
A trait-based approach for predicting species responses to
environmental change from sparse data: how well might
terrestrial mammals track climate change?
LUCA SANT IN I 1 , THOMAS CORNUL IER 2 , J AMES M . BULLOCK 3 , S TEPHEN C . F . PALMER 2 ,

S TEVEN M . WHITE 3 , 4 , J ENNY A . HODGSON 5 , GRETA BOCED I 2 and JUSTIN M. J . TRAVIS2

1Department of Biology and Biotechnologies, Sapienza Universit�a di Roma, Viale dell’Universit�a 32, 00185 Rome, Italy, 2Institute

of Biological and Environmental Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ,

UK, 3NERC Centre for Ecology & Hydrology, Benson Lane, Wallingford OX10 8BB, UK, 4Wolfson Centre for Mathematical

Biology, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK, 5Department of

Evolution, Ecology and Behaviour, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK

Abstract

Estimating population spread rates across multiple species is vital for projecting biodiversity responses to climate

change. A major challenge is to parameterise spread models for many species. We introduce an approach that

addresses this challenge, coupling a trait-based analysis with spatial population modelling to project spread rates

for 15 000 virtual mammals with life histories that reflect those seen in the real world. Covariances among life-

history traits are estimated from an extensive terrestrial mammal data set using Bayesian inference. We elucidate

the relative roles of different life-history traits in driving modelled spread rates, demonstrating that any one alone

will be a poor predictor. We also estimate that around 30% of mammal species have potential spread rates slower

than the global mean velocity of climate change. This novel trait-space-demographic modelling approach has broad

applicability for tackling many key ecological questions for which we have the models but are hindered by data

availability.
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Introduction

The rate at which a population can spread across

space is likely a key determinant of how well species

are able to respond to climate change (Pacifici et al.,

2015). Until recently, almost all projections of species’

future distributions have largely ignored the process

of population spread (Travis et al., 2013). For more

than a decade, the field of climate envelope modelling

relied almost exclusively on projections that made one

of two extreme assumptions in relation to population

spread: no dispersal vs. unlimited dispersal (Bateman

et al., 2013), implying either that a species would be

unable to colonise any newly suitable regions or that

it would be able rapidly to reach all of the newly

available suitable climate space. Recognising the

potential limitations of this approach, some authors

have considered ‘partial dispersal scenarios’ (Bateman

et al., 2013) that rely on average dispersal distance and

the number of dispersal events in a given time frame

(Hannah et al., 2005; Schloss et al., 2012; Visconti et al.,

2015) in order to make predictions for how well large

numbers of species are likely to be able to track a

shifting climate.

However, over the last few years, increasing recogni-

tion of the importance of ecological and evolutionary

dynamics of range shifts has resulted in calls for the

development of a new generation of models for fore-

casting biodiversity futures (Dormann et al., 2012;

Schurr et al., 2012; Travis et al., 2013), and dispersal has

been highlighted as a critical process for inclusion

(Huntley et al., 2010). This call is being met, and there

has already been a proliferation of models for biodiver-

sity forecasting that incorporate increased biological

realism [see Lurgi et al. (2015) for a recent review of

such models]. These models represent ecological and

evolutionary processes in differing degrees of detail.

Thus, we already possess a good theoretical under-

standing of key determinants of spread rate. The main

reason for the continued incorporation of reduced eco-

logical realism in models forecasting the dynamics of

large numbers of species is likely the lack of sufficient

high-quality ecological data for parameterisation, rather

than the lack of appropriate, and sufficiently efficient,

modelling approaches. A key challenge will be to use
Correspondence: Luca Santini, e-mail: luca.santini.eco@gmail.com

1© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

Global Change Biology (2016), doi: 10.1111/gcb.13271

http://creativecommons.org/licenses/by/4.0/


these models for anything more than a relatively small

set of species for which we have the required data for

parameterisation (e.g. Nathan et al., 2011; Bullock et al.,

2012). We need approaches for making the best possible

use of the considerable available ecological data that

exist across many species, given that they are sparse

and patchy in nature. Here, we introduce the concept

of using a trait-space approach for understanding how

spread rates will vary across a wide and realistic range

of life histories.

