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Abstract The negative stiffness exhibited by bi-
stable mechanisms together with the tunable superelas-
ticity offered by shape memory alloy (SMA) wires can
enhance the dynamic resilience of a structure in the con-
text of vibration isolation. The effects of negative stiff-
ness and superelastic damping in base-isolated struc-
tures are here explored by carrying out an extensive
study of the nonlinear dynamic response via pathfol-
lowing, bifurcation analysis, and time integration. The
frequency-response curves of the isolated structure,
with and without the negative stiffness contribution,
are numerically obtained for different excitation ampli-
tudes to construct the acceleration and displacement
transmissibility curves. The advantages of negative
stiffness, such as damping augmentation and reduced
acceleration/displacement transmissibility, as well as
the existence of rich bifurcation scenarios toward quasi-
periodicity and chaos, are discussed.

Keywords High-static-low-dynamic stiffness isola-
tor · Quasi-zero-stiffness isolation · Negative stiffness ·
Superelasticity · Hysteresis

A. Salvatore (B) · B. Carboni · W. Lacarbonara
Sapienza University of Rome, Rome, Italy
A. Salvatore
e-mail: a.salvatore@uniroma1.it

1 Introduction

Passive vibration isolation is one of the most popu-
lar and effective vibration control techniques. A SDOF
oscillator subject to harmonic forcing exhibits a deam-
plification of the incoming accelerations for frequen-
cies higher than

√
2 f0, where f0 is the natural fre-

quency of the oscillator. Therefore, lower is the natural
frequency (i.e., the stiffness), larger is the isolated fre-
quency bandwidth. On the other hand, an excessively
low stiffness induces large static displacements. Hence,
a suitable requirement for the isolation systems is an
high-static and low-dynamic stiffness. A very promis-
ing technique to achieve this goal is the exploitation of
negative stiffness mechanisms arranged in parallel with
classical vibration isolation devices. Pasala et al. [1,2]
proposed an adaptive damper based on a negative stiff-
ness component capable to reduce the seismic demands
by simulating a global plastic behavior. In particular, a
bilinear spring is used in parallel with negative stiffness
element to achieve an initial gap in the restoring force of
the device. Other methods to achieve negative stiffness
responses consist in the use of reverse bending sliding
surfaces or magneto-rheological dampers with linear
voltage decay [3–9]. There are several developments
of this concept applied to seismic isolation that show
promising results in terms of reduction in both accel-
erations and displacements transmissibilities. In [10–
32], a linear vertical isolation system was enhanced by
introducing a negative stiffness correction to obtain a
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high preload stiffness and a quasi-zero-stiffness (QZS)
in the equilibrium position.

The nonlinear isolator response is usually described
by a Duffing oscillator with a vanishing linear stiffness.
Donmez et al. [33] studied the dynamic response of a
dry-friction QZS isolator, showing that the hysteretic
damping ensures a better performance than viscous
damping in the out-of-resonance frequency range. In
all of these works, negative stiffness correction is used
to achieve zero stiffness in the equilibrium position,
but as known, in typical civil applications dealing with
seismic horizontal isolation, this is undesirable because
of the need of a wind restraint. By delaying the neg-
ative stiffness contribution through an initial gap, the
wind restraint is preserved, and transmissibility reduc-
tion can be achieved.

Liu et al. [34] proposed a novel isolation system
composed by shape memory alloy (SMA) wires pro-
viding the superelastic effect and a prestressed spring.
The stiffness of the SMA wires overcomes the nega-
tive stiffness exhibited by the prestressed spring until
phase transformations occur. For larger displacements,
the stiffness of SMA wires vanishes and the overall
stiffness becomes quasi-zero. The transmissibility of
a SDOF with the proposed response was analytically
evaluated using a piece-wise linear constitutive law for
the SMA response and a linear elastic law for the neg-
ative stiffness contribution.

In the present work, the dynamic response of a clas-
sical seismic isolation system made up of elastomeric
bearings working in parallel with a negative stiff-
ness mechanism and a SMA element (exhibiting the
superelastic behavior) is explored. The SMA element
is employed to realize the initial gap and, at the same
time, to introduce hysteretic damping in the system.
The negative stiffness contribution is used to achieve
a zero dynamic stiffness away from the equilibrium
position. The benefits associated with a negative stiff-
ness mechanism together with a hysteretic damping for
an improved seismic isolation system are multifaceted.
One of the main is the possibility of reaching large
levels of flexibility thus obtaining quasi-zero-stiffness
and ultra-low-frequency isolation together with a sub-
stantial reduction in the acceleration transmissibility.
Moreover, it is possible to introduce high levels of hys-
teretic damping without loss of performances due to the
increase of the initial stiffness. In fact, this increase is
neutralized by an appropriately tailored negative stiff-
ness. The dynamic response provided by a SDOF sys-

tem, representing the isolated structure controlled by
a negative stiffness-SMA (NS-SMA) damping mecha-
nism, is investigated by employing suitable hysteretic
constitutive laws modeling the nonlinear response of
the bearing devices and the superelastic response of
the SMA element.

2 Negative stiffness-SMA damper for seismic
isolation

In previous works, a bilinear spring is used in parallel
with the negative stiffness in order to achieve an initial
gap in the ensuing restoring force of the device. This
gap allows to maintain the virgin isolation stiffness for
low amplitudes and to realize a wind restraint. In this
work, a superelastic spring is used instead of the bilin-
ear spring in order to realize the initial gap and, at the
same time, to deliver hysteretic damping to the system.
The total restoring force f of the proposed isolation
system is the summation of the force fi provided by
traditional seismic elastomeric isolators, the superelas-
tic force fs and the force fn provided by the negative
stiffness mechanism. It reads

f = fi + ( fn + fs) = fi + fns, (1)

where fns = fn + fs is the overall force of the pro-
posed rheological device. For displacements below the
gap amplitude, the stiffness of the superelastic element
is equal to the negative stiffness, hence the response
is governed by the elastomeric element. For displace-
ments larger than the gap, corresponding to the supere-
lastic transition (i.e., where the stiffness drops), the neg-
ative stiffness strongly reduces the total force and stiff-
ness. For larger displacements, the cubic term tends to
overcome the negative stiffness contribution and the
overall response returns to follow the baseline back-
bone response of the elastomeric bearings (see Fig. 1).

