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SUMMARY
Cortical activity related to erroneous behavior in discrimination or decision-making tasks is rarely analyzed,
yet it can help clarify which computations are essential during a specific task. Here, we use a hidden Markov
model (HMM) to perform a trial-by-trial analysis of the ensemble activity of dorsolateral prefrontal cortex
(PFdl) neurons of rhesus monkeys performing a distance discrimination task. By segmenting the neural ac-
tivity into sequences of metastable states, HMM allows us to uncover modulations of the neural dynamics
related to internal computations. We find that metastable dynamics slow down during error trials, while state
transitions at a pivotal point during the trial take longer in difficult correct trials. Both these phenomena occur
during the decision interval, with errors occurring in both easy and difficult trials. Our results provide further
support for the emerging role of metastable cortical dynamics in mediating complex cognitive functions and
behavior.
INTRODUCTION

The role of the prefrontal cortex in decision making has been

demonstrated using a variety of tasks (Kim and Shadlen, 1999;

Hoshi et al., 2000; Freedman et al., 2001; Tanji and Hoshi,

2001; Genovesio et al., 2012; Maoz et al., 2013; Marcos and

Genovesio, 2016; Rich et al., 2018), including tasks with deci-

sions in the temporal (Genovesio et al., 2009) and spatial (Geno-

vesio et al., 2011) domains. In particular, we have shown previ-

ously that prefrontal neurons encode the decision about which

stimulus was presented farther from the center in a distance

discrimination task (Genovesio et al., 2011), as well as the trans-

formation of goals into action (Marcos et al., 2019). Prefrontal

neurons also code for the duration and distance magnitude to

be maintained in working memory, using domain-specific repre-

sentations of distance and duration in dorsolateral prefrontal

cortex (PFdl) neurons (Marcos et al., 2017). However, in the

spatial discrimination task, the effect of trial difficulty has not

been addressed, and previous analyses could not unmaskwhich

type of failure could account for the response errors. It is

possible that such information could be found in the collective

activity of ensembles of neurons. For example, ensembles of

monkey premotor neurons transition more quickly to a new state

in easier trials during a vibro-tactile discrimination task (Ponce-

Alvarez et al., 2012). One might also suspect that ensemble

activity is related to behavioral performance and not just trial
This is an open access article under the CC BY-N
difficulty. Little is known, however, about the substrate of behav-

ioral errors in terms of collective activity of ensembles of neu-

rons. Examining collective neural activity during errors might

also help us to understand what generates the switch in coding

from correct to erroneous decisions observed at the level of sin-

gle neurons (Genovesio et al., 2011). A particularly promising

approach in investigating the relationship between decision pro-

cesses and ensemble neural activity is the use of a hidden Mar-

kov model (HMM) to segment the neural activity into sequences

of discrete, metastable states. In its more frequent applications

to neural data so far (Abeles et al., 1995; Jones et al., 2007; Ke-

mere et al., 2008; Ponce Alvarez et al., 2008, 2012; Mazzucato

et al., 2015; Engel et al., 2016; Sadacca et al., 2016; Linderman

et al., 2016), the HMM assumes that the neural dynamics pro-

ceeds as a sequence of hidden states, wherein each state is a

collection of firing rates across simultaneously recorded neu-

rons. Reliable sequences of HMM states have been found in

frontal (Abeles et al., 1995), gustatory (Jones et al., 2007; Mazzu-

cato et al., 2015), premotor, and motor areas (Ponce-Alvarez

et al., 2012) of primates and rodents in the context of different

tasks. State sequences also seem to underlie internal states of

attention (Engel et al., 2016), expectation (Mazzucato et al.,

2019), and deliberation during decisions (Rich and Wallis,

2016). In this work, we investigate the nature of neural ensemble

dynamics in the PFdl of monkeys performing the distance

discrimination task of Genovesio et al. (2011, 2012). In this
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Figure 1. Experimental paradigm and neural recordings sites

(A) Sequence of task events within a trial. Each trial started when the monkey touched the central switch, leading to the appearance of the central stimulus

(reference point), which lasted for 400 or 800 ms (pre-stimulus; pre-S). After this pre-stimulus period, the first stimulus (S1) was presented. S1 was followed by a

variable delay (first delay; D1) of 400 or 800ms, which lasted until the second stimulus (S2) appeared. S2was followed by a second delay (D2) of 0, 400, or 800ms.

Both S1 and S2 were presented for 1,000 ms and placed either above or below the reference point at 8 to 48 mm (8-mm step) from the reference point. After both

stimuli reappeared (placed horizontally), the monkey had to touch the switch below the stimulus that appeared farther from the reference point (the blue circle in

the example trial). Correct responses were rewarded with 0.1 mL fluid, while errors were followed by an acoustic feedback. The stimulus feature (blue circle/red

square), position (above/below the reference point), distance, and target position (left/right) were pseudo-randomly selected.

(B) Penetration sites. Composite from both monkeys, relative to sulcal landmarks. See STAR Methods for details.
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task, the monkeys were required to choose which of two stimuli

sequentially presentedwas farther from the center of a computer

screen (Figure 1). We focused on two main questions: whether

the neural activity in PFdl could be characterized as metastable

and, if so, what the links are among metastable state durations,

state transition times, trial difficulty, and task performance (cor-

rect versus incorrect trials). We found that PFdl activity can be

characterized as a sequence of metastable states, some of

which code for the relative distance of the two stimuli from the

center, based on stimulus features or order of presentation.

Most notably, however, we found that the mean duration of

metastable states was longer before errors. Thus, a slowdown

of the metastable dynamics after the presentation of the second

stimulus (S2) was typically associated with an incorrect

response.We also found a link between trial difficulty and hidden

state transitions in correct trials (Ponce-Alvarez et al., 2012).

Specifically, the first state transition after S2 was faster in easier

trials, even though the reaction times (RTs) were not different.

This suggests that transition times reflect the level of trial diffi-

culty, even when the delay before a response is too long to affect

the RT. Overall, these results show a potential role of metastable

dynamics in PFdl neurons during a decision process in the

spatial domain, adding to accumulating evidence for a role of

metastable dynamics in neural coding and cognition (La Camera

et al., 2019).

