer b’s per-
spective seller s is just a uniform random seller from S.

The contribution of the couple (b, s) to the social welfare is vb
if there is a trade and vs otherwise, and there is a trade when
vb ≥ max{pb ,v ′

s } ≥ vs .
To analyze this contribution, we fix some constant t ≥ 0 which

will be set later and we denote with F (x) = P (vs ≤ x) the probabil-
ity that a sample from Fs of a seller s chosen uniformly at random
from S is at most x . For any t we can do a case distinction based on
whether vb ≥ t or vb < t . If vb ≥ t, then the probability to have a
trade is at least

P
(
{v ′

s ≤ vb } ∩ {vs ≤ max{pb ,v ′
s }} | t ≤ vb

)
≥ P

(
{v ′

s ≤ t} ∩ {vs ≤ v ′
s }

)
≥ P

(
{v ′

s ≤ t} ∩ {vs ≤ v ′
s } ∩ {vs ≤ t}

)
≥ P

(
vs ≤ v ′

s | {v ′
s ≤ t} ∩ {vs ≤ t}

)
P

(
{vs ≤ t} ∩ {v ′

s ≤ t}
)

≥ 1
2F (t)

2.

So the expected contribution is at least 1
2F (t)

2vb . For the casevb < t
we use the expected value of the seller as a lower bound to obtain
that the expected contribution is at least

E [vs | t > vb ] = E [vs ] = E
[
v ′
s
]
≥ E

[
v ′
s
�� v ′

s ≥ vb
]
· P

(
v ′
s ≥ vb

)
≥ (1 − F (vb ))vb ≥

(
1 − F

(
t+vb

2

))
vb .

So the expected contribution of buyer b and her random partner s
to the social welfare is at least vb · LB(t), where

LB(t) ≥

{ 1
2F (t)

2 if t ≤ vb

1 − F
(
vb+t

2

)
if t > vb

We now set the arbitrary parameter t ≥ 0 to lowerbound that
term. Consider t⋆ = min{t |F (t) ≥

√
3 − 1}, which is the (possibly

jumping) point of function F for which F (t⋆) ≥
√

3− 1, and F (t ′) <
√

3−1 for all t ′ < t⋆. Using this t⋆ we can lower bound the expected
contribution of Bi and s as follows:

vb · LB(t) ≥ vb · min
{

1
2F (t

⋆)2, 1 − F
(
vb+t⋆

2

)}
≥ vb · min

{
1
2 2(2 −

√
3), 2 −

√
3
}

= vb · min
{
2 −

√
3, 2 −

√
3
}
= vb · (2 −

√
3).

One concise way to express the progress so far is:

E
[ ∑
a∈(B′

+ ∪ S+)∩{b ,s }

va | B′,vB,v
′
B

]
≥ (2 −

√
3) · vb , ∀b ∈ B′

where the randomness is over the choice of the random seller s and
her values vs and v ′

s . The above holds for all buyers b, so we can
sum up for all buyers in B′, then use linearity of expectation and
the fact that |B′ | ≤ m to obtain∑
b ∈B′

(2 −
√

3) · vb ≤
∑
b ∈B′

E
[ ∑
a∈(B′

+ ∪ S+)∩{b ,s }

va | B′,vB,v
′
B

]
≤ E

[ ∑
b ∈B′

+

vb +
∑
s ∈S+

vs | B′,vB,v
′
B

]
,

as claimed. □

We are now ready to prove the performance guarantee of the
two-sided mechanismM ′. This, together with Lemma 6, concludes
the proof of Theorem 6.

Lemma 8. Fix n andm and let α denote the approximation guaran-

tee of the Rehearsal algorithm. The Reserve Rehearsal mechanism

yields in expectation a(
1 +

1
2 −

√
3
· α

)
≈ (1 + 3.73 · α)

approximation to the expected optimal social welfare.

Proof. Recall that we use B′
+ to denote the set of buyers that

actually do get an item in our two-sided mechanismM ′, and that we
use S+ to denote those sellers that do not make any trade and keep
their item. With this notation the expected social welfare achieved
by our two-sided mechanismM ′ is

E[SW(x ′(vB,vS))] = E
[ ∑
b ∈B′

+

vb +
∑
s ∈S+

vs
]
.