Biological traits are not assembled at random in spe-

cies, but show various degrees of covariation which

reflect evolutionary optimal strategies and physical

constraints (Bielby et al., 2007). An understanding of

how traits are combined may enable one to make infer-

ences about the biological traits of poorly known spe-

cies, while accounting for the biological variation

observed in nature. Trait-based approaches have

become used increasingly in several ecological fields

including biodiversity-provisioned ecosystem services

(Suding et al., 2008; D�ıaz et al., 2013), assessing species’

intrinsic vulnerability to extinction (Purvis et al., 2000;

Cardillo et al., 2006; Gonz�alez-Su�arez & Revilla, 2013)

and phylogenetic comparative analyses (FitzJohn et al.,

2009; Santini et al., 2015). All these fields have made a

different use of traits, but share a focus on biological

traits rather than species.

In this study, we develop a novel approach to

determine which life-history traits are the best predic-

tors of spread rate and also illustrate how we can use

the method to determine the proportion and types of

species within a defined (e.g. taxonomic) group that

are likely to have insufficiently high rates of spread

to keep pace with climate change. We use the life-his-

tory data available across terrestrial mammal species

to fit a multivariate trait-space model. Terrestrial

mammals exhibit very diverse ecologies, and are one

taxon for which a good amount of ecological informa-

tion is available (Jones et al., 2009). Yet, we have the

complete data needed to model spread for few terres-

trial mammal species. While certain traits (e.g. body

mass) are better documented, ecological variables

related to dispersal or demographic parameters are

lacking or poorly known for most species, and when

available are often uncertain. The model that we

develop is able to predict missing trait value combi-

nations based on our knowledge of traits’ covariation

in mammals. Having a large number of spread rates

for virtual species, representing life histories that are

realistically constrained, offers opportunities for

addressing important fundamental and applied ques-

tions. Crucially, adopting this approach removes the

need to have complete sets of life-history data for

many species; instead, a statistical description of trait

space, including the covariation between different

traits, can be derived from the patchy data that are

available across many species.

By generating large sets of virtual species (trait value

combinations), each with its complete life-history data,

we then use two well-established demographic mod-

elling approaches – analytical integrodifference equa-

tions (IDEs; Neubert & Caswell, 2000) and the

individual-based model (IBM) RangeShifter (Bocedi

et al., 2014a) – to project spread rates for a large number

of species. We use the two, quite different modelling

approaches (Travis et al., 2011) to ascertain the robust-

ness of our trait-space method. To demonstrate the util-

ity of this novel method, we then:

1. Test relationships between traits that are more

widely available (e.g. body mass) and our modelled

rate of spread to establish the degree to which these

‘proxy’ traits may be used as first-order estimators

of a species ability to shift its range under a changing

environment.

2. Provide an estimate for the proportion of terrestrial

mammal species that are likely to have spread rates

slower than the global mean velocity of climate

change (Loarie et al., 2009), also highlighting which

types of species are likely to be those that fail to keep

pace.

3. Establish, across mammalian trait space, the degree

of consistency in estimates of spread rate obtained

between a rapid analytical approach and a much

more computationally demanding individual-based

simulation.

Materials and methods

Modelling trait covariation and virtual species simulation

We compiled data on 10 life-history traits for terrestrial mam-

mals. These were chosen to represent either traits directly

affecting population dynamics: age at sexual maturity

(SxMat), litters per year (NLit), litter size (LitS), median Eucli-

dean dispersal distance (DDist), adult annual survival (Surv)

and average longevity (Long); or traits that can be used as

proxies for the former: home range size (HR), population den-

sity (Dens), body mass (Mass) and trophic level (Diet). Mass

in mammals is known to be related to many other traits in a

log-linear fashion, and Diet often influences these relation-

ships (Hendriks et al., 2009). SxMat, NLit, LitS, DDist, Long

and Surv were used to parameterise the two models of spread

rate (IDE and IBM). Dens was used to parameterise the IBM,

and Mass, Dens and HR were assessed as proxy traits of

spread rate. We define traits broadly here, as features that can

be considered as characteristic of a species and which can be

measured at the individual or population level. A full descrip-

tion of the compiled data, their sources, units and sample
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sizes, and rationale for their inclusion are available in

Table S1. While traits such as body mass and trophic level are

widely available for a large number of species, traits such as

dispersal distance and annual survival are sparse and are pop-

ulation- and context-dependent.