In the subsequent sections, three types of isolated
SDOF systems are studied and compared. The base-
line elastomeric isolation system (EIS) is referred to
as S1 and the associated restoring force is f = fi . S2

denotes the baseline isolation system together with the
superelastic spring alone whose associated restoring
force is f = fi + fs . Finally, S3 indicates the compound
isolation system constituted by the NS-SMA damper
arranged in parallel with the elastomeric bearings and
the associated total restoring force is f = fi + fs + fn

(see Fig. 2).
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Fig. 1 Force-displacement
cycles associated with (left)
damper force fns (black
line) ensuing from fs (red
line indicating the
superelastic element) plus
fn (blue line indicating the
negative stiffness element)
and with (right) the overall
system response with and
without damper (black and
gray lines, respectively)

Fig. 2 Schematic representation of the three different isolated systems referred to as S1, S2 and S3, respectively

2.1 Rheological models

2.1.1 Elastomeric isolators

Elastomeric isolation systems are usually described by
the Bouc-Wen model of hysteresis [35,36] together
with a linear viscous damping term. Therefore, the
adopted model is the direct summation of a viscous
damping force, an elastic force and a hysteretic force,

fi = cẋ + αKi x + (1 − α)Ki z, (2)

where the hysteretic force z is governed by

ż = ẋ[1 − (γ + βsign(zẋ)]|z|n . (3)

The term c is the viscous damping coefficient, α is
the ratio between the post-elastic and the stiffness Ki

at the origin, γ and β control the shape of the hys-
teresis loops, n regulates the smoothness of transi-
tion between the initial elastic and post-elastic stiff-
ness. The upper and lower bounds of z are given by
zm = ± n

√
(1 − α)Ki/(γ + β). In the present study,

γ + β is restricted to be positive in order to have a
softening behavior and n is set to 1 (Fig. 3).

Fig. 3 Force-displacement cycles of isolation devices where Ki
indicates the stiffness at the origin and αKi denotes the post-
elastic stiffness

2.1.2 Negative stiffness mechanism

In most passive bi-stable mechanisms, the negative
stiffness is produced by geometric nonlinearities within
a given displacement range while out of this, the stiff-
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Fig. 4 Force-displacement cycles provided by the negative stiff-
ness force where Kn indicates the negative stiffness while x f
and xn denote the displacements for which the force vanishes or
achieves the maximum negative value, respectively

ness returns to be positive. In this work, the force exhib-
ited over the displacement amplitude x f , for which the
force vanishes, is cancelled by means of a step function.
Its expression reads

fn = (−Kn x + K3x3)
(1 + sign(x f − |x |))

2
(4)

where Kn is the negative linear stiffness, K3 is the
positive cubic stiffness, and x f is the displacement
corresponding to a vanishing force and is equal to
x f = √

Kn/K3. Another characteristic displacement
is that leading to the maximum negative force and is
given by xn = √

Kn/3K3 (see Fig. 4).

2.1.3 Superelastic spring

The superelastic response is modeled according to
the phenomenological superelastic model proposed by
Charalampakis [37] given in rate form as:

ḟs = (1 − s)Ks[ẋ − |ẋ |sign( fs − βs)( | fs − βs |
Y

)ns

] + sKm ẋ, (5)

βs = Ksαs

[
x − fs

Ks
+ ft tanh(as x)

[
1 + sign(−x ẋ)

2

]]
, (6)

s = tanh[cs(|x | − xm)] + 1

2
, (7)

Fig. 5 Force-displacement cycles of the superelastic element

where Ks is the initial stiffness during the austenitic
phase, Y is the yielding force and αs controls the
post-elastic stiffness. The parameter ns regulates the
smoothness of transition from the initial elastic to the
post-elastic phase while ft and as controls the twin-
ning hysteresis and super-elasticity and the pinching
around the origin along the cycle, respectively. Finally,
Km indicates the stiffness during the fully martensitic
phase, xm is the displacement at which the transition
from the post-elastic to the fully martensitic phase
occurs and cs controls the smoothness of this transi-
tion (see Fig. 5).

Because of the large variability and dependence of
ft and as on the remaining parameters, two new param-
eters with a more straightforward physical interpreta-
tion, ys and ãs , are introduced. In terms of these param-
eters, ft and as are expressed as:

ft = (2Y − ysY )/(αs Ks), (8)

as = tanh−1(ãs Ks)/(Y − ysY ). (9)

The first parameter indicates the difference between
the loading and unloading forces and it is expressed as
percentage of Y . The second allows to set the residual
displacement to a fixed value varying the other param-
eters (see Fig. 6). In particular, ãs indicates the value
assumed by tanh(as x) where x is the displacement at
which the unloading branch with stiffness αs Ks inter-
sects the elastic loading branch.
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Fig. 6 Variation of the
superelastic
force-displacement cycles
with the nondimensional
parameters ys (left) and ãs
(right)

Fig. 7 Overall force-displacement cycles provided by S3 where
the gap displacement xg and the martensitic displacement xm are
indicated

2.1.4 Design parameters

The main goal is to investigate the effects of the NS-
SMA device in parallel with traditional elastomeric
devices. Thus, the stiffness Ki of the isolation system,
the gap displacement xg = Fw/Ki , (with Fw indicating
the maximum expected wind load) and the maximum
allowed displacement xu are assumed as input parame-
ters (see Fig. 7). In this study, xg is set to 0.05xu . On the
other hand, Kn , Y and ys are the design parameters. All
the remaining parameters are set to fixed values (c =
0.1, α = 0.2, β = 0.09, γ = 0.01, n = 1, αs = 0.01,
ns = 3, ãs = 0.6, cs = 0.02) or determined accord-
ing to the following expressions: x f = xm = 0.7xu ,
K3 = Kn/x2

f , Ks = Y/xg , ft = (2Y − ysY )/(αs Ks),

as = tanh−1(ãs Ks)/(Y − ysY ), and Km = 0.5Ks .

2.1.5 Nondimensional equation of motion

The equation of motion of a SDOF mass m subject to
the hysteretic restoring force given by Eq. (1) reads:

mẍ + cẋ + αKi x + (1 − α)Ki z

+(−Kn x + K3x3)
(1 + sign(x f − |x |))

2
+ fs = Psin(Ωgt). (10)

By choosing the characteristic displacement x0 = xu

and the characteristic stiffness Ki (i.e., the initial stiff-
ness of the isolation system, equal to the initial stiff-
ness of the Bouc–Wen model), the following nondi-
mensional variables are introduced: x̃ = x/x0, t̃ = ωt ,
where ω = √

Ki/m. The nondimensional equation of
motion is obtained dividing Eq. (10) by N0 = Ki x0:

¨̃x + ζ ˙̃x + α x̃ + (1 − α)z̃ + (−K̃n x̃

+ K̃3 x̃3)
(1 + sign(x̃ f − |x̃ |))

2
+ f̃s = P̃sin(Ω̃g t̃),

(11)

where P̃ = P/N0, Ω̃g = Ωg/ω, ζ = cω/Ki . The
nondimensional parameters for the Bouc–Wen model,
the negative stiffness law and the SMA model are: z̃ =
z
x0

, γ̃ = γ xn
0 , β̃ = βxn

0 , K̃n = Kn
Ki

, K̃3 = K3x2
0

Ki
, x̃ f =

x f
x0

, K̃s = Ks
Ki

, K̃m = Km
Ki

, Ỹ = Y
N0

, f̃t = ft
x0

, ã =
as x0, c̃s = cs x0, x̃m = xm

x0
.

