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Introduction

Complex systems abound in the natural and social world, e.g across systems as apparently diverse
such as the human brain, the immune system, economics and the world wide web. Yet despite three
decades of intense research activity in studying complexity, many big issues remain only partially
resolved, including a good quantitative definition for a complex system. Quantitatively, complex
systems are often described as collections of entities, where the global behaviour is a non-trivial
result of the local interactions of the individual elements [1]. Many approaches, from time series
analysis and stochastic modelling, have been proposed to model the behaviour of complex systems
based on observed time series by separating the systems’s behaviour between observed macroscopic
and hidden microscopic scales [2]. A dynamical system is a stochastic process of the form (Xn, Yn, )n,
where Xn+1 depends only on X and possibly some noise, and Yn depends only on Xn and possibly
some noise. We think of Xn as the true state of the system at time n and Yn as our observation of
the system at time n [3].

There are a variety of tools we consider to study the “information processing” in a dynamical
system such as model identification, state estimation, prediction or forecasting, estimation or detec-
tion. One of the most flexible and easy to implement, in the context of linear signal processing, is
the Vector Autoregressive Model (VAR) whose identification process (i.e. the estimation of autore-
gressive parameters matrix) is at the basis of the most used estimators for analysing the statistical
dependencies between different time series representing the activity of the entire dynamical system
[4–7]. However, the identification procedure for specific combinations of number of processes-number
of observations in the time series, could lead to severe correlation between the regressors resulting
in high bias and variance in the used estimator, which can be counteracted with the use of penalized
regression techniques [8, 9].

Chapter 1: The first part of this thesis work has been focused in introducing and testing multi-
variate convex regression methodologies, as a tool for estimating the statistical dependencies among
different dynamical systems. Since that there are no extensive studies available that assess the
performance of different penalized regression techniques in different experimental conditions, in
Chapter 1 I report a comparative analysis among different penalized regression techniques in the
context of convex optimization which guarantees the existence of a solution to the VAR identifica-
tion problem [10]. Here, we tested their ability to estimate autoregressive parameters in different
condition of data samples available. Then, to prove the validity of the simulation study results, all
the penalized regression techniques have been applied to electroencephalographic signals recorded
from the scalp of an healthy volunteer during the execution of a motor imagery task [11].

Chapter 2: Another important tool for investigating and quantifying the information processing
represented by the Information theory that has already been proved to be a useful framework for the
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design and analysis of complex self-organized systems[12, 13]. Through the framework of information
dynamics it is possible to dissect the information processing into basic elements that reflect the new
information produced at each time instant about a target system, the information stored in the
target systems and the modification of the information flowing towards the target systems [14, 15].
In this context, it has been recently introduced a tool able to compute any measure of information
dynamics from the parameters of a VAR model used to characterizes an observed multivariate
Gaussian process even in combination with state-space modelling [16, 17]. The tools of information
dynamics have contributed substantially to the development of the new field of Network physiology,
for which the human body can be modelled as an ensemble of complex physiological systems [18, 19].
Motivated by the fact that penalized regression techniques were not yet introduced and tested for the
decomposition of information processing, in Chapter 2 it is investigated the possibility to integrate
the so-called LASSO regression, in a framework for the computation of these measures. LASSO
regression is selected on the basis of the trade-off between accuracy in the identification procedure
and computational time required for its use from the study performed in the previous chapter. In
this way, it has been possible to analyse information dynamics with a very high number of processes
even if in the context of network physiology where typically only short realizations are available due
to the process of synchronization of time series representative of different organ activities. The new
tool has been tested firstly on simulation settings and explored in eighteen healthy subjects during
different tasks inducing different levels of mental stress.

Chapter 3: LASSO regression is a method based on a specific mathematical model and requires
a process of training. The results of Chapters 1 and 2 clearly demonstrated that could be com-
putationally very onerous, especially if combined with state space modelling and in conditions of
very long time series and dynamical systems with a very high number of processes. For this reason,
in the Chapter 3 we tried to overcome this computational limitations by introducing an Artificial
Neural Network equivalent to a VAR model [20]. In particular, thanks to a new training algorithm
based on Stochastic gradient descent it has been possible to induce sparsity in the weights matrix of
the network during the training phase, but with a less computational cost if compared with tradi-
tional LASSO implementation [21]. This new tool was then combined with a state-space model and
using for Granger causality (GC) estimation. Firstly, it was tested in estimating GC on simulated
dataset with a second step of validation on different real world datasets. The first analysis was
performed, on the dataset used in the Chapter 2, in the context of Network physiology to have a
comparative endpoint between LASSO regression and ANNs. This is based on the recently results
which explicitly link Transfer Entropy and Granger causality for Gaussian processes [6].

The new tools has been tested in the GC estimation between different signals produced by
electronic circuits studied as a link with the human brain’s complex system. In fact, in the last
years it has been demonstrated that a single transistor oscillator can exhibit a very complex ac-
tivity depending on a easily tunable control parameter oscillating periodically, chaotically, or very
close to criticality [22]. An experimental investigation of a ring of thirty diffusely coupled oscil-
lators (each consisting of a bipolar junction transistor, three reactive components and a resistor)
has demonstrated the spontaneous formation of multi-scale community structure as a function
of coupling strength with elements of similarity to the organization observed in brain networks
analysed through BOLD signals from functional Magnetic Resonance [23]. Furthermore, coupled
single-transistor oscillators represent an undemanding experimental platform with which one may
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attempt to recapture associations between brain connectivity and the dynamics observed through
BOLD time series either empirically or in numerical simulation.

Chapter 4: Given the results of Chapters 1, 2 and 3 in the Chapter 4 an extensive analysis of
the performance of different methods in estimating GC, was performed. In particular, due to the
high dimension of the observed data, the “curse of dimensionality” may arise leading to unreliable
estimation of direct causality. With the aim of carrying out an extensive comparative study, the
performance of different methodologies, available in the current literature and explored in this thesis
work, for the estimation of GC have been compared. Furthermore, we provided an implementation
in combination with space state models for the methods that were not previously tested with this
strategy. [24]. The performance of all the methods for GC estimation combined or not with state-
space models have been tested in two different simulation studies, the first one representing a large
network, with few links with the presence of redundancy between processes, and the second one
with a small network highly interconnected.

A conclusion summarizing the main contributions of this Ph.D. project, together with their
impact and limitations, closes this dissertation. Finally, two chapters are dedicated to a list of
publications and CV originated from this Ph.D. course.

Chapters 1 and 4 has been carried out in collaboration with Neuroelectrical Imaging and BCI
Lab (NEILab, PI: Donatella Mattia, MD, Ph.D.) at Fondazione Santa Lucia, IRCCS, Rome, Italy.
Chapters 2 and 3 were performed in collaboration with the department of Engineering, University
of Palermo (Prof. Luca Faes), Department of Industrial engineering and Center for Mind/Brain
Sciences, University of Trento (Prof. Giandomenico Nollo and Ludovico Minati).
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Chapter 1

Measuring Connectivity in Linear
Multivariate Processes with Penalized
Regression Techniques

1.1 Introduction

In the framework of linear signal processing, Vector Autoregressive model (VAR) has been
proved to be a robust and reliable tool for analysing temporal dependencies among time series
in several research fields, ranging from economics to biomedical sciences. In neuroscience, these
models are extensively used for evaluating brain connectivity in order to understand how different
brain areas communicate [25]. The general term of brain connectivity includes the concept of
"functional connectivity", that refers to the evaluation of statistical dependencies between different
neuronal units, and "effective connectivity", that is used for giving a description of a network with
directional effects. By using the VAR model in a multivariate fashion, connectivity can be exploited
in terms of coupling, i.e the presence of interactions, and causality, i.e the presence of temporal
dependencies between time series [26]. The popularity of the VAR models lies in the fact that they
are closely related to the frequency-domain representation of physiological time series, that are rich
of oscillatory content, such as Electroencephalography (EEG) rhythms [27]. Connectivity is very
often formalised with a Multivariate Autoregressive model (MVAR) which allows to derive time
and frequency domain representations by the model coefficients and their spectral representation,
respectively.

A very popular estimator defined in time and frequency domain is the Granger causality (GC),
which represents a versatile tool for analysing the cause-effect relationships between different time
series. GC was firstly formulated in the framework of bivariate autoregressive modelling, stating
that a time series X G-causes another time series Y if the past of X contains information that helps
to predict the future of Y above and beyond the information already contained in the past of Y [28].
To account for the influence of other time series, the bivariate formulation has been extended to the
multivariate case by using MVAR model, leading to the evaluation of the well-known conditional
form of GC [29]. The most used measures, able to quantify causality in the frequency domain, are
the Directed Transfer Function (DTF) [30], the Directed Coherence (DC) [31], the Partial Directed
Coherence (PDC) and all its versions [32, 33]. All these measures are widely used and accepted
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for the analysis of interactions among EEG time series and more in general between physiological
time series. Another issue of great importance is the assessment of the statistical significance of the
selected connectivity measure. The statistical procedures provide a significance threshold for the
connectivity values estimated: if the value of the element of the matrix is below the threshold it is
considered null. The threshold value can be obtained either empirically, based on surrogate time
series, or derived theoretically [34].

The computation of all the aforementioned connectivity estimators and its assessment procedure
lie on the identification procedure of the MVAR model used for the investigation of time lagged
dependencies. This includes solving a linear regression problem in order to estimate Autoregressive
(AR) coefficients or the variance of residual error term, depending on which type of estimator was
selected. One possible approach is based on the Ordinary Least Square (OLS) method that finds the
optimal solution starting from the VAR model hypothesis of independence between regressors and
residuals of the regression [25] . The OLS accuracy, i.e, the quality of the AR parameters estimation,
is strongly influenced by the number of data samples available for the estimation process and, in
particular, the mean squared error of the MVAR parameters estimation decreases with the increase
of available data samples [35]. As a rule of thumb, it is necessary that the ratio between the number
of data samples available and the number of parameters to be estimated, known as k-ratio, is at
least 10 in order to ensure the accuracy of OLS estimator. Otherwise, particularly when the k-
ratio is close to one, the estimation problem becomes ill-posed and under-determined [36]. In such
situation, the OLS does not guarantee the uniqueness of the solution, leading to an ambiguity in
the VAR representation of the data. Moreover, the number of MVAR parameters to be estimated
and the number of data samples available for the estimation process have a strong impact also
on the accuracy of statistical assessment procedures needed for discarding spurious links [37]. To
overcome these problems, it is possible to use other classes of regression techniques, such as penalized
regression techniques, as an alternative to the OLS estimator. The idea is to add a constraint (based
on the l1-norm and/or the l2-norm) to regularize the OLS estimator. The effect of the l2-norm is
to shrink of the MVAR parameters towards zero, whereas the effect of the l1-norm is to select only
specific coefficients, setting the others to zero. Both l2- and l1-norm methods can improve the OLS
accuracy when the k-ratio is lower than 10, with the side-effect of also reducing the mean square
error [38].

Penalized regression techniques have been used for GC estimation [39, 40], for neuro-imaging
data analysis [41] and for brain connectivity analysis between EEG time series in a single trial
or in real-time settings [11, 42]. The aforementioned works have some limitations: the different
penalized regression methods were compared only for a single k-ratio value; convex and non-convex
methods were directly compared even if it is well known that non-convex methods do not achieve
a stable solution; in real-time application, only the group-LASSO regression was applied. Even
if penalized regression techniques have been proposed in different studies, they are not commonly
used in EEG studies. Motivated by the fact that there are no available extensive studies that assess
the performance of the different regression techniques in different conditions, this work presents a
comparison among the regression techniques under different experimental conditions (i.e., different
values of the k-ratio, including those with which the OLS fails), both based on surrogate and real
data, with the following objectives:

1. evaluate the accuracy of methods based on the l2 and l1- norms in estimating the values of
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the MVAR parameters.

2. evaluate the accuracy of the penalized regression methods based on the l1-norm in the selection
of the estimated MVAR parameters;

3. provide guidelines for the use of penalized regression algorithms.

In particular, the performance of different penalized regression techniques will be compared on
simulated EEG time series. The selected techniques are those that solve a linear convex optimization
problem, in which the existence of a solution is guaranteed and can be found by computationally
efficient algorithms, also in iterative versions (with further advantages in terms of computational and
storage requirements): Ridge regression (RR) [43], Least Absolute Shrinkage and Selecting Operator
(LASSO) regression [44], Elastic Net (E-NET) regression [45], Fused LASSO (F-LASSO) regression
[46] and Sparse Group LASSO (SG-LASSO) regression [47]. The latter methods, due to the effect
of l1-norm, are also called variable selection techniques. A preliminary version of this work has been
reported in [48], where the bias in the estimation of PDC through OLS and LASSO was compared.
In the current work, we generalize the study by including other penalized regression techniques and
extending the simulation studies. Furthermore, this work is not focused on a specific connectivity
estimators but the performance will be evaluated during the MVAR model identification.

As described in the second part of the manuscript, penalized regression techniques were also
applied to real EEG data, recorded from an healthy subject, performing a Motor Imagery (MI)
task [11]. MI plays an important role in clinical and neuroscience studies and for this reason
the neuronal representation of MI and motor execution have been studied intensively for years
using brain imaging techniques such as functional magnetic resonance [49], EEG [50] and positron
emission tomography [51]. Given the cooperation of different brain districts during the MI task,
it is reasonable to assume that brain connectivity provides useful information for understating the
phenomenon. For example, in the context for brain computer interface, it has been explored the
feasibility of using brain connectivity as additional feature for the discrimination between different
mental tasks [11, 52]. However, the authors pointed out how the accuracy during the entire process
of connectivity estimation, i.e, the estimation of MVAR parameters and the assessment procedure,
drops dramatically when few data samples are available. The idea here is to show how it is possible
to estimate brain connectivity through penalized regression techniques, even when few data samples
are available, and to discriminate between two different MI tasks with features extracted from a
brain connectivity analysis. The algorithms for the VAR model identification based on penalized
regression techniques are collected in the PID-LASSO MATLAB toolbox, which can be downloaded
from https://github.com/YuriAntonacci/S-MVAR.

1.2 Methods

1.2.1 MVAR model Identification

Let us consider a dynamical system Y composed of M real-valued zero-mean stationary vec-
tor stochastic processes, Y = [Y1 · · ·YM ]. Considering the time step n as the current time, the
present and the past of the process are denoted as Yn = [Y1,n · · ·YM,n] and Y−n = [Yn−1Yn−2 · · · ],
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respectively. Moreover, assuming that Y is a Markov process of order p, its whole past his-
tory can be truncated using p time steps, i.e. using the Mp-dimensional vector Yp

n such that
Y−n ≈ Yp

n = [Yn−1 · · ·Yn−p]. Then, in the linear signal processing framework, the dynamics of Y
can be completely described by the VAR model:

Yn =

p∑
k=1

Yn−kAk + Un, (1.1)

where Ak ∈ <M×M is the matrix containing the autoregressive (AR) coefficients, and U = [U1 · · ·UM ] ∈
<M×1 is a zero-mean white processes, denoted as innovations, with covariance matrix Σ ≡ E[UT

nUn] ∈
<M×M (E is the expectation value).

Let us now consider a realization of the process Y involving Ns consecutive time steps, collected
in the data matrix [y1; · · · ; yNs ] ∈ <Ns×M , where the operator ";" stands for row separation, so
that the ith row is a realization of Yi, i.e. yi = [y1,i...yM,i], i = 1, ..., Ns, and the jth column is the
time series collecting all realizations of Yj , i.e. [yj,1...yj,Ns ]

T , j = 1, ...,M . OLS finds an optimal
solution for the problem (1.1) by solving the following linear quadratic problem [25]:

Â = argminA||y− ypA||22, (1.2)

where y = [yp+1; · · · ; yNs ] ∈ <(Ns−p)× M is the matrix of the responses values, yp = [ypp+1; · · · ; ypNs
] ∈

<(Ns−p)× Mp is the matrix of the regressors and A = [A1; · · · ; Ap] ∈ <Mp×M is the matrix of coef-
ficients. The problem has a solution in a closed form Â = ([yp]Typ)−1[yp]Ty for which the residual
sum of squares is minimized. When Ns − p ≤ Mp the OLS does not guarantee the uniqueness of
the solution since the matrix ([yp]Typ) becomes singular [53].

1.2.2 Penalized linear regression techniques

From a mathematical point of view, regularizing the OLS problem means adding an additional
term (constraint) to the problem (1.2). In the Lagrangian form, the constraints are written in the
cost function as additional weighted costs. The multi-objective optimization problems reads as:

Â = argminA(||y− ypA||22 + Fp(A), (1.3)

where Fp is a penalty function applied to each column of regression coefficients A. As anticipated
in Section 1.1, in this work we analyze the linear penalty function described in Table I.

The first analyzed regression method is RR, characterized by l2-norm based term that shrinks
the estimated AR parameters towards zero, favouring the Mean Squared Error (MSE) [43]. The
regularization parameters λ controls the amount of penalization to be applied, if λ = 0, RR reduces
to OLS. The minimization of the RR functional leads to the closed form solution Â = [(yp)Typ +

λI]−1(yp)Ty, where I ∈ <Mp×Mp is the identity matrix. Besides the reduction of the MSE, it would
be of interest the reduction of the number of selected parameters (i.e., parameters where non-null
values are imposed) especially when Ns < Mp, to identify only those AR parameters that have an
effect on the response matrix y. This result could be achieved by using a penalization cost based
on the l0-norm, which is equal to the number of non-zero elements in a vector [38]. Unfortunately,
such a penalization function would render the optimization problem non-convex [54]. The effect of
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Table 1.1: Penalty term associated with the problem 1.3

Method Norm Penalty term

OLS - -

RR l2 λ||A||22
LASSO l1 λ||A||1
E-NET l1,l2 λ1||A||1 + λ2||A||22
F-LASSO l1,l2 λ1||A||1 + λ2

∑Mp−1
i=1 |Ai+1 −Ai|

SG-LASSO l1,l2 λ1||A||1 + λ2
∑g

i=1w
g
i ||AGi ||2

the l0-norm can be approximated by using penalization terms based on the l1-norm, such as the
LASSO: the penalty term acts so as to shrink some coefficients and set others to 0 [44]. In LASSO,
the parameter λ sets the trade-off between the number of non-null coefficients selected in the matrix
A and Residuals Sum of Squares (RSS).

Similar to the LASSO, the E-NET simultaneously performs automatic variable selection, reg-
ulated by the parameter λ1, weighting the term based on the l1-norm, and coefficient shrinkage,
regulated by the parameter λ2 weighting the term based on the l2-norm [45]. E-NET coincides
with RR if λ1 = 0 and with LASSO if λ2 = 0. F-LASSO includes in its penalty function a further
term respect to LASSO, which computes the l1-norm of the vector of the differences between the
coefficients of successive predictors. This term is used to enforce smoothness along the predictors,
i.e. along the columns of the matrix A of the AR parameters. When λ2=0 F-LASSO coincides with
LASSO [46].

Finally, SG-LASSO is a convex combination of the LASSO and the group LASSO penalties [47].
This procedure imposes a structural constraint on the AR coefficients matrix, besides the basic
sparsity one (l1 term), to model the assumption that the predictors can be associated in groups of
a given size. In the penalty term of SG-LASSO, g is the number of groups, decided a prior, and wgi
denotes the weight for the i− th group (in this study, as specified in [10], the weight of each group
was set to 1). For multivariate regression analysis, as pointed out in [39], M groups of p elements
for each column of A can be used . The p elements of each group, [aij(1), · · · , aij(p)] ∈ <p×1 with
(i, j) ∈ (1, · · · ,M), can be represented by one AR parameter from the time lag 1 to time lag p. In
practice, the second term of the SG-LASSO penalization cost selects a subset of groups by setting to
zero all the coefficients in some groups (sparsity between groups), whereas the first term encourage
sparsity within each group.

Since the different rows of the matrices yp and y can be considered as independent from each
other, by diving them into train and test sets (in this work, 50% of the rows were used for training
and 50% for testing), it is possible to estimate the optimal value of lambda (λopt). Training and
test sets are standardized and the optimal values for λ are selected by using a Generalized Cross
Validation (GCV) criterion [41, 55].
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1.3 Comparing performances of different penalized linear regres-
sion methods

1.3.1 Simulation experiment

Problem (1.3) was solved for the different penalty terms listed in Table 1.1. For OLS ans RR
cases, the SCoT package (Python) [11] was used; for the other cases, the SLEP package (MatLab®)
[10] was used and the multivariate linear regression solved with accelerated gradient methods [56, 57]
and parallel computing toolbox of MatLab.

The simulation study included the following steps:

1. Generation of simulated data-sets, fitting predefined ground-truth network under different
values of the k-ratio (0.5, 0.8, 1, 1.5, 2, 3). The k-ratio is computed as the ratio between the
number of available data samples Ns, and the number of parameters to be estimated Mp.

2. Selection of the regularization parameters for each regression method by means of GCV cri-
terion. The process was iterated ten times for each λ by randomly changing the training and
testing sets.

3. Estimation of AR parameters by using the six regression methods, i.e., OLS, LASSO, E-NET,
F-LASSO and SG-LASSO.

4. Evaluation of the performances by comparing the estimated AR parameters with those im-
posed in the corresponding ground-truth network.

To increase the robustness of the statistical analysis, the entire procedure was repeated 50 times
with randomly generated data-sets.

1.3.2 Signal generation

The simulated data-sets were generated according to different ground-truth networks by means
of an MVAR model used as generator filter [34]. The simulated multivariate time series (M = 10)
were generated as realizations of a VAR(10) process fed by Gaussian noises with variance equal to 1.
Furthermore, to generate signals replicating the spectral properties of EEG signals, an autoregressive
component extracted from a real EEG signal was imposed in the model. The EEG signals were
acquired with a sampling frequency of 200 Hz at Cz location during a resting state condition for
a healthy subject [58]. The simulated networks were randomly generated with a density of the
connected nodes of 15% (14 out of 90 possible connections). AR parameters were set by assigning
randomly the lag in the range (1-10) and the coefficient value in the interval [-0.9, 0.9]. Under
these constraint, 50 realizations of the VAR(10) processes were generated with different values of
the k-ratio parameter in the range (0.5, 0.8, 1, 1.5, 2, 3), so that the length of the simulated time
series was Ns = 50 when k = 0.5 and Ns = 300 when k = 3.

1.3.3 Performances Evaluation

The performances of all the regression methods were assessed in terms of accuracy in estimating
the strength of the network link (values of MVAR coefficients) and in terms of ability to reconstruct
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the network structure. The first analysis was performed separately for non-null and null links, com-
puting different measures of bias through the comparison between the estimated and theoretical
values of AR coefficients values. Specifically, the values of the theoretical AR matrix A was com-
pared with the estimated values stored in Â using the the Mean Absolute Percentage Error (MAPE)
[59], if the theoretical value is different from zero, and the Root Mean Squared Error (RMSE) , if
the theoretical value is zero:

MAPE =
100

M

∑
m∈M

∣∣∣∣Am − Âm

Am

∣∣∣∣, (1.4)

RMSE =

√∑
n∈N (An − Ân)2

N
, (1.5)

where M and N represent the set of non-null and null elements. Finally, the distribution of MAPE
and RMSE were assessed across the 50 simulated network structures and presented separately for
each method.
Second, the ability in assessing the variable selection procedure was tested comparing the two AR
matrices representative of the estimated and theoretical network structure. This can be seen as
a binary classification task where the existence (class 1) or absence (class 0) of each estimated
connection is assessed and compared to the underlying ground-truth structure. Performances were
assessed through computation of the false positive rate (FPR) (measuring the fraction of null links
for which an AR coefficient different from zero was detected), false negative rate (FNR) (measuring
the fraction of non-null links for which an AR coefficient different from zero was detected) and Area
Under Curve (AUC) that summarized the information provided by FNR and FPR [20, 60]. Each of
these performance parameters was obtained across the network links for each individual network,
and its distribution across the 50 simulated network structures was then presented separately for
each regression method.
The last considered performance parameter is the computational time (in seconds), required for
the computation of the AR matrix Â. For penalized regression methods, the estimation process is
dived in two different steps: 1) selection of the regularization parameters, taking Tsel seconds; 2)
computation of Â taking Tcomp seconds. The process for the selection of regularization parameters
was performed by means of GCV criterion within a range of 350 values for λ1 and 100 values for
λ2 for each method and for each value of k-ratio (where applicable, see Table 1.1). To speed-up the
entire process, the parallel computing toolbox implemented in MatLab®2016a was used.

1.3.4 Statistical Analysis

In the present work five different repeated measures two-way ANOVA tests were performed, one
for each performance parameter (MAPE, RMSE, FNR, FPR and AUC), to evaluate the effects of
different values of k-ratio (varied in the range (0.5, 0.8, 1, 1.5, 2, 3) - factor K) and different regression
methods (OLS, RR, LASSO, E-NET, F-LASSO, SG-LASSO - factor TYPE). For FNR, FPR and
AUC, OLS and RR were not considered in the ANOVA test because they do not produce sparse AR
matrices. The Greenhouse-Geisser correction for the violation of the spherical hypothesis was used
in all the analyses. Tukey’s post-hoc test was used for testing the differences between sub-levels
of ANOVA factors. Bonferroni-Holm correction was applied for multiple ANOVAs computed on
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Table 1.2: F-values of the two-way repeated measures ANOVA

Factor MAPE RMSE FNR FPR AUC

K 367.2∗∗ 324∗∗ 140.6∗∗ 23.7∗∗ 143.7∗∗

TYPE 149.8∗∗ 1863∗∗ 85.3∗∗ 277.5∗∗ 129.1∗∗

K × TY PE 95.6∗∗ 321∗∗ 13.5∗∗ 10.1∗∗ 11.5∗∗

different performance parameters.

1.3.5 Results of the Simulation Study

The results of the two-way repeated measures ANOVAs computed separately on all the perfor-
mance parameters, expressed in terms of F-values considering K and TYPE as within main factors
are reported in Table 1.2 (∗∗ is associated with p < 10−5). The two-way ANOVA performed on
MAPE and RMSE reveals a strong statistical influence of the main factors K and TYPE and of
their interaction on the two performance parameters. Fig. 1.1 reports the distribution of the pa-
rameters MAPE and RMSE according to the interaction K × TY PE. The comparison of the six
different VAR identification procedures shows that the trends for penalized regression techniques
(RR, LASSO, E-NET, F-LASSO and SG-LASSO) and OLS are very different. The analysis of error
committed in the estimation of the non-null links (MAPE, 1.1.a) highlights that, independently
from the used methods the error decreases with the increasing of the number of data samples avail-
able for the estimation. The six identification methods exhibit different performances as function
of the value of k-ratio: when such number is the highest (K=3) there are no statistically significant
differences between all the methods, with an error of ∼ 20%; when K ≤ 2, LASSO (black line)
and E-NET (purple line) assume smaller values of MAPE, with no significant differences between
them as highlighted by Tukey’s post-hoc test. On the other hand, OLS shows the highest values of
MAPE, that becomes very high for the challenging conditions K ≤ 1, in which these values suffers
a sharp rise from 100% up to 280%. In the same conditions, the remaining methods show a slight
increase with MAPE values remaining below 100%. Regarding the analysis of the error in the esti-
mation of null-links (RMSE, 1.1.b), the error off all the methods that perform a variable selection
(LASSO, E-NET, F-LASSO and SG-LASSO) is almost zero for all the level of K (even for the most
challenging conditions of K ≤ 1). In the set of penalized regression, RR (red-line) performs better
than OLS but shows a mean value of RMSE higher respect the other penalized regressions. OLS
(blu line) shows a similar trend of RMSE if compared with MAPE, with a sharp increase of bias
when the amount of data samples become smaller. Also in this case, there is a rough discontinuity
in the trend describing the RMSE, between K = 1.5 and K = 1, as highlighted also for MAPE.

The two-way ANOVA performed on FNR, FPR and AUC reveals a strong statistical influence
of the main factor K and TYPE and of their interaction on FNR, FPR and AUC. Fig.1.2 reports
the distributions of the parameters FPR, FNR and AUC according to the interaction K × TY PE
for the VAR identification methods performing variable selection. The analysis of the rate of false
negatives (Fig. 1.2.a) shows that the number of links incorrectly classified as null shows different
trends depending on the regression methods used. All the methods show a decreasing number of
false negatives with the increasing of the number of data samples available. However, in the most
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Figure 1.1: Distribution of the bias parameters computed for the non-null links (MAPE, a) and for the null
(RMSE, b) considering the interaction K × TY PE, expressed as mean value and 95% confidence interval
of the parameter computed across 50 realizations for the six VAR identification methods and for different
values of K.

challenging condition of K = 0.5 (the unknown AR parameters are twice the data samples) the
highest values of FNR is showed by F-LASSO (azure line) that classifies as null links the half of
those imposed as different from zero. SG-LASSO (green line) shows a comparable trend, even if, in
the most challenging condition of K = 0.5, it performs better than F-LASSO. LASSO and E-NET
(black and purple line, respectively) show the best performances, with overlapped trends and no
significant differences for all the values of k-ratio as highlighted from Tukey’s post-hoc tests; the
values of false negatives for the latter methods range from almost zero for K = 3 to below 30% for
K = 0.5.

