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Abstract
Multidimensional efficiency maps are commonly used in high-energy physics experiments to mitigate the limitations in the 
generation of large samples of simulated events. Binned efficiency maps are however strongly limited by statistics. We pro-
pose a neural network approach to learn ratios of local densities to estimate in an optimal fashion efficiencies as a function 
of a set of parameters. Graph neural network techniques are used to account for the high dimensional correlations between 
different physics objects in the event. We show in a specific toy model how this method is applicable to produce accurate 
multidimensional efficiency maps for heavy-flavor tagging classifiers in HEP experiments, including for processes on which 
it was not trained.

Keywords  Neural networks · Fitting methods · Performance of high energy physics detectors

Introduction

An overarching issue of Large Hadron Collider (LHC) 
experiments is the necessity of massive numbers of simu-
lated collision events to estimate the rates of expected pro-
cesses in very restricted regions of phase space. To mitigate 
this difficulty, a commonly used approach is the event 
weighting technique which replaces selection cuts with event 
weights. Assuming a set of N events before selection cuts 
that yield Nf events after the selection, the estimated relative 
statistical uncertainty on the number of selected events will 
be 1∕

√
Nf . If instead of applying selection cuts, a weight 

corresponding to the selection efficiency wi is applied to 
each event indexed by i, then an estimate of the variance will 

be 
∑

w2
i
 , thus yielding a relative statistical uncertainty on 

the estimated number of selected events of 
�

(
∑

i≤N w2
i
)∕N . 

For the method to be effective, the variance of the weights 
needs to be small compared to the statistical uncertainty on 
Nf , which is typically the case.

So-far weights have been defined from binned efficiency 
maps. The difficulty in these methods is the range of appli-
cability of efficiency maps that are limited in the number of 
dimensions (typically two), and subsequently, fail to capture 
more subtle effects that appear in specific regions of phase 
space. To account for these dependencies, a multidimen-
sional mapping is required. This implies large statistical fluc-
tuations in the map itself that defies the original purpose of 
the method.

A common example of the usage of event weighting tech-
niques is typically given by analyses relying on the identifi-
cation of jets originating from b-quarks (b-tagging) [1–3]. 
Applying a weight corresponding to the expected identifica-
tion efficiency of a jet, i.e. the probability of being identified 
as a b-jets, instead of a direct selection cut can provide large 
gains in statistics (especially in cases of percent level effi-
ciencies to be applied on several jets in an event). However, 
obtaining universally applicable maps requires to account for 
a large number of parameters. Some of which are typically 
not known or difficult to take into account with the binned 
approach.
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The goal of the proposed method is to provide higher 
dimensional parametrizations of efficiencies that can capture 
non-trivial dependencies while making optimal use of the 
available statistics and therefore be applicable in any analy-
sis context considered. When achieving this goal the param-
eterization will be referred to as universal. Multidimensional 
reweighting techniques have been proposed in the context 
of HEP experiments for BDT and neural networks [4–7]. 
We propose an approach based on Graph Neural Networks 
(GNN) [8, 9]. Compared to other non-equivariant deep-
learning algorithms, GNN can naturally cope with variable 
size datasets that have no inherent order while optimally 
exploiting the pair-wise dependencies between different 
objects in the event.

The case study used is the b-tagging performance in the 
analysis of Higgs boson decays to b-quarks.

The strength of the proposed method relies on its ability 
to model high dimensional correlations between jets. These 
jet-by-jet dependencies are not given explicitly as input vari-
ables to the neural network, but rather they are inferred from 
single-jet properties during the training of the network. In 
case multiple jets in the event are b-tagged, the jet-efficien-
cies provided by the NN can be combined to derive an unbi-
ased estimator of the event tagging efficiency. A toy model is 
built to probe the capability of the Machine Learning (ML) 
approach to provide a robust parameterization of the b-tag-
ging efficiency.

The paper is organized as follows. Section “Event Weight-
ing Technique” introduces the event weighting technique and 
describes the main challenges and goals of the method. Sec-
tion “Simulated samples” describes the simulation technique 
used to generate the toy data-set. Section “Efficiency Map 
Techniques” describes a map-based technique that is com-
monly used to estimate the event weight based on a param-
eterization of the b-tagging classifier performance. Section 
“Truth Tagging with Neural Networks” describes the GNN 
model, whose results are compared to the ones of the map-
based technique in Section “Results”. In Section “Discus-
sion” some considerations about the usage of the proposed 
methodology in real experiments are presented. Conclusions 
are drawn in Section “Conclusions”.