3 Equivalent stiffness and damping

A useful way to characterize the dynamic behavior of
the nonlinear hysteretic oscillator is to make use of the
equivalent linearization. The equivalent linear stiffness
[38] and damping ratio [39] can be defined as function
of the displacement amplitude (U ) can be defined
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(a) (b)

Fig. 8 Equivalent nondimensional stiffness vs. nondimensional
displacement amplitude (left) and equivalent damping vs. nondi-
mensional amplitude (right) for S1 (black line), S2 with Y =
Zm , ys = (0.2, 0.5, 0.8) (dotted, dashed and solid red lines,

respectively) and with Y = 1.6Zm , ys = 0.8 (dashed-dotted
red line). The sub-figures show the hysteresis loops of device a
and system b for the parameters described above

Keq =
∫ U
−U Kt (x)dx

2U
, ξ = Ed

4π Ek
, (12)

where Kt denotes the tangent stiffness function of x ,
Ed denotes the total dissipated energy and Ek is the
stored energy for a given displacement of amplitude
equal to U . Firstly, the equivalent stiffness and damping
for the system composed by superelastic element alone
arranged in parallel with the elastomeric device (system
S2) are investigated. In order to clarify the effects of
the design parameters, four different cases are reported
in Fig. 8: (Y = Zm, K̃s = α, ys = 0.2) (red dotted
line), (Y = Zm, K̃s = α, ys = 0.5) (red dashed line),
(Y = Zm, K̃s = α, ys = 0.8) (red solid line), (Y =
1.6Zm, K̃s = 1.6α, ys = 0.8) (red dashed dotted line).

The trends of equivalent stiffness and damping in
Fig. 8 show that for low ratios of super-elastic hys-
teresis (ys) (see dotted red curve), the only effect is an
increase in stiffness that causes a reduction of equiva-
lent damping in the low amplitude range. For greater
ratios of superelastic hysteresis, a small increase in
damping is achieved for moderate and large displace-
ments, whereas for low amplitudes, a decrease in damp-
ing persists. Increasing the yielding force (Y ) entails an
increase in initial stiffness; hence, the damping reduc-
tion at low amplitudes is more significant. Moreover,
a damping increment is exhibited for large displace-
ments. The introduction of the superelastic element
within the isolation system, regardless from its hys-
teresis contribution, causes a decrease in seismic isola-
tion performance for low-intensity earthquakes char-

acterized by high frequency of occurrence (because
of an increase in stiffness and a subsequent decrease
in the damping). On the other hand, a slight improve-
ment of performance is obtained for medium- and high-
intensity earthquakes. By considering next the case
(Y = Zm, ys = 0.8), Fig. 9 shows that the introduction
of negative stiffness drastically amplifies the equivalent
damping. In fact, while the maximum increase in damp-
ing achieved with the superelastic element alone was
of � 2%, with K̃n = (0.5, 1, 1.2)α, the achieved incre-
ments are � (5, 25, 40)%, respectively. As already
seen for the system S2, the increase in the hysteresis
ratio ys entails an increase of the equivalent damping,
while the increase in the yielding force Y gives rise to
an increase in the initial stiffness and thus a drop of
the equivalent damping over a broad range of displace-
ments

In Fig. 10, the damping amplification due to nega-
tive stiffness is shown for two different displacement
levels equal to (0.05, 0.2) x0. The system S2 exhibits a
decrease in damping for low amplitudes, while a slight
increase is observed for the second amplitude. With
the introduction of the negative stiffness (S3), a strong
damping amplification is achieved for both amplitudes.

By numerically integrating the median line of
the hysteresis cycles, the potential energy profile is
obtained for the NS-SMA device alone and for the com-
bined system S3 (see Fig. 11). The potential energy pro-
files of the device reveal its bi-stable/tri-stable nature.
In fact, for K̃n = (0.2, 0.5)α, the profile has three
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Fig. 9 Equivalent nondimensional stiffness vs. nondimensional
displacement amplitude (left) and equivalent damping vs. nondi-
mensional amplitude (right) for S1 (black line), S2 with Y =
Zm , ys = 0.8 (red line), S3 with K̃n = (0.5, 1, 1.2)α (magenta,

violet, blue lines, respectively); the blue dashed-dotted lines rep-
resent the case K̃n = 1.2α, Y = 1.6Zm , ys = 0.8, while the
sub-figures show the hysteresis loops for the assigned parame-
ters
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Fig. 10 Damping amplification 
ξ vs. negative stiffness coeffi-
cient for a nondimensional displacement of 0.05 (left) and of 0.2
(right) for the S3 system with Y = Zm , ys = (0.2, 0.5, 0.8)

(black dotted, dashed and solid lines, respectively) and with
Y = 1.6Zm , ys = 0.8 represented by dashed-dotted gray lines

minima giving rise to three stable and two unstable
equilibria. On the other hand, when the negative stiff-
ness is equal or greater than the SMA elastic stiffness,
K̃n = (1, 1.2)α, the two unstable equilibria coalesce at
the origin into one unstable equilibrium point in place
of the original stable point, and the device becomes
bi-stable. The addition of the damper to the isolation
system gives rise to an erosion of the global potential
energy profile bringing it closer to the damped energy

profile, increasing the ratio Ed/Ek and thus the equiv-
alent damping. Figure 12 shows that for K̃n = 1.2α,
the response exhibits a negative stiffness range and
the damped energy profile along the associated branch
is greater than the potential profile and the system
becomes overdamped. For values of K̃n > 1.2α,
the median line of the hysteresis loops intersects the
abscissa line (i.e., the force vanishes). Consequently,
two lateral minima in the energy profile appear and the
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system becomes globally tri-stable. In order to obtain a
self-recentering system, the existence of two additional
equilibrium positions is undesirable. This is the reason
because the negative stiffness K̃n must be limited to
value provided by eq. (13). In light of the above, the
optimum negative stiffness can be identified within the
range α < K̃n < 1.2α, where a consistent reduction in
the stiffness and damping amplification without loss of
self-recentering capacity is obtained. The limit value of
negative stiffness past which the median line of the hys-
teresis loops intersects the abscissa axis and the system
becomes tri-stable can be analytically obtained as

K̃n M S→T S = −α − αs K̃s

−3
3

√
(−1 + αs)2 K̃3 K̃ 2

s x̃2
g

4
. (13)

4 Nonlinear dynamic response scenario

The frequency-response curves (FRCs) of the described
hysteretic oscillators endowed with the rheological
devices S1, S2, S3 are numerically obtained for sev-
eral excitation levels employing a continuation proce-
dure based on the Poincarè map. The Poincarè map
and the associated monodromy matrix are computed
via the fourth-order Runge–Kutta integration scheme
and the finite difference method, respectively. The sta-
bility and the bifurcations along the path of periodic
solutions are ascertained according to the eigenvalues
of the monodromy matrix [40]. In the next subsections,
a full parametric analysis is carried out to investigate
the sensitivity of the FRCs with respect to the design
parameters.