RESULTS

Metastability of prefrontal neural activity during
distance discrimination
To find neural correlates of behavior in the ensemble dynamics,

we first characterized the dynamics by performing an HMManal-

ysis of the ensemble activity of correct and error trials (see Fig-

ure 2 and STAR Methods for details of the procedure). We found

that ensemble neural activity was well described by sequences

of metastable states, in which each state was defined as a

collection of firing rates across simultaneously recorded neu-

rons, with the number of states varying between 2 and 5 across
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sessions. As in previous accounts (Abeles et al., 1995; Jones

et al., 2007; Mazzucato et al., 2015, 2019; Ponce-Alvarez et al.,

2012), state transitions varied trial by trial and were not neces-

sarily locked to external relevant events. This can be illustrated

by warping time so that events in different trials occur simulta-

neously (Recanatesi et al., 2020), while onset and offset times

of states are variable, as indicated in Figure 3A for an illustrative

session (see STAR Methods for details). From this plot, it is

apparent that the blue state tends to occur after S2 and the

GO signal, whereas the yellow state tends to occur after the de-

cision (RT). However, the time at which transitions occur varies

from trial to trial, as documented in the aforementioned studies.

Moreover, during trial epochs in which no clear external events

occur, such as halfway after S2 and during the delay period,

state transitions are much more variable, possibly reflecting

the internal dynamics of state deliberation (this is discussed

later).

The orderly sequences observed in Figure 3A were not an arti-

fact of the HMM analysis, as they disappear in shuffled datasets.

We used two types of shuffling procedures introduced by Ma-

boudi et al. (2018), which we call circular and swap shuffles

(see STAR Methods). As indicated in Figures 3B and 3C, both

shuffling procedures disrupted the temporal alignment between

state sequence and task events. The difference with the original

data is especially evident after S2, the GO signal, and RT. More-

over, model selection had a larger score (smaller Bayesian infor-

mation criterion; BIC) in the original data than in the shuffled

datasets (Figure 3D), revealing worse HMM fits when the data

were shuffled. The analysis also shows a significant reduction

of the optimal number of states after swap-shuffling the data (be-

tween 2 and 3 compared to 2–5, with a median of 3 for the orig-

inal data; Figure 3E). The comparison with shuffled datasets

shows that the presence of metastable activity and the potential

meaning of hidden states are not artifacts of the HMM analysis.

To investigate how the hidden states relate to relevant task

variables, we searched for ‘‘coding states.’’ We define a coding

state as a hidden state that tends to recur significantly more

often in a specific task condition compared to other task



Figure 2. Representative trials of a neural ensemble of simultaneously recorded cells

Each raster plot indicates the spiking activity of each recorded neuron from 400ms before S2 presentation until the beginning of the following trial. Colored curves

represent the posterior state probabilities, and the assigned states are indicated with colored areas. Insets (bottom panels) indicate firing rate vectors associated

with each state (same color code as in corresponding top panels). (A) Correct trials. (B) Error trials. Note that similar colors in (A) and (B) do not correspond to

similar states, since the HMMs were performed independently on correct and error trials (see STAR Methods). D1, first delay (after S1); S2, second stimulus; D2,

second delay; GO, appearance of targets on screen; RT, reaction time.
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conditions (Mazzucato et al., 2019). To illustrate this notion, in

Figures 3A–3C, trials were grouped according to the features

(blue circles versus red squares) of the farther stimulus from

the center. The separation between the two groups is indicated

by the black horizontal line, with extremities marked by triangles.

Note that, during S2 and before D2, the yellow state appears only

in trials that are above the horizontal separation line, and, there-

fore, it is a coding state for relative distance based on stimulus

features (i.e., ‘‘red farther’’ or ‘‘blue closer’’) in the current trial

(p < 0.05, c2 test; see STAR Methods for details). We found cod-

ing states for the features of the farther stimulus in 22% of the

sessions (two example sessions are indicated in Figure 4A).

This is a significantly larger fraction than the 6% found in the

circularly shuffled datasets (p = 0.0006, c2 test; not enough state

transitions occurred in the swap-shuffled data). We also found

evidence for coding states for relative distance based on the or-

der of presentation (‘‘S2 farther or closer from the center’’) in

19% of sessions (two example sessions are indicated in Fig-

ure 4B). For comparison, only 5% of sessions in shuffled data-

sets had coding states for relative distance based on the order

of presentation, a significant difference (p = 0.002, c2 test). We

did not find coding states significantly associated with target po-

sition (left versus right) between the GO signal and RT (6% of

sessions versus 2% of shuffled sessions; p = 0.089, c2 test).
This set of comparisons with shuffled datasets shows that the

presence of metastable activity, as well as the nature of hidden

states as coding for relevant task variables, is not an artifact of

the HMM analysis.

Mean state durations predict incorrect trials
As indicated in Figure 5A, RTs were longer in error trials than in

correct trials. However, RTswere neither correlated with task dif-

ficulty (Jonckheere’s trend test, p = 0.10) nor correlated with the

time of first transition after S2 (Spearman’s rank correlation, r =

0.05, p = 0.31; see the next section for details). Based on recent

findings on the role of metastable dynamics in cognitive pro-

cesses (Mazzucato et al., 2019), we considered the possibility

that longer RTs in error trials may result from a global modulation

of the neural dynamics. For example, a slowdown of the dy-

namics would manifest itself through longer state durations

and, therefore, less frequent transitions among hidden states.

To test this hypothesis, we compared the mean durations of

the hidden states in both conditions (correct versus error) over

a time interval going from 400 ms before S2 onset until the end

of the trial (Figure 5B). In analyzing state durations, only states

occurring after S2 were considered. Based on the criteria re-

ported in STAR methods, we analyzed 56 sessions. On average,

there were 82 ± 35 correct trials and 22 ± 11 incorrect trials per
Cell Reports 35, 108934, April 6, 2021 3



Figure 3. Comparison of HMM state se-

quences for original and shuffled datasets

(A–C) Comparison of HMM state sequences for

original and shuffled datasets in one representa-

tive session (only trials with S2 in the UP position

are indicated; similar plots are obtained in other

conditions). Trials were grouped according to the

relative distance based on stimulus features (blue

circle versus red square), and the separation be-

tween the two groups is indicated by the black

horizontal line with borders marked by triangles

(with red trials above the line). The time in each trial

has been warped (stretched or shrunk; see STAR

Methods) so as to align the 4 events S2, D2, GO,

and RT. (A) HMMmodel of original data reveals (1)

the presence of a coding state for relative distance

based on stimulus features (the yellow state ap-

pearing between S2 and D2 only in trials above the

group separation line, coding for ‘‘red square

farther’’) and (2) reliable state transitions at rele-

vant event times. (B) HMM model of circularly

shuffled data indicated in (A). As a consequence,

state sequences appear scrambled, and the

coding states are lost. (C) HMM model of swap-

shuffled data indicated in (A). Compared to (A),

sequences are not orderly, despite the presence

of fewer states. (D) Boxplots of the difference in

BIC score between the fits to the original data and

shuffled data across sessions (p < 0.001, Wil-

coxon signed-rank test). A smaller score indicates

better fit.