Event Weighting Technique

In high energy physics experiments (HEP), estimating a 
background rate or a signal efficiency from a selection cut 
is most accurately achieved by a full simulation of the event. 
However, the precision of such an estimate can be heavily 
affected by the limitation in the number of events that can 
be simulated in a given region of phase space. If instead of 
selecting events based on a classification cut, a weight cor-
responding to the classifier efficiency is applied, significant 

improvements in sensitivity can be gained. This procedure 
is also known as Tag-Rate-Function (TRF) method or Truth 
Tagging (TT) [10–12].

Selections can be interpreted as a classification depending 
on a vector of input variables � . The classifier can be repre-
sented by a function f (�) and the classification by a simple 
selection cut on the classifier above a given threshold Tf . The 
classifier can represent simple cuts or a multivariate method. 
Typically the variables � depend on several underlying vari-
ables which will be denoted by �.

In the case of heavy-flavor tagging, � is typically defined 
as the jet transverse momentum pT and pseudo-rapidity � 
[10], while � includes the reconstruction of secondary ver-
tices and a combination of track impact parameter informa-
tion estimated from the properties of a set of reconstructed 
charged-particle tracks. This information is then combined 
to produce a multivariate jet-based classifier f (�) . Figure 1 
schematically shows the usage of the efficiency for event 
weighting to reduce statistical uncertainties on simulated 
Monte-Carlo (MC) samples.

A parametrized classifier efficiency can be defined as:

where Tf is the operating working point threshold of the clas-
sifier; the numerator, the selected number of jets of a given 
flavor at this working point; and the denominator represents 
the total number of jets of the same flavor.

To achieve a parametrization of the efficiency, applicable 
to a large number of analyses, a set of relevant variables 
� must be defined such that the conditional probability of 
the classifier inputs, x, at a given value of � , p(�|�) , will 
be identical between samples or different regions of phase 
space, as illustrated in Fig. 2.

This motivates the efficiency maps approach, where an 
attempt is made to parametrize �jet binned in � . Efficiency 
maps are a commonly used tool in collider experiments. 
However, taking into account the full dependencies of the 
classifier efficiency is often impractical using efficiency 
maps. The reason being that a small enough set of variables 
that fully capture these dependencies might not be available.

In the case of b-tagging it was found that while pT and � 
are indeed the most dominant variables in determining �jet , 
there are other variables that affect the efficiency and could 
be considered had we known them, e.g. the angular separa-
tion and flavor of the adjacent jets [2, 13].

We propose a different approach to estimate �jet based 
on a neural network built using a GNN. The neural net-
work takes as input a set of jet-variables �je

 for each jet 
j in the event e. The input variables are the jet-(pT , � , � , 
flavor ) and the neural network model is trained to predict 
the per-jet efficiency �jet . Since the true �jet is conditional 

(1)𝜖jet(�) =
N(f (�) > Tf|�)

N(�)



Computing and Software for Big Science            (2021) 5:14 	

1 3

Page 3 of 12     14 

on the jet environment, its proximity to other jets, the 
neural network should learn to model that dependence, 
even if not explicitely given as input variable.

Simulated Samples

The samples employed in this study consist of toy pp col-
lision events with multiple jets generated with generic kin-
ematic and flavor properties. We assume a cylindrical coor-
dinate system where particle beams collide on the z axis, 
xy is denoted as the transverse plane, � is the azimuthal 
angle, � the polar angle, and pseudo-rapidity � is defined as 
� = − log tan(�∕2).