Linear and nonlinear negative stiffness. Figure 13
shows the displacement and acceleration FRCs for the
baseline isolation system (S1) (denoted by black lines),
for the isolation system with the SMA damper (S2)
assuming K̃s = α, x̃g = 0.05, ys = 0.2, (denoted
by red lines) and for the isolation system with the
same SMA damper plus the negative stiffness (S3) with
K̃n = (0.5, 1, 1.2)α under two excitation amplitudes,
Ãg = (0.01, 0.015). As expected, the addition of the
superelastic element induces an increase of stiffness
that is larger for low amplitudes, and results in a shift of
the curves to the right with an increase in the accelera-
tion and a decrease in the displacement (see the red lines
in Fig. 13). The addition of negative stiffness implies
a reverse shift of the curves to the left, a decrease in

the acceleration and an increase in the displacement.
It is interesting to note that despite the stiffness of S3

being much lower than that of the baseline system S1,
the maximum displacement is always smaller, at most
equal, thanks to the beneficial effect of the augmented
damping.

Besides the negative stiffness coefficient, also the
nonlinear stiffness coefficient K̃3 plays an important
role on the nonlinear dynamic response. Figure 14
shows families of displacement and acceleration FRCs
of the systems S1 and S3 upon variation of the non-
linear stiffness coefficient K̃3. Note that an increase in
K̃3, associated with a smaller working displacement
x̃ f , entails a stronger hardening nonlinearity that leads
to a reduction in the peak displacement and an increase
in the peak acceleration.

SMA mechanical characteristics. In Fig. 15, the
FRCs of the system S1 (black lines) are compared with
those of S2 (red lines) and S3 (violet lines) for differ-
ent levels of hysteresis ratio ys and for two excitation
amplitudes, Ãg = (0.01, 0.015). The acceleration of
the system S2 shows, for low excitations and regardless
of the hysteresis ratio, an increase in the acceleration
compared to the baseline system S1. On the contrary,
S3 exhibits a strong reduction in accelerations for both
excitation amplitudes, while it also undergoes a strong
reduction in displacements for medium and high hys-
teresis ratios of the superelastic element.

By increasing the yielding force of the superelastic
element (with Y = 1.6Zm), an additional reduction
of displacement amplitude can be achieved but paying
the cost of a stiffness increase and, accordingly, of the
accelerations transmissibility.

5 Displacement and acceleration transmissibilities

The parametric study unfolds a meaningful sensitivity
of the frequency-response with respect to the system
parameters. Henceforth, the evolution of the response
for increasing base accelerations is discussed. The
FRCs of the system S3 are computed for different exci-
tation amplitudes (see Fig. 16). The strong softening-
hardening nonlinearity of the system is reflected by
the trend of the backbone curves. Other interesting
phenomena are observed such as the emergence of
detached resonance curves. For the case with large neg-
ative stiffness (K̃n = 1.2α) a disappearance of the
peak occurs in the response within the displacement
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Fig. 11 Potential energy
profiles of the NS-SMA
damper (left) and of the
combined system S3 (right)
for
K̃n = (0, 0.2, 0.5, 1, 1.2)α,
denoted by red, fuchsia,
magenta, violet and blue
lines, respectively

Fig. 12 (left) Potential energy profiles of system S3 with
K̃n = (1, 1.2, 1.3)α represented by magenta, blue, and violet
lines, respectively, and damped energy profile denoted by gray
dashed lines. The sub-figure shows the total force displacement
cycles together with the average force in dashed-dotted lines.

(right) Analytical curves separating mono-stability (MS) from
tri-stability (TS) in the parameters space of the negative stiff-
ness mechanism (K̃n, K̃3) for the S3 system with ys = 0.8 and
Y = (1, 1.6)Zm represented by black solid and black dashed-
dotted lines, respectively

range in which the system turns out to be overdamped
(0.2 < x̃ < 0.4). Moreover, for the strongest base
acceleration in the low-frequency range, there exists a
bandwidth in which no stationary solutions could be
obtained, a circumstance that suggests the existence of
quasi-periodic/nonperiodic responses.

For the same excitation amplitudes, the FRCs are
computed for the system S1 and S2 assuming various
hysteresis ratios and yielding force levels, and for S3

varying the negative stiffness and the amount of hys-
teresis. The ratios between the peak responses of S2 or
S3 and those of the baseline system S1 are reported in
Fig. 17 as function of the base acceleration.

As expected, the insertion of the superelastic ele-
ment alone causes an increase of accelerations response
for weak excitations. The increase is about 30% when

Y = Zm and 60% for Y = 1.6Zm , respectively, and
it is mainly due to the initial stiffness of the hysteretic
damping and slightly to the damping ratio.

On the other hand, the damping ratio strongly affects
the response for moderate and strong base accelera-
tions. It turns out that reductions of 20%, 40% and
60% are obtained when ys = (0.2, 0.5, 0.8), respec-
tively. By introducing the negative stiffness in parallel
with the SMA damper (system S3), the amplification of
accelerations for weak excitations is totally cancelled
and a mild reduction can be observed. In addition, a
further 20% reduction of accelerations compared with
the system S2 is obtained for moderate and strong base
excitations, achieving an overall acceleration reduction
of 40%, 60%, and 80% for ys = (0.2, 0.5, 0.8), respec-
tively. The trend in acceleration reduction coincides
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Fig. 13 Frequency-
response curves (FRCs) in
terms of nondimensional
displacement (left) and
acceleration (right) for a
ground acceleration of 0.01
(a and b) and 0.015 (c and
d). The response of S1 is
denoted by black lines, the
response of S2 (when
Y = Zm , ys = 0.2) by red
lines while the response of
S3 by magenta
(K̃n = 0.5α), violet
(K̃n = α) and blue lines
(K̃n = 1.2α), respectively.
The dashed lines indicate
unstable periodic responses

(a) (b)

(c) (d)

Fig. 14 Frequency-
response curves (FRCs) in
terms of nondimensional
displacement (left) and
acceleration (right) for a
ground acceleration set to
0.015. The response of S1 is
represented by black lines
and that of S3 (when
Y = Zm , ys = 0.2, K̃n = α

and K̃3 =
(1, 2, 4, 8, 10)10−6 K̃n) is
denoted by solid violet lines
with increasing thickness
for increasing K̃3

with the trend depicting the stiffness reduction. There-
fore, it shows a bell shape with a peak corresponding to
the displacement where the stiffness reduction is max-
imum. According to the presence of the cubic stiffness
in the NS mechanism, the equivalent stiffness and con-
sequently the maximum acceleration reach again the
values of the baseline system S1 for large displace-
ments. The increase in the damping ratio results in
the expansion of the bell, both in terms of width and
height. If the initial stiffness of the SMA damper over-
comes the negative stiffness, as is the case with K̃n = α

and Y = 1.6Zm (see violet line in Fig. 17b), a slight

increase in the peak accelerations occurs for low exci-
tations together with an expansion of the bell width
and of the effective displacement range. By balancing
the increase in SMA damper initial stiffness with an
equivalent increase in negative stiffness as is the case
with K̃n = 1.2α and Y = 1.6Zm , (see violet line in
Fig. 17d), the increase of the peak accelerations for low
excitation amplitudes is cancelled again. For moderate
and strong excitations, the increase in negative stiff-
ness from α to 1.2α causes an additional acceleration
reduction of about 10%.
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Fig. 15 Frequency-
response curves in terms of
nondimensional
displacement (left) and
acceleration (right) for a
ground acceleration set to
0.01 (a and b) and 0.015 (c
and d). The response of the
S1-isolated system is
described by black lines,
those of S2 (when Y =
Zm , ys = (0.2, 0.5, 0.8)) by
red lines with increasing
thickness for increasing ys ,
and those of S3 (when
K̃n = α, Y = Zm , ys =
(0.2, 0.5, 0.8)) by violet
lines with increasing
thickness for increasing ys
and blue lines (when K̃n =
α, Y = 1.6Zm , ys = 0.8),
respectively