On the other hand, the analysis of the rate of false positives (Fig. 1.2.b) shows that the number
of links incorrectly classified as non-null is stable and almost negligible for all the methods except
for F-LASSO (azure line) that shows higher average values of FPR even if below 0.1 (corresponding
to 10%). The overall performance assessed through the AUC parameters is far better using LASSO
and E-NET (Fig.1.2.c): the rate of correctly detected links in all the analyzed conditions is larger
for LASSO and E-NET if compared with F-LASSO and SG-LASSO that perform slightly worse
with F-LASSO that shows the worst performance. For K = 3 LASSO and E-NET show an average
value of AUC close to 1 (that means perfect reconstruction of the network structure). In any case,
such methods show the possibility to reconstruct the network structure with a very good accuracy
(∼ 0.75 in the worst scenario) even when the conditions are very challenging. Table 1.3reports
the computational time (in seconds) required for the process of selection of the optimal value of
lambda/s (Tsel) and for the computation of the MVAR parameters after the selection of lambda
(Tcomp). The two values are computed for each regression method and for each value of k-ratio. In
the case of OLS, it was not possible to evaluate Tsel parameter since it is not included in the set of
penalized regression methods. Times were recorded on a PC with an IntelCore i7-6700 processor,
clock speed 3.40 GHz, 8 Gb RAM DDR4 (1.33 MHz), Intel (R) HD Graphics 530, 1024 Mb dedicated
VRAM.

Table 1.3 shows the differences between the computational times of the six regression meth-
ods. Both, Tsel and Tcomp increase with K. For all the values of k-ratio analyzed, the methods
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Figure 1.2: Distribution of FNR (a), FPR (b) and AUC (c) parameters considering the interaction
K × TY PE, expressed as mean value and 95% confidence interval of the parameter computed across 50
realizations for the four VAR identification methods, performing variable selection, and for different values
of K.

Table 1.3: Computational time required for each regression method

Regression Method K=0.5 K=0.8 K=1 K=1.5 K=2 K=3

OLS Tsel
Tcomp

-
0.03

-
0.02

-
0.03

-
0.05

-
0.05

-
0.06

RR Tsel
Tcomp

7.7
0.01

9.4
0.02

10.3
0.02

13.1
0.03

15.3
0.04

20.4
0.06

LASSO Tsel
Tcomp

6.7
0.02

10.8
0.03

12.9
0.03

19.2
0.04

23.8
0.05

35.7
0.06

E-NET Tsel
Tcomp

315
0.03

495
0.03

572
0.04

872
0.04

927
0.05

1400
0.09

F-LASSO Tsel
Tcomp

588
0.05

860
0.06

882
0.06

1200
0.07

1300
0.08

1700
0.09

SG-LASSO Tsel
Tcomp

870
0.03

1200
0.04

1500
0.05

1800
0.07

2000
0.08

2300
0.19

based on only one regularization parameter (i.e., LASSO and RR) need a shorter time for the se-
lection step if compared with those based on two regularization parameters (i.e., F-LASSO, E-NET
and SG-LASSO). Furthermore, among the methods based on l1-norm, LASSO shows the lowest
computational time required for the estimation process. The most time consuming method is the
SG-LASSO.

To summarize all the trends analyzed so far, all the performance parameters are directly influ-
enced by the amount of data available with a direct proportionality (the accuracy in the estimation
process improves with the increase of the K value). Despite the cases of scarce amount of data
available, all the penalized regression methods analyzed are able to reach excellent performance for
both the estimation of AR parameters and assessment of the connectivity structure. Among those
based only on l1-norm i.e, LASSO and EL-NET regression methods, showed the best performance
(with no differences in a statistical sense) and LASSO regression requires a computational time far
less than that required from EL-NET.
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1.4 Testing of linear regression techniques on real EEG data

In this section, we show that, relying on features extracted from a brain connectivity analysis, it
is possible i) to estimate brain connectivity through penalized regression techniques even when few
data samples are available and ii) to discriminate between two different motor imagery (MI) tasks.

1.4.1 Data description and pre-processing

The data were recorded by the authors of [11]. The data set includes 45 EEG channels with
sintered Ag/AgCl ring electrodes. The locations of EEG channels corresponded to the international
10-20 system. The signals were recorder at a sampling rate of 300 Hz with three synchronized
g.USBamp amplifiers (g.tec, Guger Technologies OEG, Graz, Austria). The amplifiers filtered the
raw data with a 0.5-100 Hz band-pass and a 50 Hz notch filter. By the recorded electrooculogram,
Ocular components in the EEG were reduced with a regression based approach [61]. The EEG
data were further resampled at 100 Hz. To test the methods on real EEG signals, an healthy
subject (male, right hand), with no prior experience in Brain Computer Interface (BCI) control,
was selected to record one session, consisting of 90 trials of right hand motor imagery (HAND) and
90 trials and foot motor imagery (FOOT). Further details about the experimental paradigm and
the pre-processing process are available in [11].

1.4.2 Single-trial Connectivity Estimation

For this analysis, in order to reproduce the condition of simulation study, 11 out of the 45
available channels were selected, specifically, C5, C3, C1, C2, C4, C6, CP3, CP4, Cz, CPz, FPz,
and, as suggested in [11], 100 samples between the third and the fourth second were selected. The
eleven time series obtained from each trial and for each condition (HAND - FOOT) were interpreted
as a realization of a VAR process whose matrix of parameters Â was estimated with the six different
identification methods under analysis (i.e. OLS, RR, LASSO, EL-NET, F-LASSO, SG-LASSO).
The model order p was estimated for each experimental condition, using the Final Prediction Error
(FPE) criterion [25]. All the analysis were performed by identifying VAR models of dimension Mp,
where M=11 and p ∼ 15 on time series of 100 points, which brought to work with values of k-ratio
close to 1.
The estimated AR parameters were subsequently calculated in the frequency domain by means of
the Fourier transform obtaining information about the existing connectivity relationships between
time series [62].

1.4.3 Classification Task

To verify 1) that penalized regressions represent reliable methods for estimating connectivity
between EEG time series and 2) that the features derived from connectivity analysis provide useful
information, a classification task was performed.

The classification HAND vs. FOOT was repeated by using as features the frequency version of
estimated AR parameters (real part of the Fourier transform of the AR parameters) in two different
frequency bands, typically related with MI tasks [63]: α (8-12 Hz) and β (13-30 Hz). By considering
fi as the frequency interval under investigation and M = 11, it was possible to extract M2fi = 605
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features in α band (fi = [8− 12]) and 2178 in β band (fi = [13− 30]).
In order to ensure a ratio of 5 between the number of training cases and the number of classifier
parameters to be estimated, i.e., to avoid overfitting during the training phase, a sub-selection of the
features was performed [64]. In particular, we selected the 25th highest -ranked ones according to
the associated t-value (independent samples t-test, HAND vs FOOT) for each frequency bands [65].
Note that all the diagonal elements of the AR matrices were removed to maintain only information
related to brain connectivity analysis.

The data were split in 70% for the training process (126 cases out of 180), 15% for validation (27
cases out of 180) and 15% for testing (27 cases out of 180). Each of the three data sets contained
the same number of observations per class (HAND-FOOT). By using an holdout approach, at each
iteration a different Feed-Forward Neural Network (FFNN) was trained, validated and tested [64].
The structure chosen for the FFNN is one of the most widely used for classification purposes [66, 67]
that includes one hidden layer with one neuron (sigmoid activation function) and an output layer
with a softmax activation function [68]. The initial weights of the network were randomly generated
and the training was performed with gradient descent algorithm (with learning rate set to 10−3),
with cross-entropy used as cost function [69]. The training process was stopped by means of the
early stopping criterion [70]. The process was repeated 100 times for each considered frequency
band. As a performance parameter, we computed the classification Accuracy (ACC) on the test set
[71].

For this study, a two-way repeated measures ANOVA test on the classification accuracy (ACC)
was performed in order to evaluate the performance of classification accuracy depending on the
VAR identification method (factor TYPE: OLS, RR, E-NET, LASSO, F-LASSO, SG-LASSO) and
the frequency band (factor BAND: α,β). Moreover, to assess statistically differences between pair
of distributions independent samples t-test were performed.

1.4.4 Results on real EEG data

Figs. 1.3 and 1.4 report the topological structures of the 25th highest ranked features extracted
for α and β frequency band, with each VAR identification method. The 25 features reported in
each network represent the connections maximizing the statistical difference between HAND and
FOOT according with t-value.

Fig. 1.3 shows that OLS and RR (Fig. 1.3a,b) share the selection of some connections between
the right and the left hemisphere. However, only RR shows a pattern mostly involving the left
hemisphere. LASSO, E-NET, F-LASSO and SG-LASSO (Fig. 1.3c,d,e,f) show two sub-networks,
one over the left motor areas (around the C3 electrode) and the other one over the ipsilateral
motor areas, in which there is an involvement of fewer channels. The observation of these patterns
highlights a deep involvement of the left centro-parietal areas located around the C3 electrode and
a small participation of the right hemisphere (C4) in discriminating between the two MI tasks.This
behaviour is more evident in the case of LASSO and E-NET which show a smaller number of weak
connections (blue) and a larger number of strong connections (purple and green) if compared with
other methods . F-LASSO and SG-LASSO show also strong connections in the right hemisphere
(e.g C6 → CP4 and FPz → C6) resulting in a less readable pattern.

As reported in Fig.1.4, OLS shows a strong involvement of the right hemisphere with CP4 as
main hub of different connections (Fig.1.4a). On the other hand, RR shows an high involvement
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Figure 1.3: Topological structure of the 25 highest ranked features extracted in α band for: OLS (a),
RR (b), LASSO (c), E-NET (d), F-LASSO (e) and SG-LASSO (f)VAR identification methods. The arrows
represents the AR parameters, in its frequency version, that maximize the statistical difference between
HAND and FOOT. The colour of the arrows encodes the number of times that the connections was selected
as statistically significant in the frequency bins 8− 12 Hz (blue-1 times, black 6 times).
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Figure 1.4: Topological structure of the 25 highest ranked features extracted in β band for: OLS (a),
RR (b), LASSO (c), E-NET (d), F-LASSO (e) and SG-LASSO (f)VAR identification methods. The arrows
represents the AR parameters, in its frequency version, that maximize the statistical difference between
HAND and FOOT. The colour of the arrows encodes the number of times that the connections was selected
as statistically significant in the frequency bins 13− 30 Hz (blue-1 times, black 6 times).

of the left hemisphere with C5 receiving from different electrodes (Fig.1.4b). LASSO, E-NET,
F-LASSO and SG-LASSO reveal the presence of a sub-network involving C3,C5, CP3 and CPz

electrodes in the left controlateral hemisphere (Fig.1.4c,d,e,f). Also in this case there is a small
involvement of the right hemisphere with E-NET that shows most active connections in the left
hemisphere with no connections selected in the ipsilateral hemisphere (Fig.1.4d). More in general,
with respect to the α band, the strength of some connections is increased when penalized regressions
are used, as in the case of F-LASSO and SG-LASSO for which the connection C3 → CPz becomes
stronger (Figs.1.3-1.4e,f). Furthermore, in such case the structure of the networks become sparser
that those obtained in α band even if the number of features selected is the same.

Fig. 1.5 reports the distributions of the classification accuracy evaluated on the test set according
with the interaction BAND×TY PE for each regression methods and for α and β frequency bands.

For all the regression methods, except for RR and E-NET, ACC is significantly greater in β

band (blue boxes) with respect to α band (orange boxes). RR and E-NET do not show significantly
differences between ACC evaluated in α and β frequency bands. Moving towards the analysis of
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Figure 1.5: Classification accuracy evaluated on the testing set for each regression methods obtained in
each frequency bands (α and β). Box plots report the distribution of classification accuracy across the 100
iterations by considering the interaction TY PE × BAND (F=18.57, p < 10−5). On each box, the central
line indicated the median, edge of the box indicate 25th and 75th percentiles and outliers are marked with a
circle.Statistically significant differences between pairs of distributions are marked with ∗ (α vs β), with #
(· vs OLS for α band), with § (· vs OLS for β band) and with ◦ (LASSO vs E-NET in α band)

α band it is possible to see that all penalized regression techniques show a significant increment of
ACC if compared with OLS (distributions marked with #); this is not the case for the β band in
which RR does not statistically differ from OLS. All others regression methods (i.e. LASSO, E-NET,
F-LASSO and SG-LASSO) show a significant increment of ACC with respect to that obtained with
OLS (distribution marked with §).

Among all, LASSO and E-NET show the highest values of ACC with an average value between
0.75 (LASSO α band) and 0.8 (LASSO β band) and a significant increment of E-NET with respect
to LASSO only in the α band (distribution marked with ◦). On the other hand, OLS shows the
worst performance in discriminating between HAND and FOOT with average value of ACC ∼ 0.55

in α band and ∼ 0.65 for β band.
Table 1.4 reports the time required for estimating the AR coefficients matrix Â for each VAR

identification methods. Also in this case the process of cross validation described in Section III.C
was followed for the selection of different optimal values of lambda/s with the same PC used for the
simulation experiment. As a first observation, the computational times required are comparable to
those obtained in the simulation study (see Table 1.3) performed onM = 10 surrogate EEG data for
the case K = 1. Table 1.4 shows that, OLS (which does not require the selection of a regularization
parameter) is the fastest method. Among penalized regression methods, RR and LASSO show a
difference of few seconds for the selection of λopt (∼ 7s, ∼ 8s respectively). E-NET, F-LASSO and
SG-LASSO represent the slowest regression methods with several minutes needed for the selection
of λ1 and λ2 (∼ 12min for E-NET and ∼ 32min SG-LASSO).
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Table 1.4: Computational time required for each regression method

Regression Method K ∼ 1

OLS Tsel
Tcomp

-
0.04

RR Tsel
Tcomp

6.9
0.05

LASSO Tsel
Tcomp

8.1
0.11

E-NET Tsel
Tcomp

719
0.15

F-LASSO Tsel
Tcomp

997
0.16

SG-LASSO Tsel
Tcomp

1978
0.18

1.5 Discussion

1.5.1 Simulation experiment

The simulation study was designed to compare the performances of OLS and five different
penalized regression techniques (RR, LASSO, E-NET, F-LASSO and SG-LASSO) in the VAR iden-
tification procedure. The performances were evaluated, firstly, in the estimation of the strength of
the network links (values of the MVAR coefficients). Then, the performances of penalized regres-
sions based on l1-norm were explored in detecting the network structure. Lastly, the computational
time required for solving all the linear problems needed were explored.

The accuracy in the estimation of the strength of the network links was investigated across
different k-ratio values by means of MAPE and RMSE used as performance parameters (Fig. 1.1).
As expected, both performance parameters for all the regression methods show a tendency to
increase as the k-ratio decreases. This tendency is more evident for OLS, as already documented
testing different VAR parameters identification approaches (e.g., the Levinson recursion for the
solution of Yule Walker equations) in the context of signal processing [36]. The situation becomes
worse when the problem approach the case K = 1. OLS does not guarantee the uniqueness of the
solution because the matrix ([yp]Typ), necessary for the solution of the problem (1.2), approaches
singularity. As a consequence, OLS exhibits a strong bias, as reported in Fig.1.1, and it is necessary
the use of penalized regressions [44, 48].

Here, it was documented that all the penalized regressions lead to trends of bias (MAPE, RMSE)
which are consistently very low for any value of k-ratio in the estimation of null links (Fig.1.1b),
and rise with k-ratio values but without any brisk discontinuities even for K ≤ 1 (Fig. 1.1a). These
performances confirm the high tolerance of penalized regressions to collinearity between regressors
caused by the reduction of data samples available [20, 72]. Furthermore, the trends obtained for
MAPE highlighted the best performances of LASSO and E-NET without any statistical differences
between them.

The ability in the reconstruction of the network structure was investigated by analyzing the
performance of the regression methods based on l1-norm (which perform a variable selection) in
terms of AUC and rates of false negative and false positive detection. In fact, AUC appeared to be
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the best suited indicator in terms of its capability to synthesize the similarity of two networks also
in the condition of class imbalance, a typical condition in sparse networks, as those simulated in this
work [60]. Focusing on Fig.1.2, all the penalized regression approaches were characterized by a low
percentage of false positives (FPR ∼ 0.05) and values of false negatives and AUC that increase with
the decreasing of K value. In particular, the maximum AUC (∼ 0.95) value was obtained by LASSO
and E-NET regression for each analysed level of K ratio. Even in the worst condition (K = 0.5),
these two methods reached high AUC values (above 0.85). On the other hand, F-LASSO showed
the worse performances for all the K values, reaching unacceptable AUC values for K equal to 0.5.
SG-LASSO showed better performances than F-LASSO but worse than LASSO and EL-NET. AUC
trends are in line with the results obtained in [41]. In particular, the authors showed how penalized
regression techniques can efficaciously detect the existence of a causal relationships even when the
number of nodes in the network is greater than the number of data samples available, with AUC
values that varying between 0.6 and 0.9.

The better performances of LASSO and E-NET with respect to the other penalized regressions
might be explained with a mathematical consideration. In [45], it has been highlighted how, in a
situation in which regressors are grouped (yp in this work), LASSO and EL-NET are not the ideal
methods for a VAR model identification. In fact, F-LASSO and SG-LASSO introduce structural
constraints in order to account for the grouped variable (this is a typical condition, for instance,
when the predictors are genes). Hence, it is reasonable to assume that LASSO and EL-NET work
better than SG-LASSO and F-LASSO in the case of brain connectivity estimation, in which no
prior information on the matrix of estimated parameters exist, apart the constraint of time-lagged
variables [39].

Even if Group-LASSO regression is included in the convex linear problems, it was excluded from
this work. The connectivity structure were enforced only in a specific temporal lag but the Group
LASSO regression is able to set to zero an entire group of predictors without introducing sparsity
within groups. For this reason, it is reasonable to assume that if the structure of the problem
becomes more favourable to the Group LASSO (e.g., if the connectivity structure is not simulated
as an impulse response), the GCV criterion could select an optimal value of λ1 close to zero for
SG-LASSO in order to perform Group LASSO regression [10] we recall that Group-LASSO and
SG-LASSO are the same when λ1 = 0 (See Table 1.1).

Finally, the computational time required for applying the analysed methods was computed. In
this work two different computational times are reported, one for the GCV procedure for lambda/s
selection (depending on whether the methods presents one or two parameters for regularization)
and the other one for the MVAR parameters evaluation (Table 1.2). The total time required
for each tested algorithm increased with the K ratio [34]. As expected, the methods using two
different regularization parameters (E-NET, F-LASSO and SG-LASSO) need more time for the
GCV application, since all the combinations of the two parameters should be tested. Moreover,
the lambda selection is the most consuming process, whereas the MVAR parameters computation
is very fast even for high K values. The less time-consuming methods are LASSO (among those
based on l1 norm) and the E-NET regressions (among those based on a linear combination of l1 and
l2-norm). Computational time is an increasing function of the number of lambda/s to be tested.
Thus, by limiting the number of lambda/s to test it is possible to shorten the computational times.
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1.5.2 Application of linear regression techniques on real EEG data

Results obtained for simulated EEG data showed that penalized regressions are reliable tools
for estimating brain connectivity in conditions of data paucity where VAR identification based
on OLS fails. Previous studies highlighted the possibility of discriminating different experimental
conditions by using features related to brain connectivity, such as the estimated AR parameters and
their frequency version [73, 74]. However, it was pointed out that, with the current methodology
based on OLS estimator, it is impossible to reach an appropriate accuracy and it is necessary to
move towards penalized regression techniques [11]. The combined use of features derived from brain
connectivity with neural network classifiers showed an increase in classification accuracy [75] with
most of the results found in α and β frequency bands related with MI tasks [50, 74]. Interestingly,
the results here reported show comparable classification accuracy even for different tasks and for
a different number of available data samples. In fact, as reported in Fig. 1.5 the highest values
of ACC were reached by LASSO and EL-NET in α and β bands (∼ 0.8). Furthermore, as proof
of unsuitability of OLS in a condition of strong data paucity (K ∼ 1), Fig. 1.5 showed the lowest
values of ACC in both frequency bands analyzed.It is possible to speculate that the performances of
ACC described in Fig. 1.5 can be related with the results of simulation study. Even if not directly
comparable, ACC follows the trends of performance parameters of Figs.1.1,1.2 in the case of K = 1:
highest values reached by LASSO and E-NET followed by F-LASSO, SG-LASSO, RR and, finally,
OLS.

These results can be also partially explained by analyzing the selected features (Figs.1.3,1.4).
In fact, classification performances are increased when the connections selected as features have a
physiological meaning such as those selected in the controlateral hemisphere (left). From a phys-
iological point of view, the subnetworks aroused from the use of penalized regressions could be
related with the key role of the supplementary motor area and M1 during the execution of a motor
imagery tasks as showed in [76]. Furthermore, the lowest performance of OLS in the classification
task could be also related with the selection of features that do not have physiological importance
such as those showed in Figs.1.3,1.4a. The results here obtained document not only that penalized
regressions could overcome the problem induced by the data paucity but that can also estimate
different connectivity patterns with a plausible physiological meaning.

Even if LASSO and EL-NET showed the highest performances, there is a huge difference in the
computational time required for the estimation of the optimal regularization parameter/s: ∼ 8s for
LASSO and about 700s for EL-NET. To reduce the EL-NET computational time, a smaller number
of values to be tested could be considered, even if this could result in an inaccurate estimate of the
optimal value of the regularization parameters.

1.6 Conclusions

The aim of this work was to evaluate the usefulness of penalized regression methods for connec-
tivity estimation. The simulation study showed how LASSO and E-NET can estimate with high
accuracy not only the value of AR coefficients, but also the related connectivity structure even in
conditions of data paucity in which OLS fails (e.g. when collinearity between regressors arises for
the lack of data points).

The application of six different regression methods to the study of brain connectivity evidenced
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consistent patterns strictly related with the physiology of a MI task. The results regard the possi-
bility to discriminate between two tasks through a classifier trained with features extracted from a
connectivity analysis. LASSO and E-NET showed the best performances in terms of accuracy of
classification. It is worth of note that these results were obtained for k = 1, a condition in which
OLS fails, E-NET and LASSO showed comparable performances in the simulation study. This find-
ings suggests that, when OLS cannot be used LASSO might represents the most suitable method,
even when not so much computational power is available.

The overall results pave the way to the use of sparse identification procedures for connectivity
estimation in all those conditions in which few data samples are available, as in the estimation of
brain networks, at the level of single trial or even in real-time applications. Since all the linear
connectivity estimators are based on the identification of a VAR model, it is reasonable to assume
that penalized regressions could be used for the computation of all the connectivity estimators in
both time and frequency domains.
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Chapter 2

Information Transfer in Linear
Multivariate Processes Assessed through
Penalized Regression Techniques:
Validation and Application to
Physiological Networks

2.1 Introduction

Physiological systems such as the cerebral, cardiac, vascular and respiratory system exhibit a
dynamic activity which results from the continuous modulation of multiple control mechanisms and
changes transiently across different physiological states. Accordingly, the human body can be mod-
eled as an ensemble of complex physiological systems, each with its own regulatory mechanisms, that
dynamically interact to preserve the physiological functions [18]. These interactions are commonly
studied in a non-invasive way by recording physiological signals that are subsequently elaborated to
extract time series of interest which reflect the dynamic state of the system under analysis [77, 78].
Many studies in the literature have provided strong evidence about the existence of a relationship
between the properties of time series extracted and the physiological functions, even if most of
these evidences come from the analysis of the dynamics within a single system (i.e., variability of
heart rate, activity or connectivity within brain networks [79, 80]) or at most between two systems
(cardiovascular, cardio-respiratory and brain–heart interactions [81, 82]). Only recently, with the
introduction of the concept of network physiology grounded on a system-wide integration approach,
it has been possible to analyze the physiological interactions in a fully multivariate fashion. With
this approach, the various physiological systems that compose the human organism are considered
to be the nodes of a complex network [83]. Nevertheless, identifying a network comprised of different
dynamic physiological systems is a non-trivial task that requires the development of methodological
approaches able to take into account the intrinsically multivariate nature of the network, and to
describe the different aspects of network activity and connectivity dealing with complex dynamics
and intricate topological structures.
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Recent studies in the context of information theory have shown how the information processing
in a network of multiple interacting dynamical systems, described by multivariate stochastic pro-
cesses, can be dissected into basic elements of computation defined with the so-called framework
of information dynamics [84]. These elements essentially reflect the new information produced at
each moment in time about a target system in the network, the information stored in the target
system, the information transferred to it from other connected systems and the modification of the
information flowing from multiple sources to the target [85]. In particular, the information transfer
defines the information that a group of systems designed as “sources” provide about the present state
of the target [86]; information modification is strongly related to the concept of redundancy and
synergy between two source systems sharing information about a target system, which refers to the
existence of common information about the target that can be recovered when the sources are used
separately (redundancy) or when they are used jointly (synergy) [87]. Thus, positive values of infor-
mation modification indicate net synergy, which reflects the concept of information independence of
the sources. On the other hand, negative values of information modification indicate redundancy,
which reflects the fact that no additional information is conveyed about the target system when
the two sources are considered together rather than in isolation [88]. Operational definitions of
these concepts have been recently proposed, also showing how—for Gaussian processes modeled
within a linear multivariate framework—the information transferred between two network nodes
conditioning to the remaining nodes corresponds to the well-known measure of Granger Causality
(GC) formulated in a multivariate context [6], and the measures of redundancy and synergy can be
obtained as separate measures through a so-called Partial Information Decomposition (PID) [89].

The tools of information dynamics have contributed substantially to the development of the
field of Network Physiology, with particular regard to the description of complex organ system
interactions in various physiological states and conditions. In fact, measures information transfer
and information modification have proven useful to the understanding of the dynamic interactions
that are essential to produce different physiological states, e.g., wake and sleep [82, 83, 90, 91],
rest and physiological stress [92, 93], relaxed conditions and mental workload [94, 95], neutral
states and emotion elicitation [96, 97]. However, despite its growing appeal and widespread use
in physiology and in diverse branches of science [98–101], the field of information dynamics is still
under development and different aspects have to be further explored to fully exploit its potential.
Recent developments have led to the formulation of a computational framework for the analysis of
information dynamics which makes use of the State-Space (SS) formulation of vector autoregressive
models (VAR) and of the formation of reduced linear regression models [17, 102] whose prediction
error variance is related to the entropies needed for the computation of GC and PID measures [103].
The framework exhibits high computational reliability when compared with classical regression
approaches for the estimation of Granger-causal measures [103], and is being increasingly used to
assess information dynamics in the context of Network Physiology [78, 93].

Nevertheless, being based entirely on linear parametric modeling, it suffers from the known vul-
nerability to the lack of data of the standard VAR identification techniques such as the Ordinary
Least Square (OLS) or the Levison’s recursive algorithm for the solution of Yule-Walker equations.
This issue exposes the identification process to increased bias and variance of the estimated param-
eters [9], and may result in ill-posed regression problems when the regressor’s matrix approaches
singularity [43]. As pointed out in the literature, the ratio between the number of data samples
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available and the number of regression coefficients to be estimated should be at least equal to 10
to guarantee the accuracy of the estimation procedure [9, 104, 105]. This implies that the length
of the time series used for VAR identification needs to increase proportionally with the number
of processes jointly analyzed, which imposes a limitation to the size of the network that can be
investigated if short datasets are available for the analysis. This is the case of common Network
Physiology applications, where typically only short realizations of stationary multivariate physio-
logical processes are available due to the different temporal scales and dynamics of the physiological
signals involved.

To cope with the reduction of accuracy in the estimation process when dealing with a large
number of time series and/or a small amount of data samples available, different strategies have
been proposed in the literature such as the so-called partial conditioning [106] or the use of time-
ordered restricted VAR models that are specifically built only for the computation of GC [107]. A
former, more general solution is the use of penalized regression techniques that regularize a linear
regression problem using one or more constraints [108]. Among them, the Least Absolute Shrinkage
and Selection Operator (LASSO) uses a constraint based on the l1 norm that if applied directly on
the regression problem, yields to a sparse coefficients matrix which leads to a reduction of the mean
square error in conditions of data paucity [44]. Penalized regression techniques implemented for GC
analysis have been successfully applied in many different contexts, ranging from simulation studies
[39] to the analysis of electroencephalographic signals [11, 105, 109], neuroimaging data [41] and
Macroeconomic data [110]. In the present work, the LASSO regression is embedded in the VAR-SS
framework for the computation of information dynamics, and is compared with the traditional OLS
regression as regards its capability to estimate conditional information transfer and PID measures
both in benchmark networks of simulated multivariate processes and in real networks of multiple
physiological time series.

We show that it is possible, also in conditions of data paucity, to accurately reconstruct both the
topology and the patterns of information transfer in networks of several coupled Gaussian systems
exhibiting complex interactions, and to extract physiologically plausible patterns of interaction be-
tween the cardiovascular, respiratory and brain systems explored in healthy subjects during different
conditions of mental stress elicited by sustained attention or mental arithmetic tasks [78, 95, 111].