To simulate virtual species presenting complete and realis-

tic combinations of life-history traits, we started by construct-

ing a model of allometric relationships between all ten traits

from the compiled data. We used a multivariate Gaussian (i.e.

multiresponse) mixed model to estimate correlations between

traits and covariates while accounting for broad phylogenetic

structures. We adopted a Bayesian approach employing latent

variables (predictors representing the unknown true value of

a process which may or may not be directly observed) to deal

with missing trait values while retaining information pro-

vided by species for which only partial data were available.

For each single-response trait, we used body mass and diet as

fixed-effect predictors. We treated body mass as a covariate

rather than another trait/response because it is strongly

related to many other traits (Bielby et al., 2007) and we were

interested in simulating virtual species according to broad

species categories. All response variables were transformed to

ensure approximate normality of residuals and finally centred

and scaled prior to fitting the model. We chose the following

model structure:

LitSi ¼ a11:Dietcı þ a12:logðMassiÞ þ a13:logðMassiÞ:Dietci
þ a14:logðMassiÞ2 þ a15:logðMassiÞ2:Dietci þ xk;1 þ ei;1

SxMati ¼ a21:Dietci þ a22:logðMassiÞ þ a23:logðMassiÞ:Dietci
þ xk;2 þ ei;2

NLiti ¼ a31:Dietci þ a32:logðMassiÞ þ a33:logðMassiÞ:Dietci þ xk;3

þ ei;3

Densi ¼ a41:Dietci þ a42:logðMassiÞ þ a43:logðMassiÞ:Dietci
þ xk;4 þ ei;4

HRi ¼ a51:Dietci þ a52:logðMassiÞ þ a53:logðMassiÞ:Dietci þ xk;5

þ ei;5

DDisti ¼ a61:Dietci þ a62:logðMassiÞ þ a63:logðMassiÞ:Dietci
þ xk;6 þ ei;6

Survi ¼ a71:Dietci þ a72:logðMassiÞ þ a73:logðMassiÞ:Dietci þ xk;7

þ ei;7

Gesti ¼ a81:Dietci þ a82:logðMassiÞ þ a83:logðMassiÞ:Dietci þ xk;8

þ ei;8

Longi ¼ a91:Dietci þ a92:logðMassiÞ þ a93:logðMassiÞ:Dietci
þ xk;9 þ ei;9

where a is an array of coefficients to be estimated, i and k are

respectively the species and Order indices, and Dietc is an

indicator variable for carnivore diet.

With j being the Trait index, the random taxonomic Order

effects xk,j follow a normal distribution with mean zero and

variance hj and errors ei,j follow a multivariate-normal

distribution with mean 0 and full symmetric 9 9 9 variance–

covariance matrix Re:
ei;j �MVNð0;ReÞ

Re ¼
r21 r2;1 � � � r9;1
r2;1 r22 � � � r9;2
..
. ..

. . .
. ..

.

r9;1 r9;2 � � � r29

2
6664

3
7775

The model was fitted using the MCMCglmm package for R

3.0.2 (Hadfield, 2010), using 6 000 000 iterations and a burn-in

of 200 000 iterations.

Drawing sets of virtual species from trait space

Having fitted the model of life-history space, accounting for

correlation between traits, the next task was to draw sets of

virtual species (realistic combinations of trait values) for

which demographic modelling can be used to determine

spread rates. For a given body mass and diet, a virtual spe-

cies was drawn by (i) predicting all mean trait values from

the model, (ii) adding normal variation (between-Order ran-

dom effect) to these predictions with mean 0 and variance

hj and (iii) adding multivariate-normal variation (corre-

sponding to model residuals) with mean 0 and variance Re.