(a) (b)

(c) (d)

Fig. 16 FRCs in terms of
nondimensional
displacement (left) and
acceleration (right) for the
S3 system with
K̃n = α, Y = Zm , ys = 0.2
(top) and with K̃n =
1.2α, Y = Zm , ys = 0.2
(bottom) when the base
accelerations are set to
(0.8, 1, 1.08, 1.2, 1.28, 1.3, 1.32, 1.36, 1.4, 1.48, 1.6, 1.8, 2)10−2

(a) (b)

(c) (d)
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(b)(a)

(d)(c)

Fig. 17 Ratio between the peak response of the controlled sys-
tems (S2 and S3) and that of the baseline system (S1) in terms of
nondimensional displacements (left) and accelerations (right) as
function of the nondimensional base acceleration. The responses
of S2 for Y = Zm and ys = (0.2, 0.5, 0.8) are represented by
red dotted, red dashed and red solid lines, respectively, while the

response of S2 with Y = 1.6Zm and ys = 0.8 is described by
bordeaux solid lines. The responses of S3 for K̃n = α (top),
1.2α (bottom), Y = Zm , ys = (0.2, 0.5, 0.8) are described
by blue dotted, blue dashed and blue solid lines, respectively,
while the response of S3 with K̃n = α (top), 1.2α (bottom),
Y = 1.6Zm , ys = 0.8 is indicated by violet solid lines

Regarding the displacements, it is worth highlight-
ing a substantial coincidence between the reduction
offered by the systems S2 and S3 with K̃n = α for
weak base excitations. The trend in reduction is for
both systems quasilinear up to a maximum value cor-
responding to the displacement that yields the maxi-
mum damping. The maximum displacement reduction
is quite similar for both systems except for low damp-
ing ratios (ys = 0.2) where it is about 20% for S3 and
40% for S2. This is because for ys = 0.2 the stiffness
reduction is not balanced by a robust damping augmen-
tation. For the remaining damping ratios, the peak dis-

placements reduction for both systems is about 55%
and 65% with ys = (0.2, 0.5), respectively. Past the
maximum, the trend of the peak displacements reduc-
tion for S3 deviates from the trend of S2, showing a
smaller reduction. The maximum deviation between
the two responses occurs where the stiffness reduction
is maximum.

The increase in yielding force (Y ) from Y = Zm to
Y = 1.6Zm , hence, the increase in the initial supere-
lastic stiffness, moves the curves to the right showing
a smaller reduction for weak excitations and a larger
reduction for moderate and strong base excitations. For
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(a) (b) (c)

(d) (e) (f)

Fig. 18 FRCs in terms of nondimensional displacements
for the base accelerations set to (0.8, 1, 1.08, 1.2, 1.28, 1.3,

1.32, 1.36, 1.4, 1.48, 1.6, 1.8, 2)10−2 for the S3 system with
K̃n = α, Y = Zm , ys = (0.5, 0.8) (parts a and b) and

K̃n = α, Y = 1.6Zm , ys = 0.8 (part c), and with K̃n =
1.2α, Y = Zm , ys = (0.5, 0.8) (parts d and e) and K̃n = α, Y =
1.6Zm , ys = 0.8 (part f)

the case with K̃n = 1.2α, the response reduction is
smaller than that achieved with K̃n = α and, for a cer-
tain range of base excitations, there exists an increase
in the response. This range of base excitations corre-
sponds to the FRCs where the displacement peak is due
to the superharmonic resonance, as shown in Fig. 18.

Next, we address the force transmissibility in terms
of frequency bandwidth where effective isolation is
attained. We consider the force transmissibility as the
ratio between absolute acceleration and base accelera-
tion. As known, the response is considered effectively
controlled when the transmissibility is lower than 1.
For the nondimensional base acceleration of 0.02, the
acceleration peak reduction for S3 is minimum (i.e.,
40%) and it is equal to that of S2 (see Fig. 17b, d).
By analysing the force transmissibility under the same
base accelerations, useful considerations can be drawn
about the isolation performance of the proposed sys-
tem. While Fig. 17 shows only the reduction in peak

accelerations, Fig. 19 portrays the bandwidth of the
isolated frequencies.

The introduction of the SMA damper alone increases
the value of the first isolated frequency, thus reducing
the bandwidth of the isolated frequencies of 69% and
87% for Y = Zm and Y = 1.6Zm , respectively. On the
other hand, the negative stiffness mechanism in paral-
lel with the SMA damper, determines a reduction of
the peak response together with an increase of the iso-
lated frequency bandwidth reducing the value of the
first isolated frequency of 25% and 44% with K̃n = α

and K̃n = 1.2α, respectively. It can be observed that an
increase in the SMA yielding force (Y) determines an
increase in the initial superelastic stiffness not accom-
panied by an increase in negative stiffness. This yields
a further reduction in peak response but the isolated
frequency bandwidth is reduced (Table 1).
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1stfis

Kn= SMAKn=1.2

1stfis 1stfis

Fig. 19 FRCs in terms of force transmissibility for a nondi-
mensional base acceleration equal to 0.02. The response of S1
is described by the black solid line, while the responses of S2
when ys = 0.8, Y = (1, 1.6)Zm are denoted by the red solid
and red dashed lines, respectively. The responses of S3 when

K̃n = α, Y = (1, 1.6)Zm are described by the violet solid and
dashed lines and those of S3 when K̃n = 1.2α, Y = (1, 1.6)Zm
are denoted by the blue solid and blue dashed lines, respectively.
For all cases ys = 0.8

Table 1 Force transmissibility performance for the three kinds of isolated systems, S1, S2 and S3

System Parameters AAbs/Ag 1st isloated freq. [Ω̃] 
 f [%]

Baseline system (S1) K̃n = 0, Y = 0, ys = 0 11.46 0.77 0

SMA system (S2) K̃n = 0, Y = Zm , ys = 0.8 6.48 1.12 69

K̃n = 0, Y = 1.6 Zm , ys = 0.8 4.35 1.25 87

NS-SMA system (S3) K̃n = α, Y = Zm , ys = 0.8 6.13 0.40 −25

K̃n = α, Y = 1.6 Zm , ys = 0.8 2.61 0.94 45

K̃n = 1.2α, Y = Zm , ys = 0.8 6.07 0.25 −44

K̃n = 1.2α, Y = 1.6 Zm , ys = 0.8 2.17 0.84 33

6 Primary, superharmonic and detached
resonances

The severe softening nonlinearity associated with the
softening hysteresis induces an interaction between
the primary and the superharmonic resonances caus-
ing the emergence of detached resonance curves, a
phenomenon that is well documented in the literature
[41–43]. However, a new phenomenology is here doc-
umented. In Fig. 21, the evolution of the isolas for the
system with two levels of negative stiffness is shown.