The algorithms for the VAR-SS model identification based on the LASSO regression, with the
subsequent computation of conditional information transfer and PID measures, are collected in the
PID-LASSOMATLAB toolbox, which can be downloaded from http://github.com/YuriAntonacci/PID-
LASSO-toolbox and http://lucafaes.net/PIDlasso.html

2.2 Materials and Methods

2.2.1 Vector Autoregressive Model Identification

Let us consider a dynamical system Y, whose activity is mapped by a discrete-time stationary
vector stochastic process composed of M real-valued zero-mean scalar processes, Y = [Y1 · · ·YM ].
Considering the time step n as the current time, the present and the past of the vector stochastic
process are denoted as Yn = [Y1,n · · ·YM,n] and Y−n = [Yn−1Yn−2 · · · ], respectively. Moreover,
assuming that Y is a Markov process of order p, its whole past history can be truncated using p
time steps, i.e., using theMp-dimensional vector Yp

n such that Y−n ≈ Yp
n = [Yn−1 · · ·Yn−p]. Then,
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in the linear signal processing framework, the dynamics of Y can be completely described by the
Vector autoregressive (VAR) model:

Yn =

p∑
k=1

Yn−kAk + Un, (2.1)

where Ak is anM ×M matrix containing the autoregressive (AR) coefficients, and U = [U1 · · ·UM ]

is a vector ofM zero-mean white processes, denoted as innovations, withM × M covariance matrix
Σ ≡ E[UT

nUn] (E is the expectation value).
Let us now consider a realization of the process Y involving N consecutive time steps, collected

in the N ×M data matrix [y1; · · · ; yN ], where the operator ";" stands for row separation, so that
the ith row is a realization of Yi, i.e., yi = [y1,i...yM,i], i = 1, ..., N , and the jth column is the time
series collecting all realizations of Yj , i.e., [yj,1...yj,N ]T , j = 1, ...,M , . The Ordinary Least Square
(OLS) identification finds an optimal solution for the problem (2.1) by solving the following linear
quadratic problem:

Â = argminA||y− ypA||22, (2.2)

where y = [yp+1; · · · ; yN ] is the (N − p)× M matrix of the predicted values, yp = [ypp+1; · · · ; ypN ]

is the (N − p) × Mp matrix of the regressors and A = [A1; · · · ; Ap] is the Mp × M coefficient
matrix. The problem has a solution in a closed form Â = ([yp]Typ)−1[yp]Ty for which the residual
sum of squares is minimized (RSS) [104, 112]. When N − p ≤ Mp the OLS does not guarantee
the uniqueness of the solution since the matrix ([yp]Typ) becomes singular [105, 112]. Even in this
situation, it is possible to solve the problem stated in Equation (2.1) through the Least Absolute
Shrinkage and Selection Operator (LASSO) which introduces a constraint in the linear quadratic
problem (2.2) [108]:

Â = argminA(||y− ypA||22 + λ||A||1). (2.3)

In Equation (2.3), the additional term based on the l1 norm forces a sparse a solution such that
some of the VAR coefficients are shrunk to zero, with the shrinkage parameter λ controlling the
trade-off between the number of non-zero coefficients selected in the matrix Â and the residual sum
of squares (RSS). Even if the problem (2.3) admits a solution, it will not be in a closed form since
the l1 norm is not differentiable at zero [44]. The optimal value of λ for the solution of the problem
(2.3) requires a cross-validation approach for its determination. Typically, a predefined interval of
values for λ is defined such that the biggest value provides an estimated AR matrix of zeroes and the
lowest provides a dense AR matrix [113] (in this work, 300 values of λ were selected). Subsequently,
using an hold-out approach, as described in [114], it is possible to independently draw 90% of the
observations of the predicted values and of the regressors (rows of y and yp) as training set and
keeping the remaining 10% for the testing set. Training and test sets are then reduced to zero mean
and unit variance and, for each assigned λ, the number of non-zero coefficients is evaluated for the
matrix Â estimated from the training set, and the corresponding RSS is computed on the test set.
After repeating this operation several times (10 in this work) by randomly changing the training and
testing sets, the optimal value of λ is chosen as the one that minimizes the ratio between RSS and
the number of non-zero VAR coefficients [55]. The matrix of AR coefficients Â is then estimated
by using the estimated optimal value of λ.
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2.2.2 Measures of Information Transfer

Considering the overall observed process Y = [Y1 · · ·YM ], let us assume Yj as the target process
and Yi as the source process, with the remaining M − 2 processes collected in the vector Ys where
s = {1, ...,M}\{i, j}. Then, the Transfer Entropy (TE) from Yi to Yj quantifies the amount of
information that the past of the source, Y p

i,n, provides about the present of the target, Yj,n, over
and above the information already provided by the past of the target itself , Y p

j,n, and is defined as
follows [77, 115]:

Ti→j = I(Yj,n;Y p
i,n|Y

p
j,n) = H(Yj,n|Y p

j,n)−H(Yj,n|Y p
j,n, Y

p
i,n) (2.4)

where I(·; ·|·) represents the conditional mutual information and H(·|·) represents the conditional
entropy [1]. In the presence of two sources Yi and Yk, the information transferred towards the target
Yj from the two sources taken together is quantified by the joint Transfer Entropy (jTE):

Tik→j = I(Yj,n;Y p
i,n, Y

p
k,n|Y

p
j,n) = H(Yj,n|Y p

j,n)−H(Yj,n|Y p
j,n, Y

p
i,n, Y

p
k,n) (2.5)

where Y p
k,n represents the past of the source k. Then, a possible way to decompose the jTE is

that provided by the so-called partial information decomposition (PID). The PID expands the
information transferred jointly from two sources to a target in four different quantities, reflecting
the unique information transferred from each individual source to the target, measured by the
unique TEs Ui→j and Uk→j , and the redundant and synergistic information transferred from the
two sources to the target, measured by the redundant TE Rik→j and the synergistic TE Sik→j [116].
These four measures are related to each other and to the joint and individual TEs from each source
to the target by the following equations:

Tik→j = Ui→j + Uk→j +Rik→j + Sik→j , (2.6)

Ti→j = Ui→j +Rik→j (2.7)

Tk→j = Uk→j +Rik→j (2.8)

In the PID defined above, the terms Ui→j and Uk→j quantify the parts of the information transferred
to the target process Yj which are unique to the source processes Yi and Yk, respectively, mirroring
the contributions to the predictability of the target that can be obtained from one of the sources but
not from the other. Each of these unique contributions sums up with the redundant TE to retrieve
the information transfer defined by the classical measure of the bivariate TE, thus indicating that
Rik→j pertains to the part of the information transferred individually, yet redundantly from a source
to the target. The term Sik→j refers to the synergy between the two sources while they transfer
information to the target, intended as the information that is uniquely obtained taking the two
sources Yi and Yk together, but not considering them alone. While several implementations of the
PID exists depending on how a fourth equation is formulated to complete the definitions (2.6-2.8), in
the case of joint Gaussian processes it has been shown that an unifying formulation is that defining
the redundant transfer as the minimum information transferred individually by each source to the
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target, i.e., Rik→j = min(Ti→j , Tk→j) [89].
In addition to the measures defining the PID, another important information measure used to

detect the topological structure of direct interactions in a network of M interacting processes is
the conditional Transfer Entropy (cTE). With the notation introduced above for the overall vector
process Y, the cTE from a driver process Yi to a target process Yj computed considering the other
processes in the network collected in Ys, is defined as:

Ti→j|s = I(Yj,n;Y p
i,n|Y

p
j,n,Y

p
s,n) = H(Yj,n|Y p

j,n,Y
p
s,n)−H(Yj,n|Yp

n) (2.9)

The cTE quantifies the amount of information contained in the present state of the target process
that can be predicted by the past states of the source process, above and beyond the information
that is predicted already by the past states of the target and of the all other processes [6]. An
implication of this definition is that non-zero values of the cTE Ti→j|s correspond to the presence
of a direct causal interaction from Yi to Yj , which is typically depicted, in a network representation
where nodes are associated with processes and edges with significant causal interactions, with an
arrow connecting the ith and jth nodes.

2.2.3 Computation of the Measures of Information Transfer for Multivariate
Gaussian Processes

When the observed multivariate process Y has a joint Gaussian distribution, the information-
theoretic measures described in Section 2.2 can be formulated in an exact way based on the linear
VAR representation provided in Section 2.1. Indeed, it has been shown that the covariance matrices
of the observed vector process and of the residuals of the formulation (1.1) contain, in the case of
jointly distributed Gaussian processes, all of the entropy differences which are needed to compute
the information transfer [117]. In turn, these entropy differences are expressed by the concept
of partial covariance formulated in the context of linear regression analysis. Specifically, defining
Ej|j,n = Yj,n − E[Yj,n|Y p

j,n] and Ej|ij,n = Yj,n − E[Yj,n|Y p
i,n, Y

p
j,n] as the prediction errors of a linear

regression of Yj,n performed respectively on Y p
j,n and [Y p

i,nY
p
j,n], the conditional entropies H(Yj,n|Y p

j,n)

and H(Yj,n|Y p
j,n, Y

p
i,n) can be expressed as functions of the prediction error variances λj|j = E[E2

j|j,n]

and λj|ij = E[E2
j|ij,n] as follows [6, 118]:

H(Yj,n|Y p
j,n) =

1

2
ln2πeλj|j , (2.10a)

H(Yj,n|Y p
j,n, Y

p
i,n) =

1

2
ln2πeλj|ij , (2.10b)

from which the TE from Yi to Yj can be retrieved using (2.7):

Ti→j =
1

2
ln
λj|j

λj|ij
. (2.11)

Following similar reasoning, the jTE from (Yi, Yk) to Yj can be defined as:

Tik→j =
1

2
ln

λj|j

λj|ijk
, (2.12)
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where λj|ijk = E[E2
j|ijk,n] is the variance of the prediction error of a linear regression of Yj,n on

(Y p
i,n, Y

p
j,n, Y

p
k,n) with prediction error Ej|ijk,n = Yj,n − E[Yj,n|Y p

i,n, Y
p
j,n,Y

p
s,n], and the cTE from Yi

to Yj given Ys can be defined as:

Ti→j|s =
1

2
ln
λj|js

λj|ijs
, (2.13)

where λj|js = E[E2
j|js,n] is the variance of the prediction error of a linear regression of Yj,n on

(Y p
j,n,Y

p
s,n) with prediction error Ej|js,n = Yj,n − E[Yj,n|Y p

j,n, Y
p
s,n] and λj|ijs = E[E2

j|ijs,n] is the
variance of the prediction error of a linear regression of Yj,n on Yp

n with prediction error Ej|ijs,n =

Yj,n − E[Yj,n|Yp
n]. Moreover, from the definitions in Section 2.2 it is then possible to obtain the

redundant TE, the synergistic TE and the unique TEs in addition to the cTE. Therefore, the
computation of all the information measures amounts to calculate the partial variances to be inserted
in Equations (2.11)–(2.13). In the following subsection we report how to derive such partial variances
exploiting the State–Space formulation of the VAR model (1.1) [103].

Formulation of State–Space Models

A discrete state–space (SS) model is a linear model in which a set of input, output and state
variables are related by first order difference equations [17]. The VAR model (1.1) can be represented
equivalently as an SS model ([119]) which relates the observed process Y to an unobserved state
process Z through the observation equation

Yn = CZn + En, (2.14)

and describes the update of the state process through the state equation

Zn+1 = AZn + KEn. (2.15)

The innovations En of Equations (2.14) and (2.15) are equivalent to the innovations Un in (1.1)
and thus have covariance matrix Φ ≡ E[ETnEn] = Σ. This representation, typically denoted as
innovation form SS (ISS) model , also demonstrates the Kalman Gain matrix K, the state matrix
A and the observation matrix C, which can all be computed from the original VAR parameters in
(1.1) as reported in ([119]) . Starting from the parameters of an ISS model is possible to compute
any partial variance λj|a, where the subscript a denotes any combination of indexes ∈ (1, ...,M), by
evaluating the innovation of a "submodel" obtained removing from the observation Equation (2.14)
the variables not included in a. Furthermore, in this formulation the state Equation (2.15) remains
unaltered and the observation equation of relevant submodel becomes:

Y(a)
n = C(a)Zn + E(a)

n , (2.16)

where the subscript a denotes the selection of the rows with indices a of a vector or a matrix. As
demonstrated in [102, 103], the submodel (2.15) and (2.16) is not in ISS form, but can be converted
into ISS by solving a Discrete Algebraic Riccati equation (DARE). Then, the covariance matrix of
the innovations Φ(a) = E[E(a)T

n E(a)
n ] includes the desired error variance λj|a as diagonal element

corresponding to the position of the target Yj . Thus, it is possible to compute all the partial
variances needed for the evaluation of all the information measures introduced, starting from a set
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of ISS parameters. In particular, these parameters can be directly extracted by the knowledge of
the parameters of the original VAR model (i.e., A1, ...,Ap,Σ) , which in this study are estimated
by identifying the VAR model (1.1) making use of either the OLS method or the LASSO regression.

2.2.4 Testing the Significance of the Conditional Transfer Entropy

Since the cTE Ti→j|s is a measure of the information transferred directly (i.e., without following
indirect paths) from the source Yi to the target Yj , and for Gaussian processes is equivalent to con-
ditional Granger causality [6], it is of interest to perform the assessment of its statistical significance
with the aim to establish the existence of a direct link from the ith node to the jth node of the ob-
served network of interacting processes. In this work, the significance of cTE, computed after OLS
identification of the VAR model, was tested generating sets of surrogate time series which share the
same power spectrum of the original time series but are otherwise uncorrelated. Specifically, 100 sets
of surrogate time series were generated using the Iterative Amplitude Adjusted Fourier Transform
(IAAFT) procedure [120]; then, the cTE was estimated for each surrogate set, a threshold equal
to the 95th percentile of its distribution on the surrogates was determined for each directed link,
and the link was detected as statistically significant when the original cTE was above the thresh-
old. In the case of LASSO, the statistical significance of the estimated cTE values was determined
exploiting the sparseness of the identification procedure. Since LASSO model identification always
produces a sparse matrix with several VAR coefficients equal to zero, the cTE values result exactly
zero when the coefficients along the investigated direction are zero at each time lag; on the contrary,
cTE is positive, and was considered to be statistically significant in this study, when at least one
coefficient is non-zero along the considered direction.

2.3 Simulation Experiments

This section reports two simulation studies performing a systematic evaluation of the perfor-
mances of the two VAR identification methodologies (OLS and LASSO) employed for the practical
computation of the measures of information transfer in known networks assessed with different
amount of data samples available. First, we study the behaviour of the measures of information
transfer and information modification in a four-variate VAR process specifically configured to repro-
duce coexisting forms of redundant and synergistic interactions between source processes sending
information towards a target [89, 103]. Second, with specific focus on the estimation of the cTE
and of its statistical significance, we compared the ability of OLS and LASSO to reconstruct an
assigned network topology in a ten-variate VAR process exhibiting a random interaction structure
with fixed density of connected nodes [34, 105]

2.3.1 Simulation Study I

Simulation Design and Realization

Simulated multivariate time series (M=4) were generated as realizations of the following VAR(2)
process depicted in Figure 2.1 [77, 103, 121]:

Y1,n = 2ρ1 cos (2πf1)Y1,n−1 − ρ21Y1,n−2 + U1,n, (2.17a)
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Y2,n = 2ρ2 cos (2πf2)Y2,n−1 − ρ22Y2,n−2 + Y1,n−1 + U2,n, (2.17b)

Y3,n = 2ρ3 cos (2πf3)Y3,n−1 − ρ23Y3,n−2 + Y1,n−1 + U3,n, (2.17c)

Y4,n =
1

2
Y2,n−1 +

1

2
Y3,n−1 + U4,n, (2.17d)

In (2.17), U = [U1 . . . U4] is a vector of zero-mean uncorrelated white noises with unit variance (i.e.,
with covariance Σ ≡ I). The VAR parameters are selected to allow autonomous oscillations for
Y1, Y2, and Y3 by placing, in the VAR representation in the Z−domain, complex-conjugate poles
with modulus ρi and phase 2πfi, i = 1, 2, 3; here we set pole modulus ρ1 = ρ2 = ρ3 = 0.95 and pole
frequency f1 = 0.1, f2 = f3 = 0.25. Moreover, interactions between different processes were set to
allow a common driver effect y2 ← y1 → y3 and unidirectional couplings y2 → y4 and y3 → y4, with
weights indicated in Fig. 1.1. With these settings, 100 realizations of the processes were generated
under different values of the parameter K defined as the ratio between the number of data samples
available (N) and the number of AR coefficients to be estimated (Mp); the parameter K was varied
in the range (1, 2, 5, 10, 30), so that the length of the simulated time series was N = 8 when K = 1

and N = 240 were when K = 30. For each realization and for each value of K, all the measures
appearing in the PID of the information transfer were computed by exploiting the SS approach
applied to the VAR parameters estimated through OLS or LASSO identification; PID analysis was
performed considering either Y4 or Y1 as the target process, and both Y2 and Y3 as the source
processes. Then, the bias and variance of each estimated PID measure were assessed, for each K
and separately for OLS and LASSO, respectively as the absolute difference between the mean value
of the measure over the 100 realizations and its theoretical value computed using the true values
imposed for the VAR parameters, and as the sample variance estimated over the 100 realizations.

Figure 2.1: Graphical representation of the four-variate VAR (Vector Autoregressive) process realized in
the first simulation according to Equation (2.17). Network nodes represent the four simulated processes, and
arrows represent the imposed causal interactions (self-loops depict influences from the past to the present
sample of a process).

Simulation Results

Figures 2.2 and 2.3 show the trends of bias and variance associated with the estimation of
TE (T2→j , T3→j), redundant TE (R23→j), synergistic TE (S23→j) and unique TEs (U2→j , U3→j)
respectively when j = 4 (target process Y4) and j = 1 (target process Y1), computed after VAR
model identification using OLS (blue) and LASSO (red) and depicted as a function of the ratio K
between time series length and number of model parameters.
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As a general result, both figures show that the accuracy of all estimates of the PID measures
is strongly influenced by the amount of data available, with a progressive increase of both the bias
and the variance of the estimates with the decrease of the parameter K. The LASSO regression
exhibits a substantially better performance in the estimation of the PID measures particularly
when the amount of data samples is scarce (K ≤ 2). In the most challenging condition of K = 1

(number of AR coefficients equal to the number of data points) the results are reported only for the
LASSO regression since in this condition for OLS it was impossible to evaluate the PID measures
due to the non-convergence of the DARE equation solution during the computation. In the other
cases (K ∈ (5, 10, 30)) the two identification methods show comparable trends, with slightly better
performance exhibited by OLS identification in the assessment of non-zero PID measures (Fig. 2.2),
and by LASSO identification in the assessment of zero PID measures (Fig. 2.3).

In fact, when Y4 is taken as target process, the sources Y2 and Y3 send the same amount in-
formation towards the target and this information is entirely redundant (T2→4 = T3→4 = R23→4 =

0.63, U2→4 = U3→4 = 0); moreover, a non-negligible amount of synergistic information transfer
is present (S23→4 = 0.56) [103]. As reported in Fig. 2.2, the estimates of the non-zero quanti-
ties (T2→4, T3→4, R23→4, S23→4) assessed through LASSO-VAR identification exhibit higher variance
than those assessed through the OLS, as well a slight negative bias which becomes relevant only in
the case of the synergistic TE ; in such a case the underestimation of S23→4 is present also after
OLS identification when K = 2 (Figure 2.2c).

Figure 2.2: Accuracy of PID (Partial Information Decomposition) measures computed for the VAR pro-
cesses of Simulation I when Y4 is taken as the target process. Panels report the bias (a, b, c) and the
variance (d, e, f) relevant the computation of the TE (Transfer Entropy) from Y2 to Y4 and from Y3 to Y4
(a,d), the unique TE from Y2 to Y4 and from Y3 to Y4 (b,e) and the redundant and synergistic TE from Y2
and Y3 to Y4 (c,f).
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When the process Y1 is taken as the target, all the PID measures are null (T2→1 = T3→1 =

U2→1 = U3→1 = S23→1 = R23→1 = 0) because no causal interactions are directed towards Y1. As
shown in Figure 2.3, in this case the LASSO identification outperforms the OLS method, showing
lower bias and variance for all values of K with evident improvement in the performance when
K ≤ 2. Interestingly, for low values of K the LASSO regression detected the absence of synergy
with more accuracy than that of redundancy (Figure 2.3c,f).

Figure 2.3: Accuracy of PID measures computed for the VAR processes of Simulation I when Y1 is taken
as the target process. Panels report the bias (a,b,c) and the variance (d,e,f) relevant the computation of the
TE from Y2 to Y1 and from Y3 to Y1 (a,d), the unique TE from Y2 to Y1 and from Y3 to Y1 (b,e) and the
redundant and synergistic TE from Y2 and Y3 to Y1 (c,f).

2.3.2 Simulation Study II

Simulation Design and Realization

Simulated multivariate time series (M = 10) were generated as realizations of a VAR(10) model
fed by white Gaussian noises with variance equal to 0.1. The simulated networks have a ground-
truth structure with a density of connected nodes equal to 50% in which non-zero AR parameters
were set assigning randomly the lag in the range (1-10) and the coefficient value in the interval
[−0.6, 0.6] [58]. A representative example of one possible generated network is shown in Figure 2.4,
where the strength of the directed links is provided by the theoretical cTE computed between two
processes starting from the true AR parameters. Under these constraints, 100 realizations (each
with its specific network structure) of the VAR(10) process were generated with different values of
the parameter K in the range (1, 2, 5, 10, 30), so that the length of the simulated time series was
N = 100 when K = 1 and N = 3000 were when K = 30. For each realization and for each value of
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K, the cTE between each pair of processes was computed by exploiting the SS approach applied to
the VAR parameters estimated through OLS or LASSO identification. Then, the bias and variance
of the cTE estimates obtained through OLS and LASSO identification were assessed separately for
the connections with zero and non-zero cTE as explained in the following subsection.

Figure 2.4: Graphical representation for one of the ground-truth networks of Simulation II. Arrows rep-
resent the existence of a link, randomly assigned, between two nodes in the network. The thickness of the
arrows is proportional to the strength of the connection, with a maximum value for the cTE equal to 0.15.
The number of connections for each network is set to 45 out of 90.

Performance Evaluation

The performances of LASSO and OLS were assessed both in terms of the accuracy in estimating
the strength of the network links through the absolute values of the cTE measure, and in terms of
the ability to reconstruct the network structure through the assessment of the statistical significance
of cTE. The first analysis was performed separately for non-null and null links computing the bias
of cTE through the comparison between the estimated and theoretical cTE values. Specifically, for
each pair of network nodes represented by the processes Yi and Yj , the theoretical cTE obtained
from the true VAR parameters, Ti→j|s, was compared with the corresponding estimated cTE value,
T̂i→j|s, using a measure of absolute bias (bias) if the theoretical link is null, and a normalized
measure of bias (biasN ) if the theoretical link is non-null [59]:

bias = |Ti→j|s − T̂i→j|s|, (2.18a)

biasN =

∣∣∣∣Ti→j|s − T̂i→j|sTi→j|s

∣∣∣∣. (2.18b)

Then, for each network, the values of bias and biasN were averaged respectively across the 45 non-
null links and across the 45 null links to get individual measures, denoted as BIAS and BIASN .
Finally, the distributions of BIAS and BIASN were assessed across the 100 simulated network
structures and presented separately for OLS and LASSO.

Second, the ability of OLS and LASSO to detect the absence or presence of network links
based on the statistical significance of the cTE was tested comparing the two adjacency matrices
representative of the estimated and theoretical network structures. This can be seen as a binary
classification task where the existence (class 1) or absence (class 0) of each estimated connection
is assessed (using surrogate data for OLS and looking for zero/non-zero estimated coefficients for
LASSO) and compared with the underlying ground-truth structure. Performances were assessed
through the computation of the false positive rate (FPR, measuring the fraction of null links for
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which a statistically significant cTE was detected), false negative rate (FNR, measuring the fraction
of non-null links for which the cTE was detected as non-significant) and accuracy (ACC, measuring
the fraction of false detections) parameters [109, 122]. Each of these performance measures was
obtained across the network links for each individual network, and its distribution across the 100
simulated network structures was then presented separately for OLS and LASSO.

Statistical Analysis

For this simulation study, five different repeated measures two-way ANOVA tests, one for each
performance parameter (BIAS,BIASN ,FNR,FPR,ACC) were performed, to evaluate the effects
of different values of K (varied in the range [30, 10, 5, 2]) and different identification methodologies
([OLS,LASSO]) on performance parameters.

The Greenhouse–Geisser correction for the violation of the spherical hypothesis was used in
all analyses. The Tukey’s post-hoc test was used for testing the differences between sub-levels of
ANOVA factors. The Bonferroni-Holm correction was applied for multiple ANOVAs computed on
different performance parameters.

Results of the Simulation Study

The results of the two-way repeated measures ANOVAs, expressed in terms of F-values and
computed separately on all the performance parameters considering K and TYPE (identification
method used) as main factors, are reported in Table 2.1.

Table 2.1: F-values of the two-way repeated measures ANOVA. ∗∗ is associated with p < 10−5

Factor BIAS BIASN FNR FPR ACC

K 8582** 1694** 2204** 197.2** 2492**
TYPE 1640** 377** 3538** 223.4** 1575**

K x TYPE 8633** 848** 1055** 114.5** 339**

The two-way ANOVAs reveal a strong statistical influence of the main factors K and TYPE
and of their interaction on all the performance parameters analyzed. It is worth of note that the
level K = 1 was not considered in the statistical analysis due to the non-convergence of the DARE
equation for the OLS case.

Figure 2.5 reports the distribution of the parameters BIAS and BIASN according to the inter-
action factor K x TYPE.
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Figure 2.5: Distribution of the bias parameters computed for the null links (BIAS, a) and for the non-null
links (BIASN , b) considering the interaction factor K x TYPE, expressed as mean value and 95% confidence
interval of the parameter computed across 100 realizations of simulation II for OLS (blue line) and LASSO
(red line) for different values of K.

The comparison of the two VAR identification procedures shows that the trends for LASSO (red
line) and OLS (blue line) are very different. In the analysis of the error committed in the estimation
of the null links (parameter BIAS) the error of LASSO estimates is almost zero for all levels of
K (even for K ≤ 2 that are the most challenging situations), while OLS estimates show a sharp
increase of the error with the decrease of data samples available for the estimation of cTE (2.5 a).
The analysis of the error committed in the estimation of the non-null links (parameter BIASN ,2.5
b) highlights that for both methods the error increases with decreasing the value of K. The two
identification methods exhibit different performance as a function of the number of data samples
available for the estimation procedure: when such number is high (K = 30), the OLS assumes
a significantly smaller bias than LASSO; when 10 ≤ K ≤ 5 there are no significant differences
between the two methods; in the most challenging conditions with K < 5 OLS exhibits a drastic
rise of BIASN towards 2 (which means an overestimation up to 200%), while LASSO identification
allows limitation of the bias which remains below 1 even when K = 1.

Figure 2.6 reports the distributions of the parameters FPR, FNR and ACC according to the
interaction K x TYPE. The analysis of the rate of false negatives (Figure 2.6a) shows that the
number of links incorrectly classified as null increases while decreasing the amount of data available
(K decreasing from 10 to 2), with values of FNR rising from about 0.1 to about 0.6 using the OLS,
and remaining much lower (between 0 and 0.2) using LASSO identification. On the other hand,
the analysis of the rate of false positives (Figure 2.6b) returns opposite trends, with several absent
links incorrectly classified as non-null which is stable and almost negligible using OLS, and exhibits
a slight growth that leads the FPR value from 0 with K=30 to about 0.25 for K=1. The overall
performance assessed through the ACC parameter is better using LASSO identification (Figure
2.6c): the rate of correctly detected links is comparable in the favorable condition K = 30, while
when K ≤ 10 LASSO shows better performance (significantly higher values of ACC) than OLS and
can reconstruct the network structure with a very good accuracy (∼ 80%) even in the challenging
condition of K = 1.
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Figure 2.6: Distributions of FNR (a), FPR (b) and ACC (c) parameters considering the interaction
factor K x TYPE, expressed as mean value and 95% confidence interval of the parameter computed across
100 realizations of simulation II for OLS (blue line) and LASSO (red line) for different values of K.

2.4 Application to Physiological Time Series

This section reports the application of the measures of information transfer, based on VAR
models, estimated through OLS or LASSO identification, to a dataset of physiological time series
previously collected with the aim of studying organ system interactions during different levels of
mental stress [78]. The physiological time series measured for each subject were considered to be
a realization of a vector stochastic process descriptive of the behavior of a composite dynamical
system which forms a network of physiological interactions. Such network is composed of two
distinct sub-networks, which are in turn formed by three nodes ("body" or peripheral sub-network)
and four nodes (brain sub-network). The dynamic activity at each network node is quantified by a
scalar process, as specifically defined in the next subsection.

2.4.1 Data Acquisition and Pre-Processing

Eighteen healthy participants with an age between 18 and 30 years were recorded during three
different tasks inducing different levels of mental stress: a resting condition induced watching a
relaxing video (R); a condition of mental stress induced by the execution of a mental arithmetic
task (M) using an online tool in which the participants had to perform sums and subtractions of
3-digit numbers and write the solution in a text-box using the keyboard; a condition of sustained
attention induced playing a serious game (G) which consisted of following a point moving on the
screen using the mouse and trying to avoid different obstacles. All participants provided written
informed consent. The experiment was approved by the Ethics Committees of the University of
Trento. The study was in accordance with the Declaration of Helsinki.