The generated events are sampled using an exponential 
function to fix the number of jets in the event and Gaussians 
or polynomial distributions to sample the jet kinematics vari-
ables and the angular distance between two jets 
ΔR(i, j) =

√
(�i − �j)

2 + (�i − �j)
2 . More details about the 

event generation can be found in “Appendix A”.
Three separate samples of four-momenta representing b-, 

c- and light-jets are generated. The b-tagging efficiency is 
modeled using ad-hoc parameterizations using a multivari-
ate Gaussian distribution depending on pT and � which is 
modified by a multiplicative correction factor depending 
on the angular distance ΔR(i, j) of other jets in the event as 
well as their flavor. This efficiency is chosen to mimic the b
-tagging performance of ATLAS and CMS [1, 14] and it is 
expressed as:

where �fi(pT, �) is the two-dimensional parameterisa-
tion of the efficiency to tag a jet of a given flavor fi , and 
𝜖ij
(
ΔR(i, j), fj

)
 is the one-dimensional correction factor which 

accounts for the effect of any close-by jet j of flavor fj in the 

(2)𝜖jeti
= 𝜖fi (pT, 𝜂) ⋅

∏
j

𝜖ij
(
ΔR(i, j), fj

)
,

Fig. 1   Usage of event weighting to reduce MC statistical uncertain-
ties of some observable distribution. The plot on the top shows a clas-
sifier f (�) used to select events. The events which pass the classifi-
cation requirement are represented in green while the rejected events 
are shown in red. The bottom panel shows the event weighting where 

the classifier efficiency �(�) is used to weight the events rather than 
rejecting them. � are the variables used by the classifier. For b-tag-
ging, � includes variables such as the secondary vertex information 
while � is the set of relevant variables used for the parametrization of 
the efficiency, such as the jet pT and �

Fig. 2   Illustration of a universal parametrization of the classifier effi-
ciency. The joint distribution of ( �,� ) is generally different between 
two samples. The top right plot shows the overall probability distri-
bution of the input variables of the classifier, P(x) , for two different 
samples. Different P(�) distributions lead to different overall efficien-
cies between the two samples. The bottom right plot shows the con-
ditional probability distributions, P(�|�) , between the two samples. 
The set of relevant variables � is defined to provide a P(�|�) which is 
sample independent. Under this condition, the parametrized classifier 
efficiency �(�) is expected to be universal
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event. The efficiencies �fi(pT, �) and the correction factors 
𝜖ij
(
ΔR(i, j), fj

)
 are shown in Fig. 3.

The true b-tagging efficiency of each individual jet in the 
event is computed using Eq. 2. This efficiency value �jeti is 
used to emulate b-tagging by assigning a boolean value to each 
jet ����� which is set to 1 based on a random score si sampled 
from a uniform distribution. Namely, if si < 𝜖jeti

 the i-th jet in 
the event is considered to be b-tagged ( �����=1). In many 
physics analyses, multiple jets in the event are required to pass 
b-tagging selections, hence the efficiencies of the single jet 
need to be combined to form a per-event efficiency. In this 
toy analysis the event selection is based on the two jets with 
highest pT in the event (“leading jets”, labeled as 1 and 2), and 
it is defined depending on the number of b-tagged jets, ntag:

(3)�event =

⎧
⎪⎨⎪⎩

(1 − �1)(1 − �2) if ntag = 0,

�1(1 − �2) + (1 − �1)�2 if ntag = 1,

�1�2 if ntag = 2.

Efficiency Map Techniques

The estimation of �event in the case of b-tagging in real experi-
ments is commonly based on the binned two-dimensional effi-
ciency maps in the jet pT-� plane [12, 15], 𝜖 , derived from MC 
simulation separately for b-jets, c-jets and light-jets, which are 
used to approximate the per-jet b-tagging efficiency of Eq. 2 
as:

The choice of the variables used to parameterize 𝜖 is moti-
vated by the expected dependency of the b-tagging perfor-
mance. For example, as the transverse momentum of a b-jet 
increases, the dilation of its lifetime in the laboratory frame 
results in secondary decay vertices which are reconstructed 
further from the interaction point of the primary collision. 
The reconstruction efficiency of secondary vertices is not 
constant as a function of their distance to the primary ver-
tex and this affects the response of the b-tagging classifier. 
Similarly, the typical configuration of multi-purpose detec-
tors produces a dependency of track reconstruction perfor-
mance on detector geometry, which in turn propagates into 
a dependency of the b-tagging performance on �.

(4)𝜖jet ≈ 𝜖i = 𝜖fi(pT, 𝜂).