The qualitative pattern in both cases consists in the
birth of an outer isola in the neighborhood of the super-
harmonic resonance frequency which, for increasing
base acceleration levels, coalesces first with the super-
harmonic resonance branch and, thereafter, upon fur-

ther increase in the excitation amplitude, coalesces with
the main resonance branch, giving rise to an inner isola.

It is possible to observe that for the system S3 with
K̃n = α, there exists only a small outer isola, while for
the case with K̃n = 1.2α, different outer isolas coex-
ist. Indeed, for a ground acceleration of 0.01, two outer
detached resonance isolas are visible in the proximity
of the superharmonic resonances of order 1:3 and 1:5
(see Fig. 20e). For a higher amplitude, the two distinct
isolas merge and a new isola is formed near the super-
harmonic resonance of order 1:7 (see Fig. 20f). Upon
further increase in the excitation amplitude, all previ-
ous isolas merge with each other and with the 1:3 super-
harmonic resonance branch (see Fig. 20g). At a higher
excitation amplitude, the primary resonance branch and
the outer superisola merge and give rise to an inner isola
for slightly higher excitation amplitudes (see Fig. 20h).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 20 Evolution of isolas topology for S3 with K̃n = α, Y =
Zm , ys = 0.2 (top) for a nondimensional ground acceleration
equal to 0.0128 a, 0.01288 b, 0.0130 c, 0.0132 d and for S3 with

K̃n = 1.2α, Y = Zm , ys = 0.2 (bottom) for a nondimensional
ground acceleration equal to 0.01072 e, 0.01088 f, 0.01112 g and
0.0112 h

Despite the very low- frequency range where the isolas
appear, the outer isolas are detrimental for isolation pur-
poses since they can give rise to an unwanted dynamic
amplification. On the contrary, the inner isola can be
used to reduce the response near the main resonance.

The factors that determine whether the mass will
move along the detached solution curve or along the
main branch are the initial conditions or the perturba-
tions causing jumps between the coexisting attractors.
In order to obtain the basins of attraction of the sys-
tem for the isolas (see Fig. 21), the equations of motion
are numerically integrated for a fixed harmonic excita-
tion over 1000 periods for a grid of initial conditions.
The initial conditions, in terms of displacement and
velocity, that lead to different attractors are denoted
by different colors. In particular, the initial conditions
that lead to the low-amplitude solution are represented
in red, while in blue those associated with the high-
amplitude solution. It is possible to note that the system
with K̃n = α shows much thinner basins of attraction
for both the outer and inner isola than the system with
K̃n = 1.2α, denoted by larger blue and red regions for
the outer and inner isolas, respectively.

For a more thorough characterization of the two
coexisting attractors exhibited by the system with K̃n =
1.2α, Y = Zm, ys = 0.2, the force-displacement

cycles, the phase portraits, the time histories and the
FFTs of the response for a harmonic base excitation
with Ãg = 0.01072 and Ω̃2 = 0.022 are shown in
Fig. 22.

The response belonging to the main solution branch
is richer due to the presence of more superharmonic
components. In fact, while in the first case, third, fifth
and seventh harmonics are relevant in terms of ampli-
tude, in the case of the isola, only the third harmonic
is considerable. From the FFT, it is also possible to see
that, for solutions belonging to the isola, the amplitude
of the main harmonic is larger than that of the overall
response (sum of all harmonics) while for the solu-
tion along the main curve, the fundamental harmonic
exhibits the same amplitude of the overall response.
This suggests a different relative phase between the
main harmonic and higher harmonics for the two solu-
tions.

The harmonic decomposition of the two different
responses shows that for the solution belonging to the
main branch, the peak of main harmonic component
corresponds to the zero of all other harmonics having
thus a relative phase of π/2n with n representing the
order of the harmonic component (see Fig. 23).

By focusing on the third harmonic, a relative phase
of π/6 means that the peak of the main harmonic coin-
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Fig. 21 Basins of attraction for the system S3 with K̃n = α, Y =
Zm , ys = 0.2 (top) for a base acceleration Ãg = 0.0128 and fre-
quency Ω̃2 = 0.022, corresponding to the outer isola (left), and
for a base acceleration Ãg = 0.0132 and frequency Ω̃2 = 0.05,
corresponding to the inner isola (right). (bottom) Basins of attrac-
tion for the system S3 with K̃n = 1.2α, Y = Zm , ys = 0.2 for

a base acceleration of Ãg = 0.01072 and Ω̃2 = 0.022, corre-
sponding to the outer isola (left), and for a base acceleration of
Ãg = 0.0112 and Ω̃2 = 0.05, corresponding to the inner isola
(right). In red, the initial conditions that lead to the low-amplitude
solution, while in blue those that lead to the high-amplitude solu-
tion

cides with the zero value along the descending branch
of the superharmonic and this is equivalent to the out-
of-phase condition or deamplification condition. On the
other hand, the solution along the detached curve shows
that the peak of the main harmonic coincides with the
minimum of the third harmonic, thus giving rise to a
π/2 relative phase. Thus, for the solutions belonging
to the detached curve, the higher harmonics are phased
with the main harmonic, producing a less distorted and
larger motion. Figure 24 shows the amplitudes and the
phases of the overall response, of the main harmonic
and of the first superharmonic and the relative phase
between the main harmonic and the first superharmonic
in the frequency domain. Note that the main harmonic
of the solution belonging to the detached resonance
curve shows a phase equal to π/2 at the peak. This

condition is shared only with the solution of the pri-
mary resonance.