The acquired physiological signals were the Electrocardiogram (ECG) signal, the respiratory
signal (RESP) measured monitoring abdominal movements, the blood volume pulse (BVP) signal
measured through a photoplethysmographic technique, and 14 Electroencephalogram (EEG) sig-
nals recorded at different locations in the scalp. After a pre-processing step performed in MatLab
R2016b (Mathworks, Natick, MA, USA), seven physiological time series, each consisting of 300 data
points and taken as a realization of the stochastic process representing the activity of specific phys-
iological (sub)systems, were extracted from the recorded signals as follows: 1) the R-R tachogram,
represented by the sequence of the time distances between consecutive R peaks of the ECG (process
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η) ; 2) The series of respiratory amplitude values, sampled at the onset of each detected R-R inter-
val (process ρ): 3) the pulse arrival time (process π) obtained computing the time elapsed between
each R peak in the ECG and the corresponding point of maximum derivative in BVP signal; the se-
quences of the EEG power spectral density, measured in consecutive time windows (lasting 2 s with
1 s overlap) of the EEG signal acquired at the electrode Fz, integrated within the bands 0.5− 3Hz

(process δ), 3 − 8Hz (process θ), 8 − 12Hz (process α), and 12 − 25Hz (process β). Before VAR
modeling, the time series were reduced to zero mean and unit variance and checked for a restricted
form of weak sense stationarity using the algorithm proposed in [123], which divides each time series
into a given number of randomly selected sub-windows, assessing for each of them the stationarity
of mean and variance. A detailed description of signal recording, experimental protocol and time
series extraction can be found in [78, 95].

2.4.2 Information Transfer Analysis

The seven time series obtained from each subject and from each condition were interpreted as a
realization of a VAR process whose parameters A1, ...,Ap,Σ were estimated with the two different
identification methods under analysis (i.e., OLS and LASSO). The model order p was estimated, for
each experimental condition and for each subject, using the Bayesian Information Criterion [124].
Then, two different analyses were performed through the application of the SS approach:

1. First, a PID analysis was performed for OLS and LASSO through the computation of the joint
information transfer Tik→j and the terms of its decomposition Ui→j , Uk→j , Rik→j , Sik→j . The
analysis was performed collecting in the first source (index i) the processes [η, ρ, π] forming
the so-called "body" sub-network that accounts for cardiac, cardiovascular and respiratory
dynamics, and in the second source (index k) the processes [δ, θ, α, β] forming the "brain"
sub-network that accounts for the different brain wave amplitudes; the analysis was repeated
considering each one of the seven processes as the target process (j = [η, ρ, π, δ, θ, α, β]) and
excluding it from the set of sources.

2. Second, the topological structure of the network of physiological interactions was detected
computing the conditional transfer entropy Ti→j|s based on the two VAR identification meth-
ods combined with their method for assessing the statistical significance of cTE (i.e., using
surrogate data for OLS and exploiting the intrinsic sparseness for LASSO). The analysis was
performed between each pair of processes as driver and target (i, j = [η, ρ, π, δ, θ, α, β], i 6= j)

and collecting the remaining five processes in the conditioning vector with index s. As a quan-
titative descriptor of the network was used the in-strength, defined as the sum of all weighted
inward links connected to one node [125]. Moreover, to describe the overall brain–body inter-
actions the in-strength of the body sub-network due to brain sub-network (and vice-versa) was
computed considering as link weights the percentage of subjects showing at least one statisti-
cally significant brain-to-body connection (and vice-versa). To study the involvement of each
specific node in the network, the in-strength of each node was computed considering as link
weights the cTE values of all network links pointing into the considered node.
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2.4.3 Statistical Analysis

The effect of the different experimental conditions (R,M,G) on each PID measure computed for
each target process (j = [η, ρ, π, δ, θ, α, β]) and for each VAR identification method (OLS, LASSO)
was assessed with a Kruskal-Wallis test followed by a Wilcoxon rank sum test to assess statistical
differences between pairs of conditions. Moreover, the Wilcoxon rank sum test was performed also
to assess statistical differences between the two unique TEs (Ui→j ,Uk→j) or between the redundant
and synergistic TEs (Rik→j ,Sik→j) assessed for a given experimental condition and for a given target
process and identification method. Finally, in order to assess the effect of the experimental condition
on the in-strength evaluated for each node in the network, a Kruskal-Wallis test was performed,
followed by the Wilcoxon rank sum test between pairs of conditions.

2.4.4 Results of Real Data Application

The results of PID analysis, describing how information is transferred within the observed net-
work of brain–body interactions, are reported respectively in Figures 2.7 (OLS results) and 2.8
(LASSO results) for the targets belonging to the body sub-network (η,ρ,π), and in Figures 2.9 (OLS
results) and 2.10 (LASSO results) for the targets belonging to the brain sub-network (δ,θ,α,β). The
results of cTE analysis, illustrating the topology of the detected physiological networks, are reported
in Figures 2.11(direct links), 2.7(brain–body interactions) and 2.13 (in-strength). All analyses are
performed identifying VAR models of dimension Mp, where M = 7 and p ∼ 4 (depending on the
Bayesian Information Criterion) on time series of 300 points, which brought us to work with values
K ∼ 10 for the parameter relating the amount of data sample available to the model dimension.

Partial Information Decomposition

Figures 2.7 and 2.8 report, respectively for OLS and LASSO estimation, the distributions across
subjects of the joint TE (Tik→j , left panels) directed to each target j belonging to the body sub-
network from the two other body sources (index i) and from the four brain sources (index k), as
well as of its decomposition into unique TEs (Ui→j and Uk→j , middle panels) and redundant and
synergistic TEs (Rik→j , Sik→j , right panels), evaluated at rest (R), during mental stress (M) and
serious game (G).

Figure 2.7 shows that for each target in the body sub-network, the trends of the joint TE (Tik→j ,
Figure 2.7a,d,g) are mostly determined by the processes belonging to the same sub-network, as
documented by the substantial values of the unique information transfer Ui→j and the negligible
values of the unique transfer Uk→j (Figure 2.7b,e,h, with statistically significant difference between
Ui→j and Uk→j) and by the low values of the information transferred to η, ρ and π in a synergistic
or redundant way from the brain and body sub-networks (Figure 2.7c,f,i). While for the targets η
and ρ the PID measures did not vary significantly across conditions, the information transferred
jointly from the brain and body sources towards the target π (Figure 2.7g) as well as the unique
information transferred to π internally in the body sub-network (Figure 2.7h) decreased significantly
moving from R to M and from R to G. This result documents a reduction of the causal interactions
from RR interval and respiration towards the pulse arrival time during conditions of mental stress.
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Figure 2.7: Partial Information Decomposition of brain–body interactions directed to the body nodes of
the physiological network, assessed using OLS VAR identification. Box plots report the distributions across
subjects (median: red lines; interquartile range: box; 10th − 90th percentiles: blue lines) as well as the
individual values (circles or triangles) of the PID measures (a, d, g: joint information transfer; b, e, h:
unique information transfer; c, f, i: synergistic and redundant transfer) computed at rest (R), during mental
stress (M) and during serious game (G) considering the RR interval (η), the respiratory amplitude (ρ), or
the pulse arrival time (π) as the target process j, and the body and brain sub-networks as source processes
i and k. Statistically significant differences between pairs of distributions are marked with ∗ (R vs M), with
# (R vs G), with § (R vs R), with ∼ (M vs M) and with ◦ (G vs G)

.

As reported in Figure 2.8, the trends of the joint TEs computed after LASSO identification
when the processes η and π (a-g) are taken as target are comparable to those obtained with OLS
identification and shown in Figure 2.7. In particular, also in this case a significant reduction of the
joint TE directed to π is observed during the conditions M and G compared to R (Figure 2.3g),
which is mostly due to a decrease of the unique information transferred to π from the body source
(Ui→j , Figure 2.8h). Moreover, also in this case the unique TE directed towards η and π from the
brain sub-network (Uk→j , Figure 2.8b,h) shows values very close to zero (b-h) and significantly lower
than those of the unique TE Ui→j . While the synergistic TE Sik→j is almost zero for any target,
the redundant TE Rik→j is significantly higher than Sik→j when the target is the vascular process
π (Figure 2.8i). A result demonstrated specifically using the LASSO identification method is the
absence of joint TE directed to the respiration process ρ (Figure 2.8d), documenting the absence of
interactions directed toward respiration in all physiological conditions.
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Figure 2.8: Partial Information Decomposition of brain–body interactions directed to the body nodes of
the physiological network, assessed using LASSO-VAR identification. Box plots report the distributions
across subjects (median: red lines; interquartile range: box; 10th − 90th percentiles: blue lines) as well as
the individual values (circles or triangles) of the PID measures (a, d, g: joint information transfer; b, e, h:
unique information transfer; c, f, i: synergistic and redundant transfer) computed at rest (R), during mental
stress (M) and during serious game (G) considering the RR interval (η), the respiratory amplitude (ρ), or
the pulse arrival time (π) as the target process j, and the body and brain sub-networks as source processes
i and k. Statistically significant differences between pairs of distributions are marked with ∗ (R vs M), with
# (R vs G), with § (R vs R), with ∼ (M vs M) and with ◦ (G vs G).

Figures 2.9 and 2.10 report, respectively for OLS and LASSO estimation, the distributions
across subjects of the joint TE (Tik→j , left panels) directed to each target j belonging to the brain
sub-network from the three other brain sources (index k) and from the three body sources (index
i), as well as of its decomposition into unique TEs (Ui→j and Uk→j , middle panels) and redundant
and synergistic TEs (Rik→j , Sik→j , right panels), evaluated at rest (R) and during mental stress
(M) and serious game (G).

Considering the joint TE exchanged toward the brain rhythms, in contrast to what observed for
the body sub-network (2.7 a-e-g), the joint TE assessed through OLS identification shows a tendency
to increase during M and especially during G compared to R (2.9 a,d,g,l); the increase is statistically
significant for the δ (2.9 a), and is supported by a significant increase of the redundant and synergistic
TEs Rik→j and Sik→j which suggests an increased contribution of brain–body interactions to the
rhythmic variations of the δ brain wave amplitude. An increase of the redundant brain–body
interactions during stress states is observed also for the θ brain wave amplitude (2.9 f). The analysis
of the unique information transfer (2.9b,e,h,m) shows that the unique information provided by the
brain sub-network (Uk→j) is generally larger than that provided by the body sub-network (Uk→j),
with statistically significant differences during R and when the target of the unique transfer is given
by the processes θ, α and β.
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Figure 2.9: Partial Information Decomposition of brain–body interactions directed to the brain nodes of
the physiological network, assessed using OLS VAR identification. Box plots report the distributions across
subjects (median: red lines; interquartile range: box; 10th − 90th percentiles: blue lines) as well as the
individual values (circles or triangles) of the PID measures (a, d, g, l: joint information transfer; b, e, h,
m: unique information transfer; c, f, i, n: synergistic and redundant transfer) computed at rest (R), during
mental stress (M) and during serious game (G) considering the δ, θ, α, or β brain wave amplitude as the
target process j, and the body and brain sub-networks as source processes i and k. Statistically significant
differences between pairs of distributions are marked with ∗ (R vs M), with # (R vs G), with § (R vs R),
with ∼ (M vs M) and with ◦ (G vs G).

When PID directed towards the brain processes is computed using LASSO (Figure 2.10), a main
result is that interactions are weak and do not vary significantly across physiological states. Notably,
the joint TE and all PID terms relevant to the target δ are almost equal to zero in all conditions
(Figure 2.5a,b,c). Similarly, also the values of the unique TE from the body sub-network to any
brain process (Ui→j , Figure 2.10b,e,h,m) and of both the redundant and synergistic TE (Rik→j ,
Sik→j , Figure 2.10c,f,i,n) are zero in almost all subjects and conditions, indicating that the LASSO
approach does not detect interactions directed from body to brain in this dataset.
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Figure 2.10: Partial Information Decomposition of brain–body interactions directed to the brain nodes
of the physiological network, assessed using LASSO-VAR identification. Box plots report the distributions
across subjects (median: red lines; interquartile range: box; 10th−90th percentiles: blue lines) as well as the
individual values (circles or triangles) of the PID measures (a, d, g, l: joint information transfer; b, e, h,
m: unique information transfer; c, f, i, n: synergistic and redundant transfer) computed at rest (R), during
mental stress (M) and during serious game (G) considering the δ, θ, α, or β brain wave amplitude as the
target process j, and the body and brain sub-networks as source processes i and k. Statistically significant
differences between pairs of distributions are marked with ∗ (R vs M), with # (R vs G), with § (R vs R),
with ∼ (M vs M) and with ◦ (G vs G).

Conditional Information Transfer

Figure 2.11 reports the network of physiological interactions reconstructed through the detection
of the statistically significant values of the conditional transfer entropy (Ti→j|s) computed for any
pair of processes belonging to the brain and body sub-networks. The weighted arrows, depicting the
most active connections among systems (arrows are present when at least 3 subjects show significant
values of Ti→j|s) show a similar structure when estimated in the three analyzed conditions using
OLS (2.11a,b,c) and LASSO (2.11d,e,f) . The main distinctive features are the existence of a densely
connected sub-network of body interactions (red arrows), of a weakly connected sub-network of brain
interactions (yellow arrows), and of changing patterns of brain–body interactions (blue arrows). In
general, LASSO shows, for each condition analyzed, a greater sparsity in the estimated networks,
preserving only the most active links detected by OLS.

Within body interactions are characterized mainly by cardiovascular links (interactions from η

to π) and cardio-respiratory links (interactions between η and ρ), with a weaker coupling between ρ
and π which exhibits a preferential direction from ρ to π; the use of LASSO elicits the unidirectional
nature of cardio-respiratory interactions (from ρ to η). On the other hand, the topology of the brain
sub-network is less stable in the three conditions and appears to lose consistency passing from REST
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to GAME; also in this case the use of LASSO leads to a greater sparsity, with nodes almost fully
disconnected. As to brain–body interactions, they occur almost exclusively along the direction from
brain to body; in this case the use of LASSO demonstrates that interactions from brain to body
increase during the GAME condition.

Figure 2.11: Topological structure for the networks of physiological interactions reconstructed during the
three analyzes physiological states. Graphs depict significant directed interactions within the brain (yellow
arrows) and body (red arrows) sub-networks as well as interactions between brain and body (blue arrows).
Directed interactions were assessed counting the number of subjects for which the conditional transfer entropy
(Ti→j|s) was detected as statistically significant using OLS (a, b, c) or LASSO (d, e, f) to perform VAR
model identification. The arrow thickness is proportional to the number of subjects (n) for which the link is
detected as statistically significant.

To quantify the overall extent of the brain–body interactions from the above estimated cTE
networks, was computed the percentage of subjects with statistically significant values of the cTE
along the direction from brain to body and in the opposite direction from body to brain. This
was obtained considering the brain sub-network and the body sub-network as single nodes, and
computing the in-strength to one sub-network by considering only the connections coming from the
other sub-network. The average values are shown in Figure 2.12.

The results reported in Figure 2.12 show that interactions are found more consistently along
the direction from brain to body than along the opposite direction. In particular, LASSO does not
show any link directed from body to brain in any of the three analyzed conditions. In the resting
condition (R), the percentage of active links directed from brain to body is similar for the two VAR
identification methods. Then, OLS identification results in a larger number of links moving from R
to M, and a decrease during G. Conversely, LASSO shows a decrease of the percentage of significant
links during M and a sharp increase during G.
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Figure 2.12: Bar plots reporting the in-strength index extracted from the cTE networks of Figure 2.11 by
considering as link weights the percentage of subjects showing a brain-to-body connection (a) or a body-to-
brain connection (b), computed at rest (R), during mental stress (M) and during serious game (G) for the
two VAR identification methods. Please note that the in-strength computed along the direction from body
to brain using LASSO is null in all conditions.

Figure 2.13 reports the distribution of the values of the in-strength index evaluated for each node
of the network in each experimental condition. For both OLS and LASSO, the median value of the
in-strength index (Figure 2.13a,b,c,h,i,l) is higher for the network nodes of the body sub-network
than for those belonging to the brain sub-network (Figure 2.13 d,e,f,g,m,n,o,p). An exception to
this difference is the in-strength of the links directed towards the node ρ, which is very close to
zero when assessed using LASSO identification (Figure 2.13i). Moreover, the estimated in-strength
values are, on average, lower when assessed through LASSO than through OLS. Considering the
in-strength of individual nodes, a statistically significant reduction is observed moving from R to G
for the weights of the connections directed towards π ( Figure 2.13c,l), for both OLS and LASSO
methods.

Figure 2.13: In-strength index computed for each node of the physiological network. Box plots report
the distributions across subjects (median: red lines; interquartile range: box; 10th − 90th percentiles: blue
bars) as well as the individual values (circles) of the in-strength index (a-g) OLS, h-p LASSO) computed at
rest (R), during mental stress (M) and during serious game (G) for each node (η,ρ,π,δ,θ,α,β). Statistically
significant differences between pairs of distributions are marked with # (R vs G).
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2.5 Discussion

2.5.1 Simulation Study I

The first simulation study was designed to compare the performance of the traditional OLS
approach and the LASSO regression, implemented for the identification of VAR models in their
state–space formulation [102], in estimating the information measures related to PID. The decompo-
sition of the information transferred jointly from two sources to a target process allows investigation
of how information is modified in a non-trivial way through redundant and synergistic interactions
between the sources [126] . In particular, the model structure adopted in our simulation highlights
the coexistence of synergistic and redundant contributions to the target Y4 from the two sources
Y2 and Y3 even if they are not directly coupled [103]. In situations such as this, the adoption of
PID is fundamental to elicit how the two sources contribute to the target with both redundant and
synergistic information transfer: the redundant contribution refers to the common information that
both sources convey to the target; the synergistic contribution is considered an extra information
transferred towards the target and is ascribed to the weakest source in the system [89].

The analysis in Figures 2.2 and 2.3 shows an evident dependence of both the bias and the
variance of all partial information decomposition measures on the factor K. This result is expected
and reflects the well-known decrease of the prediction accuracy with the number of data samples
available. In this context, our results document that the LASSO regression performs better in
challenging conditions when the number of model parameters approaches the sample size (K ≤ 5).
In these conditions it has been pointed out how OLS is not suitable for the solution of a regression
problem and that its solution could even not exist [109, 127]. On the other hand, LASSO shows high
robustness to the lack of data points, which results in limited values of bias and variance [38]. We
note that despite this better performance of LASSO, in the condition K = 1 all the PID measures
that were different from zero (T2→4,T3→4,S23→4,R23→4) exhibit a consistent negative bias (Figure
2.2). This severe under estimation was previously highlighted in different scenarios, in which LASSO
shrinkage produces biased estimation for the large coefficients and thus in some conditions could be
sub-optimal in terms of estimation risk [128, 129].

When the amount of data sample is not scarce compared to the number of model parameters
(K > 5 ) the performance of the two identification methods is comparable, with slight differences
depending on the true value of the PID measures. In the case of non-zero PID measures (Figure
2.2) OLS showed better performance than LASSO in terms of bias and variance. This result is
mainly due to the effect of the constraint based on the l1 norm that performs a variable selection
but with an increased bias and variance in the performed estimation. [44, 105].

On the other hand, in the scenario in which all the PID measures are equal to zero (Figure
2.3), LASSO performs better than OLS in all the conditions analyzed as regards both the bias and
the variance of the estimates of information transfer. This can be explained with the continuous
shrinkage and selection of the most relevant coefficients that set to zero most of the estimated AR
coefficients [55].

2.5.2 Simulation Study II

The second simulation was designed to compare the performance of OLS and LASSO identifi-
cation in estimating the cTE in a network of multiple interacting processes. The tested measure
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is highly relevant, as it is equivalent to the multivariate (conditional) Granger causality measure
estimated within the most accurate framework available, i.e., that of vector state–space models[102].
Within this framework, we assessed both the statistical significance and the accuracy of the esti-
mated values of the cTE, thus comparing OLS and LASSO regarding their accuracy in detecting
the network structure and the coupling strength.

The accuracy in the estimation of the cTE values was investigated across different K ratio levels
by means of BIAS and BIASN used as performance parameters (Figure 2.5). As expected, both
parameters show a tendency to increase as the K ratio decreases. This tendency is evident partic-
ularly for OLS estimation, as already documented testing different VAR parameter identification
approaches (e.g., the Levinson recursion for the solution of Yule-Walker equations) in the context
of signal processing [9]. The situation becomes worse when approaching the condition K = 1, in
which the matrix ([yp]Typ)−1 approaches singularity. Consequently, in this case the solution to
the DARE equation necessary to convert the SS model into the ISS form did not converge, thus
impeding OLS-based estimation of the cTE. In such conditions it is necessary to move to the use
of penalized regression techniques [44, 105, 109]. Here we document that the LASSO regression
leads to trends of the cTE bias which are consistently very low for any value of K in the estimation
of the null links (Figure 2.5a), and rise with K but without exhibiting abrupt increases even for
K = 1 in the estimation of the non-null links (Figure 2.5b). These good performances of LASSO
identification confirm its higher tolerance to collinearity between regressors caused by the reduction
of data samples available [72].

The reliability in the reconstruction of the network structure was investigated analyzing the per-
formance of the two identification methods in terms of overall accuracy and rates of false negative
and false positive detections. The ACC parameter appeared to be the best-suited indicator to syn-
thesize the similarity between the estimated network and the ground-truth network [122]. Moreover,
with the network structure simulated here, ACC is not affected by the class imbalance problem, a
typical condition in sparse networks [130]. As expected, the ACC parameter decreased with the K
ratio, with LASSO performing progressively better than OLS (Figure 2.6 c). These results are in
line with previous studies reporting the performance of different methods for the assessment of the
statistical significance of causal interactions in different methodological contexts [34, 104, 105].

When the test was particularized to the rate of correct detection of null and non-null links, the
performance under conditions of data paucity differ for the two identification methods, with LASSO
showing better capability to correctly detect existing links (lower FNR) and OLS showing slightly
better capability to correctly detect the absent links (lower FPR). In particular, by analyzing the
trends of FNR (Figure 2.6 a) LASSO showed better performance than OLS for K ≤ 10, especially
when the conditions for the estimation become very challenging (K ≤ 5). This behavior is related
to the shrinkage of the VAR parameters. In fact, the selected lambda tends to rise if the number
of data samples decreases and this implies a greater sparsity of the estimated network with a high
probability of producing false negatives [131]. In the same conditions, the value of FNR for OLS was
around 60%. This poor performance is likely due to an inaccurate representation of the distribution
of the cTE under the null hypothesis of uncoupling, estimated empirically using uncoupled surrogate
time series, performed with very few data samples. On the contrary, while both methods display a
low number of false positives for K > 5, LASSO tends to produce an over-selection of the estimated
links when K ≤ 5. This result is in line with previous findings in the context of GC estimation, in
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which LASSO showed few extra links, observed for different combinations of degree of sparsity of
the simulated network structure and K ratio [39, 41].

2.5.3 Real Data Application

Partial Information Decomposition Analysis

The main results of the partial decomposition of the information transfer within the network of
brain and body interactions are that: (i) a significant information is transferred within the body
sub-network, composed by the processes representative of the cardiac (η, heart period), vascular
(π, pulse arrival time) and respiratory (ρ) dynamics, which is directed towards the η and π nodes
as a result of respiration-related and cardiovascular effects; (ii) the information transferred to the
nodes of the brain sub-network, representing the amplitude variations of the δ, θ, β, and α EEG
waves, is lower and due almost exclusively to internal dynamics within this sub-network; (iii) a
negligible amount of information is transferred between the two sub-networks as a result of their
redundant or synergistic interaction. While these results are observed consistently using the two
VAR identification methods (see Figures 2.7- 2.8 and Figs. 2.9- 2.10, respectively), the use of the
LASSO regression allows the elicitation of them more clearly. From a methodological point of
view, this behavior is a result of the inclination towards sparseness of the LASSO method, which
shrinks towards zero most of the VAR parameters that have a small effect on the target dynamics
[44]. Such inclination puts also in evidence other behaviors, such as the substantial absence of
information directed to the ρ node of the body network and to the δ node of the brain network.
While in the first case the result is physiologically plausible since cardio-respiratory interactions
are known to be almost unidirectional in nature (i.e., previous studies have found that respiration
significantly affects the cardiovascular variables without being affected by them [77, 121, 132]), in the
second case it could be related to an underestimation of the information transfer with the LASSO
technique, since the δ waves seem to play a role in the organization of brain dynamics [18, 82, 133].

As the results reported above were observed consistently independently on the analyzed phys-
iological state, they could be interpreted as a hallmark of how the networks of brain and body
interactions organize their dynamic communication evaluated in terms of information transfer. Nev-
ertheless, the conditions of mental stress evoked by the mental arithmetic task and the sustained
attention task were able to induce, when compared with the resting condition set as baseline, some
significant modifications in the amount of information transferred toward some specific nodes. In
particular, a significant reduction of the joint brain–body TE computed when π was taken as the tar-
get process was observed during the two stress conditions compared to rest. This joint information
transfer was due almost exclusively to contributions of unique transfer from the η and ρ nodes of the
body sub-network (Figure 2.7 h,2.8 h), with a small amount of redundant brain–body information
transfer (Figure 2.7 h,2.8 i) and negligible amounts of synergistic transfer or unique transfer from
the brain sub-network; the unique transfer reflects cardiac and respiratory effects on the variability
of the pulse arrival time, while the redundant transfer is related to common mechanisms whereby
such variability is influenced by the brain rhythms one side and the cardio-respiratory rhythms on
the other side. In this context, the results here obtained are in line with those obtained in [78]
where a significant reduction of total information transferred towards π was found while playing a
serious game with respect to a resting condition. Analyzing the same dataset in terms of mutual
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information, the authors of [111] found a significant reduction of the information shared between
the pulse arrival time (π) and the cardio-respiratory system (η, ρ) during the conditions M and
G compared with R. The significant decrease of the static mutual information computed in [111]
and the dynamic measure of the joint and unique TE computed in the present study can be viewed
as different aspects of the weakening of cardiovascular and cardio-respiratory interactions during
mental stress. Physiologically, the underlying mechanisms could include an increased modulation
of peripheral vascular resistance during stress which, as highlighted in [118, 134], could dampen the
modulation of the pulse arrival time due to heart rate variability and respiration.

When the target process belongs to the brain sub-network, the information transfer estimated
through the LASSO regression was almost null when directed towards δ and very small when directed
towards θ, α or β (Figure 2.10 a-c). This result may reflect the lack or significant connectivity
towards the brain sub-network, or the lower sensitivity of penalized regression methods to weak
connectivity. In fact, using OLS a certain amount of information transfer to the nodes of the brain
network was detected, with a significant increment of the joint transfer entropy from R to G when δ
is the target process (Figure 2.9 a), that is mostly due to the significant increment of redundant and
synergistic TEs (Figure 2.9 c). Furthermore, a significant increase of the redundant TE (Rik→j)
was also observed during M and G with respect to R when θ is the target process (2.9 f). The
involvement of the brain waves during mental stress tasks was also investigated using information
measures in [111], finding a larger involvement of δ and θ activity compared to rest that agrees with
the results obtained here in terms of redundant TE computed after OLS identification.

Conditional Information Transfer Analysis

The analysis of the statistically significant values of the conditional information transfer (cTE
measure) led us to detect specific topology structures for the sub-networks that compose the overall
physiological network of brain and body interactions (Figure 2.11). First, a quite consistent topology
was found across different physiological states for the interactions between the cardiovascular and
respiratory systems (Figure 2.11a,b,c, and Figure 2.11d,e,f, red arrows), which is in line with a recent
similar work performed in the context of information dynamics [78, 92]. In particular, the strong
link connection between η and ρ reflects a marked coupling between the heart rate variability and
respiration, which is due to the well-known mechanisms such as respiratory sinus arrhythmia (RSA)
[135] and cardio-respiratory synchronization [136]. This connection was detected as bidirectional
using OLS, and as unidirectional from ρ to η using LASSO, confirming that the preferential direction
of the cardio-respiratory interactions is that documenting the effect of respiration on the heart rate
(RSA) [77, 115, 136]. Second, the information transferred from η to π reflects the well-known
effect of the heart rate on stroke volume and arterial pressure which has a modulating effect on
the arterial pulse wave velocity [137]. Moreover, the influence of respiration ρ on the pulse arrival
time variability π reflects the breathing influences on the intra-thoracic pressure, blood pressure
and blood flow velocity [137].

A further result relevant to the peripheral sub-network is the significant decrease of the in-
strength relevant to the vascular node π observed for both OLS and LASSO moving from rest to
the serious game condition independently (Figure 2.13 c,l). This weaker topology is likely related
to the significantly lower amount of information transferred towards π during the condition G
compared to R (Figure 2.7-g and Figure 2.8-g). From a physiological point of view, this lower
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transfer mediated by weaker topology could suggest a reduction of the efferent nervous system
activity from the cardiac and respiratory centers and directed towards the vascular system during
conditions of mental attention.

Compared with the body sub-network, the links of the brain sub-network form a structure which
seems less consistent across the different experimental conditions (Figure 2.11, yellow arrows). While
OLS estimation shows an apparent decrease in the number of connections moving from R to M and
especially to G, the LASSO regression yields an almost disconnected sub-network of brain-brain
interactions. In contrast to that observed in this work, in [78] a more connected brain sub-network
was found during the mental arithmetic task with respect to the resting condition. This difference
can be partially methodological, as different model order selection criteria (Akaike vs. Bayesian)
and methods to assess the statistical significance of cTE (F-test vs. surrogate data) were used in [78]
and in the present work. These choices could indeed affect the estimation procedure and provide
slightly different results especially in the presence of weak connections as in this case [34, 138, 139].