(E) Optimal number of inferred states across ses-

sions for original data (left), circular-shuffled data

(middle), and swap-shuffled data (right). Note that

similar color in panels a-c does not imply the same

state.
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session (mean ± SD). The optimal number of states of the HMM

in each session ranged from 2 to 5 across sessions, with a me-

dian of 3 for both correct and incorrect trials. We found that

the mean state duration after S2 was significantly greater in

incorrect trials, 374.0 ± 9.4 ms (mean ± SEM), than in correct tri-

als, 321.8 ± 3.7 ms (p < 0.001, two-sided Mann-Whitney U test;

Figure 5B).

A longer state duration in incorrect trials is in line with the hy-

pothesis that the slower RTs in incorrect trials are associated

with a global slowdown of the dynamics. However, we found

only a negligible correlation between mean state durations after

the GO signal and RTs (Spearman’s rank correlation, r = 0:05 for

correct trials, p = 0.0009; and r = � 0:01 for error trials, p = 0.75).

It is possible that cortical slowdown occurs during the delibera-

tion period only and that it directly affects the decision but not the

RT (which occurs after the GO signal).

To test this hypothesis, we computed the mean state dura-

tions in two periods, from S2 to GO (deliberation period) and

from GO to the end of the trial (included the intertrial interval),

and performed a two-way ANOVA, with trial type (correct/incor-

rect) and temporal window as factors (Figure 5C). Both the main

effects of trial type and temporal window were significant (p <

0.001): overall, state durations were longer during the S2-GO

period compared to the GO-END period (in both correct and

incorrect trials; see Figures 5D and 5E for the distributions of
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mean state durations). However, the reduction in mean state

duration observed in the GO-END period (compared to the S2-

GO period) was larger in error trials compared to that in correct

trials (Figure 5C; p (interaction) <10�5, F(1) = 16.3; Figures 5D

and 5E show distributions of mean state durations in the two

time periods, together with examples from single sessions).

This result shows that slowing down of cortical dynamics

occurred mostly in the S2-GO period, i.e., in the period when in-

ternal deliberation occurs (360 ms in correct trials versus 440 ms

in error trials). After theGO signal, state durations dropped below

300 ms in both correct and incorrect trials, suggesting that

cortical slowdown occurred during deliberation rather than dur-

ing the motor action (accordingly, state durations after GO were

not correlated with trial difficulty, i.e., with |S2�S1|: Jonck-

heere’s trend test gave p = 0.06 for error trials and p = 0.21 for

correct trials). The difference in state durations was also re-

flected in the HMM, specifically in the distributions of self-transi-

tion rates, lii (the diagonal elements of the transition matrix of the

HMM), which were significantly larger in error trials than in cor-

rect trials (p = 0.002, Kolmogorov-Smirnov test).

We validated this result by repeating the HMM analysis with a

balanced number of correct and error trials within each session.

Since error trials were always fewer than correct trials, a random

subsample of correct trials was selected in each session, and the

procedure was repeated 20 times. During the deliberation period



Figure 4. Examples of sessions with significant coding states

(A) Coding states for relative distance based on stimulus features (blue circle versus red square) during S2 (red box) in correct trials for 2 example sessions.

Coding states are the dark green and yellow states in the left panel and the dark green and gray states in the right panel.

(B) Coding states for relative distance based on order of presentation during S2 (S2 farther versus S2 closer) in correct trials for 2 example sessions. Coding states

are the dark green, orange, and gray states in the left panel and the yellow state in the right panel. In both panels, trials were grouped according to the coded

variable (as in Figure 3A) and highlighted by the red box. The same colors in different panels do not imply the same state.
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(S2-GO), we found longer state durations in error trials in 19 out

of 20 subsampling repetitions (p < 0.001, Wilcoxon signed-rank

test). As a control, we also performed the same analysis after

shuffling the data (circular and swap shuffle; see STAR Methods

and Figure 3). When the data were circularly shuffled, the mean

state duration in error trials was found to be longer than in correct

trials in about half of the shuffled dataset (11 out of 20), while it

was found to be shorter in the other half (p = 0.39, Wilcoxon

signed-rank test), consistent with the null hypothesis of no differ-

ence in state durations between correct and error trials. The ratio

19/20 is significantly larger than the ratio 11/20 obtained in the

shuffled data (p = 0.0035, c2 test for proportions), suggesting

that our result is a true property of the data. In the swap-shuffled

data, wemostly found 2 states (Figure 3E), which resulted in only

a handful of trials with at least 2 transitions in each session, pre-

cluding a meaningful analysis of the state durations in this case.

To further quantify the link between mean state durations and

performance, we decoded the monkey performance in a ficti-

tious 2AFC task in which we were presented with a correct

and an error trial, and for each such pair, we predicted that the

error trial is the one with longer mean state duration (see STAR

Methods for details). This analysis was performed in 35 of 56

sessions with significantly longer state durations in the S2-GO

period during error trials, and it correctly predicted the perfor-

mance in (72% ± 16%) of the trials (area under the receiver oper-

ating characteristic [ROC] curve, mean ± SD). A similar analysis

using RTs rather than state durations gave similar results, (72%

± 12%). On a trial-by-trial basis, state durations or RTs would

predict the behavior of the monkey in 72% of the trials, and

although this is not remarkable in terms of predictive perfor-

mance, it is well above chance level (p < 0.001 in a 2AFC task
with n R 46 trials, binomial test). Finally, we also found that we

could decode the trial type by comparing the posterior probabil-

ities based on the HMM for correct and error trials, respectively.