6.1 Bifurcation scenarios and quasi-periodicity

As mentioned above, for low frequencies and high
base accelerations, the periodic response of the sys-
tem S3 with K̃n = 1.2α undergoes a loss of stabil-
ity. By restricting our analysis to the frequency range
reported in Fig. 25, a rich sequence of bifurcations is
found. Moving from low to high frequencies, the first
encountered bifurcation is a Neimark-Sacker or sec-
ondary Hopf bifurcation (A), signaled by a pair of Flo-
quet multipliers crossing the unit circle away from the
real axis (red circles). The solution emerging out of the
Neimark-Sacker bifurcation is a quasi-periodic solu-
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Fig. 22 Force-displacement
cycles a, phase portraits b,
time histories c and FFTs d
of the system S3 (with
K̃n = 1.2α, Y = Zm , ys =
0.2) for Ãg = 0.01072 and
Ω̃2 = 0.022. In red the
response to a zero initial
condition along to the main
solutions branch, while in
blue the solution for the
initial conditions
x̃ = 0.2, ṽ = 0, giving
rising to the isola solution
curve

(a) (b)

(c) (d)

Fig. 23 Harmonic
decomposition of the
superharmonic response
along the main resonance
branch (left) and detached
resonance (right). The first,
third, fifth and seventh
harmonics and the total
response are represented by
red, blue, violet, magenta
and black lines, respectively

Fig. 24 Nondimensional displacement (left) and phase angle
(right) vs. nondimensional frequency for S3 with K̃n =
1.2α, Y = Zm , ys = 0.2 and Ãg = 0.01072. Black lines show
the amplitude and phase angle of the overall response, red lines

and blue lines represent the amplitude and phase angle of the main
harmonic and of the first superharmonic of order 1:3, respec-
tively. The phase angle between the main harmonic and the first
superharmonic is reported in red dashed lines
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Fig. 25 FRCs of the system
S3 with K̃n = 1.2α, Y =
Zm , ys = 0.5 for a
nondimensional ground
acceleration equal to
Ãg = 0.0148 (left) and
imaginary parts vs. real
parts of Floquet multipliers
(right)

Fig. 26 Bifurcation diagram for the system with K̃n = 1.2α, Y = Zm , ys = 0.5 for a nondimensional ground acceleration equal to
Ãg = 0.0148

tion. However, past the bifurcation, the continuation
of the unstable periodic solution cannot be success-
fully achieved. On the other hand, between C and D,
a stable branch of periodic solutions is found, which
loses its stability at C due to a symmetry-breaking
bifurcation. The two branches of mirror nonsymmet-
ric periodic attractors lose their stability at B due to
a period-doubling bifurcation, circumstance indicated
by the fact that one of the Floquet multipliers crosses
the unit circle through -1.

In D the solution experiences a fold bifurcation,
whereby one of the Floquet multipliers crosses the
unit circle along the positive real axis. Finally, in E
a new Neimark-Sacker bifurcation is manifested and
afterwards path following of the stationary solutions
breaks down. To investigate more in depth the scenario
between the Neimark-Sacker bifurcation at A and the

period-doubling at B, bifurcation diagrams were con-
structed by direct numerical integration of the equa-
tions of motion (see Fig. 26). The time step was fixed
by dividing the excitation period into 4,096 equally
spaced points. The integration was carried out over
2,000 cycles of the excitation by considering as initial
conditions those obtained at the previous excitation fre-
quency and the last 64 points of the Poincaré map were
recorded.

It is possible to note that at A the solution becomes
quasi-periodic, through the mentioned secondary Hopf
bifurcation, while from B to the left the solution
becomes quasi-periodic by means of a more com-
plex sequence of bifurcations. Figures 27, 28, 29
shows a symmetry-breaking bifurcation at the fre-
quency denoted by sect. 2 (see Fig. 26), singled out by
the birth of an even superharmonic component, after
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(1)

(2)

(b)(a) (d)(c)

Fig. 27 FFTs of the response a, force-displacement cycles b,
phase portraits c and Poincarè map d of the system S3 when
K̃n = 1.2α, Y = Zm , ys = 0.5, the nondimensional ground

acceleration is set to Ãg = 0.0148 for the frequencies corre-
sponding to sections 1, 2

the limit cycle exhibited at sect. 1. This symmetry-
breaking paves the way to two distinct branches of
nonsymmetric mirror solutions, whose orbits include
the limit cycle and toward the latter they extend. In this
frequency range, the solution turns out to jump from
one nonsymmetric branch to the other for any small
frequency variation. Each of these branches undergoes
a cascade of successive period-doubling bifurcations
induced by the birth of a subharmonic component of
order 2:1 at sect. 3 and of subharmonics of order 4:1
and 2:1 at sect. 4. This cascade of period-doubling
bifurcations, giving rise to a rich nidification of sub-
harmonics and superharmonics, may lead to a chaotic
attractor. When the orbits of the nonsymmetric solu-
tions touch the orbit of the limit cycle, there is a reverse
symmetry-breaking and the solution regains symmetry.
This is signaled by the disappearance of the even super-
harmonic component (sect. 6). In the frequency range
between 2.04 and 2.09, the ratio between the modu-
lation frequency and the carrier frequency locks into a
rational number, due to the so-called frequency-locking
phenomenon with three-period motions, supported by
the 3:1 subharmonic component (sect. 7). Past this
window, a new symmetry-breaking is experienced by
the 3-T solution, yielding two distinct branches of 3-

T solutions in which, in addition to the 3:1 subhar-
monic, there appears an even superharmonic of order
1:2 (sect. 8). The symmetry-breaking forces the solu-
tion to transition towards a quasi-periodic, symmetric
solution regime (sect. 9). Finally, the amplitude of the
phase plane portion covered by the trajectory progres-
sively gets reduced until reaching the frequency indi-
cated by 10, where a reverse secondary Hopf bifurca-
tion makes the solution stable.

6.1.1 Bifurcation scenarios for the tri-stable
configuration

For K̃n = 1.2α, the bifurcation scenario engages only
ultra-low frequencies and a small displacements range.
On the other hand, when K̃n > 1.2α, the bifurcation
scenario involves much larger ranges of frequencies
and displacements. As shown, for K̃n > 1.2α the
system is tri-stable and the presence of the two lat-
eral attractors breaks the symmetry of the response.
Because of the existence of symmetry-breaking and
period-doubling bifurcations, the response is quasi-
periodic for most of the frequencies within the con-
sidered range. In order to obtain the FRCs of the tri-
stable configuration (i.e., K̃n = 1.4α), the equations
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(6)

(7)

(8)

(4)

(5)

(3) (b)(a) (d)(c)

Fig. 28 FFTs of the response a, force-displacement cycles b,
phase portraits c and Poincarè map d of the system S3 when
K̃n = 1.2α, Y = Zm , ys = 0.5 for a nondimensional ground

acceleration equal to Ãg = 0.0148 for the frequencies referred
to as 3, 4, 5, 6, 7, 8 in Fig. 26
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(9)

(10)

(b)(a) (d)(c)

Fig. 29 FFTs of the response a, force-displacement cycles b,
phase portraits c and Poincarè map d of the system S3 when
K̃n = 1.2α, Y = Zm , ys = 0.5 for a nondimensional ground

acceleration equal to Ãg = 0.0148 for the frequencies referred
to as 9 and 10 in Fig. 26

of motion are numerically integrated for a harmonic
base excitation over 1,000 periods and the maximum
amplitudes exhibited in the last 50 cycles, together with
the Poincaré sections, are recorded for each frequency
within the range (see Fig. 30).