Finally, exploration of the network of dynamical interactions between the brain and the pe-
ripheral systems led us to investigate how the EEG dynamics, mostly determined by the central
nervous system, interact with the cardiovascular and respiratory dynamics regulated by the auto-
nomic nervous system (Figure 2.11, blue arrows, and Figure 2.12). Although quantitative statistical
comparison cannot be performed for the results reported in Figures 2.11,2.12 they document that
brain–heart interactions are mostly oriented in the direction from brain to heart. This suggests that
efferent autonomic commands directed to the peripheral systems follow in time the neural modula-
tion of the brain wave amplitudes. Moreover, we find that the two mental stress conditions induce
an enhancement of brain–body interactions, with a substantial increase of the number of significant
links directed from the brain to the body sub-network and assessed using OLS during the mental
arithmetic condition, or using LASSO during the serious game condition. The results based on OLS
resemble those obtained recently on the same dataset [78], and recall previous findings highlighting
significant correlations between the amplitude of brain oscillations (especially in the β band) and
the heart rate and respiration dynamics [82, 140]. The results based on LASSO highlight the emer-
gence during sustained attention evoked by serious game playing of causal interactions from brain
to the peripheral systems, mostly originating from the θ, α and β nodes and directed to the ρ and
η nodes. These findings are supported by previous studies suggesting that the neural mechanisms
responsible for the generation of α and θ brain oscillations are crucial for attention tasks and can
be correlated with the cardiac autonomic activity and to its respiratory determinants [141–143].

2.6 Conclusions

The aim of this work was to test the usefulness of penalized regression techniques for the com-
putation of different parametric measures of information transfer in networks of coupled stochastic
processes. In particular, we considered the LASSO regression, a well-known technique that has been
extensively used in different research fields, and implemented it for the first time within the most
advanced framework for the linear parametric estimation of information dynamics, i.e., that based
on the state–space computation of conditional Granger causality and partial information decompo-
sition in vector stationary stochastic processes [89, 102, 103]. Our comparative validation with the
traditional least squares identification of vector stochastic processes (OLS estimator) highlighted
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that LASSO allows highly accurate estimation of not only the amount of information transferred
between coupled processes, but also the topological structure of the underlying network, especially
in conditions of data paucity which make OLS estimation unreliable or even not applicable. On the
other hand, in favorable conditions of data size related to the dimension of the model to be identified
the results of classical and penalized regression were fully overlapped, confirming the appropriate-
ness of embedding LASSO into the framework for the linear parametric analysis of information
dynamics.

The application of the two identification methods to the study of the network of physiological in-
teractions within and between brain and peripheral dynamics has demonstrated consistent patterns
of information transfer and similar network structures. Here, the main findings regard the detection
of significant information transfer within the body sub-network sustained by cardiovascular and res-
piratory dynamics, with reduced cardio-respiratory effects on the vascular dynamics in the presence
of mental stress, and the existence of weak but significant brain–body interactions directed from
the brain rhythms to the peripheral dynamics, with enhanced link strength in conditions of mental
stress. It is worth noting that these results were obtained for K=10, a condition in which the two
identification procedures showed comparable performance in the simulation studies. This finding
suggests that even in conditions that allow the use of OLS, LASSO is able to detect the strongest
interactions among those determined by the combined activity of the central and autonomic ner-
vous systems, providing as outcome estimated patterns of information dynamics which are more
straightforward and easy to interpret than those obtained with OLS.

The directed links between different physiological systems observed in this study can reflect either
well-defined physiological mechanisms, such as the respiratory and heart rate effects on the pulse
arrival time [134, 144], or statistical associations with likely common determinants of physiological
origin, like the brain–heart interactions which are thought to be mediated by dynamic alterations
of the sympatho-vagal balance [82, 96, 145]. In either case, approaches like ours that allow the
probing of the dynamic interaction among different organ systems can be very useful to show how
an imbalanced interaction may have a negative impact on health [145]. Previous studies have indeed
demonstrated pathological changes in brain–body interactions with clinical significance, for instance
related to sleep stages and insomnia [146], to sleep apneas [147] or to schizophrenia [132]. However,
the analysis of brain–body interactions in different experimental conditions such as those analyzed
in this paper, is somehow still unexplored and further studies need to be performed in order to
strengthen the validity of the results obtained in the present and in previous studies.
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Chapter 3

Estimation of Granger causality through
Artificial Neural Networks: applications
to physiological systems and chaotic
electronic oscillators

3.1 Introduction

A fundamental problem in the study of dynamical systems in many domains of science and
engineering is to investigate the interactions among the individual system components whose activity
is represented by different recorded time series. The evaluation of the direction and strength of
these interactions is often carried out employing the statistical concept of causality introduced by
Wiener [148] and formalized in terms of linear regression analysis by Granger [28]. Wiener-Granger
Causality (GC) was firstly introduced in the framework of linear bivariate autoregressive modeling
in its unconditional form for which a generic time series X is said to Granger-cause another series
Y if the past of X contains information that helps to predict the future of Y above and beyond the
information already contained in the past of Y [28]. In the presence of more than two interacting
system components, to take into account the presence of other time series which can potentially affect
the two time series under analysis the bivariate formulation has been extended to the multivariate
case through the use of Vector Autoregressive (VAR) models, leading to the computation of a
conditional form of GC [29]. Due to its linear formulation, GC is very easy to implement, with
very few parameters to be estimated if compared with model-free approaches and with a reduced
computational cost [149].

GC from a driver to a target time series is typically quantified by comparing the prediction
error variance obtained from two different linear regression models: (i) the “full model ”, in which
the present sample of the target series is regressed on the past samples of all the time series in the
dataset; (ii) the “restricted model ”, in which the present of the target is regressed on the past of all
the time series excluding the driver [7]. However, this formulation does not take into account that,
from a theoretical point of view, the order of the restricted model is infinite, leading to a strong
bias or a very large variability associated with the estimation of GC, depending on the model order
selected [139, 150, 151]. To overcome the latter problem, an approach based on state-space (SS)
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modeling of the observed VAR process has been introduced [102]; SS models provide a closed-form
SS representation of the restricted VAR model and thus, starting from the identification of the full
model only, GC in its conditional and unconditional form can be retrieved with high computational
reliability directly from the SS parameters [17, 102, 139].

The literature provides different methodologies for VARmodel identification, such as the solution
of the Yule-Walker equations through Levison’s recursion or the Burg algorithm [152] by using the
closed-form solution of Ordinary Least Square (OLS) estimator, or more sophisticated such as those
based on Artificial Neural Networks (ANNs). ANNs have become very popular in recent years,
and they have been extensively used as a modeling tool because they are data-driven self-adaptive
methods and can work as universal functional approximators [153, 154]. The ANN structure used
for linear regression comprises one input layer and one output layer which are linked by a matrix of
weights obtained after training the network. During the training process, the inputs are presented
to the network and the weights are adjusted to minimize the distance between the real and predicted
output using error backpropagation techniques [155].

However, regardless of the methodology used to approach the regression problem, the estimation
may be problematic in the setting of many observed processes and short time series available [8, 20].
The literature reports that the stability and the existence of the solution for a linear regression
problem are ensured when the number of data points is an order of magnitude greater than the
number of VAR coefficients to be estimated [36, 112]. To cope with the issues arising in GC
estimation when the ratio between data size and number of unknown parameters is low, different
approaches have been proposed such as the use of time-ordered restricted VAR models [107], or
the so-called partial conditioning [106], and of penalized regression techniques based on the l1-norm
(LASSO regression) [8, 44, 156]. In the latter case, the solution of the linear regression problem is
found adding a constraint to the cost function to be minimized, usually the Mean Squared Error
(MSE), that induces variable selection of the VAR parameters with a consequent reduction of the
MSE associated with the estimation process. Based on l1-constrained problems, in recent years,
different l1-regularized algorithms have been developed to avoiding overfitting during the training
of ANNs. Moreover, the l1-norm can be applied directly on the weights of the network during the
training phase in an efficient way through Stochastic Gradient Descent l1 (SGD-l1) [21]. While the
use of ANNs as a VAR model for GC estimation has been proposed in both linear [157] and non-
linear frameworks [158–160], the implementation of SGD-l1 has never been tested for the purpose
of reducing the effects of data paucity on the estimation of GC.

In the present work, an ANN used as a VAR model is embedded in the SS framework for the
computation of GC (conditional and unconditional) and compared with the traditional OLS regres-
sion both in benchmark networks of simulated multivariate processes and in real-data scenarios.
In simulations, we show how training parameters that are typically chosen in a heuristic way (i.e.,
learning rate and the number of iterations of gradient descent) can affect the estimation of GC in
conditions of data paucity; after optimizing these parameters, we test the performance in the quan-
tification of GC magnitude and statistical significance, reflecting respectively coupling strength and
structure of the investigated directed functional network, comparatively with standard OLS iden-
tification. In real data analysis, we compare the two approaches first in physiological time series,
reporting the evaluation of information flow and topology of the network of interactions between
brain and peripheral systems probed in healthy subjects in different conditions of mental stress
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elicited by mental arithmetic and sustained attention tasks [8, 78], and then in signals produced
by electronic circuits, showing how GC measures can describe the effect of remote synchronization
previously observed in a ring of coupled chaotic oscillators [161–163].

The algorithms for the training of ANNs based on SGD-l1 algorithm with the subsequent com-
putation of GC by exploiting the SS framework are collected in the NN-GC MATLAB toolbox,
which can be downloaded from https://github.com/YuriAntonacci/ANN-GC-Toolbox.

3.2 Methods

3.2.1 Vector Autoregressive Model Identification

Let us consider a dynamical system Y whose activity is mapped by a discrete-time stationary
vector stochastic process composed of M real-valued zero-mean scalar processes, Y = [Y1 · · ·YM ].
Considering the time step n as the current time, the present and the past of the vector stochastic
process are denoted as Yn = [Y1,n · · ·YM,n] and Y−n = [Yn−1Yn−2 · · · ], respectively. Moreover,
assuming that Y is a Markov process of order p, its whole past history can be truncated using
p time steps, i.e., using the Mp-dimensional vector Yp

n such that Y−n ≈ Yp
n = [Yn−1 · · ·Yn−p].

Then, in the linear signal processing framework, the dynamics of Y can be described by the vector
autoregressive (VAR) model:

Yn =

p∑
k=1

Yn−kAk + Un, (3.1)

whereAk is anM×M matrix containing the VAR coefficients, and U = [U1 · · ·UM ] is a vector ofM
zero-mean white processes, denoted as innovations, with M × M covariance matrix Σ ≡ E[UT

nUn]

(E is the expected value).
Let us now consider a realization of the process Y involving N consecutive time steps, collected

in the N ×M data matrix [y1; · · · ; yN ], where the delimiter ";" stands for row separation, so that
the ith row is a realization of Yi, i.e., yi = [y1,i...yM,i], i = 1, ..., N , and the jth column is the time
series collecting all realizations of Yj , i.e., [yj,1...yj,N ]T , j = 1, ...,M , . The Ordinary Least Square
(OLS) identification finds an optimal solution for the problem (3.1) by solving the following linear
quadratic problem:

Â = argminA||y− ypA||22, (3.2)

where y = [yp+1; · · · ; yN ] is the (N − p)× M matrix of the predicted values, yp = [ypp+1; · · · ; ypN ]

is the (N − p) × Mp matrix of the regressors and A = [A1; · · · ; Ap] is the Mp × M coefficient
matrix. The problem has a solution in a closed form Â = ([yp]Typ)−1[yp]Ty for which the Residuals
Sum of Squares (RSS) is minimized [112].

3.2.2 Artificial Neural Networks as a Vector Autoregressive Model

Let consider a generic ANN described by the function y = f(w; x) which takes as input a vector
x ∈ <d and outputs a scalar value y ∈ <. In the following, we consider networks with a single
output for the sake of simplicity, but all the treatments can be extended to the case of multiple
outputs. The output of the network depends on a set of Q adaptable parameters (i.e., the weights
connecting the layers), that are collected in a single vector w ∈ <Q to be optimized during the
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training process.
Given a training data set of N input/output pairs S = {xi, yi}, the learning task aims at solving

the following regularized optimization problem:

ŵ = argminw
1

N

N∑
i=1

l(yi, f(w; xi)) + λr(w), (3.3)

where l(·, ·) is a convex function ∈ C1, i.e, continuously differentiable with respect to w, while r(·)
is a convex regularization term with a regularization parameter λ ∈ <+. A typical loss function
used for the linear regression problem is the squared error of the regression analysis. Inspired by the
LASSO algorithm, a way to enforce sparsity in the vector of weights is to penalize the cumulative
absolute magnitude of the weights by using the l1 norm as regularization term:

r(w) = ||w||1 =

Q∑
k=1

|wk|. (3.4)

Then, a possible way to solve the problem (3.3) is to use Stochastic Gradient Descent (SGD) that
exploits a small randomly-selected subset of the training samples to approximate the gradient of
the objective function. The number of training samples used for this approximation is the batch
size. In the present work, we adopt a full batch approach in which all samples are considered, so
that SGD simply translates into gradient descent. For each training sample i, the network weights
are updated as follows:

wj+1 = wj + ηj
∂

∂w

(
l(yi, f(w; xi))−

λ

N

Q∑
k=1

|wk|
)
, (3.5)

where j is the iteration counter and ηj is the learning rate at each iteration. The difficulty with
l1 regularization is that the last term on the right-hand side in (3.5) is not differentiable when the
weight is zero. To solve this issue, following the procedure introduced in [21] l1 regularization with
cumulative penalty is applied directly on the weights of the network during the training process.

Let uj be the absolute value of the total l1 penalty received by each weight. Since the absolute
value of the l1 penalty does not depend on the weight and on the regularization parameter λ, it is
the same for all the weights and is simply accumulated as:

uj =
λ

N

j∑
t=1

ηt. (3.6)

At each training sample i, the weights of the network are updated as follows:

w
j+ 1

2
k = wjk + ηj

∂l(yi, f(w; xi)

∂w

∣∣∣∣
w=wj

, (3.7)

if w
j+ 1

2
k > 0 then wj+1

k = max(0, w
j+ 1

2
k − (uk + qj−1k )), (3.8)

else if w
j+ 1

2
k < 0 then wj+1

k = min(0, w
j+ 1

2
k − (uk − qj−1k )), (3.9)
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where qjk is the total l1-penalty that wk has actually received:

qjk =

j∑
t=1

(wt+1
k − wt+

1
2

k ). (3.10)

This method for updating the weights penalizes the weight according to the difference between uj
and qj−1k and is called SGD-l1.

Generalizing the whole procedure to a network with multiple outputs, in the linear signal pro-
cessing framework the optimization problem (3.3) can be solved by using a linear function f(·; ·)
linking the input layer with the output layer. In particular, the structure of the neural network
necessary for solving the regularized problem (3.3) in the linear framework is reported in Figure
(3.1) for the nth training sample. The input layer shows Mp neurons representing the past history
of the considered stochastic process, truncated at p lags (Yp

n).The output layer is composed of M
neurons representing the present state of the whole system (Yn). The Mp×M matrix W contains
the weights of the networks that describe the relationships existent between the output and the
input layer. Considering all the (N − p) training samples, the loss function l(·, ·) becomes:

Figure 3.1: Schematic representation of the architecture of the Neural Network used as VAR model. The
input and the output of the network are represented by the lagged variables and by the present states of all
processes included in the analysis

l(y,ypW) = ||y − ypW||22, (3.11)

which highlights that the weight W corresponds to the matrix A containing the parameters of the
VAR model (3.1). Thus, the described ANN is completely equivalent to a VAR model, except for
the fact that the training process induces sparsity into the weight matrix W.

Determination of the regularization parameter

The determination of the regularization parameter λ is a key element of the estimation process,
as its selection strongly influences the performance of resulting regression. For a high value of λ, the
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SGD-l1 algorithm provides a matrix of weights W in which all entries are zero. On the other hand,
when λ→ 0, the weights stored in W are all different from zero and the solution corresponds to the
OLS solution [44]. In this work, the optimal value for λ has been tested in the range [λl, λu], where
λl and λu are the values leading to maximum density (no zero elements) and maximum sparseness
(all zero elements) of the weight matrix. Subsequently, following the procedure described in [164],
with a hold out approach, we independently draw 90% of the samples available (rows of y and
yp) as the training set and kept the remaining 10% for testing. Training and test sets were then
normalized and, for each assigned λ, the number of non-zero weights was counted in the matrix Ŵ

estimated on the training set, and the RSS was computed on the test set as well. This procedure
was iterated for each λ, and the optimal λ was taken as the value minimizing the ratio between RSS
and the number of non-zero weights [8, 55, 164]. The weight matrix W obtained with the selected
optimal λ was then used for the subsequent GC analysis.

3.2.3 Measuring Granger Causality

Given the vector process Y = [Y1 · · ·YM ], let us assume Yj as the target process and Yi as the
source process, with the remaining M − 2 processes collected in the vector Ys where s = {1, ...,M}
\{i, j}. Considering the past of the source process Y p

i,n and the past of the target process Y p
j,n we state

that the ith process G-causes the jth process (conditional on the other s processes), if Y p
i,n conveys

information about Yj,n above and beyond the information contained in Y p
j,n and in all other processes

Yp
s,n. This definition is implemented regressing the present of the target on the past of all processes

(full regression) and on the past of all processes except the driver (restricted regression), to yield
respectively the prediction errors Ej|ijs,n = Yj,n − E [Yj,n|Yp

n] and Ej|js,n = Yj,n − E [Yj,n|Y p
j,n,Y

p
s ].

The resulting prediction error variances, λj|ijs = E[E2
j|ijs,n] and λj|js = E[E2

j|js,n] are then combined
to obtain the definition of GC (in its conditional form) from Yi to Yj [165]:

Fi→j|s = ln
λj|js

λj|ijs
. (3.12)

Following a similar reasoning, the GC in its original form (unconditional) from Yi to Yj is defined
as [28]:

Fi→j = ln
λj|j

λj|ij
, (3.13)

where λj|j = E[E2
j|j,n] and λj|ij = E[E2

j|ij,n] are the prediction error variances of the linear regression
of Yj,n on Y p

j,n and on [Y p
j,nY

p
i,n], respectively obtained from the errors Ej|j,n = Yj,n − E[Yj,n|Y p

j,n]

and Ej|ij,n = Yj,n − E[Yj,n|Y p
j,n, Y

p
i,n].

The prediction error variances needed for the determination of the GC measures can be computed
from the identification of the model (3.1) or by the training of the presented neural network, i.e.,
from the parameters (A1, ...,Ap,Σ) estimated using OLS or from the weights (W,Σ) estimated
through the SGD-l1 training algorithm. Given that Ej|ijs,n = Uj,n, the error variance of the full
regression can be obtained as the jth diagonal element of the error covariance matrix λj|ijs = Σ(j, j).
The other partial variances in (3.12) and (3.13) can be retrieved, starting from the identification of
the full model, by exploiting the theory of State-Space (SS) models [102, 166], according to which
the VAR model (3.1) can be represented as an SS model relating the observed process Y to an
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unobserved process Z through the equations [17, 102]:

Zn+1 = ZnA + EnK, (3.14)

Yn = ZnC + En, (3.15)

where the innovations En = Yn−E[Yn|Yp
n] are equivalent to the innovations Un in (3.1) and thus

have covariance matrix Φ = E[ET
nEn] = Σ. This representation, typically denoted as "innovation

form" SS model (ISS) [102], also evidences the Kalman Gain matrix K, the state matrix A and
the observation matrix C, which can all be computed from the original VAR parameters in (3.1)
as reported in [166]. The advantage of this representation is that it allows to form "submodels"
which exclude one or more scalar processes from the observation equation (3.15) leaving the state
equation (3.14) unaltered. In particular, the submodels excluding the driver process Yi, the group
of s processes Ys, or the the driver process Yi and the group of s processes Ys, have the following
observation equations:

Yjs,n = ZnC
(js) + Ejs,n, (3.16)

Yji,n = ZnC
(ji) + Eji,n, (3.17)

Yj,n = ZnC
(j) + Ej,n, (3.18)

where the superscripts (js), (ji) and (j) denote the selection of the columns with indices (js), (ji)

and (j) in a matrix. As shown by [102], the submodels (3.14,3.16), (3.14,3.17) and (3.14,3.18) are
not in ISS form, but can be converted into ISS by solving a Discrete Algebraic Riccati equation
(DARE). Then, the covariance matrices of the innovations Ejs,n,Eji,n and Ej,n include the desired
error variances λj|js, λj|ji and λj|j as the first diagonal element.

In order to establish the existence of a direct link from the ith node to the jth node of the
network represented by the observed vector process, the statistical significance of the conditional
GC computed after OLS identification of the VAR model was tested using surrogate data. Specifi-
cally, one hundred sets of surrogate times series were first generated using the Iterative Amplitude
Adjusted Fourier Transform (IAAFT) procedure [120]; then, for each directed link (i, j pair), the
conditional GC Fi→j|s was estimated for each surrogate set, a threshold equal to the 95th percentile
of its distribution on the surrogates was determined, and the link was considered as statistically sig-
nificant when the estimated Fi→j|s was above the threshold. In the case of ANN identification, the
statistical significance of the estimated conditional GC values was determined in a straightforward
way exploiting the sparseness of the weights matrix W resulting from the training through SGD-l1.

3.2.4 Simulation Study

This section reports two simulations designed to evaluate the performances of the proposed
estimator of the GC based on ANNs trained with SGD-l1 in comparison with the traditional VAR
identification based on OLS. The first simulation evaluates the conditional GC computed by the
ANN estimator in known structures of networks assessed with different amount of data samples, for
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different values of learning rate (η) and for different values of iterations of the SGD-l1 algorithm.
In the second simulation, after having extracted the best combination of learning rate and number
of iterations of the gradient descent to be used in ANN-based estimation, we compare it with
OLS estimation as regards the ability to retrieve the true values of the conditional GC and to
reconstruct the assigned network topology. In both simulations, the topology is representative of
the interaction of a ten-variate VAR process exhibiting a random interaction structure with fixed
density of connected nodes [8, 34].

Simulation Design

Simulated multivariate time series (M=10) were generated as a realization of a VAR(16) model
fed by zero-mean independent Gaussian noise with variance equal to 0.1. The simulated networks
have a ground-truth structure with a density of connected nodes equal to 15%, where non-zero AR
parameters of values chosen randomly in the interval [-0.8, 0.8] were set at lags assigned randomly
in the range (1-16) [58]. The knowledge of the true AR parameters allows computing the theoretical
values of the conditional GC and the true network topology, as illustrated for an exemplary case
in Fig. 3.2. Simulations were generated for different values of the parameter K defined as the
ratio between the number of data samples available (N ×M) and the number of AR coefficients
to be estimated (M2 × p). One hundred networks were generated for each value of K in the range
(1,3,10,20); the length of the simulated time series was N = 160 when K = 1 and N = 3200 when
K = 20.

First, considering ANN estimation performed for each value assigned to K and for each realiza-
tion, the learning rate η and the number of iterations for the SGD-l1 during the training process were
varied respectively in the range (10−3, 10−4, 10−5) and in the range (100, 1000, 2000). Importantly,
for each network structure a different neural network was trained initializing the weights accord-
ing to the method described in [167] that guarantees a faster convergence of the gradient descent
algorithm. After training, the conditional GC between each pair of processes was estimated from
the matrix of the weights W using the SS approach. Then, in order to assess which combination
of learning rate - number of iterations of the gradient descent is the best for a regression prob-
lem, and to evaluate the differences between the NN and OLS methodologies, different measures of
performances were computed as explained in the following subsection.

Performance Evaluation

Performances were assessed both in terms of the accuracy in estimating the strength of the
network links through the absolute values of the conditional GC measure, and in terms of the
ability to reconstruct the network structure through the assessment of the statistical significance of
the GC.

The bias of GC was computed comparing the estimated and theoretical GC values. For each
pair of network nodes represented by the processes Yi and Yj , the theoretical GC obtained from the
true VAR parameters, Fi→j|s, was compared with the corresponding estimated GC value, F̂i→j|s
through the absolute bias measure [59]:

bias = |Fi→j|s − F̂i→j|s|. (3.19)
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Figure 3.2: Graphical representation of one of the ground-truth networks of the simulation study. Arrows
represent the causal links randomly assigned between two network nodes via nonzero VAR coefficients. The
thickness of each arrow is proportional to the strength of the causal connection assessed by the conditional
GC, with minimum and maximum values equal to 0.0069 and 0.4. The number of connections for each
network is set to 14 out of 90.

The bias was assessed separately for null links and non-null-links, corresponding respectively to
zero and non-zero values of the conditional GC, yielding the measures bias0 and bias1. For each
network, these two measures were averaged across the 15 non-null links and across the 75 null links
to get individual measures, denoted as BIAS1 and BIAS0. Finally, the distributions of the two
parameters were obtained across the 100 simulated network structures.

The ability of ANN and OLS to detect the absence or presence of a network link based on the
statistical significance of the GC was tested comparing two adjacency matrices representative of the
estimated and theoretical network structures. This can be seen as a binary classification task where
the existence (class 1) or absence (class 0) of a causal connection is estimated using surrogate data
for OLS and looking at the presence/absence of non-zero weights for ANN, and is then compared
with the underlying ground-truth structure. Performances were assessed through the computation
of false-negative rate (FNR, measuring the fraction of non-null links with non-significant estimated
GC), false-positive rate (FPR, measuring the fraction of null links with significant estimated GC)
and Area Under Curve (AUC) that summarizes the information provided by FNR and FPR [20, 60].
These performance measures were computed across the network links for each assigned network,
and the corresponding distribution across the 100 simulated network structures was then obtained
separately for OLS and NN. In the case of ANNs, the computation time (in seconds) required for
the training of the ANN for different values of learning rate, number of iterations of the gradient
descent and data samples available was also considered as a performance parameter. The average
computation times over the 100 realizations were calculated using an implementation of the algo-
rithms in MATLABr environment on a PC with a six cores Intel Xeon (CPU clock speed 3.7 GHz),
128· GB DDR4 RAM.

To establish which combination of learning rate and number of iterations of the gradient descent
guarantees the most accurate results for each value of the K-ratio, an indicator of the overall
performance (parameter S) was defined as the average of the two following performance parameters:
i) the bias as defined in (3.19) for non-null links, normalized with respect to the theoretical GC
value; ii) the complement to 1 of the AUC parameter, 1 − AUC. These two parameters are both
null in the case of perfect estimation, and increase when the estimated GC values deviate from
the theoretical (non-zero) values or when the estimated network topology differs from the true
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topology. Both parameters were averaged across values of the K-ratio, and then the S parameter
was computed as their average.The distribution of S across the 100 realizations was investigated as
a function of learning rate and number of iterations of SGD-l1.

Statistical Analysis

For the first simulation, a three-way repeated-measures ANOVA was carried out for each per-
formance parameter (BIAS0,BIAS1,FNR,FPR,AUC), in order to evaluate the effects on the
computed performance parameters of different values of K (in the range [20, 10, 3, 1]), different
values of the learning rate LR (in the range [10−3,10−4,10−5]) and different values of the number
of iterations of SGD-l1 (Ntrain in the range [100, 1000, 2000]). Furthermore, with the aim of defin-
ing the best combination of learning rate and number of SGD-l1 iterations independently of the
data size, a two-way repeated-measures ANOVA was carried out for the parameter S using LR and
Ntrain as factors and grouping data from all values of K, so as to evaluate the effects of these two
parameters on the overall performance.

For the second simulation, five different repeated measures two-way ANOVA tests, one for each
performance parameter (BIAS0,BIAS1,FNR,FPR,AUC), were performed to evaluate the effects
on the performance of different values of K (in the range [20, 10, 3]) and different estimation
methods ([OLS, ANN]).

The Greenhouse-Geisser correction for the violation of the spherical hypothesis was used in all
analyses. The Tukey’s posthoc test was used for testing the differences between the sub-levels of
the ANOVA factors. The Bonferroni-Holm correction was applied for multiple ANOVAs computed
on different performance parameters.

Results of the Simulation Study I

The results of the three-way repeated-measures ANOVAs, expressed in terms of F-values and
computed separately on all the performance parameters considering K, LR and Ntrain as main
factors, are reported in Table 3.1.

Factors DoF BIAS0 BIAS1 FNR FPR AUC
Ntrain (2, 198) 7.8*** 711*** 467*** 68*** 609***
LR (2, 198) 69.6*** 461*** 325*** 171*** 656***
K (3, 297) 16*** 181*** 309*** 88*** 344***
Ntrain × LR (4, 396) 110.4*** 101*** 279*** 156*** 97.2***
Ntrain ×K (6, 594) 139.7*** 2.6* 44*** 98*** 0.5
LR×K (6, 594) 200.9*** 13*** 47*** 132*** 2.5*
Ntrain × LR×K (12, 1188) 28.2*** 71.6*** 20*** 15*** 3.6***

Table 3.1: F-values and corresponding degrees of freedom (DoF) of the three-way repeated measures
ANOVA.***, p < 10−5;**, 10−5 < p < 0.01; *, 0.01 < p < 0.05.

The three-way ANOVAs revealed a strong statistical influence of the main factors Ntrain, LR and
K and of their interaction on all the performance parameters analyzed. The only non-significant
effect was that of the interaction between Ntrain and K on the AUC parameter.

Figure 3.3 reports the distribution of the parameters BIAS0 and BIAS1 according to the
interaction Ntrain × LR × K. In the analysis of the error associated with the estimation of the
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Figure 3.3: Distributions of the bias of conditional GC (value and 95% confidence interval across 100
simulated networks) estimated using ANNs for the first simulation study. Bias parameters computed for the
null links (BIAS0, panel a) and for the non-null links (BIAS1, panel b) are plotted as a function of the
number of iterations of the gradient descent (Ntrain) for different values of the ratio between data samples
and model coefficients to be estimated (K) and of the learning rate (LR) of ANN training.

conditional GC along the null links (BIAS0, Fig. 3.3a)), an increase of the bias was observed at
decreasing the number of data samples available (factor K), regardless of the learning rate (factor
LR) and of the number of iterations of gradient descent (Ntrain).