For our spread modelling, we drew two sets of virtual spe-

cies. The first set comprised 15 000 species simulated with

body masses sampled from a log-uniform distribution U

[1.5, 15 log(g)], reflecting the range of body masses (in g)

observed in terrestrial mammals and a diet, either carnivore

or omnivore/herbivore, sampled from a binomial (P = 0.5)

distribution (see Fig. 1). Figure 1 shows that the simulated

traits of the virtual species well capture the main features

of trait distribution and covariation observed in the empiri-

cal data set. This allowed us to fill gaps of information for

less known traits while considering their variability and

relationships with other traits. We used this set of virtual

species to parameterise both IDE and IBM approaches (see

Appendix S2) to derive spread rates for species represent-

ing the full range of body mass (in herbivores and carni-

vores), and to determine the relationships between different

life-history traits and spread rates, and to make a thorough

comparison of outcomes from the two modelling

approaches. A second set of >50 000 species was sampled

from the observed distribution of mammalian body mass

and diet (Wilman et al., 2014); this enabled us to estimate

the proportion of real mammal species that have modelled

spread rates lower than current estimates for climate veloc-

ity. Because of the stochastic nature of the virtual species

sampling, we sampled 10 replicates for each of >5000 spe-

cies’ body masses and diet for a total of >50 000 species,

thus maintaining the observed proportions across species

body mass and diets.

Analytical model

We modelled the range expansion velocity of the virtual spe-

cies using a stage-structured IDE as derived by Neubert &

Caswell (2000). A full description of how population projec-

tion matrices were built for each virtual species using the trait
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values for litter size, litters per year, age at sexual maturity,

longevity and annual survival is given in Appendix S2.

The model is given by Eqn (1) and describes how the popu-

lation density n (vector representing all of the life stages) at

each location x in continuous, infinite space changes from time

t to t + 1 (which represents a year in this study)

nðx; tþ 1Þ ¼
Z 1

�1
½Kðx� yÞ � Bn�nðy; tÞdy ð1Þ

Here, ○ indicates elementwise multiplication, Bn is a stage-

structured population projection matrix that describes den-

sity-dependent population growth at location y, and K(x � y)

is a matrix of dispersal kernels that describes the set of proba-

bilities of the relocation from y to x of individuals undergoing

each demographic transition. In summary, over a time step

the population grows at each location y and individuals are

dispersed. The population at location x is given by integrating

this process over all locations y. Calculation of the population

spread rate requires a population projection matrix describing

demography at low density (i.e. at the forefront of the spread-

ing population; B0) and a matrix M(s), which describes the dis-

persal kernel for each demographic transition in terms of a

moment-generating function (mgf). In the absence of good

information on mammal dispersal kernels, and for simplicity,

we assumed an exponential kernel for each dispersive stage,

which has a mgf = 1/(1 � as), where a is the mean dispersal

distance (where mean DDist ¼ median DDist
logð2Þ ), as derived for

each virtual species, and s is the wave shape parameter. Under

this model, a population forms a wave of constant shape that

advances at constant speed, and this asymptotic wavespeed c*

can be derived analytically (Neubert & Caswell, 2000) as

c� ¼ min
0\s\ŝ

1

s
ln q1ðsÞ

� �
ð2Þ

where q1 is the dominant eigenvalue of the matrix that is the

product of the demographic and dispersal matrices [Bn○M(s)].

This approach includes simplifying assumptions such as no

temporal variation or Allee effects, isotropic dispersal, and the

environment is treated as spatially homogeneous.

Stochastic individual-based model

We used RangeShifter, a single-species, spatially explicit,

individual-based simulation platform (Bocedi et al., 2014a).