Depending on the initial conditions, the mass can
vibrate around the origin, the left or the right equilib-
rium positions. Regardless of the equilibrium around
which the mass vibrates, the adjacent attractor breaks
the symmetry of the response and leads to quasi-
periodicity. Further, when the mass vibrates around one
of the lateral equilibria, due to the stronger effects of
the cubic stiffness, the acceleration transmissibility is
higher compared with that exhibited by the mass vibrat-
ing around the origin. For limited frequency intervals,
the phase-locking phenomenon is observable together
with a reduction of transmissibility with respect to the
adjacent quasi-periodic response. By analysing more
in depth the response in Fig. 30, we can note that
for low frequencies (0 < Ω̃2 < 0.022), the sys-
tem has sufficient energy to complete symmetric peri-
odic cycles. For higher frequencies (0.022 < Ω̃2 <

0.042), because of a folding bifurcation, two different
responses are exhibited by the system depending on the
initial conditions.

The high amplitude response, such as the response
of the previous frequency range, exhibits stable cycles.
On the other hand, the low amplitude solution, with a
lower associated energy, suffers the attraction of the lat-
eral equilibria and shows a quasi-periodic behavior. By
increasing the frequency up to Ω̃2 = 0.042, a down-
ward jump occurs together with the birth of two mir-
rored nonsymmetric solutions, each of which experi-
ences cascades of period-doubling bifurcations. In the
frequency range 0.118 < Ω̃2 < 0.18, the existing
solutions regain periodicity and two new mirrored non-
symmetric and quasi-periodic solutions appear along
the lateral right and left equilibria. Finally, when Ω̃2 =
0.165, the first two mirrored solutions coalesce into one
symmetric periodic solution while the two lateral non-
symmetric solutions regain stability. In the latter fre-
quency range, an amplification of both accelerations
and displacements is observable. In Fig. 31 the FFTs,
the hysteresis loops, phase portraits and Poincarè maps
associated with the frequencies highlighted in Fig. 30
are reported. By focusing on sect. 6, the coexistence of
four different types of response for the same excitation
frequency is noted. The basins of attraction obtained
for this frequency are reported in Fig. 32. The coexis-
tence of four different attractors, namely, the left stable
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Fig. 30 FRCs in terms of
nondimensional
displacements a and
accelerations b and
bifurcation diagram c for
the system S3 with K̃n =
1.4α, Y = Zm , ys = 0.2 for
a ground acceleration equal
to Ãg = 0.0142. Blue lines
represent the responses
obtained for the forward
frequency sweep, while red
lines denote those obtained
in reverse sweep. Magenta
and cyan lines indicate the
responses of the system
with initial conditions
x̃0 = 0.5 and of x̃0 = −0.5,
respectively. Finally, for
comparative purposes, the
responses of the
mono-stable system with
K̃n = 1.2α are represented
by gray lines

(a)

(b)

(c)

(LS) and unstable (LU) and the right stable (RS) and
unstable (RU) equilibria, gives rise to in a high sensi-
tivity of the dynamic response to the initial conditions,
as manifested by the richness of the basins. From the
progressive zooming of the basins of attraction (see
Fig. 32c, d), it is remarkable that the strict adherence to
the attractors succession order (LS, LU, RU, RS) leads
to a fractal-like pattern.

7 Conclusions

A novel vibration isolation system featuring a neg-
ative stiffness mechanism and superelastic damping
arranged in parallel with classical elastomeric isola-
tion devices is parametrically investigated for different
levels of negative stiffness, superelastic damping ratio,
and yielding force.

The introduction of superelasticity alone, without
negative stiffness, leads to a detrimental increase in the
initial stiffness and, hence, to an increase in acceler-
ations for low base excitations. On the other hand, by
accurately tuning the negative stiffness with the supere-
lastic damping, a remarkable reduction of displacement

and acceleration amplitudes can be achieved, while pre-
serving a self-recentering capability and without incur-
ring an increase in acceleration transmissibility for low
excitations. To ensure an effective acceleration trans-
missibility reduction and, at the same time, the mono-
stability and self-recentering capability of the isolated
system, the optimum negative stiffness coefficient K̃n

must be bounded in the range α < K̃n < 1.2α, where
α is the ratio between the post-elastic and the initial
isolators stiffness. Regarding the superelastic rheolog-
ical element, the initial stiffness must be equal to the
negative stiffness in order to keep the stiffness of the
isolation system unaltered at the origin while exhibit-
ing sufficiently high damping. By considering the lower
bound for the negative stiffness, K̃n = α, the optimum
superelastic yielding force was found to be Ỹ = α x̃g ,
where x̃g is the ratio between the gap displacement
and the maximum allowable displacement. Moreover,
a high hysteresis ratio ys was shown to entail a better
isolation performance.

The study of the nonlinear dynamic response and its
bifurcations revealed extremely rich bifurcation sce-
narios with detached resonances and unusual interac-
tions between the primary resonance and superhar-
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(a) (b) (c) (d)

Fig. 31 FFTs of the response a, force-displacement cycles b,
phase portraits c and Poincarè map d of the system S3 when
K̃n = 1.4α, Y = Zm , ys = 0.2 and the nondimensional ground

acceleration is set to Ãg = 0.0142 for the frequencies referred
to as 0, 1, 2, 3, 4, 5, 6 in Fig. 30
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Fig. 32 a Basins of
attraction for the system
with K̃n = 1.4α, Y =
Zm , ys = 0.2 for a base
acceleration Ãg = 0.0142
and frequency Ω̃2 = 0.125.
Parts b, c and d are
zoomed-in regions bounded
by the dashed rectangles.
Magenta and red dots
denote the initial conditions
that lead to the left stable
(LS) and unstable (LU)
attractors, respectively,
while cyan and blue dots
represent the initial
conditions that lead to the
right stable (RS) and
unstable (RU) attractors,
respectively

monic resonances, or between superharmonic reso-
nances of various orders, featuring multiplicity of coex-
isiting attractors, secondary Hopf bifurcations respon-
sible for quasi-periodicity, synchronization, symmetry-
breaking and period-doubling cascades towards chaos.
The detached resonance curves and bifurcations were
numerically explored for high levels of negative stiff-
ness and their nonlinear impact on isolation perfor-
mance was discussed. In particular, when K̃n = α,
the peak of the detached resonance curve was found
to be lower than the peak of the main resonance
curve, thus not affecting the isolation performance.
On the contrary, for a higher negative stiffness value
(i.e., K̃n = 1.2α), the peak of the detached reso-
nance curve was found to be larger than the primary
resonance peak, hence, largely affecting the isolation
performance. Moreover, the quasi-periodicity of the
response of the tri-stable configuration (i.e., K̃n =
1.4α) together with the subsequent dynamic amplifi-
cation were illustrated. The obtained results pave the
way towards a streamlined design process which aims
to optimize the isolation performance of the proposed
negative stiffness superelastic device in terms of trans-
missibility and dynamic stability.
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