Except for the case LR = 10−5, increasing the number of iterations Ntrain reduced the bias for
LR = 10−3 and for LR = 10−4, but not for LR = 10−5 when the opposite behavior was observed.
The bias analysis of the GC values computed along the non-null links (Fig. 3.3b)) showed more
clear patterns of the error, evidencing a decrease of BIAS1 at increasing Ntrain, at increasing K,
and at decreasing LR. The lowest mean values of BIAS1 were obtained setting LR = 10−3 and
Ntrain equal to 1000 or 2000.

Figure 3.4 reports the distributions of the parameters FNR, FPR and AUC according to the
interaction Ntrain × LR × K. The portion of non-null directed links incorrectly classified as null
(FNR, Fig. 3.4a)) was lower than 20% in all cases except for Ntrain = 100 and K ≤ 3. The
rate of false negative detections decreased at increasing K regardless of LR and Ntrain. A strong
effect of the number of iterations on the FNR was obseved in the most challenging condition of
K = 1 (purple lines), especially when LR = 10−5. The portion of null links incorrectly classified
as non-null (FPR, Fig. 3.4b)) was always lower than 20 %. The rate of false positive detections
showed a tendency to increase at decreasing K, while it was almost stable at varying LR and Ntrain.
The best scenario appears LR = 10−3, showing a mean FPR under 0.1 for each value of K > 1.
The overall accuracy measured by AUC (Fig. 3.4c)) reached the highest values for LR = 10−3 and
Ntrain ∈ {1000, 2000}. In these conditions, a very accurate reconstruction of the network structure
was obtained, as the accuracy was equal to 95 % for K = 20 and above 85% even when K = 1. The
performance showed a tendency to degrade at decreasing K, increasing LR and decreasing Ntrain.

Table 3.2 reports the computation time required for the training of the neural network in dif-
ferent conditions of K ratio, learning rate and number of SGD-l1 iterations averaged across the
100 realizations. As expected, the computation time increases with the number of iterations of the
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Figure 3.4: Distributions of the parameters assessing the quality of network reconstruction performed
using ANNs for the first simulation study. Plots depict the distributions of FNR (a), FPR (b) and AUC
(c) expressed as mean value and 95% confidence interval across 100 simulated networks as a function of the
number of iterations of the gradient descent (Ntrain) for different values of the ratio between data samples
and model coefficients to be estimated (K) and of the learning rate (LR) of ANN training.

gradient descent and with the number of data samples available (K ratio). The least and most
time-consuming settings were Ntrain = 100,K = 1 and Ntrain = 2000,K = 20, respectively taking
∼ 2 secs and ∼ 210 secs.

LR = 10−3 LR = 10−4 LR = 10−5

Ntrain 100 1000 2000 100 1000 2000 100 1000 2000
K=20 12.08 107.7 213.66 12 107.7 214.36 11.91 107.8 213.72
K=10 7.6 72.8 145.1 7.68 72.8 145.1 7.61 72.88 145.28
K=3 3.4 33.12 65.9 3.44 33.25 66.1 3.4 33.18 66.22
K=1 2.6 25.9 51.7 2.64 25.98 51.69 2.6 26 51.82

Table 3.2: Average computation time (in seconds, measured for 100 simulated networks) required to train
the ANN for different values of K ratio, learning rate and number of iteration of gradient descent.

Figure 3.5 reports the distribution of the overall performance parameter S computed as a func-
tion of the learning rate for different number of iterations of SDG-l1 (interaction Ntrain×LR). The
results show how the performance is affected significantly by both factors, with values of S that
tend to decrease while increasing the learning rate and the number of iterations of the gradient
descent. The lower values of S, indicating lowest bias of the estimated GC values and/or highest
AUC in the classification of the network structure, were observed for LR = 10−3 and Ntrain = 1000

or Ntrain = 2000. As the improvement from Ntrain = 1000 to Ntrain = 2000 was not statistically
significant, we infer that the best setting is the least computationally onerous combination, i.e.,
LR = 10−3, Ntrain = 1000.

Results of the Simulation Study II

After the extraction of the best combination of the training parameters of the ANN, in the
second simulation study we compare the performance of OLS and ANN at varying the proportion
between number of data samples available and parameters to be estimated (K-ratio). The results of
the two-way repeated-measures ANOVAs, expressed in terms of F-values and computed separately
on all the performance parameters considering K and TY PE (i.e., the method used: OLS or ANN)
as main factors, are reported in Table 3.3.
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Figure 3.5: Distributions of S parameter considering the interaction factor Ntrain×LR, expressed as mean
value and 95% confidence interval of the parameter computed across 100 realizations of the first simulation
study (F (4, 396) = 128.09, p < 10−5 ).

Factors DoF BIAS0 BIAS1 FNR FPR AUC
TYPE (1, 99) 3170*** 882*** 82.6*** 153*** 4.7***
K (2, 198) 2310*** 128*** 362*** 42.1*** 472***
TYPE×K (2,198) 2150*** 75*** 149*** 31.6*** 60.2***

Table 3.3: F-values and corresponding degrees of freedom (DoF) of the two-way repeated measures ANOVA
investigating the effects of the factors K (ratio between data samples and number of model parameters) and
TY PE (estimator used, i.e. OLS or ANN) on the performance parameters of GC estimation (BIAS0,
BIAS1) and of network reconstruction (FNR, FPR, AUC).***, p < 10−5.

The two-way ANOVA analysis highlights a strong statistical influence of the main factor K and
TY PE and of their interaction (TY PE ×K) on all the performance parameters analyzed in this
study. In this case the level K = 1 was not considered in the statistical comparison due to the
non-convergence of the DARE equation for the OLS case.

Figure 3.6 reports the distribution of the parameters BIAS0 and BIAS1 according to the
interaction factor K × TY PE. The comparison of OLS (blue line) and ANN (red line) shows that
the two estimation approaches have very different performance: in the computation of GC over the
null links, the error of ANN is very close to zero even in the most challenging condition of K=1,
while OLS shows an increasing bias with the decrease of the number of data samples available for
the estimation of GC values (Fig. 3.6a)); in the computation of GC over the non-null links, the
estimation bias is low but shows a tendency to increase for OLS, while it is remarkable but stable
for the ANN.

Figure 3.7 reports the distributions of the parameters FNR, FPR and AUC according to the
interaction K × TY PE. The analysis of false negative detections of directed links (panel a) shows
that the error committed increased with decreasing the number of data samples available. The error
was comparable for OLS and ANN when K = [20, 10], and then increased more markedly for OLS,
while it remained lower than 10% even when K = 1 for ANN. On the other hand, the analysis
of false positive detections (panel b) showed an error quite low and stable with K in the case of
OLS, and an error slightly growing with K up to 15% in the case of ANN. The overall performance
evaluated through AUC showed high classification accuracy and absence of statistically significant
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differences between the two estimation methods for K = [20, 10], and a better performance of ANN
compared with OLS for lower values of K; a high AUC value (∼ 85%) was reported for ANN even
when K=1.

Figure 3.6: Distributions of the bias relevant to the estimation of GC on the null links (BIAS0, panel a)
and on the non-null links (BIAS1, panel b) plotted as a function of the ratio between data samples available
and number of parameters to be estimated (K), for OLS estimation (blue) and ANN estimation (red).

Figure 3.7: Distributions of the parameters assessing the performance of network reconstruction, i.e. the
rate of false negatives (FNR, panel a) and of false positives (FPR, panel b) and of the area under the curve
(AUC), plotted as a function of the ratio between data samples available and number of parameters to be
estimated (K), for OLS estimation (blue) and ANN estimation (red).

Table 3.4 reports the computation time required for the entire process of GC computation
using the two estimation approaches for different values of the K ratio. OLS analysis includes SS
model identification and the subsequent evaluation of the null-case distribution for each couple of
nodes as described in the Methods section. ANN analysis includes SS model identification plus the
training process at Ntrain = 1000, LR = 10−3. The analysis highlights the expected decrease of the
computation times with decreasing the K ratio and, more importantly, a strong reduction of the
time requested for the entire process when ANN is used in place of OLS. The computation time
of OLS identification is not reported for K = 1 due to the non-convergence of the solution to the
DARE equation necessary for SS model identification.
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Method OLS ANN
K = 20 9.1 · 103 142.18
K = 10 4.5 · 103 107.28
K = 3 1.3 · 103 67.6
K = 1 − 60.38

Table 3.4: Average computation time (in seconds, measured for 100 simulated networks) required by the
OLS and ANN methods for the estimation of GC at different values of K ratio

3.3 Application to Physiological Time Series

This section reports the application of the conditional GC, defined as in equation (3.12) and
computed using OLS and ANN estimators, to the analysis of physiological networks formed by
several time series reflecting the variability of heart rate, respiration, blood pulse propagation time,
and of the amplitudes of different brain waves detected from EEG signals. The dataset used for the
analysis was collected in a previous study on the interactions between various organ systems during
different levels of mental stress [78].

3.3.1 Data acquisition and pre-processing

The experimental protocol involved eighteen healthy participants with age between 20 and 30
years, from whom different physiological signals were recorded during three tasks inducing different
levels of mental stress: a resting condition lasting 12 minutes and consisting in watching a relaxing
video (R); a mental arithmetic test during which the volunteer had to carry out the maximum
number of 3-digit sums and subtractions (M); a sustained attention task that consisted in following
a cursor on the screen while trying to avoid some obstacles (G). The experiment was approved by
the Ethics Committee of the University of Trento, and all participants provided written informed
consent. The study was in accordance with the Declaration of Helsinki.

The acquired physiological signals were the Electrocardiogram (ECG) signal, the respiratory
signal (RESP) monitoring abdomen compartment movements, the blood volume pulse (BVP) signal
measured through a photoplethysmographic technique, and Electroencephalogram (EEG) signals
acquired using 14 channels Emotiv EPOC PLUS (international 10-20 locations). More details on
the instrumentation and acquisition steps can be found in [78]. The acquired physiological signals,
representing the dynamical activity of different integrated physiological systems, were processed
to extract synchronous time-series representing the time-course of different stochastic processes.
Specifically, a template matching algorithm was employed to extract R peaks from the ECG and
then measure R-R interval time series (process η). The breath signal was sampled in correspondence
of the R peaks to attain respiratory time series (process ρ). Moreover, the pulse arrival time was
extracted as the time interval between the ECG R peak and the maximum derivative of the BVP
signal (process π) for each cardiac cycle.

With regard to brain activity, the power spectral density (PSD) of the EEG signals measured
at the electrode Fz was calculated using a 2-s long sliding window with 50% overlap. Then, for
each window, the PSD was integrated within four different frequency bands to obtain time series
representative of the δ (0.5-3 Hz), θ (3-8 Hz), α (8-12 Hz) and β (12-25 Hz) brain wave amplitudes.
The use of these frequency bands was motivated by studies which relate increasing levels of fatigue or
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alertness with higher PSD of the δ , θ and α processes and lower PSD of the β process [19, 168, 169].
To obtain synchronous timing of the seven measured time series, as all the brain time series

resulted as sampled at 1 Hz, the cardiovascular time series were synchronously resampled at 1 Hz
using spline interpolation. Stationary time series of 300 samples (5 min recordings), reduced to
zero mean and unit variance, were considered for the analysis. The time series extracted from
each subject were considered to be a realization of a VAR process descriptive of the behavior of
a dynamical system that describing the observed network of physiological interactions. For each
subject and condition, the parameters of the VAR model fitting the seven observed time series,
A1, ...,Ap,Σ, were estimated with the two procedures described (i.e., OLS and ANN). The model
order p was estimated for each experimental condition and subject through the Bayesian Information
Criterion (BIC) [124].

3.3.2 Granger Causality Analysis

To assess the topological structure of the physiological network, the conditional Granger causal-
ity between each pair of nodes, Fi→j|s, was computed through SS analysis applied to the VAR
parameters estimated with the two presented methods (i.e, OLS and ANNs), and its statistical
significance was assessed with the associated approach (i.e., using surrogate data for OLS and ex-
ploiting the intrinsic sparseness after the training process for ANN). The analysis was performed
between each pair of processes as driver and target (i, j = [η, ρ, π, δ, θ, α, β], i 6= j) and collecting
the remaining five processes in the conditioning vector with index s. Moreover, to confirm the
results obtained in [8] on the same data, the in-strength - defined as the sum of all weighted inward
links [125] - was computed for a specific network node (pulse arrival time π). The effect of the
different experimental conditions on the in-strength evaluated for the π node was assessed through
the Kruskal-Wallis test followed by the Wilcoxon rank-sum test between pairs of conditions. All
analyses were performed with a model of dimension Mp, where M = 7 and p ∼ 4 (depending on
the BIC) on time series of 300 points, corresponding to K ∼ 10 relating the amount of data sample
available to the model dimension.

Results of Granger Causality Analysis

Figure 3.8 depicts the network of physiological interactions reconstructed through the detection
of the statistically significant values of the conditional Granger causality (Fi→j|s) computed for all
pairs of processes belonging to the analyzed network. The weighted arrows represent the most active
connections among the systems (arrows are present when at least three subjects show a statistically
significant value of Fi→j|s). To ease interpretation and comparison between OLS and ANN estimates,
the three sub-networks representative of brain, body and brain-body interactions are depicted with
arrows of different colors. The networks estimated using OLS in the three experimental conditions
(Figure 3.8.a-c) exhibit similar structures to those estimated using ANN (Figure 3.8. (d-f)); the
main difference is that networks estimated with ANN show greater sparsity than those estimated
with OLS.

A qualitative analysis of the networks illustrates the existence of a highly connected body sub-
network (red arrows), a weakly connected brain sub-network (purple arrows), and a pattern of
brain-body interactions (green arrows) that changes with the experimental condition. The body
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interactions are characterized, consistently across the three conditions, by cardiovascular links (in-
teractions from η to π) and cardio-respiratory links (interactions between η and ρ), with a weaker
coupling between ρ and π. The use of ANN reveals a preferential direction from ρ to π that is not
present in the condition M and is bidirectional in the condition G. The topology of the brain sub-
network assessed by the ANN method is less stable across conditions, and looses consistency moving
from R to G. On the contrary, in the OLS case, the topology seems to be more consistent exhibiting
weaker connections moving from R to M and from M to G. The analysis of brain-body interactions
reveals that such interactions are mostly directed from the brain to the body sub-networks; in this
case, the use of ANN clearly shows an increasing of brain-body interactions during the condition G.

Figure 3.8: Topological structure of the network of physiological interactions reconstructed during the
rest (R), mental arithmetic (M) and serious game (G) experimental conditions. Graphs depict significant
directed interactions within the brain (purple arrows), body (red arrows) and brain-body (green arrows)
sub-networks. Directed interactions were assessed counting the number of subjects for which the conditional
Granger causality (Fi→j|s) was detected as statistically significant using OLS (a-c) or ANN (d-f) in the
estimation process. The arrow thickness is proportional to the number of subjects (n) for which the link is
detected as statistically significant.

Figure 3.9 reports the distribution of the values of the in-strength index evaluated for the π
node in each experimental condition. For both OLS and ANN, the median value of the in-strength
index is significantly higher in the condition R with respect to the condition G. The use of ANN
highlights lower values for the in-strength parameter even if the trend is the same moving across
the three experimental conditions. These results show that both approaches detect a decrease of
the information flow directed to the cardiovascular node of the body subnetwork, documented by
the reduction of the in-strength index in the G condition for the process π.

68



Figure 3.9: In-strength index computed for π node of the physiological network. Box plots report the
distribution across subjects (median: red lines; interquartile range: box; 10th − 90th percentiles: blue bars)
and the individual values (circles) of the in-strength computed at rest (R), during mental stress (M) and
during serious game (G). Statistically significant differences between pairs of distributions are marked with
# (R vs G).

3.4 Application to a ring of non-linear electronic oscillators

In this section we investigate the application of GC, in its unconditional version, computed
through OLS and ANN by exploiting the SS approach, to a dataset of electronic non-linear chaotic
oscillators, recorded from a unidirectionally-coupled ring of 32 dynamic units, previously realized
with the aim of studying remote synchronization [162, 163]. In the literature, it has been pointed
out that a single transistor oscillator can exhibit very complex activity and a ring of coupled oscil-
lators can create a community structure with statisical properties resembling physiological systems
[22, 170, 171]. The previous analysis has shown how it is possible to provide a mesoscopic de-
scription of the information exchanged between different nodes of a network which represents the
activity of several physiological systems. On the other hand, the employment of an electronic circuit
comprising a ring of oscillators, provides a system of reduced scale and complexity, with respect to
a physiological one, yielding full access to the activity of each individual node. The resulting time
series, measured as voltage output by each oscillator, were considered as input for a VAR model
and for an ANN, descriptive of the behavior of the entire network ring.

3.4.1 System description and synchronization analysis

The structural diagram of the oscillator circuit corresponding to each node in the network
is reported in Figure 3.10.a and comprises four summing stages associated with low-pass filters.
Three such stages with negative gains G1 = −3.6, G2 = −3.12, G4 = −3.08 and filter frequency
F1 = F2 = F3 = 2 kHz are arranged as a ring oscillator. Two Integrator stages with integration
constants K1 = 3.67K2 = 0.11µs−1 with mixing gains G3 = −0.5 and G5 = −0.71 are overlapped
to this structure. The ring is completed through fourth summing stages having F4 = 100 kHz� F1

with one input (gain G6 = 0.132) which is necessary to close the internal ring itself and another
(gain Gi = −1.44) connected to the previous oscillator in the ring network (Figure 3.10.b). To limit
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the voltage swing for the off-chip signal a gain inverter G0 = −0.4 is installed. The recorded time
series have a length l = 65536 points and are sampled with a sampling frequency fs = 100 kHz and
are freely available [172].

The frequency spectrum of each node is represented by three peaks: the most prominent (central
one) at fc ≈ 2.8 kHz and two weaker ones (sidebands) at fl = fc/2 ≈ 1.4 kHz and fh = fl+fc ≈ 4.2

kHz. The higher sideband represents the mirror frequency of the lower one. As explained in [163],
demodulation via envelope detection and subsequent interference occurs, and these phenomena
lead to spatial fluctuations of the lower sideband amplitude that are closely related to the remote
synchronization effect. In this system, remote synchronization is manifest as a non-monotonic decay
of synchronization along the ring, wherein, with increasing distance from a given node, on average
synchronization drops, then increases transitority, and finally vanishes.

As in previous works [162, 163], we determined the instantaneous phase φm(t) and the envelope
Am(t) of the output signal vm(t) of each oscillator m with the following relationship:

vm(t) + iv̂m(t) = Am(t)eiφ(t), (3.20)

where v̂m(t) is the Hilbert transform of the recorded signal vm(t).
Given two generic time series Yi and Yj , amplitude synchronization for the envelope Am(t) was

considered in terms of the maximum normalized cross-correlation coefficient for non-negative lags
(that is, lags that take into account a possible propagation time along the direction of coupling,
clock-wise in this system) max[Cij(τ)]τ≥0 which is defined as:

Cij(τ) =
kij(τ)√
σ2i σ

2
j

, (3.21)

where kij(τ) = E[(Yi,n+τ−µi)(Yj,n+τ−µj)] is the time cross-covariance, µi = E[Yi,n] and µj = E[Yj,n]

that represent the mean of values of Yi and Yj ; σ2i = E[(Yi,n − µi)2] and σ2j = E[(Yj,n − µj)2] which
correspond to the variances of Yi and Yj respectively.

Figure 3.10: Diagram of the oscillator circuit corresponding to each node in the network (a). Master-Slave
(unidirectional, clock-wise) structure of the ring comprising thirty two oscillators (b).
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In Figure 3.11 the analysis of cross-correlation coefficient performed for each pair of oscillators
(i, j) in the entire ring (panel a) is reported, alongside with the corresponding synchronization
analysis for three representative oscillator pairs (panel b) which exemplify the decay and transient
recovery of amplitude synchronization for three different distances from the node 1. The analysis
of the cross-correlation coefficient reveals that moving away from a node, synchronization initial
decayed, then gradually increased, rising till a distance d ≈ 8, and eventually vanished as shown
in Figure 3.11.a. The structural coupling on the ring is only between first neighbors, as indicated
by the master-slave configuration, and the highlighted non-monotonic trend in the cross-correlation
coefficient indicates a situation of remote synchronization. The visual inspection of signal envelope
for three different couples of oscillators (panel b) confirms the analysis of cross-correlation with
complete synchronization of the couple i = 1, j = 2 (distance 1, max[Cij(τ)]τ≥0 = 0.91) that
becomes a desynchronization for the couple i = 1, j = 6 (distance 5, max[Cij(τ)]τ≥0 = 0.19); finally,
the synchronization appears to be strong even for the couple i = 1, j = 9 that means a physical
distance of eight (max[Cij(τ)]τ≥0 = 0.59). The performed analysis can be replicated by running the
Matlab script Test_Oscillators in the released toolbox.

Figure 3.11: Instance of remote synchronization. The panel (a) reports the synchronization matrix for
the entire ring intended as the maximum positive cross-correlation coefficient for the signal envelope Am(t).
The panel (b) shows the signal envelope Am for three different coupled of nodes demonstrating remote
synchronization effects. The blue line represents A1 with the red line that shows A2 (on the top), A6

(middle panel) and A9 (on the bottom). Time series were realigned to the lag for which the maximum value
of cross correlation was observed.

3.4.2 Granger Causality Analysis

From a theoretical point of view cross-correlation coefficient is a symmetric measure and thus,
its value for each time step is the same independently of the selected direction (i → j, j → i).
For this reason, it is not possible to assess if there is an information exchange between different
oscillators. In order to test if there is information exchange between different oscillators, and if
both methodologies can adequately capture the effects of "remote synchronization" restoring the
results obtained in [163], Granger causality in its unconditional form was evaluated (Fi→j) for each
couple driver (i) target (j) belonging to the ring. Here, the past history of the target node j was
approximated as Y p

j,n = [Yj,n−1, · · · , Yj,n−p], i.e. with lagged components equally spaced in time.
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The past history of the driver node i was approximated as Y p
i,n = [Yi,n−1, · · · , Yi,n−p]. In the present

analyses, the model order p was set to 16 with time series that were decimated firstly by a factor of 4
and subsequently by a factor 10. This process was needed in order to reduce the computational load
and take into account the elimination of information storage and the propagation delays [163]. In
this condition, the ratio between the number of data samples and the number of VAR coefficients to
be estimated is more or less equal to 3 (K ≈ 3) and the partial variances needed for the evaluation
of Granger causality were obtained through OLS and ANN by exploiting the theory of state-space
models as described in the Methods section.

Figure 3.12 shows the results of the evaluation of unconditional GC (Fi→j) performed for each
couple (i, j) through OLS (Figure 3.12.a) and ANN (Figure 3.12.b). The estimated patterns are
quite similar independently of the methodology used for estimation. The highest values of coupling
estimated are linked to the previously described synchronization phenomenon: by considering a
target (j) the coupling strength from the driver (i) to the considered target is very high nearby
the position of the target; then decreases with the distance from the target with another peak at
a distance approximately equal to 8 and finally vanishes. Another important feature is that this
phenomenon is not bidirectional, but it is observable only in the direction i→ j and not vice versa,
as expected from the physical realization of the ring. Furthermore, the analysis of the pattern
estimated through ANNs reveals more clearly the preferential synchronization clusters along the
main diagonal. More in general, it is possible to observe a more sparse network when the analysis
is performed through ANNs with the maximum value of observed coupling that is an order of
magnitude smaller respect to the classical approach based on OLS (0.18 for OLS and 0.09 for
ANNs).

The analysis of the computation time required for the estimation process, reveals a total temporal
request of 28 hours (OLS = 5.0605 ·104 s; ANNs = 5.108 ·104s) with the difference between the two
methods ascribable to the training process of the ANN.

In order to test the degree of similarity between the two matrices, we computed the Spearman
rank correlation coefficient that is a measure of the relationship between two variables when the
data is in the form of rank orders. The Spearman rank correlation coefficient is in the range [−1, 1]

where 1 indicates complete agreement and -1 indicates complete disagreement. A value of 0 would
indicate that the rankings were unrelated. Let Ri be the rank of the unconditional GC evaluated
through OLS and Si be the rank of the same analysis performed with ANN. Then, the rank-order
correlation coefficient is defined to be the linear correlation coefficient of the ranks, namely,

rs =

∑
i(Ri −R)(Si − S)√∑

i(Ri −R)2
√∑

i(Si − S)2
(3.22)

The significance of a nonzero value of rs is tested by computing

t = rs

√
N − 2

1− r2s
, (3.23)

which is distributed approximately as Student’s distribution with N-2 degrees of freedom [173].
The result of this analysis reveals a value of rs = 0.84 with a p-value p < 10−5 indicating a strong
correspondence between the networks obtained through the two methodologies.
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Figure 3.12: Unconditional Granger Causality Analysis performed on the network of 32 chaotic oscillators
(Fi→j). The matrices represent the analysis performed using OLS (panel a) and using ANNs (panel b) where
each entry of the matrices corresponds to the strength of the causal influence from the driver i towards the
target j. The value of Sperman rank correlation coefficient (rs = 0.84) reveals a strong correlation between
the two different patterns (p < 10−5).

3.5 Discussion

3.5.1 Simulation study I

The first simulation study was designed to evaluate the effects of ANN training parameters on
the GC estimation process. We pointed out how the learning rate (LR) and the number of iterations
(Ntrain) of the gradient descent have an impact on the training process as regards both the regression
problem and the classification of significant network links [174]. The accuracy in the estimation of
the regression parameters, which reflects the accuracy in the magnitude of the estimated GC, was
investigated while varying the amount of data samples available for the estimation (Figure 3.3). As
expected, the bias of GC estimated over both null and non-null links increased in conditions of data
paucity, while it was reduced increasing the number of iterations of the gradient descent. An opposite
trend was observed assessing the bias along the null links for small learning rate (LR = 10−5). This
result was previously observed in the context of classification analysis [175, 176] and is likely due to
the fact that too small learning rates can trap the ANN training process into local minima, resulting
in our case in larger differences between estimated and theoretical values of the conditional GC.

On the other hand, the analysis of the accuracy in reconstructing the network structure was
tested in terms of different classification parameters previously used to assess the structure of
connectivity networks [8, 48, 60]. The analysis (Figure 3.4) showed a general improvement of the
classification performance when increasing the number of data samples available and the number of
iterations of the SGD-l1 algorithm, and when decreasing the learning rate. These results are in line
with previous studies analyzing the performance of estimators related with the concept of Granger
causality [34, 37, 177], and help to optimize the parameter selection for GC analysis based on ANN.

Such an optimization was performed in an objective way selecting the best combination of
learning rate and number of SGD-l1 iterations that minimized the overall performance parameter S
(Figure 3.5; note that lower values of S indicate better performance). Varying the parameters Ntrain
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and LR within ranges compatible with those suggested in a review of ANNs employed in classifica-
tion analysis [69], we identified the combination LR = 10−3 and Ntrain = 1000 as the most suitable
for optimizing the performance of ANNs in the computation of magnitude and statistical signifi-
cance of the conditional GC. Overall, our simulation results lead to the following recommendations
for GC estimation based on ANNs:

• the selection of the regularization parameter λ is crucial, and needs to be performed through
objective approaches such as the use of cross-validation employed in this study. In addition,
a careful selection of both the range and the number of λ values to be tested through cross-
validation is relevant; according to previous works and to the results obtained here, a range
of three hundred values seems to be sufficient.

• the factors which mostly affect the computation time are the number of data samples and
the number of iterations of the gradient descent (Ntrain). Although with a sufficient number
of data samples the impact of the number of iterations does not seem to be significant, we
recommend to set Ntrain ≥ 1000.

• very small values of the learning rate should be avoided as they force the experimenter to
increase the number of iterations of the gradient descent to escape from local minima. We
suggest the combinationNtrain = 1000 and LR = 10−3 as a good compromise between accuracy
and computation time.

3.5.2 Simulation study II

The second simulation study was designed to analyze the performance of the proposed ANN
approach for GC estimation in comparison with the state-space analysis based on standard OLS
estimation of the VAR model [102]. As in the first simulation, performances were assessed separately
regarding the estimation bias and the statistical significance of the conditional GC. The bias analysis
revealed the expected tendency to observe a larger difference between true and estimated GC values
for decreasing theK ratio between amount of data samples and number of model parameters (Figure
3.6). This trend was marked for OLS-based GC estimates, confirming previous comparative studies
[36], and was much less evident for ANN-based estimates, which were more stable with respect
to varying K. Considering the worst scenario in which the number of data samples available is
equal to the number of VAR coefficients to be estimated (K = 1), the ANN estimation still yielded
acceptable results, while OLS estimation was even not possible due to the non-convergence of the
DARE equation contained in the SS estimation of GC [8]. The increasing bias observed for the
OLS method while approaching the condition K = 1 is likely related to the fact that the matrix
[yp]Typ (see methods) becomes progressively closer to singularity. On the other hand, a drawback
of the ANN estimator is the substantial bias exhibited by the the conditional GC computed over
the non-null links even in presence of sufficient amounts of data. This could be explained in part
with the penalization directly applied on the matrix of coefficients that shrinks the values towards
zero, and in part to the way by which the weights of the ANN are initialized [178].