RangeShifter integrates complex population dynamics with

dispersal behaviour which can be modelled in either a

phenomenological (dispersal kernels) or mechanistic

(movement models) way. Particularly, for stage-structure pop-

ulation dynamics, RangeShifter translates classic population

Fig. 1 Correlations between log-transformed biological traits in terrestrial mammals, both in empirical data (black dots) and in simu-

lated data (light blue dots). The lower panels show the Pearson’s correlation coefficients of the relationships.
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projection matrices (Caswell, 2001) into equivalent parameters

for the IBM (see Appendix S2). In our simulations, species

were allowed to expand their range across strips of homoge-

neous gridded landscapes where all cells were considered

suitable for the species. At the beginning of each simulation,

the first row of the landscape was initialised with a number of

individuals equal to the total row carrying capacity as derived

from the species population density. Demography was deter-

mined by the population matrix equivalent to that parame-

terised in the analytical model. All individuals dispersed at

the end of their juvenile stage for a distance drawn randomly

from a negative exponential dispersal kernel as derived for

the IDE. As RangeShifter is stochastic, each species simulation

was replicated 10 times. We calculated the rate of spread by

dividing the distance covered by years of simulations. The dis-

tance covered was measured as the mean of the distance of

the farthest five rows of cells weighted by the number of indi-

viduals present. The distance covered was then averaged

across the ten replicates and divided by the years of simula-

tion. See Appendix S1 for a more detailed explanation of the

IBM simulations.

Analyses

To assess which traits best predict modelled IDE spread rate,

we fitted a generalised additive model (GAM), which

included all other biological traits as a predictor and a smooth

term for SxMat as showing a nonlinearity (GMallTraits). To

assess the variance explained by individual life histories, we

performed a GLM for each biological predictor separately,

and a GAM for SxMat (GMindTraits). Similarly, we used a GAM

to assess the relative importance of demography and dispersal

in predicting spread rates and included dispersal distance and

population growth rate (the dominant eigenvalue of the popu-

lation matrix) (GMdemo). We fitted a smooth term for popula-

tion growth rate as it presented an asymptotic relationship

with the rate of spread. We fitted two GLMs and a GAM to

establish relationships between the rate of spread and body

mass (GMproxyMass), population density (GMproxyDens) and

home range area (GMproxyHR), respectively. Because these

variables are considered to be important predictors of disper-

sal distance in mammals (Whitmee & Orme, 2012; Santini

et al., 2013) and are correlated with all other traits in the vir-

tual data set, we explored their possible value as a proxy for

predicting spread rate in mammals. All GLMs and GAMs

assumed a Gaussian error and an identity link function. The

rate of spread (IDE) and all predictors were log-transformed.

The predictors of multivariate models (GMallTraits and

GMdemo) were also standardised prior to fitting the models in

order to compare their effect sizes.

To estimate the proportion of mammalian species that are

likely to have spread rates slower than the global mean veloc-

ity of climate change, we first differentiated mammal species

according to their distribution in each biome as defined by

Olson et al. (2001). We identified those mammal species occur-

ring in each biome by overlaying species geographic ranges

(IUCN, 2015) with biomes: species whose majority (>50%) of

range overlapped with a specific biome were considered as

present. According to the observed distribution of body mass

and trophic level by biomes, we divided the set of virtual spe-

cies into subsets representing the observed distribution of

mammalian body masses and trophic levels in each biome.

We then compared the spread rate predictions for all virtual

species, and for each subset, with the geometric mean of the

distribution of predicted climate change velocity as estimated

in Loarie et al. (2009) both globally and for individual biomes.

We limited this analysis to biomes with >50 species.

Finally, to establish, across mammalian trait space, the

degree of consistency in estimates of spread rate obtained

between the analytical approach (IDE) and the individual-

based simulation (IBM), we compared the two modelling

approaches and the effect sizes of different biological traits on

spread rate using a MCMCglmm multiresponse model (Had-

field, 2010; see Appendix S1 for more details).

Integrodifference equation modelling was performed in

MatLab (MATLAB and Statistics Toolbox Release, 2012), all

data analyses were conducted in R (R Core Team, 2014), and

GIS analyses were performed in GRASS GIS (GRASS Develop-

ment Team, 2012).