Specifically, we classified a trial as correct if its posterior under

the HMM for correct trials was larger than under the HMM for er-

ror trials, andwe classified the trial as an error trial otherwise, ob-

taining a balanced accuracy (see STAR Methods) of 79%.

Neural correlates of trial difficulty
After examining the relationship between neural dynamics and

performance, we examined the effect of trial difficulty on meta-

stable dynamics. Despite a non-significant trend before the GO

signal (data not shown), average state duration was not corre-

lated with trial difficulty (between S2 and GO: p = 0.059, Jonck-

heere’s trend test; linear regression slope =�1.25, p = 0.24; after

GO: p = 0.28, Jonckheere’s trend test; linear regression slope =

�0.22, p = 0.70). In search for a more significant neural correlate

of trial difficulty, we followed Ponce-Alvarez et al. (2012) study

and looked at the first transition to a new state after S2 onset

(fTaS2). The hypothesis was that, regardless of mean state dura-

tions, transitions after S2 onset would occur sooner in easy trials

than in difficult trials. Figure 6 indicates two examples of HMM

analysis for one difficult trial (Figure 6A) and one easy trial (Fig-

ure 6C). The HMM was first performed with only 2 states and

centered on a 1,400-ms window around S2—specifically, from

400msbefore to 1,000ms after S2 offset—andduring correct tri-

als only. To increase statistical power, theHMManalysiswasper-

formed separately on trials with S2 appearing above the central

stimulus and on trials with S2 appearing below the central stim-

ulus (however, an HMM with all trials lumped together gave

similar results; this is discussed in the subsequent text). Sessions
Cell Reports 35, 108934, April 6, 2021 5



Figure 5. Comparison of RTs and mean state durations between correct and incorrect trials

The mean values ± SEM are reported. ***p < 0.001, two-sided Mann-Whitney U test. Correct trials are indicated in green; incorrect trials are indicated in red.

(A) Reaction times (RTs).

(B) Mean state durations.

(C) Comparison of mean state durations in the S2-GO versus the GO-END intervals, divided into correct and error trials. The plot indicates the interaction plot of

the two-way ANOVA, with factors Trial Type (p <10�12, F(1) = 50.9) and Temporal Window (p = 0, F(1) = 363.6 p(interaction) <10�5, F(1) = 16.3).

(D) Left: distributions of mean state durations across sessions in the S2-GO period in correct and error trials. Right: distributions of state durations in 4 example

sessions (green, correct trials; red, error trials).

(E) Same as in (D) for the GO-END period.

Article
ll

OPEN ACCESS
were then selected basedon the ability of theHMMtodecode the

monkeys’ decision (see STAR Methods). Only sessions with a

significant decoding performance were kept for further analysis:

41/61 sessionswith S2 appearing above the central stimulus and

34/61 sessions with S2 appearing below, comprising, on

average, 27.6 ± 12.8 trials per session (mean ± SD). Decoding

performance was significantly better than in shuffled datasets,

where the same analysis was performed after randomly shuffling

the class labels (S1 > S2 versus S2 > S1; see STAR Methods). In

this case, the decoding performance was significant only in 7/61

sessions (S2 above the stimulus, p < 3310�10,c2 test) and in 6/61
6 Cell Reports 35, 108934, April 6, 2021
sessions (S2 below the stimulus, p < 7310�8,c2 test). As hypoth-

esized, the first transition time after S2 correlated with trial diffi-

culty, with faster transitions occurring in easier trials (Figure 6E).

Specifically, we divided all trials in 5 groups according to the dif-

ference in spatial distance betweenS1 andS2 and found a signif-

icant decreasing trend of fTaS2 with increasing |S2�S1| (p =

0.006, Jonckheere’s trend test) (Bewick et al., 2004). Slope of

linear regression fit = �1.74 (p = 0.015, two-sided Wald test

with t distribution; an HMM with S2 appearing both above and

below the central stimulus gave similar results: linear regression

slope = �1.058, p = 0.015). This trend disappeared when



Figure 6. Analysis of first transition time after S2 (fTaS2)

(A) Example trial with rasters and HMM segmentation of a neural ensemble of 6 cells recorded simultaneously for one difficult trial, with |S2�S1| = 16. Each raster

plot indicates the spiking activity of each recorded neuron from 400ms before S2 until the end of the stimulus presentation. Same conventions as in Figure 1. The

triangle on the horizontal axis marks the fTaS2. Vertical dashed line indicates S2 onset.

(B) Same trial as in (A), analyzed with an HMM around the GO signal. A time window of 1,400 ms was used: 400 ms before and 1,000 ms after the GO cue.

(C) Same as in (A), for an example of an easy trial with |S2�S1| = 40.

(D) Same as in (C), with HMM analysis around the GO signal.

(E) fTaS2 versus |S2�S1| plot (mean ± SEM) indicates a significant trend of fTaS2 with trial difficulty (p = 0.006, Jonckheere’s trend test).

(F) First transition time (means ± SEM) after the GO signal versus |S2�S1|. No significant trend test, p = 0.06.

(G) RTs (means ± SEM) versus trial difficulty, |S2�S1|. No significant trend test, p = 0.10.
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the data were shuffled (data not shown; p = 0.28 for circular

shuffle, and p = 0.46 for swap shuffle, respectively; Jonckheere’s

trend test).

These results mirror previous results in motor and dorsal pre-

motor cortex of monkeys (Ponce-Alvarez et al., 2012) and sug-

gest that the signature of a longer process of deliberation in

PFdl neurons is a longer transition out of the state present at
S2 onset. Since spatial target selection and actions occur after

the GO signal, when, presumably, the decision process has

already occurred (except, perhaps, in some of the very difficult

trials), faster transition times after S2 would not be expected

necessarily to correlate with faster RTs (the time from GO to ac-

tion). Indeed, we found that fTaS2s and RTs were uncorrelated

(Spearman’s rank correlation, r = 0:05, p = 0.31). In keeping
Cell Reports 35, 108934, April 6, 2021 7
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with this interpretation, we performed a similar analysis for the

transition time after GO (Figures 6B–6D) and found no relation-

ship with trial difficulty (p = 0.06, Jonckheere’s trend test; Fig-

ure 6F). In this case, the HMM analysis was performed in a

time interval of �400 ms and +1,000 ms around the GO signal.

Similarly, the RTs (time between GO and action) did not depend

on trial difficulty (p = 0.10, Jonckheere’s trend test; Figure 6G).