Also the ability in reconstructing the network structure showed a tendency to decrease with the
ratioK between the number of data samples and of model parameters (Figure 3.7). In terms of over-
all accuracy, the ANN approach outperformed the OLS one for K ≤ 3 and resulted well-applicable
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(AUC ≈ 0.85) even in the challenging condition K = 1. We ascribe this better performance to
the use of the l1 regularization introduced in the training of the ANN, which helps counteracting
the collinearity between regressors induced by the decrease of the number of data samples avail-
able [44, 127]. When particularized to the rate of correct detection of null and non-null links, the
performance under conditions of data paucity differs for the two approaches, with ANN and OLS
showing respectively better capability to correctly detect existing links (lower FNR) and better ca-
pability to correctly detect the absent links (lower FPR). The high rate of false negative detections
exhibited by OLS when K < 10 is likely due to an inaccurate representation of the distribution of
the GC under the null hypothesis of uncoupling, estimated empirically using surrogate time series
[20]. On the other hand, the slightly higher rate of false positive detections exhibited by ANN is
in line with previous findings in the context of information transfer estimation, in which the use of
variable selection techniques showed few extra links, observed for different degrees of sparsity of the
simulated network structure and values of K [8, 39]. Note that, even if the l1-regularized (SGD-l1)
and l1-constrained (LASSO) algorithms target different objective functions, their behavior could
be related since the idea at the basis of their functioning is the same [21]. In sum, we provide the
following remarks about the comparison between the two methods:

• if one is interested in the reconstruction of the network topology, ANNs can be used as a valid
alternative to standard OLS approaches with a considerable computational cost reduction
(Table 3.4).

• if one is interested in the assessment of coupling strength as measured by the GC values,
ANNs are much more accurate than OLS in detecting small or zero GC values but are more
biased in the detection of non-zero GC values.

• the use of ANNs with the parameter combination Ntrain = 1000, LR = 10−3 guarantees a
good level of accuracy in the estimation of GC even for conditions of strong data paucity.

3.5.3 Application to Physiological Networks

Within the emerging field of network physiology, it is possible to analyze physiological interac-
tions in a multivariate fashion, building complex networks whose nodes and edges represent different
organ systems and their communication mechanisms [18]. However, identifying networks on the ba-
sis of the information exchanged between physiological signals is not a trivial task and requires
the development of novel approaches [118]. As a main challenge is to interpret dense networks in
terms of the underlying physiological mechanisms [149, 179], the study performed here was aimed
to show the usefulness of GC measures based on ANNs for the description of brain, peripheral, and
brain-heart interactions in a previously studied dataset [78]. The usability of the proposed approach
can be inferred linking the present results to those that we obtained in recent studies where the
possibility to describe the topology of physiological networks through penalized regressions was ex-
plored [8, 177]. In particular, the very similar network topologies observed here and in [8] using very
different identification methods support the usefulness of sparse model identification approaches for
the study of physiological interactions.

The analysis of the statistically significant values of the conditional GC led us to detecting spe-
cific topology structures (Figure 3.8). In the study of the peripheral sub-network of cardiovascular
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and respiratory interactions, we confirm the results of previous works highlighting the presence of
significant interaction patterns which are observed consistently across physiological states [8, 78, 92].
These patterns comprise a strong information flow between η and ρ reflecting the mechanisms of
respiratory sinus arrhythmia [135] and cardio-respiratory synchronization [136], the causal inter-
action η → π reflecting the physiological effect of the heart rate on stroke volume and arterial
pressure which modulates the arterial pulse wave velocity [180], and the causal interaction ρ → π

reflecting the influences of breathing on the intra-thoracic pressure, blood pressure and blood flow
velocity [137]. The main effect observed when changing the physiological state was the statistically
significant decrease of the in-strength index of the vascular node π occurring with the transition
from R to G (Figure 3.9); physiologically, this variation can be related to a reduced efferent nervous
system activity from the cardiac and respiratory centers towards the vascular system during mental
stress conditions [8, 177]. While the majority of these patterns were observed identically by OLS
and ANN identification approaches, the interaction between ρ and η was detected as bidirectional
using OLS and as unidirectional using ANN; the presence of unidirectional interactions ρ → η is
physiologically more plausible with the mechanism of respiratory sinus arrhythmia [77, 135].

As regards the analysis of the brain sub-network, we detected interaction patterns which are
weaker and less consistent across physiological states. Using OLS, the total number of connections
shows a tendency to decrease moving from R to M and to G. Using ANN, the brain sub-network is
very sparse during R and M, and disconnected during G. The latter result is in line with our recent
work in which the same dataset was analyzed through different measures of information dynamics
computed through LASSO regression [8]. In such work, a different degree of disconnection was
observed for the brain sub-network; given the general weakness of the connections, it is reasonable to
assume that the results are influenced by the selection the regularization parameter λ that controls
the amounts of shrinkage applied to the ANN weights, as in the optimization of λ the weaker
connections have a higher probability to be discarded [44, 55]. This confirms the importance of
employing automatic strategies, such as that used in this work, for the selection the regularization
parameter, in order to provide an objective quantification of the network topology. Here, the
adoption of an automatic strategy led to detect a much more sparsely connected brain subnetwork
using ANN than OLS, confirming results previously reported for this type of data [78].

The regularization approach implicitly present in ANN training allowed highlighting better
than standard OLS analysis the modification of the structure of brain-body interactions across
the considered physiological states. Indeed, while both OLS and ANN suggest an increase of the
connections between brain and body during sustained attention (condition G), the results achieved
with ANN highlight the emergence of causal interactions from brain to body moving from R and
M to G. The rise of these connections, directed mostly to the ρ and η nodes of the peripheral
sub-network, confirms the results of previous studies about the importance of the brain oscillations
for attention tasks that can be correlated with the cardiac and respiratory activity [141, 143].

3.5.4 Application to chaotic electronic oscillators

The recorded time series and the master-slave unidirectional structure guarantee a higher level of
stationarity and more elementary dynamics with a well known a-priori topological effect compared
to physiological systems. For these reasons, it is reasonable to assume that electronic oscillators
could represent a useful benchmark for testing in real settings new methods developed for the study
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of the interactions between dynamical systems.
The second application was therefore devised to demonstrate the validity of the proposed

method, based on the combination of ANN and SS modeling, to compute GC from the output
signals of a network of electronic oscillators. The analysis of the cross-correlation coefficient pre-
sented in Figure 3.11 revealed the existence of a preferential synchronization effect between groups
of nodes that are not directly connected via a physical link and, in particular, we found a maximum
of the cross-correlation coefficient at a distance d ≈ 8. This result is in agreement with previ-
ous analyses performed in the same ring of oscillators [162, 163] and with the recently introduced
concept of remote synchronization which reveals mutual synchronization between pairs of locally
coupled groups of nodes in a network. Thus, each group of nodes remotely synchronized is physically
connected through a group of intermediary nodes more weakly synchronized with them [161].

In order to investigate if the observed remote synchronization corresponds to "remote" informa-
tion transfer, we performed unconditional GC analysis with both OLS and ANN. An inspection of
Figure 3.12 clearly shows the good overlap between the networks estimated with the two method-
ologies; this result is supported quantitatively by the analysis of the Spearman rank correlation
coefficient (rs = 0.84, p < 10−5). A similar analysis was performed on the same dataset by
[163], who used uniform embedding to approximate the history of target and driver time series
as Y −j,n = [Yj,n−δ, Yj,n−τ−δ, · · · , Yj,n−pτ−δ], Y −i,n = [Yi,n−δ−d, Yi,n−τ−δ−d, · · · , Yi,n−pτ−δ−d], where the
additional time lag δ = 0.01 ms was added to ensure the full elimination of information storage
[181] and the lag d was introduced to account for propagation delays and was set searching for the
minimal prediction error over the range d ∈ [0, 2].

Here, we confirm the results obtained in [163] with a different analysis that exploits the SS
representation of the VAR model and the ANN training. In particular, both methodologies can
capture the dynamical activity in a ring of electronic oscillators with a well-defined complexity and
stability of the network topology, since it is possible to obtain structures overlapped with those
extracted performing the analysis with different methodologies already reported in the literature.
From a methodological point of view, the strong overlap between the two networks can be motivated
by the results of the simulation study II for which at K = 3 the AUC parameter, indicating the
capability in the reconstruction of the network topology, showed a very small difference between the
two methods. Furthermore, it is also important to note that, as an effect of the l1-norm applied to
the weights of the network during the training process, the maximum value of GC estimated with
ANN is one order of magnitude less for ANN than OLS [164].

3.6 Conclusions

This work documented that neural networks can be used in combination with state-space models
for the identification of linear parametric models, allowing computationally reliable and accurate
estimation of GC in its conditional and unconditional forms. In particular, we showed how this
combined approach leads to overcoming both the decrease in accuracy reported for traditional least-
squares identification when it needs to be performed in unfavorable conditions of data availability
[36], and the problems arising in the computation of GC estimated through different regression
problems [139]. ANNs are useful in particular to assess the statistical significance of GC estimates,
favoring the reconstruction of the network topology underlying the observed dataset without the
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need to employ time-consuming asymptotic or empirical procedures for significance assessment.
The implementation of the proposed approach for the study of physiological networks and cou-

pled electronic oscillators documented its usefulness in practical applications, supported by the
observation of interaction patterns similar to those found in previous studies where the datasets
were first studied in terms of GC [78, 163]. All the findings in this work suggest that ANNs are
able to detect the strongest interactions providing output patterns of information dynamics which
are more straightforward and easy to interpret than those obtained with OLS.
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Chapter 4

Testing different methodologies for
Granger Causality estimation in
Multivariate Time series: a comparative
study

4.1 Introduction

The evaluation of the direction and and strength of the interactions, among simultaneously
observed dynamical systems, is an important topic currently under investigation in many field
of science such as understanding the functionality of brain [26, 182] inferring about the causal
relationship among different financial markets indices [183, 184] and the seismic activity [185].

Granger Causality (GC) is a very versatile tool for analysing the cause-effect relationships be-
tween different time series descriptive of the system dynamics [28]. In principle, GC is inferred
utilizing linear bivariate regression stating that given a time series X that causes another time
series Y , the causal information is stored in the past of X which helps the prediction of the present
state of Y . In multivariate time series, bivariate causality measures may capture indirect effect be-
tween X and Y driving by another time series Z which is not included in the bivariate formulation,
e.g. if there is a direct causal effect X → Z and Z → Y , the indirect causal effect X → Y may arises
[29, 165]. Thus, bivariate analysis cannot distinguish between direct and indirect causal effects and
when applied to multivariate systems could results in erroneous estimated patterns. Therefore, to
account for the influence of other time series the bivariate formulation has been extended to the
multivariate case through the use of Vector Autoregressive models (VAR) which lead to the compu-
tation of a conditional form of GC [117]. In the latter case, the direct causality is explored between
any given pair of time series of the analyzed system by conditioning on the information conveyed
from the past of the remaining time series in the dynamical system.

Although multivariate analysis incorporates dimensional contributions of high orders, the "curse
of dimensionality" may arise, meaning that the estimation of GC in a multivariate fashion may
be problematic due to the high dimension of the observed data, leading to unreliable estimation
problems [186]. Another important topic that would influence the estimation process is the presence
of redundancy between time series: given A and B as two different set of processes, if we are
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interested in studying the causal relationship B → A, redundancy occurs if the same information
being shared by the processes in B and the its presence can lead to under-estimation of their
causality when a standard multivariate approach is applied [186, 187].When analyzing interactions
in a multivariate time series, redundancy may arise if some processes are influenced by another
one not included in the regression problem or the existence of a certain degree of synchronization
between stochastic processes [101].

The bias in the estimation process due to over-fitting or redundancy has been addressed by
incorporating dimension reduction techniques such as LASSO regression [8, 188, 189], Artificial
Neural Networks (ANNs) trained with specific algorithm [158] or by developing techniques based
on subset regression, model reduction and non-uniform embedding [190, 191]. Variable selection
techniques have also been used in order to limit the dimensionality within the estimation procedure
of multivariate causality measures such as Group LASSO or others regression methods based on
convex optimization [20, 39]. Beside these methods, recently a partial conditioning scheme has been
also introduced for the computation of GC to cope with the effects of redundant variables and data
paucity that could be present as a result of the high number of processes in the dynamical system
under analysis and the way in which interact each other [106].

GC from a driver to a target time series is typically quantified, in the multivariate setting,
by comparing the prediction error variance obtained from two different linear regression models:
a model where the present state of the target is regressed on the past samples of all time series
in the dataset (full model), and a model where the present of the target is regresses on the past
of all time series excluding the driver (restricted model)[7]. Unfortunately, since the restricted
model is theoretically of infinite order, the finite sample estimation of GC based on performing two
separate regressions leads to a strong bias or very large variability of the estimate, depending on
whether small or high orders are used to identify the restricted model [139, 192]. To counteract this
problem, approaches based on the identification of a single VAR model have been recently introduced
to estimate the GC. Finite order linear state space (SS) models is closed under the operations of
aggregation or sub-sampling and the conditional GC in both time and frequency domains, can be
easily derived from SS parameters via the solution of a single discrete algebraic Riccati equation
(DARE) [17, 102].

In the literature there are different comparative studies aiming at evaluating and comparing
different causality measures. However, each study focuses on different type of measure or specific
feature of the analyzed dataset. Many different causality measures are compared with the stan-
dard GC measures, or transfer entropy [86] (which represent the non-linear analogue of Granger
causality)[30, 193]. Other measures have been developed and presented, especially in the context
of brain study [4, 5], and there are many comparative studies on electroencephalograms [194–
198]. Although different studies have been performed in this context, in the literature an extensive
comparative studies in different simulation settings is still missing. Furthermore, not all the GC
measures introduced so far, have been developed in the context of State Space modelling.

In this Chapter, I performed an extensive comparative study in which five different strategies
for the computation of Granger causality are presented as originally defined in the related works.
Furthermore, all of them will be then embedded in the state space representation in order to
overcome the limitations of existing GC estimation methods. The performance in the quantification
of GC magnitude and statistical significance are compared in two different simulation studies by
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known coupled systems with different network size and density of connected nodes also in condition
of strong data paucity.

4.2 Methods

4.2.1 Granger Causality

Let us consider a discrete-time, stationary vector stochastic process composed of M real-valued
zero-mean scalar processes, Yn = [Y1,n . . . YM,n]T . Assuming that Yn is a Markov process of order
p, in the linear signal processing framework it can be completely described by the VAR model:

Yn =

p∑
k=1

AkYn−k + Un, (4.1)

where Ak is an M ×M matrix containing the autoregressive (AR) coefficients aji,k that relate Yj,n
to Yi,n−k (i, j ∈ (1, . . . ,M),k ∈ (1, . . . , p)), and Un = [U1,n . . . UM,n]T is a vector of M zero-mean
gaussian innovation processes with covariance matrix Σ ≡ E[UnU

T
n ] (where E is the expectation

value). The problem 4.1 can be solved by means of ordinary least squares (OLS), computing the
matrix of coefficients that minimizes the residual error term [112].

Let us assume the process Yj,n as the target and the process Yi,n as the driver process, with the
remainingM−2 processes collected in the vector Yk,n, where k = {1, ..,M} \{i, j}. Then, denoting
Y−m,n = [Ym,n−1Ym,n−2 . . .]

T as the past history of the generic process Ym, we state that the ith

process G-causes the jth process (conditional on the other k processes), if Y −i,n conveys information
about Yj,n above and beyond all information contained in Y −j,n and Y−k,n. This definition leads
to perform a regression of the present of the target on the past of all processes, yielding to the
prediction error ej|ijk,n = Yj,n − E[Yj,n|Y−n ], and on the past of all processes except the driver,
yielding to the prediction error ej|jk,n = Yj,n − E[Yj,n|Y −j,n,Y

−
k,n]. The prediction error variances

resulting from these "full" and "restricted" regressions, λj|ijk = E[e2j|ijk,n] and λj|jk = E[e2j|jk,n] are
then combined to obtain the definition of GC from Yi to Yj [103]:

Fi→j = ln
λj|jk

λj|ijk
. (4.2)

4.2.2 Computation of Granger causality

In this section I describe five different approaches for the computation of Fi→j as defined in 4.2.
For all of them given that ej|ijk,n = Uj,n the error variance of the full regression can be obtained
as the jth diagonal element of the error covariance matrix, λj|ijk = Σ(j, j), that can be retrieved
by solving the full and the restricted regression problems with the five different procedures named:
Ordinary Least Square (OLS) regression, modified Backward in Time Selection (mBTS) based on
time ordered restricted VAR models, Partial Conditioning (PC), Artificial Neural Networks (ANNs)
and LASSO regression. All the methods introduced can be used for the solution of both full and
restricted regressions as described in the following or by using the theory of the state-space models.
Note that the solution of the different regression problems require that the whole past history
of Y can be truncated using p time steps, i.e., using the Mp-dimensional vector Yp

n such that
Y−n ≈ Yp

n = [Yn−1 · · ·Yn−p].
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GC based on OLS (DR-GC) [29]

By considering N samples of the multivariate process Y the prediction error variance of the
full linear regression problem can be computed from the identification of the model 4.1 from the
parameters (A1, . . . ,Ap,Σ) obtained by the closed form solution of OLS [8]. By considering a single
time step n the restricted model is instead formulated as follows:

Yj,n =
M∑

m=1,m 6=i

p∑
k=1

cmkYm,n−k + ej|jk,n, (4.3)

where cmk represents the (M − 1)p vector of coefficients with ej|jk,n residuals of the restricted
regression problem. Then, the desired error variance λj|jk is computed simply as the variance of
the estimated residuals by solving the problem 4.3 through OLS regression.

GC based on mBTS (DR-mBTS) [107]

The modified backward-in-time-selection (mBTS) method is a bottom-up strategy designed for
the analysis of multivariate time series to reduce the terms in the VAR model 4.1. The rationale is
to evaluate progressively the inclusion of the lagged variables stored in Yn−k starting with the most
current and moving backward in time. First, for each of the M processes stored in Y is created the
vector of all lagged variables that are candidate to be included in the model:

W = [Y1,n−1, . . . , Y1,n−p, Y2,n−1, . . . , YM,n−p], (4.4)

and has Mp components. The algorithm aims at finding an explanatory vector wj formed from
the most significant lagged variables of W in predicting the current state of the target process Yj,n.
The explanatory vector wj is built progressively adding one lagged variable at each cycle. The
models formed by the candidate explanatory vectors at each cycle are assessed with the Bayesian
Information Criterion (BIC) [124]. Upon termination after Pj cycles, the algorithm gives the final
explanatory vector wj of size Pj for Yj . It is noted that wj may not have lagged components
of all M processes. For the computation of Fi→j we consider the following representation for the
explanatory vector wj :

wj = [wj,1,wj,2, . . . ,wj,M ], (4.5)

meaning that wj is decomposed to vectors of lags from each process Ym. For each m = 1, . . . ,M ,
wj,m is:

wj,m = {Ym,n−τ(1), . . . , Ym,n−τ(pm)}, (4.6)

and τ(l)(l = 1, . . . , pm), denote the pm selected lags variable Ym by mBTS. The length of wj is
Pj =

∑M
m=1 pm. With this notation, the full model for the target Yj becomes:

Yj,n =
M∑
m=1

cj,mwT
j,m + ej|wj,n

, (4.7)

where cj,m is a row vector of pm coefficients and the T sets wj,m in column form. ej|wj ,n represents
the prediction error resulting from the regression of the present of the target Yj,n on the time lagged
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variables selected by mBTS for each process. The entire procedure is then repeated by excluding
from the M processes the driver process Yi. As result, the restricted model can be written as:

Yj,n =
M∑

m=1,m 6=i
c̃j,mw

′T
j,m + e

j|w′
j,n
, (4.8)

where c̃j,m is a row vector of coefficients as cj,m and e
j|w′

j,n
is the prediction error resulting from

the regression of the present of the target Yj,n on the time lagged variables selected by mBTS for
each process except those belonging to the driver Yi. The two models are then fitted with OLS and
the two desired error variances λj|ijk, λj|jk are then obtained as E[e2j|wj,n

] and E[e2
j|w′

j,n

]

GC based on Partial Conditioning (DR-PCGC) [106]

Partial conditioning is an approach whereby GC is computed, for any assigned pair of driver and
target processes, including only a subset of the M observed processes in the VAR representation.
Specifically, to compute GC from the ith to the jth process in Y, a VAR model in the form of 4.1
is identified starting from a vector process which comprises Yi, Yj and the nd processes which are
deemed as most informative for the driver Yi. Such other processes, which are collected in the vector
Yc, are identified maximizing the Mutual Information (MuI) between Y −i,n and Y −c,n [106]. Given two
multivariate variables V and W the variance of a linear regression of V on W is given by [6, 118]:

Σ(V|W) = Σ(V)−Σ(V; W)Σ(W)−1Σ(V; W)T , (4.9)

where Σ(·),Σ(·; ·) denote respectively covariance matrix and cross-covariance matrix. Mutual infor-
mation between the two variables V and W is defined as the difference between two entropy terms
as follows:

I(V; W) = H(V)−H(V|W), (4.10)

where H(V) represents the Shannon’s entropy of V and the term H(V|W) represents the condi-
tional entropy of V given W. Under Gaussian assumption, for a multivariate random variable we
have the well-known expression [199]:

H(V) =
1

2
ln (|Σ(V)|) +

1

2
n ln (2πe) (4.11)

with n which represents the dimension of V. In the same way, the conditional entropy H(V|W)

for two jointly multivariate Gaussian variables can be expressed in terms of determinant of the
corresponding partial covariance matrix:

H(V|W) =
1

2
ln (Σ(V|W)) +

1

2
n ln 2πe (4.12)

To see this, we have:

H(V|W) = H(V,W)−H(W) =
1

2
ln (|Σ(V,W)|)− 1

2
ln (|Σ|) +

1

2
n ln 2πe (4.13)
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where:

Σ(V,W) =

(
Σ(V) Σ(V; W)

Σ(V; W)T Σ(W)

)
(4.14)

and with the block determinant identity [200]∣∣∣∣A B

C D

∣∣∣∣ = |D||A−BD−1C| (4.15)

it is possible to obtain:
|Σ(V,W)| = |Σ(W)| · |Σ(V|W)|. (4.16)

Substituting V and W as Y −i,n and Y −c,n mutual information becomes:

I(Y −i,n;Y −c,n) =
1

2
ln

( |Σ(Y −i,n)|
|Σ(Y −i,n|Y

−
c,n)|

)
. (4.17)

The number of conditioning processes is selected automatically finding the knee of the curve that
measures the MI values as a function of the number of processes in Yc (up toM−1). Then, a double
regression limited to the subset of identified processes is performed defining the full and restricted
regression models:

Yj,n =

nd+2∑
m=1

p∑
k=1

cmkYm,n−k + ej|ijc,n, (4.18)

Yj,n =

nd+2∑
m=1,m 6=i

p∑
k=1

c̃mkYm,n−k + ej|jc,n. (4.19)

After the identification of these models through the OLS estimator, the variance of the residuals
λj|ijc = E[e2j|ijc,n] and λj|jc = E[e2j|jc,n] are estimated and used to compute the GC measure

FCi→j = ln
λj|jc

λj|ijc
. (4.20)

GC based on LASSO regression (DR-LASSO)[44]

Let us now consider a realization of the process Y involving N consecutive time steps, collected
in the N ×M data matrix [y1; · · · ; yN ], where the delimiter ";" stands for row separation, so that
the ith row is a realization of Yi, i.e., yi = [y1,i...yM,i], i = 1, ..., N , and the jth column is the time
series collecting all realizations of Yj , i.e., [yj,1...yj,N ]T , j = 1, ...,M , . The Ordinary Least Square
(OLS) identification finds an optimal solution for the problem (4.1) by solving the following linear
quadratic problem:

Â = argminA||y− ypA||22, (4.21)

where y = [yp+1; · · · ; yN ] is the (N − p)× M matrix of the predicted values, yp = [ypp+1; · · · ; ypN ]

is the (N − p) × Mp matrix of the regressors and A = [A1; · · · ; Ap] is the Mp × M coefficient
matrix. The problem has a solution in a closed form Â = ([yp]Typ)−1[yp]Ty for which the residual
sum of squares is minimized (RSS) [104, 112]. With sparse regression analysis, it is possible to
solve the full regression problem stated in Equation (4.1) through the Least Absolute Shrinkage and
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Selection Operator (LASSO) which introduces a constraint in the linear quadratic problem (4.21)
[108]:

Â = argminA(||y− ypA||22 + λ||A||1). (4.22)

In Equation (4.22), the additional term based on the l1 norm forces a sparse a solution such
that some of the VAR coefficients are shrunk to zero, with the shrinkage parameter λ controlling
the trade-off between the number of non-zero coefficients selected in the matrix Â and the residual
sum of squares (RSS). Even if the problem (4.22) admits a solution, it will not be in a closed form
since the l1 norm is not differentiable at zero [44]. The optimal value of λ for the solution of the
problem (4.22) requires a cross-validation approach for its determination (the procedure here used
it is fully described in [8]). The full model 4.1 is identified with the aforementioned procedure and
the variance of the residuals λj|ijk is obtained as the jth element of the error covariance matrix
Σ(j, j). The restricted model formulated as in 4.3 can be identified by solving the following linear
quadratic problem:

Âr = argminAr
(||yr − yprAr||22 + λ||Ar||1). (4.23)

in which Ar represents the (N − p) × (M − 1)p coefficient matrix with yr and ypr representing the
matrices of predicted values and the matrix of regressors for which the driver Yi is not considered. As
discussed in [39] the optimal value for λ used for the identification of the full model is used also for
the restricted model. After solving the problem 4.23 the variance of the residuals λj|jk = E[e2j|jk,n]

is obtained from the residuals covariance matrix of the restricted model as ith diagonal element [7].

GC based on Artificial Neural Networks (DR-ANN) [44]

Let consider a generic ANN described by the function y = f(w; x) which takes as input a vector
x ∈ <d and outputs a scalar value y ∈ <. In the following, we consider networks with a single
output for the sake of simplicity, but all the treatments can be extended to the case of multiple
outputs. The output of the network depends on a set of Q adaptable parameters (i.e., the weights
connecting the layers), that are collected in a single vector w ∈ <Q to be optimized during the
training process.

Given a training data set of N input/output pairs S = {xi, yi}, the learning task aims at solving
the following regularized optimization problem:

ŵ = argminw
1

N

N∑
i=1

l(yi, f(w; xi)) + λr(w), (4.24)

where l(·, ·) is a convex function ∈ C1, i.e, continuously differentiable with respect to w, while r(·)
is a convex regularization term with a regularization parameter λ ∈ <+. A typical loss function
used for the linear regression problem is the squared error of the regression analysis. Inspired by the
LASSO algorithm, a way to enforce sparsity in the vector of weights is to penalize the cumulative
absolute magnitude of the weights by using the l1 norm as regularization term:

r(w) = ||w||1 =

Q∑
k=1

|wk|. (4.25)

Then, a possible way to solve the problem (4.24) is to use Stochastic Gradient Descent (SGD) that
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exploits a small randomly-selected subset of the training samples to approximate the gradient of
the objective function. The number of training samples used for this approximation is the batch
size. In the present work, we adopt a full batch approach in which all samples are considered, so
that SGD simply translates into gradient descent. For each training sample i, the network weights
are updated following the procedure fully described in [20, 21].

For each training sample i, the network weights are updated as follows:

wj+1 = wj + ηj
∂

∂w

(
l(yi, f(w; xi))−

λ

N

Q∑
k=1

|wk|
)
, (4.26)

where j is the iteration counter and ηj is the learning rate at each iteration. The difficulty with l1
regularization is that the last term on the right-hand side in (4.26) is not differentiable when the
weight is zero. To solve this issue, following the procedure introduced in [21] l1 regularization with
cumulative penalty is applied directly on the weights of the network during the training process.
Generalizing the whole procedure to a network with multiple outputs, in the linear signal processing
framework the optimization problem (4.24) can be solved by using a linear function f(·; ·) linking
the input layer with the output layer. The structure of the neural network comprises one input
layer with Mp neurons representing the past history of the considered stochastic process truncated
at p lags (Yp

n). The output layer is composed of M neurons representing the present state of the
whole system (Yn). The Mp×M matrix W contains the weights of the networks that describe the
relationships existent between the output and the input layer. Considering all the (N − p) training
samples, the loss function l(·, ·) becomes:

l(y,ypW) = ||y − ypW||22, (4.27)

which highlights that the weight W corresponds to the matrix A containing the parameters of the
VAR model (4.1). Thus, the described ANN is completely equivalent to a VAR model, except for
the fact that the training process induces sparsity into the weight matrix W.