For a given set of valuationsvB of the buyers, denote byOPTk (vB)

the set of buyers with the k highest values. We can upper bound
the expected optimal social welfare by the optimal solution for the
buyers plus all seller values

E[SW(OPT (vB,vS))] ≤ E
[ ∑
b ∈OPTk (vB )

vb

]
+ E

[ ∑
s ∈S

vs
]
. (3)

Recall that the one-sided mechanismM computes a set B′ of buy-
ers whose accumulated expected values are at least 1

α times the
expected one-sided optimum. Hence, for the considered buyers B′,

1
α
· E

[ ∑
b ∈OPTk (vB )

vb

]
≤ E

[ ∑
b ∈B′

vb

]
.

By combining the above inequality with our upper bound on the
expected optimal social welfare in Inequality (3), we obtain

E[SW(OPT (vB,vS))] ≤ α · E
[ ∑
b ∈B′

vb

]
+ E

[ ∑
s ∈S

vs
]
. (4)

First consider the second term on the right hand side of Inequal-
ity (4). In our two-sided mechanism M ′ sellers trade only if they
are matched to a buyer with higher valuation. Therefore, we can
replace as follows:

E[SW(OPT (vB,vS))] ≤ α · E
[ ∑
b ∈B′

vb

]
+ E

[ ∑
s ∈S+

vs +
∑
b ∈B′

+

vb

]
.

Now consider the first term on the right hand side of Inequal-
ity (4). Our two-sided mechanismM ′ does not make trades for each
buyer in B′. Despite the fact that generally B′ , B′

+, as we show in
Lemma 7, in expectation, (2 −

√
3) · E [

∑
b ∈B′ vb ] is a lower bound

on our mechanism’s social welfare. Using this we obtain

E[SW(OPT (vB,vS))]

≤
α

2 −
√

3
· E

[ ∑
b ∈B′

+

vb +
∑
s ∈S+

vs
]
+ E

[ ∑
s ∈S+

vs +
∑
b ∈B′

+

vb

]
.

All in all, we get:

E[SW(OPT (vB,vS))] ≤

(
1 +

α

2 −
√

3

)
· E

[ ∑
b ∈B′

+

vb +
∑
s ∈S+

vs
]
,
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as claimed. □

We conclude by describing how to extend this argument to prove
the more general result in Theorem 5.

Skectch of the proof of Theorem 5. The proof that the gen-
eral mechanism described above is IR, DSIC, and SBB is basically
identical to that of Lemma 6. The key is that truthfulness of the
one-sided mechanism ensures that tentative buyers want an oppor-
tunity to trade, and cannot manipulate the price they face for this
opportunity. For the performance analysis we claim that Lemma 8
applies more generally with α being the approximation guarantee
of the one-sided mechanism. In fact, the only change to the above
proof that is required for this generalization is to redefine OPTk as
the optimal one-sided solution containing at most k = min{n,m}

buyers. □

7 CONCLUSION AND FURTHER DIRECTIONS

We have initiated the study of simple mechanisms for two-sided
markets that use only a minimum amount of information from
the priors, i.e., just a single sample from the sellers’ distribution.
While without prior information, there is generally no hope for
any meaningful approximation, our mechanisms are approximately
efficient up to small constant factors.

This line of research is of specific relevance for two-sided mar-
kets since efficient mechanisms with the desired requirements are
only possible in the Bayesian setting and, moreover, the optimal
Bayesian mechanism is complicated and known only for restricted
cases. Our results are very general, and in several cases even im-
prove on the best known approximation guarantee with perfect
knowledge of the distributions. Our results can be extended further
by identifying new efficient mechanisms for the one-sided versions
of the problems. Finally, we leave open the problem of devising sin-
gle sample mechanisms for the challenging problem of optimizing
the gain from trade in two-sided markets.

A OMITTED PROOFS

Proof of Theorem 1. We concentrate on bilateral trade only,
since for richer two-sided problems, we can just assume the social
welfare to be dominated by a single buyer-seller pair. Let α be any
approximation factor larger than one and assume for contradiction
the existence of an α-approximative mechanism M as described
above. Call Pvb ,vs the probability of trade for any reported vb ,vs
followingM .