Results

Life-history determinants of spread rates in terrestrial
mammals

The relative importance of different traits in driving

spread rate can be inferred from the steepness of their

relationships (Fig. 2a–e). Spread rate is primarily

related to changes in median dispersal distance, fol-

lowed in order by annual survival, sexual maturity age

(inversely), litter size and litters per year (GMallTraits:

R2 = 0.97; Table S2; Fig. 2a–e), although sexual matu-

rity age only affects spread rate for values higher than

1 year of age. Except for dispersal distance, individual

life-history traits explained a low proportion of the

variance (R2 for GMindTraits: Dispersal Distance = 0.77;

Litters per Year = 0.17; Annual Survival = 0.08; Sexual

Maturity Age = 0.04; Litter Size = 0.02). A curvilinear

effect is evident in the partial dependence on the popu-

lation growth rate, which shows a strong effect for

slight increase in growth rate at low growth rates, and

smaller effects for higher growth rates (GMdemo:

R2 = 0.97; Fig. 2f).

Considering the proxy predictors, spread rate tends

to increase with increasing species body mass (GMproxy-

Mass: R
2 = 0.30) and home range area (GMproxyHR:

R2 = 0.32) and to decrease with increasing population

density (GMproxyDens: R
2 = 0.33), and at higher rates in

carnivores than in omnivores/herbivores (Fig. 3).

While body mass and population density yield a log-

linear relationship with spread rate, the home range

relationship is sigmoidal with a slower increase for

small and large home range sizes (Fig. 3). A key
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conclusion to be drawn from this analysis is that any

one proxy trait on its own provides a very weak predic-

tor of a species spread rate (see the substantial scatter

in all three panels of Fig. 3).

Estimates of the proportion of ‘at-risk’ species

Globally, almost 30% of species’ spread rates fall below

the geometric mean of the predicted climate change

velocity (Fig. 4a). This proportion greatly varies across

biomes, as a function of both local assemblage body

mass and trophic level distribution and local climate

velocity (Fig. 4b). At one extreme, we find tropical and

subtropical coniferous forests, and montane grassland

and shrublands, where about 10% of the species are

predicted to spread slower than climate velocity. At the

other extreme, we find flooded grassland and savannas,

boreal forests (taiga), mangroves, and deserts and xeric

shrublands with percentages reaching 36% of species

not able to keep pace with climate change.

How the analytical and individual-based estimates of
spread rate compare

The predicted rates of population spread of the two

models were strongly correlated (Pearson’s r = 0.73)

(Fig. 5; Table S3), but the slope of the relationship devi-

ated from 1 : 1. The IDE was characterised by higher

predicted spread rates and lower variance (r2 = 0.20)

than the IBM (r2 = 0.24). Biological predictors of spread

rate have comparable effects in the two models, with

the only exception being somewhat lower contributions

of litter size and dispersal distance variables in the IBM

(Table S2), a difference likely due to the intrinsic

stochasticity in these parameters in the latter model.

Discussion

The trait-space modelling approach presented here can

be applied for exploring a wide range of processes

when species’ data are limited, while using the

Fig. 2 Partial dependence of rate of spread (as predicted by the analytical integrodifference equation) on biological traits (a–e) and pop-

ulation growth rate (f) based on two generalised additive models. In the first (GMallTraits), modelled rate of spread is predicted using

all biological variables used for building population matrices (a–e), while in the second (GMdemo), it is predicted using median disper-

sal distance and population growth rate (f; dominant eigenvalue of the population matrix). All variables were log-transformed and

standardised prior to fitting the model.

Fig. 3 Relationship of log-transformed body mass, population density and home range area with log-transformed integrodifference

equation-predicted rate of spread fitted with GLM (a and b) and generalised additive model (c). Solid line = carnivores; dashed

line = omnivores and herbivores.
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available empirical data to constrain simulations within

ecologically realistic scenarios. It therefore addresses

the very real challenge currently faced by ecologists in

predicting how species’ populations will spread in

response to environmental change.