DISCUSSION

Metastable dynamics of cortical circuits is emerging as a flexible

framework to interpret an increasing number of neural phenom-

ena and related behaviors, including working memory (Abeles

et al., 1995; Ponce-Alvarez et al., 2012), selective attention (En-

gel et al., 2016), and decision tasks (Rich and Wallis, 2016) in

monkeys; navigation (Maboudi et al., 2018), expectation (Mazzu-

cato et al., 2019), and decision tasks (Miller and Katz, 2010) in ro-

dents; and even task-related information in human decision

making (Taghia et al., 2018; see La Camera et al., 2019, for a

recent review).

Here, we found that the neural activity of ensembles of PFdl

neurons of monkeys performing a distance discrimination task

are well described as sequences of metastable states. Among

those states, some specifically code for the relative distance of

the two stimuli from the center, based on stimulus features or or-

der of presentation. Most importantly, this study has uncovered

a new role of discrete-state metastable dynamics in the PFdl

neurons of monkeys performing a distance discrimination task.

Our main results suggest that (1) incorrect decisions correspond

to a slowing down of the metastable dynamics preceding the ac-

tion, regardless of trial difficulty; and (2) a slower state transition

after S2 occurs in difficult correct trials, compared to a faster

transition in easy correct trials. We begin by discussing the latter.

Effect of task difficulty on state transitions
Single units in the PFdl neurons contain information about the

decision on which stimulus is farther from the central stimulus

(Genovesio et al., 2011). Whether they also encode trial difficulty

is not clear. Based on previous studies in primary motor and pre-

motor cortex (Pardo-Vazquez et al., 2008; Ponce-Alvarez et al.,

2012) and prefrontal cortex (Kim and Shadlen, 1999), we ex-

pected PFdl neuron activity to be affected by trial difficulty. We

followed Ponce-Alvarez et al. (2012) and looked for this informa-

tion in the ensemble dynamics of PFdl neurons as modeled by

HMM. We found that, in difficult trials, the state transition after

S2, but not the GO signal, had a later onset compared to that

in easier trials. Thus, the state transition latency reflected trial dif-

ficulty only in the deliberation period and not later during the

transformation from goal to action. This may also explain why,

although slower in error trials, RTs were not correlated with trial

difficulty.

Our results are analogous to those found by Ponce-Alvarez

et al. (2012) in motor and dorsal premotor cortex of monkeys

engaged in a delayed vibro-tactile discrimination task. Our find-

ings are also somewhat reminiscent of results obtained in rat

gustatory cortex in very different contexts. Specifically, Moran

and Katz (2014) found that the transition among 2 HMM states

evoked by sucrose were delayed by conditional taste aversion,
8 Cell Reports 35, 108934, April 6, 2021
while Mazzucato et al. (2019) found a faster onset of certain hid-

den states (named ‘‘coding states’’) when a stimulus was ex-

pected, compared to the case where it was not expected. We

will say more on this later.

Slowdown of metastable dynamics in error trials
The other main result of this study is the link between a modula-

tion of metastable activity and behavior. Specifically, we found

an increased duration of hidden states during error trials

compared to correct trials. Moreover, this occurred during the

deliberation period and not after the GO signal prompting the

behavioral response. This result indicates that, during errors,

one critical aspect that can be affected is the passage through

states that presumably characterize different phases of the

task, and before the action takes place. We are confident that

the affected period reflects an internal deliberation, because, in

our task, the targets’ positions are revealed only at theGO signal,

separating in time the deliberation phase from target selection

and movement preparation.

Similarly, we found that RTs were related to performance (cor-

rect versus error) and not ‘‘objective’’ trial difficulty (where the

latter is defined based on the relative distance between the

two stimuli). It seems, therefore, that the RTs also reflected the

internal process of deliberation and whether such process

resulted in correct performance, regardless of objective trial dif-

ficulty. These findings are reminiscent of intriguing results ob-

tained in the orbitofrontal cortex by Rich and Wallis (2016),

who showed that slow deliberation was related to equal times

spent in the latent states representing the available targets dur-

ing a choice, rather than the difficulty of the decision as judged

by eye movements. The closest analogy, however, is with the

study of Mazzucato et al. (2019), who found shorter state dura-

tions when a stimulus was expected, compared to the case

where it was not expected. The comparison with Mazzucato

et al. (2019) invites speculation that correct decisions are more

likely in trials in which expectations are successfully formed

because, based on that study, this would predict faster dy-

namics in correct trials compared to error trials, as found here.

In Mazzucato et al. (2019), faster neural dynamics was related

to faster stimulus decoding, not behavioral performance. The

link with behavior was provided via a spiking network model,

which showed that distractor stimuli could induce the opposite

effect of slowing down the dynamics. If distractors would be

more likely to induce an error, this would again predict slower dy-

namics before errors. Here, we provide direct experimental evi-

dence of a slowdown of the cortical dynamics during errors. To

our knowledge, this is the first demonstration of a link between

behavioral performance and the timescale of metastable dy-

namics in PFdl neurons during a decision.

Comparison with previous studies on error-related
activity in prefrontal cortex
The results reported here were obtained via an HMM analysis of

ensemble activity. HMM analysis and its variations (Blaettler

et al., 2011; Chen, 2013) present an ideal method to investigate

the role of metastable dynamics. HMM allows an unsupervised

segmentation of the ensemble activity without relying on external

triggers, providing a characterization of the metastable
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dynamics during ongoing activity or motor preparation, not just

after a stimulus (Abeles et al., 1995; Seidemann et al., 1996;Maz-

zucato et al., 2015). In particular, this allows one to pinpoint the

moment in time in which an internal deliberation may have

occurred. This is essential in trying to link behavior to neural ac-

tivity occurring during internal deliberation as done here, and this

has allowed us to find neural correlates of trial difficulty and

behavioral performance that had not emerged from single-

neuron analyses (Genovesio et al., 2011).

We note that our approach is very different from those of pre-

vious HMM studies of error activity, wherein an HMM fitted to tri-

als in a given condition (say, S1>S2) was used to predict errors in

a separate condition (S2<S1) (Ponce-Alvarez et al., 2012; Seide-

mann et al., 1996; Jones et al., 2007). In contrast, our ability to

predict errors is based on the modulation of the dynamics of

the sameHMM.Our analysis onmean state durations uncovered

a change in the network dynamics during incorrect trials that

manifests itself as a reduced transition rate among successive

states. Thus, errors are not predicted by the presence of specific

‘‘error states’’ but rather by the slowing down of state sequences

that may be the same in either condition.