We start off by fixing some reported buyer valuation vb , and
argue that if the seller reports a valuev∗s =

vb
α 2 , mechanismM must

trade the item from s to b with probability Pvb ,v∗
s
at least 1

1+α . In
fact, since M is an α-approximation, we have that the expected
social welfare has to be at least a 1/α factor of vb :

Pvb ,v∗
s
· vb +

(
1 − Pvb ,v∗

s

)
· v∗s ≥

1
α
vb

which leads to Pvb ,v∗
s
≥ 1

α+1 .Wewill employ this bound on Pvb ,v∗
s

to infer a lower bound for the expected price of trade of the seller
ps in terms of vb and α . On one hand, when the seller reports v∗s
with her true valuation being vs ≤ v∗s , she gains at least

д∗s = Pvb ,v∗
s
· E

[
ps (vb ,v

∗
s )|trade

]
+ (1 − Pvb ,v∗

s
) · vs

≥
1

α + 1
v∗s +

(
1 −

1
α + 1

)
vs ≥

vb
(α + 1)α2 ,

where ps (vb ,vs ) ≥ vs by IR when a trade occurs. One the other
hand, sinceM is truthful, reporting vs gives the seller at least the
same gain, i.e., дs ≥ д∗s , where

дs = Pvb ,vs · E [ps (vb ,vs )|trade] + (1 − Pvb ,vs ) · vs
≤ E [ps (vb ,vs )|trade] .

Put together, we get for every fixed vb and vs ≤ vb/α
2,

E [ps (vb ,vs )|trade] ≥ дs ≥ д∗s ≥
vb

(α + 1)α2 . (5)

Now we change perspective: we fix anyvs and consider any two
values vb > v ′

b for the buyer. As a first step in this new direction
we show that the probability of a trade is a non-decreasing function
of the reported buyer valuations. By truthfulness, assuming that
the true value is vb we obtain

(vb − E [pb (vb ,vs ) | trade])Pvb ,vs
≥ (vb − E

[
pb (v

′
b ,vs ) | trade

]
)Pv ′

b ,vs
,

similarly, if the true value is v ′
b

(v ′
b − E

[
pb (v

′
b ,vs ) | trade

]
)Pv ′

b ,vs

≥ (v ′
b − E [pb (vb ,vs ) | trade])Pvb ,vs .

Adding both inequalities, we have that Pvb ,vs ≥ Pv ′
b ,vs

. This im-
plies that, for any fixed vs , there is a fixed value Pvs such that
limvb→∞ Pvb ,vs = Pvs ≤ 1.

At the same time, we have that E [pb (vb ,vs ) | trade] is also non
decreasing in vb , otherwise reporting a higher value would be a
beneficial deviation for the buyer, increasing the probability of a
trade while keeping the expected price paid at most as large.

For any vs , and any ϵ > 0 arbitrarily close to 0, let vϵ ,vsb denote
a fixed buyer bid vb such that the trading probability Pvb ,vs for
(vb ,vs ) is at least Pvs − ϵ . Then, for a buyer value of vb ≥ vϵ ,vsb ,
truthfulness yields

Pvs (vb − E [pb (vb ,vs )|trade])

≥
(
Pvs − ϵ

) (
vb − E

[
pb (v

ϵ ,vs
b ,vs )|trade

] )
.

With some simple algebra, we get that(
1 −

(
Pvs − ϵ

Pvs

))
vb

≥ E [pb (vb ,vs )|trade] −
(
Pvs − ϵ

Pvs

)
E

[
pb (v

ϵ ,vs
b ,vs )|trade

]
≥ E [pb (vb ,vs )|trade] − E

[
pb (v

ϵ ,vs
b ,vs )|trade

]
(6)

Having shown these inequalities about the expected trading prices
for the buyer and seller, we need to combine both. To this end,
consider any input (vb ,vs ) to mechanism M with vb ≫ vs , i.e.,
vb ≥ max{α2vs ,v

ϵ ,vs
b }. Weak budget-balance together with indi-

vidual rationality implies, using Inequality (5) and rearranging the
terms in Inequality (6):(

1 −
Pvs − ϵ

Pvs

)
vb−E

[
pb (v

ϵ ,vs
b ,vs )|trade

]
≥ E [pb (vb ,vs )|trade]

≥ E [ps (vb ,vs )|trade] ≥
vb

(α + 1)α2 .
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Reordering this, we have that the expected price charged from the
buyer when she reports vϵb is at least some factor times vb , for any
large vb . More concretely, it holds

E
[
pb (v

ϵ ,vs
b ,vs )|trade

]
≥

(
1

(α + 1)α2 −

(
1 −
Pvs − ϵ

Pvs

))
vb .

However, for ϵ chosen small enough, the right side is clearly ap-
proaching infinity whenvb increases, whilevϵ ,vsb remains constant
since it depends only on vs but not vb . We have therefore shown
that E

[
pb (v

ϵ ,vs
b ,vs )|trade

]
> vϵ ,vsb for appropriate choice of ϵ and

vb , a contradiction toM being IR. □
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