Biological predictors of spread rate

The method adopted to simulate virtual species

allowed us to test a large number of trait value combi-

nations which encompass the variation observed across

terrestrial mammals. The most important predictor of

the projected rate of spread is dispersal distance, fol-

lowed by the annual survival, the age at which species

disperse and are able to reproduce, the size of the litter

and the interval between successive reproductive

events. The major role of dispersal distance and age at

reproduction in spread rate has also been found for

invasive plants (Coutts et al., 2011). However, except

for dispersal distance which is rarely known, single

traits are not good predictors and the velocity at which

populations spread is better described by a multidi-

mensional predictor describing both the distance dis-

persed by individuals and the overall growth rate of

the population.

We found a positive diet-dependent relationship

between spread rate and body mass, and an even stron-

ger positive relationship with population density

and home range size. These probably reflect the

Fig. 4 (a) Distribution of predicted log-transformed mammalian spreading rates. The dashed line represents the global geometric mean

of climate change velocity as predicted by Loarie et al. (2009), and the percentage represents the species that are estimated to have a

projected spread rate slower than the climate change velocity. (b) Percentages of mammal species that are projected to have a potential

spread rate slower than predicted climate change velocity in Loarie et al. (2009) divided among the world’s biomes. The number of spe-

cies considered (species range overlapping ≥50% with the biomes) is reported in brackets.

Fig. 5 Relationship between the projected rate of spread from

the analytical IDE (integrodifference equation) and the IBM

(RangeShifter). Dashed line = 1 : 1 relationship; solid line = lin-

ear relationship between the two models’ output (major axis

regression: IBM ~ �0.13 * IDE�0.15).
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well-documented relationships between these traits

and dispersal distance in mammals (Whitmee & Orme,

2012; Santini et al., 2013). Yet, the scatter around

these relationships limits their usefulness in making

predictions.

Mammal abilities to track shifting climate

Worryingly, the models projected that many mammal

species may spread at a slower velocity than that pre-

dicted for the shifting climate (i.e. Loarie et al., 2009).

This endorses previous studies, which suggest that a

majority of mammal species are likely to lose parts of

their ranges in the near future (Thomas et al., 2004;

Thuiller et al., 2006; Levinsky et al., 2007; Schloss et al.,

2012) and that measures to mitigate this effect will be

necessary. Species that will be mostly affected by range

loss are small species that have short dispersal dis-

tances and that occur in biomes where the climate is

shifting more rapidly. The mammalian assemblages of

flooded grasslands and savannas, taiga, deserts and

xeric shrublands, and mangroves are projected to be

particularly threatened. Overall, close to 30% of species

are projected to be unable to spread faster than future

climate change. Realised spread rates could be dramati-

cally slower where the natural habitat of the biome is

largely converted and fragmented, as is certainly the

case for some of the biomes mentioned above.

It is important to note that we focussed on only one

of the factors – albeit a very important one, population

spread rate – that determines vulnerability to climate

change (Pacifici et al., 2015). We compared spread rate

to a simplified climate change velocity that only consid-

ers average temperature changes, while ignoring other

changes in climatic variables, land use changes and

species interactions (Lenoir & Svenning, 2014). Also,

although a low velocity of spread in relation to local cli-

mate velocity is an indication of future range loss, only

spatially explicit models allow one to provide quantita-

tive estimates of range loss (Thomas et al., 2004; Thuil-

ler et al., 2006; Levinsky et al., 2007; Schloss et al., 2012;

Travis et al., 2013). However, comparing spread rates to

climate change velocity is a straightforward and simple

metric, which allows one to start focussing on those

taxa most at risk (Nathan et al., 2011; Bullock, 2012).

Stochastic and deterministic models of spread rate

In agreement with Travis et al. (2011), the two

approaches to modelling population spread yielded

concordant results, although the analytical model

consistently predict higher rates of spread. Further-

more, the relative contributions of individual variables

to projected spread rates were similarly described by

the two approaches. Analytical models are of great use

for predicting spread rate for a large number of species,

which can become computationally demanding if using

simulations. Simulations, employing either IBMs or

numeric realisations of IDEs, are useful when mod-

elling population spread in real and complex land-

scapes and sufficient information is available to

parameterise them. Here, we used simplified individ-

ual-based simulations to allow the comparison with the

analytical IDEs and to use the limited set of variables

for which sufficient ecological data were available. Such

simple models can also be good approximations of

spread across moderately varying landscapes (Dewhirst

& Lutscher, 2009; Gilbert et al., 2014a) and can be modi-

fied straightforwardly to represent more complex varia-

tion (Gilbert et al., 2014b). It is clear that dispersal and

demography vary within species due to a range of fac-

tors such as sex, genetics or landscape context (e.g.