Our approach is also different from previous studies that have

examined PFdl activity during errors based on the activity of sin-

gle neurons. From these studies, the picture has emerged that

PFdl neurons encode the adopted course of action during errors

rather than the correct course of action. PFdl activity reflected

the target chosen during errors in a motion discrimination task

(Kim andShadlen, 1999) and in amatch-to-sample task for visual

motion (Zaksas and Pasternak, 2006). Similar results were

observed in tasks that required learning of action sequences,

wherein PFdl neuronal activity reflected either the incorrect ocu-

lomotor sequence of actions (Averbeck and Lee, 2007) or the

incorrect category of turn, pull, and push hand movements dur-

ing errors (Shima et al., 2007). At a more abstract level, PFdl neu-

rons appear to encode goal and strategy in a task in which the

goal was chosen after the selection of either a repeat-stay or a

change-shift strategy (Genovesio et al., 2008). These strategies

required selection of the same or a different goal when a central

instruction stimulus repeated or changed from the previous trial,

respectively. PFdl neurons encoding the future goal appeared to

encode the chosen goal rather than the correct goal during the

decision period; however, strategy-coding neurons reflected

the strategy adopted (rather than the correct strategy) only after

the action. In Tsujimoto et al. (2011), a simplified version of the

strategy task was adopted in which the shape and color of a

cue stimulus indicated which strategy to use. This task required

a more immediate strategy selection that was not based on the

integration of previous events as in Genovesio et al. (2005,

2008). In this case, during the decision period, PFdl neurons en-

coded the strategy selected and not the strategy that had been

cued. Interestingly, orbitofrontal neurons in the same task had

the opposite behavior.

Finally, previous studies have shown the effect of previous tri-

als on the activity of single neurons in the current trial. For

example, Donahue et al. (2013) had shown the impact of reward

on encoding of previous choice in multiple cortical areas, while a

recent study by Spitmaan et al. (2020) has shown that both

reward and choice outcomes are integrated over multiple trials
to influence behavior and the response of cortical neurons. In

the task studied here, we had found (Genovesio et al., 2014)

that past outcome affected the RTs but not the error rates, and

only a very small effect of the previous choice on RTs. These re-

sults suggest that, in our task, past outcome could have an influ-

ence on the metastable activity of PFdl neurons in the present

trial. This influence could be revealed by the presence of coding

states for the previous outcome. However, although single neu-

rons encode both the previous choice and the previous outcome

in the earlier part of the present trial before S2 (Genovesio et al.,

2014), we found no evidence of coding states for previous

outcome or choice during the temporal window analyzed in

this paper (400 ms before S2 until the end of the trial; data not

shown). This suggests that the slowdown of dynamics between

S2 and the GO signal reflects the task demands of the present

trial in a larger measure rather than the properties of the previous

trial, although it cannot be ruled out that history effects could

emerge in an HMM analysis performed in an earlier portion of

the trial or in datasets containing larger numbers of neurons.

Link between single neurons and metastable ensemble
activity
The studies reviewed earlier focused on the activity of single neu-

rons taken individually rather than on ensemble dynamics, as

done here. It is natural to assume a link between the activity of

single neurons and the sequence of states of the ensemble activ-

ity. We propose here one possibility based on our previous work

on the evolution of goal representation in this task (Marcos et al.,

2019). After the GO signal, we observed an abrupt reconfigura-

tion of the prefrontal activity, in which the goal signal passed

from one population to another as the trial proceeded from the

delay period to the action period; only a smaller subset of neu-

rons coded goals across both periods, and about half of these

neurons switched goal preference between trial periods (‘‘switch

neurons’’). These results were modeled by a network of hetero-

geneous cell assemblies with bistable local dynamics. In the

model, the switch neurons showed a higher level of bursting ac-

tivity than the other neurons, indicating that these neurons

tended to jump more easily from high to low firing states, and

vice versa. The switch neurons appeared also to have a leading

role in the network reconfiguration after the GO signal, showing

an earlier transition time in activity switch. It is possible that,

when analyzed in terms of switching ensemble states via an

HMM, the switch neurons could play an important role in igniting

state transitions and could act differently in correct versus error

trials. The important connection between single-cell and

ensemble dynamics is left for future studies.
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danilobenozzo/hmm_neurofis. The dataset has not been deposited in a public repository but is available from the Lead Contact
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

In this study we used two adult (aged 9 and 11 years old), male rhesus monkeys (Macaca mulatta). Monkey 1 weighed 8.5 kg, and

monkey 2 weighed 8.0 kg. All procedures followed the National Institutes of Health Guide for the Care and Use of Laboratory Animals

(1996) and were approved by the National Institute of Mental Health Animal Care and Use Committee.

METHOD DETAILS

Behavioral task
In each trial, two visual stimuli were presented in sequence on a computer screen, separated by a temporal delay (Figure 1A). Each

stimulus could be either a blue circle of 3+ diameter or a red square of 333+ dimension. If the first stimulus (S1) was the red square

then the second stimulus (S2) was the blue circle and vice versa. Each stimulus remained on screen for 1000 ms. Each trial started

when themonkeys pressed the central of three switches, which caused the appearance on the screen of a central stimulus (reference

point). After 400 or 800 ms the central stimulus was followed by the onset of S1. S1 was always located at a distance of 8–48 mm (in

steps of 8mm) above or below the reference point. After the disappearance of S1, there was a first delay (D1) of 400 or 800ms before

the presentation of S2. S2 appeared above the reference point if S1 had appeared below, and below the reference point otherwise. Its

distance was as for S1, i.e., 8–48 mm (in steps of 8 mm) above or below the reference point, but it never equaled the distance of S1.

Both S1 andS2were presented for 1000ms. The disappearance of S2was followed by a second delay (D2) of 0, 400 or 800ms,which
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in turn preceded the reappearance of the two stimuli, which served as a ‘‘GO’’ signal. Each stimulus was pseudo-randomly chosen to

be located either 40 mm to the right or 40 mm to the left of the central stimulus. The monkeys were required to select, within 6 s, the

stimulus presented farther from the reference point. Note that, not knowing the location of the stimuli, themonkeys could not plan any

motor response before the GO signal. Correct choices were rewarded with 0.1 mL fluid, whereas an acoustic feedback followed the

errors. All task variables, such as the duration of D1 and D2, the color and the shape of the two stimuli, were pseudorandomly deter-

mined. For more details about the behavioral task see Genovesio et al. (2011).