The determination of the regularization parameter λ is a key element of the estimation process,
as its selection strongly influences the performance of resulting regression. Following the procedure
described in [164], with a hold out approach, we independently draw 90% of the samples available
(rows of y and yp) as the training set and kept the remaining 10% for testing. Training and test sets
were then normalized and, for each assigned λ, the number of non-zero weights was counted in the
matrix Ŵ estimated on the training set, and the RSS was computed on the test set as well. This
procedure was iterated for each λ, and the optimal λ was taken as the value minimizing the ratio
between RSS and the number of non-zero weights [8, 55, 164].The full model (4.1) is identified with
ANNs and the variance of the residuals λj|ijk is obtained as the jth element of the error covariance
matrix Σ(j, j). For the restricted model, by following the procedure of LASSO regression, it is
possible to define and train a new ANN which structure, without the driver process Yi, identifies
the problem 4.23. For each couple (i, j) an ANN is trained, with Learning rate equal to 10−3 and
number of iterations for the gradient descent equal to 1000 that were also used for the full-model
as discussed in the previous section. After the identification of the restricted model, the variance of
the residuals λj|jk E[e2j|jk,n] is obtained from the residuals covariance matrix as ith diagonal element.
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4.2.3 GC based on State Space models

The VAR model (4.1) can be represented equivalently as an SS model which relates the observed
process Yn to an unobserved state process Zn through the equations [102]

Zn+1 = AZn + KEn (4.28)

Yn = CZn + En, (4.29)

where the innovations En = Yn − E[Yn|Y −n ] are equivalent to the innovations Un in (4.1) and thus
have covariance matrix Φ ≡ E[EnE

T
n ] = Σ. This representation, typically denoted as "innovation

form" SS model (ISS) [102], also evidences the Kalman Gain matrix K, the state matrix A and the
observation matrix C, which can all be computed from the original VAR parameters in (4.1). The
advantage of this representation is that it allows to form "submodels" which exclude one or more
scalar processes from the observation equation (4.28) leaving the state equation (4.29) unaltered.
In particular, the submodel excluding the driver process Yi has observation equation:

Yjk,n = C(jk)Zn + Ejk,n, (4.30)

where the subscript (jk) denotes the selection of the rows with indices j and k in a matrix. As
demonstrated in [119], the submodel (4.28-4.30) is not in ISS form, but can be converted into ISS
by solving a Discrete Algebric Riccati equation (DARE). The prediction error variances needed for
the determination of the GC measures can be computed from the identification of the full model
(4.1) through OLS regression (SS-GC) [17, 102], LASSO regression by solving the problem (4.22)
(SS-LASSO) [8] or by using ANN through the solution of the problem (4.27) (SS-ANNs). Given
that Ej|ijk,n = Uj,n, the error variance of the full regression can be obtained as the jth diagonal
element of the error covariance matrix λj|ijk = Σ(j, j). On the other hand, from the parameters of
the full model (A1, . . . ,Ap,Σ) the partial variance λj|jk can be retrieved by exploiting the theory
of State-Space (SS) models by extracting the first diagonal element of the covariance matrix of the
innovations Ejk,n.

GC-mBTS based on SS models (SS-mBTS)

For the identification of a State-Space model it is necessary retrieve the AR coefficients matrix
(A) and the corresponding residuals covariance matrix (Σ) as defined in (4.1). In this case the,
M ×Mp matrix of coefficients is defined as matrix of zeros and it is iteratively filled with those
coefficients estimated from the mBTS algorithm by solving the problem (4.7) for each couple (i, j).
In this way we obtain a sparse matrix of coefficients in which the elements different from zero express
the lagged variables which are useful for the prediction of the present state of the target Yj,n. The
residuals are simply obtained as product between the matrix of lagged variables (Yn−k) and the
resulting sparse matrix of AR coefficients. Then the SS representation of the sub-model as reported
in (4.28)-(4.29) is applied for the computation of the error variance λj|jk.
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Partial Conditioning GC based on SS models (SS-PCGC)

Starting from Yc and from the same nd processes selected for the computation of PCGC, the
idea here is to evaluate FCi→j with an SS approach. In this case the full model is described by (4.18)
and the full error variance is λj|ijc = E[e2j|ijc,n]. The error variance of the restricted regression is
obtained considering an SS model with state and observation equations as follows:

Zijc,n+1 = AZijc,n + KEijc,n (4.31)

Yjc,n = C(jc)Zijc,n + Ejc,n (4.32)

Also in this case, by solving a DARE equation is it possible to bring the model (4.31)-(4.32) into
an ISS form, so that the covariance matrix of the innovations Ejc,n includes the desired λj|jc as the
first diagonal element.

4.2.4 Testing the significance of GC values

Since the multivariate GC is a measure of the information transferred directly (i.e., not through
indirect paths) from the driver to the target process, the assessment of its statistical significance
is useful establish the existence of a directed link between the two network nodes generating the
driver and target dynamics. In this work, the significance of DR and SS-GC, DR-mBTS, DR and
SS-PCGC was tested generating surrogate driver and target series which share the same power
spectrum of the original time series but are otherwise uncorrelated [120]. Specifically, 100 sets of
surrogate time series were generated, the GC estimated for each pair of processes was compared
with a threshold set at the 95th percentile of its distribution on the surrogates, and was deemed at
statistically significant if it exceeded the threshold. For what concern DR and SS-LASSO, DR and
SS-ANN and SS-mBTS was assessed by exploiting the sparseness of the estimated AR matrix for
the full model as already explained in [8].

4.3 Simulation experiments

This section reports two different simulation studies designed to evaluate the performances of
the different methodologies for the GC estimation with the proposed extensions in the context of SS
modelling. In the first simulation study we study the accuracy of GC estimators in a VAR process
specifically configured to introduce redundancy between different processes [106]. In the second
simulation study the performances of the ten different methodologies analyzed were tested on a
four-dimensional VAR process previously used in different studies for the comparison of different
techniques for inferring directed interactions [107, 201].

4.3.1 Design of simulation study I

Simulated multivariate time series (M=16) were generated as realizations of a VAR(3) fed by
Gaussian noise with variance equal to 0.1. The simulated networks have a tree structure as depicted
in Figure 4.1 and previously used in another study [106]. In this network non-zero AR parameters
were set assigning randomly the lag in the range (1-3) and the coefficient value in the interval [0.6,
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Figure 4.1: Graphical representation of the directed rooted tree of 16 nodes

0.7]. Under these constraints, 50 realization of the VAR(3) process were generated with different
values of the parameter K in the range (1, 1.5, 2, 3, 5, 10, 20), so that the length of the simulated
time series was N = 48 when K=1 and N = 960 when K=30. For each value of K, GC between
each pair of processes was computed by all the 10 methodologies. Then, a measure of bias for the
GC estimates obtained were assessed for the connections with non-zero values as explained in the
following section.

4.3.2 Design of simulation study II

Simulated multivariate time series (M=4) were generated as realizations of the following VAR(5)
process reported in Figure 4.2 [107]:

Y1,n = 0.8Y1,n−1 + 0.65Y2,n−4 + U1,n (4.33a)

Y2,n = 0.6Y2,n−1 + 0.6Y4,n−5 + U2,n (4.33b)

Y3,n = 0.5Y3,n−3 − 0.6Y1,n−1 + 0.4Y2,n−4 + U3,n (4.33c)

Y4,n = 1.2Y4,n−1 − 0.7Y4,n−2 + U4,n (4.33d)

In Equations (4.33) U = [U1, . . . , U4] is a vector of zero-mean uncorrelated white noises with unit
variance (i.e. with covariance Σ ≡ I). With these settings, 100 realizations of the processes were
generated under different values of K parameter which was varied in the range (1, 1.5, 2, 3, 5, 10,
20) where K=1 corresponded to N=20 and K=20 to N=400. For each realization and for each value
of K, GC was computed with all the methodologies introduced.
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Figure 4.2: Graphical representation of the four-variate VAR (Vector Autoregressive) process according
to the Equations 4.33. Networks nodes represent the four simulated processes which arrows depicting the
imposed causal relationships. Self-loops depict influences from the past to the present sample of a single
process.

4.3.3 Performance Evaluation

The performance of all the methodologies explored were assessed both in terms of the accuracy
in estimating the strength of the GC links through a measure of bias. For each pair of network
nodes represented by the processes Yj and Yi, the theoretical GC value (Fi→j) was compared with
the corresponding estimated value F̂i→j , using the Mean Absolute Percentage Error (MAPE) [59]
if the theoretical link is non-null:

MAPE =

Nc∑
n=1

∣∣∣∣Fi→j − F̂i→jFi→j

∣∣∣∣ · 100 (4.34)

where Nc represents the total number of connections different from zero in the theoretical network
structure. Finally, the distribution of MAPE were assessed across all the realizations and presented
separately for each of the ten methodologies analyzed. The ability to detect the absence or presence
of a link in a network based on the statistical significance of the GC was tested comparing the two
adjacency matrices representative of the estimated and theoretical network structures. As explained
in the previous Sections, this can be seen as a binary classification task where the existence (class
1) or absence (class 0) of each estimated connection is assessed using surrogate data or looking
for zero/non-zero estimated links and compared with the underlying structure. Performances were
assessed through the computation of false negative rate (FNR), measuring the number of non-null
links classified as null; false positive rate (FPR), measuring the number of null links classified as
non-nulla and Area Under Curve (AUC) which represents a trade-off between FNR and FPR [8, 48].
For each realization one single value of each parameter was computed and a distribution was then
obtained for each methodologies analyzed (50 values for the simulation study I and 100 for the
simulation study II). As additional performance parameter, the total computation time required for
completing the two simulation studies was calculated using an implementation of the methodologies
in MATLAB environment on a PC with a four cores Intel i7 (CPU clock speed 3.40 GHz), 8 GB
DDR4 RAM.
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4.3.4 Statistical Analysis

The methodologies were firstly divided in two different groups of five on the basis of whether or
not are embedded in the SS framework. For each simulation study, were performed four different
repeated measures two-way ANOVA tests, one for each performance parameters (MAPE, FNR,
FPR, AUC) to evaluate the effects of different values of K (varied in the range [1, 1.5, 2, 3, 5, 10,
20]) and different methodologies for estimating GC, on performance parameters (based on state-
space (SS-) models or on double regression (DR-)). In order to test the differences between sub-levels
of ANOVA factors were then performed Tukey’s post-hoc tests.

4.4 Results

4.4.1 Results of simulation study I

The results of the two-way repeated measures ANOVAs, expressed in terms of F-values and
computed separately on all the performance parameters considering K and TYPE (the method
used) as main factors, are reported in Table 4.1 for double regression strategy, and Table 4.2 for
state-space representation.

The two-ways ANOVAs reveal a strong statistical influence of the main factors K and TYPE
and of their interaction on all the performance parameters analyzed. It is important to note that
the level K=1 was not considered for the SS approach because for the computation based on OLS
(SS-GC) DARE equation did not converge.

Figure 4.3 reports the distribution of the MAPE according to the interaction between the factor
K and TYPE for both strategies based on double regression (panel a) and based on SS models
(panel b). The comparison between the two approach of GC computation (DR and SS) shows
very different trends. It is immediately evident how the use of SS models increases drastically the
accuracy in the estimation of the link strength. In fact, irrespective of identification method chosen,
the use of SS approach reduces the bias in any case even when the value of K ratio is very close
to 1. In all cases the performances in estimating the link strength improve with the increase of the
number of data samples available (K value far from 1).

Figure 4.4 reports the distribution of the parameters FNR, FPR and AUC according to the
interaction K × TY PE. The analysis of the rate of false negatives (Figure 4.4 a-b) shows that the
number of links classified as negatives increases with the decreasing of amount of data available (K
decreasing from 30 to 1) especially for the GC computation through OLS identification (DR-GC and
SS-GC). Average value of FNR for LASSO and ANNs seems to remain stable independently from
the approach used (double regression or State space model). The analysis of false positives (panels

Factors DoF MAPE FNR FPR AUC
TYPE (4, 196) 368.7*** 1265.4*** 3860.9*** 1811***
K (6, 294) 673.4*** 1195.2*** 180.15*** 1174.5***
TYPE×K (24, 1176) 275.6*** 638.41*** 78.63*** 260.4***

Table 4.1: F-values and corresponding degrees of freedom (DoF) of the two-way repeated measures ANOVA
investigating the effects of the factors K (ratio between data samples and number of model parameters) and
TY PE (method used, i.e. DR-GC, DR-LASSO, DR-mBTS, DR-PCGC, DR-ANN) on the performance
parameters of GC estimation (MAPE) and of network reconstruction (FNR, FPR, AUC).***, p < 10−5.
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Figure 4.3: Distribution of MAPE parameter computed for the non-null links for the five methodologies
based on double regression approach (panel a) and for those based on SS models (panel b). In both cases,
was considered the interaction factor K × TY PE expressed as mean value and 95% confidence interval of
the parameter computed across 50 realization of simulation study I.

c-d) shows very different trends with average values of FPR that remain quite stable if GC value is
computed through double regression strategy (panel c) or with a state space representation of VAR
model (panel d). This is not the case for ANN that show very high value of FPR, independently
from K ratio, when used in combination with the double regression strategy. When K is equal to 1,
while LASSO shows a reduction of 10% when SS representation is used, mBTS shows an opposite
trends with FPR value around 20% with no statistical differences between LASSO and mBTS in
the SS case as highlighted by post-hoc test (panel d).

The overall performances are displayed in the panels e and f with the average trends of AUC
parameter. For all the cases analyzed, the use of SS representation guarantees an improvement in
the detection of the true causality structure with the ANN that shows the lowest value of AUC
even when the amount of data samples are not scarce (K=20 panel e) when combined with DR
strategy. When SS representation is used the situation becomes opposite with ANNs that shows
the highest values of AUC especially when the number samples is very scarce (K=1). The results
highlights that especially when the number of data samples decreases the classical approach based on
double regression and OLS identification performs a random reconstruction of the network structure
(AUC ∼ 50%). The situation deteriorates passing to the SS representation in which it is not possible
the computation of GC due to the non-convergence of DARE equation. However in a condition far
from the above mentioned one, all the methodologies show comparable performance.

4.4.2 Result of simulation study II

The results of the two-way repeated measures ANOVAs, expressed in terms of F-values and
computed separately on all the performance parameters considering K and TYPE (the method

Factors DoF MAPE FNR FPR AUC
TYPE (4, 196) 73.34*** 333.4*** 595.4*** 3011.6***
K (6, 294) 360.8*** 349.6*** 195.1*** 3772.2***
TYPE×K (24, 1176) 249.4*** 292.5*** 155.7*** 2314.6***

Table 4.2: F-values and corresponding degrees of freedom (DoF) of the two-way repeated measures ANOVA
investigating the effects of the factors K (ratio between data samples and number of model parameters)
and TY PE (method used, i.e. SS-GC, SS-LASSO, SS-mBTS, SS-PCGC, SS-ANN) on the performance
parameters of GC estimation (MAPE) and of network reconstruction (FNR, FPR, AUC).***, p < 10−5.
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Figure 4.4: Distribution of percentage values for FNR, FPR and AUC parameters computed for the five
methodologies based on double regression approach (panels a-c-e) and for the same but those based on SS
models (panels b-d-f). In both cases, was considered the interaction factor K × TY PE expressed as mean
value and 95% confidence interval of the parameter computed across 50 realization of simulation study I.

used) as main factors, are reported in Table 4.3 for double regression approach, and Table 4.4 for
state-space representation. The two-ways ANOVAs reveal a strong statistical influence of the main
factors K and TYPE and of their interaction on all the performance parameters analyzed. It is
important to note that the level K=1 also in this case was not considered for the SS approach
because for the computation based on OLS (SS-GC) DARE equation did non converge.

Figure 4.5 reports the distribution of the MAPE according to the interaction between the factor
K and TYPE for both approaches based on double regression (panel a) and based on SS models
(panel b). The analysis shows very different trends in the case of using DR or SS strategy: In
the case of partial conditioning criterion (PCGC) there is a strong reduction of MAPE and the
associated variance if SS is used independently from the number of data samples available. This is
also true when OLS identification method is used (green trends). Also for mBTS only when K is
less from 10 there is a strong reduction of MAPE when state-space strategy is used. The trends for
ANNs remain similar if the identification problem is solved with a double regression (DR-ANN) or
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Factors DoF MAPE FNR FPR AUC
TYPE (4, 396) 108.8*** 629.4*** 475.6*** 322.6***
K (6, 594) 216.9*** 681.9*** 35.8*** 686.7***
TYPE×K (24, 2376) 24.8*** 119.9*** 72.8*** 35.7***

Table 4.3: F-values and corresponding degrees of freedom (DoF) of the two-way repeated measures ANOVA
investigating the effects of the factors K (ratio between data samples and number of model parameters) and
TY PE (method used, i.e. DR-GC, DR-LASSO, DR-mBTS, DR-PCGC, DR-ANN) on the performance
parameters of GC estimation (MAPE) and of network reconstruction (FNR, FPR, AUC).***, p < 10−5.

Figure 4.5: Distribution of MAPE parameter computed for the non-null links for the five methodologies
based on double regression approach (panel a) and for those based on SS models (panel b). In both cases,
was considered the interaction factor K × TY PE expressed as mean value and 95% confidence interval of
the parameter computed across 100 realization of simulation study II.

with a single one (SS-ANN) followed by SS identification.
Figure 4.6 reports the distribution of the parameters FNR, FPR and AUC according to the

interaction K × TY PE. The analysis of Figure 4.6 a-b shows that the number of links classified
as negatives increases with the decreasing of amount of data available (K decreasing from 30 to
1) especially for GC computation through OLS solution (DR-GC and SS-GC). The trends can be
divided in two different groups: the first one which includes partial conditioning (PCGC), OLS
solution (GC) and Artificial neural networks (ANN); the second one including mBTS and LASSO
regression. In the latter case, the value of FNR seems to be unaffected from the strategy used
(double regression or state space representation). In the first case instead, there is a reduction of
∼ 20% when K is equal to 1 for ANN and PCGC passing from double regression to the approach
composed of full regression and state space models. Even if less evident, in the same condition of
data samples available (K=1) there is a reduction in FNR of SS-mBTS respect to DR-mBTS.

The analysis of false positives (panels c-d) shows opposite trends compared to that already
described for FNR. In fact, independently from the data sample available FPR is very close to zero

Factors DoF MAPE FNR FPR AUC
TYPE (4, 196) 624.1*** 484.5*** 480.5*** 246.9***
K (6, 294) 349.1*** 396.9*** 132.6*** 1454.2***
TYPE×K (24, 1176) 77.4*** 179.5*** 93.4*** 262.9***

Table 4.4: F-values and corresponding degrees of freedom (DoF) of the two-way repeated measures ANOVA
investigating the effects of the factors K (ratio between data samples and number of model parameters)
and TY PE (method used, i.e. SS-GC, SS-LASSO, SS-mBTS, SS-PCGC, SS-ANN) on the performance
parameters of GC estimation (MAPE) and of network reconstruction (FNR, FPR, AUC).***, p < 10−5.
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Figure 4.6: Distribution of percentage values for FNR, FPR and AUC parameters computed for the five
methodologies based on double regression approach (panels a-c-e) and for the same but those based on SS
models (panels b-d-f). In both cases, was considered the interaction factor K × TY PE expressed as mean
value and 95% confidence interval of the parameter computed across 50 realization of simulation study II.

for GC based on OLS (DR-GC, SS-GC) and for GC based on partial conditioning (DR-PCGC,
SS-PCGC). In the opposite direction there is the group formed by LASSO and mBTS which show
very high values of FPR especially when K value is less than 10, with LASSO showing greater
values of FPR respect to mBTS (panel c, DR-LASSO and DR-mBTS). With the use of state-space
instead, the two methods do not show any statistical difference when K ≤ 3. A particular case
is that depicted by ANNs which, when used to solve double regression, shows an high unstable
trend with FPR value increasing with the number of data samples. However, by introducing the SS
representation, FPR assumes a stable trend very close to zero (panel d - light green line).

The overall performances are displayed in the panels e and f with the average trends of AUC
parameter. For all the cases analyzed, the use of SS strategy guarantees an improvement in the
detection of the true causality structure with the ANNs that if used to solve a double regression
problem show very low values of AUC if compared with all the other approaches. In a condition
of data paucity (K=1) mBTS shows the best performance in reconstructing the network structure
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when double regression approach is exploited. On the other hand there are no statistically significant
differences between LASSO and mBTS when the SS representation is introduced as highlighted in
the panel f (violet and orange lines). For conditions where the number of data is large enough
(K ≥ 5), all the methods can be used and the combination with SS models guarantee the highest
values of AUC parameter for OLS solution (SS-GC), LASSO regression (SS-LASSO) and partial
conditioning (SS-PCGC).

Table 4.5 reports the total computation time required for the computation of the two simulation
studies with the five different methodologies implemented for the solution of a double regression
analysis or for a single one combined with the state-space models. The analysis of the Table 4.5
highlights a huge heterogeneity in the computation time required for performing the simulation
studies. Except the methods that are based on a "training" phase (i.e those based on LASSO and
ANN), using state-space modeling requires a considerable amount of additional computation time
that can be three order of magnitude greater that the solution of a double regression problem. The
method based on OLS is the least time consuming if combined with the double regression strategy
and represents the most time consuming if combined with State space modelling. In the case of
LASSO the difference between using a DR or SS strategy is not so different with computation time
required that is quite stable and in the same order of magnitude. This is not the case for ANN
which is faster when used in combination with SS strategy in respect to the DR.

4.5 Discussion

In this study, state-space strategy for the computation of GC with different methodologies avail-
able in the literature has been introduced. These measures have been extensively tested and their
robustness was investigated on artificial data from multivariate systems with different distinguish
characteristics such as density of connected node, links strength and the presence or not of the
"curse of dimensionality" problem. In the first simulation study was used a dynamical system with
directed tree structure in which redundant information is present [106]. In the second one, was used
a smaller system highly connected, with a predefined causality structure previously used in different
studies [107, 184].

From the results here obtained it is clear how the use of state-space representation of a VAR

Methods Computation Time
DR−GC 231
DR− LASSO 1.6 · 104

DR−mBTS 5.3 · 103

DR−PCGC 480
DR−ANN 2.6 · 105

SS−GC 2.6 · 104

SS− LASSO 1.9 · 104

SS−mBTS 5.4 · 103

SS−PCGC 9.9 · 103

SS−ANN 9.2 · 103

Table 4.5: Total computation time (in seconds) required for each method to complete simulation studies
performed
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model can overcome the well known problem related with the solution of a double regression problem
in the Granger causality estimation [139, 151]. In particular the results here obtained confirmed
those obtained in different works [17, 102, 103, 139], for which it has been pointed out how it
could be necessary to perform the identification procedure of the restricted model with a VAR
ideally of infinite order. As a result, both GC estimation in time and frequency domain exhibits
a strong bias effect. Our results, document that it is possible to extend the SS representation for
different GC methodologies and how this has a strong positive effect on the entire estimation process
independently from the method under analysis.

For what concerns the "curse of dimensionality" effects, in the literature is argued how the ratio
between the number of data samples available and the regression coefficients to be estimated should
be at least equal to 10 in order to overcome "curse of dimensionality" problems [9, 24, 48]. If this
condition is not fulfilled, it has been experienced a severe decrease in accuracy due to the well known
problem of multi-collinearity between regressors that, in the context of GC analysis, are represented
by the lagged variables of the entire dynamical system. The results here obtained show how the
performance in estimating Granger causality, in terms of MAPE and AUC parameters, worsen with
the decrease of data samples available for the estimation process and even in another context, we
can speculate about the possibility that these results could be driven by the multi-collinearity effects
during the VAR model identification necessary for the GC estimation [72, 127]. In this conditions of
strong data paucity, methodologies based on variable selection techniques or based on the possibility
to make a sub-selection of the legged variables (LASSO regression, ANNs, mBTS and PC) seem to
perform better.

LASSO regression and mBTS show the best performance in reconstructing the network structure
if compared with all the methodologies tested. This is especially true in conditions of strong data
paucity (K < 3) where, for LASSO regression multi-collinearity is reduced through variable selection
and for mBTS is reduced by selection only specific lagged variables that brings the value of K to
increase. A completely different issue is the error in estimating the link strength measured by
MAPE parameter. In fact, for LASSO and ANN always appears to be very high and this behavior
could be related with the shrinkage that controls the sparsity of the network with the side effect of
a greater bias introduced in the estimation process [46, 68, 114].

A remark on the use of Artificial Neural Networks for Granger causality estimation should be
made. The results of the two simulation studies highlighted the impossibility to use in an effective
way this methodology if combined with a double regression strategy. However, our implementation
in a combined strategy with a state space model, show outstanding performance if compared to
those obtained with the classical approach based on double regression and OLS estimator. To the
best of our knowledge, in the current literature there are no works which explore this aspect and
for this reason it is only possible to hypothesize that this behavior could be related with a different
training process experienced by the neural network when the information about the past of the
driver is removed from the system.

Lastly, we analyzed the computation time required to complete all the simulation studies for
each different GC estimation method combined with the strategy of double regression and with
that based on state-space modelling. It is possible to see that the strategy including the double
regression requires less time if compared with the counterpart based on SS models, except for the
case of ANNs which requires more time in the DR strategy. This is due to the fact that in DR-ANN
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case it is necessary to train M + 1 neural networks, one for the full model and one for each single
process in the dynamical system considered. In the SS case, the least time consuming methods
is mBTS which as here implemented creates as an outcome a sparse AR, like that obtained using
LASSO regression, that does not requires any statistical assessment since the sparsity of estimated
GC network is representative of the sparseness of estimated AR matrix. On the other hand, the
most time consuming method is that based on OLS mainly because during the assessment of the
estimated network through the surrogate analysis, it is necessary to identify one hundred different
VAR-SS models which is a time consuming process as already pointed out in our recent works [8, 24].

4.6 Conclusion

This work documented that the combined use of any methods for estimating Granger causality,
with SS strategy allows a very high accurate reconstruction of the causality network. In particular,
we showed how it is possible overcoming the problems related with the "curse of dimensionality"
by using methodologies based on conditioning or variables selection. The results clearly showed
that an high value of accuracy of the estimation process, even in conditions of strong data paucity,
has to be supported by high computational resources. Moreover, the variability resulting from the
analysis of dynamical systems, with very different characteristics, suggests that could be necessary
to perform the analysis with several methods with the aim to isolate the "real" interactions from
those due to the method used thus leading to erroneous conclusions and misinterpretation.
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Conclusion

The research activity here described was carried out with the primary purpose of introducing
and testing different methodologies for the study of "information processing" in multiple interacting
dynamical systems and giving new insights in the study of complex dynamical systems across
multiple domains.

In Chapter 1 of this thesis work I evaluated the usefulness of penalized regression techniques for
the identification of linear vector autoregressive models. The simulation study performed showed
how LASSO and Elastic-Net can accomplish the identification procedure with very high accuracy
especially in conditions of strong data paucity. Furthermore, the application on real EEG data
evidenced consistent patterns strictly related with the motor imagery physiology, with different
autoregressive parameters that could be used for a classification task in order to distinguish between
rest and task conditions. These findings suggested that when classical OLS estimator cannot be
used LASSO might represents the most suitable method even with limited computational power
available. Since all the linear causality estimators are based on the identification of VAR models,
penalized regression techniques could be useful for the computation of coupling measures both in
time and frequency domains.

In Chapter 2 LASSO regression was tested for the computation of different parametric mea-
sures of information transfer in networked coupled stochastic processes. When compared with the
traditional OLS estimator, LASSO showed highly accuracy both in the estimation of information
transferred between coupled processes and in retrieving the topological structure of the underlying
network. On the other hand, in favourable conditions of data size the results are fully overlapped
with classical OLS confirming the appropriateness of embedding LASSO into the existent framework
for the analysis of information dynamics. In the network physiology context, the main findings re-
gard the detection of significant information transfer within the brain-body sub networks and reflect
well-defined physiological mechanisms, such as the respiratory and heart rate effects on the pulse
arrival time.

The results obtained in Chapter 3 documented that artificial neural networks ca be used in com-
bination with state-space models for the identification of linear parametric models, allowing compu-
tationally reliable and accurate estimation of Granger causality in its conditional and unconditional
forms. In particular, it has been shown how this combined approach leads to overcome the decrease
in accuracy reported for traditional least squares when it needs to be performed in unfavourable
conditions of data availability. Artificial neural networks have been demonstrated very useful to
assess the statistical significance of Granger causality estimates, favouring the reconstruction of
the network topology underlying the observed dataset without the need to employ time-consuming
asymptotic or empirical procedures for significance assessment. The implementation of the proposed
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approach for the study of physiological networks and coupled electronic oscillators documented its
usefulness in practical applications, supported by the observation of interactions patterns similar to
those found in previous studies where the datasets were first studied in terms of bivariate Granger
causality. All the findings suggested that Artificial neural networks are able to detect the strongest
interactions providing output patterns of information dynamics which are more straightforward and
easy to interpret than those obtained with OLS.

In the last Chapter I performed an extensive comparative analysis between ten different methods
for GC estimation, some of which firstly developed in this thesis work. The results of the simulations
studies performed, documented that the combined use of any of the methods for Granger causality
estimation with state-space strategy allows a very high accurate estimation of the link strength
and provides an accurate reconstruction of the causality network. The variability of the obtained
results for different coupled systems, suggested that when dealing with a Granger causality estima-
tion problem it might be useful to compare the networks obtained with different methodologies to
improve the interpretation of the results.

In conclusion, in this thesis work I tested different methodologies derived from convex opti-
mization theory, for the identification of linear models that can be used for the analysis of the
information flow among different stochastic processes of a complex system. Furthermore, I demon-
strated how these new tools can be used for the dissection of the information processed in a network
of multiple interacting dynamical systems. The tools here introduced have also been tested in
very heterogeneous applicative contexts, such as the new field of Network Physiology, the study
of brain connectivity from scalp electroencephalographic signals and, lastly, the study of the infor-
mation transferred between different non-linear chaotic oscillators, as a tool to study the recently
introduced concept of remote synchronization.

Next steps of this research may include the non-linear extension of penalized regression tech-
niques and Granger causality based on artificial neural networks in order to have new tools for the
study of complex non-linear dynamics in different real word systems. Furthermore, given the absence
of an information decomposition tool in the hypothesis of non-stationarity of time series analysed,
adaptive penalized regression techniques may be used for the study of time-varying information
processing.
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