Bocedi et al., 2014b), but the full potential of realistic

simulations for risk estimation is even more hampered

by a lack of data quantifying such variation (e.g. move-

ment rules; Palmer et al., 2011). As general information

becomes available on how certain individual or popula-

tion processes vary according to these intrinsic and

extrinsic factors (e.g. butterfly dispersal behaviour;

Stevens et al., 2010), it will become possible to make

general predictions using more realistic simulations.

A further simplification is that we modelled dispersal

distance as a negative exponential function, which may

not be representative of real dispersal distributions

(Nathan et al., 2012), especially underestimating long

distance events. Although there are other, potentially

more accurate, dispersal functions (Nathan et al., 2012)

and alternative mechanistic approaches (Palmer et al.,

2011), the exponential function is commonly used (e.g.

Schloss et al., 2012; Santini et al., 2016) as it can be

derived from the average dispersal distance, which is

often the only metric available.

While these factors preclude highly accurate predic-

tive models, this lack of knowledge applies to all

approaches undertaken so far (Thuiller et al., 2006;

Schloss et al., 2012; Visconti et al., 2015). The primary

purpose of our approach is heuristic, allowing us to dis-

entangle the relative contribution of different life-his-

tory traits to species spreading abilities, and thus to

make broad-brush predictions about the relative abili-

ties of mammals to keep pace with climate change

given their traits.

Benefits of the approach and future directions

Empirical data describing spread are sparse and

rarely comparable among different contexts, and

disentangling the contributions of species biology from

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., doi: 10.1111/gcb.13271
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those of landscape and other environmental factors is

generally difficult, if not impossible. Simulation of vir-

tual species provides a valuable tool for deriving gen-

eral predictions about ecological processes, assessing

the determinants of variation among species in these

processes, and projecting risks from environmental

change. Previous approaches to simulating virtual spe-

cies with multiple traits ignore either uncertainty or

trait covariation. Many species’ traits scale with body

mass, and even when the effect of body mass is con-

trolled, other life-history traits are significantly corre-

lated, due to phylogeny, evolutionary strategies and

physical constraints (Bielby et al., 2007). If such covaria-

tion in traits is ignored, random sampling can lead to

virtual assemblages of trait values that are unrealistic,

leading to (i) uncertainty about the role of each individ-

ual trait in the process investigated, (ii) the creation of

artificial trait combinations that are outside those found

in nature and (iii) limited applicability of any results

with respect to real species. To overcome this problem,

allometric relationships might be used to generate ide-

alised species (e.g. Kitzes & Merenlender, 2013), or to

select real species representative of target groups (e.g.

Schippers et al., 2011), or representative life-history cat-

egories (e.g. Coutts et al., 2011). However, these

approaches ignore real biological variability and uncer-

tainty around life-history trait relationships and so con-

strain our ability to investigate the full range of

biological possibilities, and hitherto have limited our

ability to provide reliable analyses and modelling pro-

jections.

In this study, we have developed and demonstrated

the use of virtual species that represent the trait values

and covariations observed in nature, which can provide

a deeper understanding of important ecological pro-

cesses, such as the ability of species to track shifting cli-

mate. Our approach is applicable to address many

other ecological questions, for which mechanistic mod-

els are available, but where data availability hampers

our capacity to apply them to real species. This

approach allows one to use available information while

accounting for the uncertainty due to our limited

knowledge of other parameters. Given the diversity of

life, the lack of knowledge for most species and the

increasing threats to biodiversity, it is important to

develop a strong theoretical underpinning that can be

generalised at the species level in order to provide

guidelines for management in applied ecology and con-

servation biology.
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