Data collection
Wemonitored and recorded eye positionwith an infrared oculometer (Arrington Recording, Scottsdale, AZ, USA) and recorded single

cells using quartz insulated, platinum-iridium electrodes (0.5–1.5MU at 1 kHz), positioned by a 16-electrode drive assembly (Thomas

Recording, Giessen, Germany). The electrodes were arranged within a concentric head with 518 mm spacing. Spikes were discrim-

inated online using the Multichannel Acquisition Processor (Plexon, Dallas, TX, USA) and confirmed with the Offline Sorter (Plexon)

based on principal component analysis, minimal interspike intervals, and well differentiated waveforms inspected individually for

each isolated neuron.

Surgery
We implanted the recording chambers over the exposed duramater of the left frontal lobe, alongwith head restraint devices.We used

Aseptic techniques together with isofluorane anesthesia (1%–3%, to effect). Monkey 1 had two, 18 mm diameter chambers, and

Monkey 2 had a single, 27x36 mm chamber.

Histological analysis
Before the end of the recordings, electrolytic lesions (15 mA for 10 s, anodal current) were made at selected locations. After 10 days,

the animal was deeply anesthetized and then perfused through the heart with formaldehyde-containing fixative (10% Formalin in

0.9% saline). We plotted recording sites on Nissl-stained coronal sections by reference to the recovered electrolytic lesions and

the marking pins inserted during perfusion, and structural magnetic resonance images taken at various stages after the beginning

of the recordings. Recordings were predominantly taken from area 8, area 46 and a small population of area 12.

HMM analysis
An HMM was used to study the dynamics of neural ensembles, with methodology similar to Ponce-Alvarez et al., (2012) and Maz-

zucato et al. (2015, 2016, 2019). The sessions included in the analysis comprised at least 4 simultaneously recorded neurons, each

with a mean trial activity R 1 spk/s, and with at least 5 completed trials of each type, i.e., correct and incorrect. These selection

rules left about 20% of the sessions for further analysis, out of the 361 initially recorded. Since many PFC neurons code for stim-

ulus position (Genovesio et al., 2011), trials of the same session were divided according to the up or down position of the second

stimulus, and were analyzed by fitting separate HMMs (in the analysis of trial difficulty of Figure 6, similar results were obtained

when fitting the same HMM to all correct trials in each session, see ‘‘Analysis of neural dynamics versus trial difficulty’’). In addi-

tion, in the analysis of correct versus error trials (Figures 2, 3, 4, and 5), HMMs were also fitted separately to correct versus error

trials in each session (see ‘‘Analysis of neural dynamics in correct versus error trials’’ below). In all HMM analyses described below,

the vector of the neurons’ average firing rates across trials was used to initialize the emission rates for the first state. The same

vector was then randomly permuted and assigned to the next state, until all states’ emission rates were initialized. In addition to a

random permutation, a random Gaussian component with zero mean and 0.02 std was added to each emission rate. The transi-

tion matrix Pij, expressing the transition rates from state i to state j in each 5 ms bin, was initialized to 1 for the diagonal entries and

j0:02xj off the diagonal, where x is a standard random variable; the rows of the matrix were then normalized to obtain probabilities.

This initialization corresponds to a model where the probability is much larger to remain in the current state than to make a tran-

sition to another state in the next time bin. The fitting procedure was repeated 5 times with a maximum number of 500 iterations.

The model with the smallest Bayesian Information Criterion (BIC) score, BIC = � 2 LL+ ½MðM � 1Þ +MN�lnT, was selected as the

model for further analysis, where LL is the log-likelihood of the model given the data, M is the number of hidden states, N is the

number of neurons in the ensemble, and T is the number of observations in each session (number of trials 3 number of 5 ms bins

per trial). A cross-validation procedure as performed e.g., in Maboudi et al. (2018) gave similar results (not shown).

The training phase of the model, consisting in the estimation of the transition and emission probability matrices, was performed

using the Baum-Welch algorithm. The states were then decoded from the posterior state probabilities PðStjXtÞ of having state St

in the presence of data Xt (spike trains) in a 5 ms time bin centered around time t. We assigned a state to a chunk of data only if

its posterior probability was greater than 0.8 for at least 50 consecutive ms, as this requirement reduces the chance of overfitting

the data (Mazzucato et al., 2015, 2016).

All analyses were performed using custom software written in Python and MATLAB (Statistics and Machine Learning Toolbox,

ªThe Mathworks). The code is available at https://github.com/danilobenozzo/hmm_neurofis.
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Coding states
The presence of a coding state, meaning a state that codes for a specific task condition, was evaluated by a c-squared test of the

frequency of appearance of each state in a given task condition during a time window of interest. The frequency table was computed

by reporting the frequency of occurrence of each state in the two task conditions to be compared. As task condition, we considered

the relative distance of the two stimuli from the center based on stimulus features (blue circle versus red square) and order of pre-

sentation (S2 farther versus closer), and position of the target at GO (right versus left; the target is the stimulus previously presented

farther from the center). As for the time window of interest, we chose the S2 presentation period for states coding for relative distance

based on stimulus features or order, and the time interval from GO to RT for the target position.

Shuffled datasets
The HMM analysis was validated via comparison with shuffled data. Three types of shuffling procedures were applied in each ses-

sion: a circular shuffle, a swap shuffle, and class label shuffle. In the latter, the class labels associated with each trial type (S1> S2

versus S2>S1) were randomly shuffled. Circular shuffle (Maboudi et al., 2018) consisted of independent random time shifts of the

spike trains in each trial. This procedure kept the single neuron autocorrelations intact but disrupted the cross-correlations across

neurons and, in particular, instances of co-activation. Swap shuffles (Maboudi et al., 2018) randomly permuted the temporal bins,

i.e., the vectors of spike counts, in each trial. This procedure preserved the neurons’ cross-correlations but removed the neurons’

autocorrelations, in addition to the order of the sequential patterns that might be present in the data. Note that neither procedure

changed the overall firing rates of the neurons in each trial. The HMM fits of the shuffled datasets were compared with the fit of

the original dataset in terms of BIC score and optimal number of states. For the sake of visualization, in Figures 3A–3C time has

been uniformly warped in the main task epochs (e.g., S2 presentation, delay D2, reaction time) by a normalization with respect to

each epoch length in order to align the related events across trials.

Analysis of neural dynamics in correct versus error trials
To compare state durations in correct and error trials, the HMM was fitted to all data inside a time window of variable size starting

400 ms before S2 and ending at the beginning of the following trial. Trials of the same session were divided according to the up or

down position of the second stimulus and into correct versus error, and were analyzed by fitting four separate HMMs in each con-

dition (56 sessions in total). In each session, we used models with 2 to N� 1 states, where N is the number of neurons in the session

(the number of states was kept lower than the number of neurons to help prevent overfitting). The optimal number of states in each

session,M, was chosen so as tominimize the BIC score (see formula reported above). Two separate HMMswere fitted to correct and

incorrect trials in the same session given the stimulus position. After decoding the data according to the posterior state probabilities

PðStjXtÞ as described above, we compared the session-averaged state durations in correct versus error trials in two different time

epochs, from offset of S2 to GO, and from GO to END, by performing a 2-way ANOVA with factors trial type (correct versus error)

and time epoch. To validate the analysis with a balanced number of trials in each trial type (correct versus error), we randomly

selected a number of correct trials matching the number of error trials in each session. The HMM analysis was performed on the

trial-matched sessions as described above, and the mean state durations in correct versus error trials across all sessions were ob-

tained. This procedure was repeated 20 times, each time with a new pseudo-random selection of correct trials. These same trial-

balanced datasets were then analyzed after circularly shuffling each spike train (see Section ‘‘Shuffled datasets’’). Swap-shuffling

the data drastically reduced the number of states and transitions and resulted in only a handful of trials with at least 2 transitions

in each session, precluding a meaningful analysis of the state durations in this case.

ROC analysis
We used the distributions of mean state durations from S2 to GO obtained as described in Section ‘‘Analysis of neural dynamics in

correct versus error trials’’ to predict the performance (correct versus error) in single trials. To do so, we treated the task of predicting

performance as a fictitious two-alternative forced choice (2AFC) task in which we are presented with a correct and an error trial, and

for each such pair, we predict that the error trial is the one with longer mean state duration. Performance in this task can be obtained

by computing the area under the receiver operating characteristic (ROC) curve (Dayan and Abbott, 2005). The latter is the curve plot-

ting the fraction of true positives (hits) versus the fraction of false positives (false alarms) obtained as the decision threshold varies

from +N to � N, where the task is to classify single trials and each decision is based on whether the trial’s mean state duration

is above or below the threshold. Note that this analysis is analogous to that performed in Britten et al. (1992) for decoding motion

direction from single neurons’ firing rates. However, in Britten et al. (1992) the authors aimed to decode the stimulus while we aimed

to decode the monkeys’ performance (correct versus error). In the latter case, the prediction of a correct trial corresponds to match-

ing themonkeys’ behavior in that trial. Thus, our average decoding performance also gives the probability of predicting themonkey’s

behavior on a trial-by-trial basis.

Analysis of neural dynamics versus trial difficulty
For this analysis, we fitted an HMM to the data inside a 1400ms time window (400ms before the presentation of S2 until its removal),

and the number of states was set to 2 (Ponce-Alvarez et al., 2012). Only correct trials were used, divided according to the up or down

position of the second stimulus, and then analyzed by fitting separate HMMs (however, similar results were obtained when fitting the
e3 Cell Reports 35, 108934, April 6, 2021
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sameHMM to all correct trials in each session; not shown).We defined the time until the first transition after S2 (fTaS2) as the period of

time between S2 onset and the time at which the posterior probability of the current state decreases below 0.8 (see Figure 6 for ex-

amples). fTaS2 times were regressed with |S2�S1|as described in Results. In this analysis, only sessions with significant decoding

performance by the HMM were considered (41 out of 61 sessions with S2 up and 34/61 sessions with S2 down), according to the

following procedure (Ponce-Alvarez et al., 2012). We divided each session in testing and training sets in a 3-fold cross-validation

framework. For each trial in the testing set, its log-likelihood was computed both by a model fitted in the training trials of class

S1>S2 (model l1) and by amodel fitted in the training trials of class S2>S1 (model l2; here, ‘‘S1>S2’’ means that S1 wasmore distant

than S2 from the central stimulus). The tested trial was assigned to class S1>S2 if model l1 had the larger log-likelihood on this trial,

and to class S2>S1 otherwise. The session was kept for further analysis if the decoding performance of the abovemethod, measured

by balanced accuracy, was significantly larger than chance. Balanced accuracy was defined as the average of recall obtained on

each class, i.e., 1=2(TP/P+TN/N), and was used because in most sessions the two classes S1>S2 and S2>S1 were unbalanced

(i.e., there were an unequal number of trials in each class; see Brodersen et al., 2010 for details). Here, TP means ‘‘true positives,’’

TN means ‘‘true negatives,’’ and P, N stands for positive (i.e., elements of class S1>S2) and negative (elements of class S2> S1),

respectively. Significance of the decoder’s balanced accuracy was computed by a binomial test at the 5% significance level. The

same analysis was performed after shuffling the data as described in Section ‘‘Shuffled datasets.’’

QUANTIFICATION AND STATISTICAL ANALYSIS
d HMM analysis: discrete time HMM with Poisson emission probability, model estimation solved by the iterative Baum-Welch

algorithm as implemented in the MATLAB functions hmmtrain and hmmdecode, and with BIC method to select the optimal

number of states (see Figure 2);

d Shuffling procedure to validate the HMM results: circular and swap shuffling (see Shuffled datasets in Section STAR Methods

for details and Figure 3);

d Coding state: c-squared test applied on the frequency of appearance of each state in a given task condition during a time win-

dow of interest (see Figure 4);

d Analysis between correct and error trials: two-sided Mann-Whitney U test, Spearman’s rank correlation, Wilcoxon signed-rank

test and two-way ANOVA (see Figure 5);

d Relation with trial difficulty: Jonckheere’s trend test and linear regression slope (see Figure 6).

Further statistical details are indicated in each figure legend and in Section Results.
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