Fig. 3   The parameterized efficiencies used to emulate the perfor-
mance of the flavor tagging algorithms. The efficiencies for each fla-
vor as a function of pT and � , �fi (pT, �) in the top three panels. The 

multiplicative correction factor 𝜖ij
(
ΔR(i, j), fj

)
 which accounts for the 

proximity ( ΔR(i, j) ) and flavor of the close-by-jet fj is shown at the 
bottom of the figure
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From the per-jet efficiency maps 𝜖  the event weight 
�event is computed factorizing the contribution from the 
various jets, similarly to what is shown in Eq. 3.

The main limitation of this map-based approach is 
the assumption that correlations between jets can be 
neglected and that the efficiency of b-tagging a single 
jet only depends on its pT and � . The dependency of effi-
ciency on residual observables is marginalized out when 
deriving 𝜖  from MC samples, introducing a bias that is 
particularly significant for final states with large jet mul-
tiplicities or events where close-by or overlapping jets 
are reconstructed from the decay of boosted resonances. 
A dedicated ΔR(i, j) reweighing was derived and used to 
correct for this effect in previous H → bb̄ and H → cc̄ 
analyses [2, 13]. Given the uncertain nature of this cor-
rection and the limited statistics of the sample used to 
derive it, a large systematic uncertainty equal to half of 
the correction was assigned to the relevant MC templates. 
The overall uncertainty related to the statistics of the MC 
templates constitutes a contribution up to around 20% to 
the total background uncertainty [3, 16].

Additional limitations come from the binning of 
the two-dimensional maps. To reduce discontinuities, 
smoothing techniques need to be employed. However, 
these techniques often require a non-trivial interplay 
between the bin sizes and the parameters of the smooth-
ing model which makes their implementation unpractical 
compared to a single unbinned neural network training. 
Finally, the NN technique provides a simultaneous esti-
mate of the efficiency for each jet-flavor in contrast to 
the map-based approach which requires a dedicated para-
metrization for each of the flavors independently.

Truth Tagging with Neural Networks

Taking into account the full dependency of the jet-tagging 
probability on all event observables would be unpractical 
with a map-based approach. ML techniques, on the other 
hand, provide the possibility to scale the problem to higher 
dimensionality and, therefore, to more challenging physics 
topologies.

In principle, a standard feedforward neural network could 
be used to perform the task. However, these models are not 
able to optimally cope with inputs of variable sizes and thus 
the overall correlations between jets in the event cannot be 
easily exploited during the training. The technique we pro-
pose uses a GNN to capture efficiently these correlations. A 
GNN also offers a more natural representation of the data by 
exploiting pair-wise relationships between the jets. In our 
toy experiment, each jet is represented by a set of variables 
corresponding to (pT, �,�, flavor) . The neural network takes 
as input these variables for each jet in the event e, �e = 
((pT1, �1,�1, flavor1) , ..., (pTnjets , �njets , �njets

,flavornjets) ) and 
learns to approximate the efficiency given in Eq. 2 for each 
of these jets. Note that the inputs to the neural network do 
not include ΔR between neighboring jets, which is the vari-
able that determines the correction applied in Eq. 2 but 
rather this dependency is inferred directly during the 
training.

Model Architecture The model, referred to as NN in the 
following, consists of two components: a GNN [8] and a 
jet efficiency network. The flow of information between the 
different parts is illustrated in Fig. 4.

The GNN takes as input the njets × 4 matrix of jet fea-
tures, and outputs njets × dhidden matrix of jet hidden 

Fig. 4   Schematic representation 
of the neural network structure
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representations.1 Thehidden representation for each jet is 
based on the information of the other jets in the event. The 
jet efficiency network then operates on each jet individu-
ally. It takes as an input the jet variables and the jet hidden 
representation and it returns as an output the predicted �jet 
for every jet in the event. More details about the model archi-
tecture can be found in “Appendix B”.

Training Procedure The network is trained to predict the 
njets × 1 vector of efficiencies. The loss function used for 
training is the weighted binary cross-entropy (BCE), which 
for a single event it can be written as:

where the sum runs over the sets of jets, Njets , in the event, 
e, which pass ( �����=1) and do not pass ( �����=0) b-tag-
ging and �NN(�e)i is the i-th component of the output of 
the NN, a vector of variable size representing the predicted 
efficiency of tagging each jet in an event. The loss function 
being minimized is the sum of BCEe for all the events in a 
batch. The factor � controls the weight of the non-tagged 
events and can be used to balance the number of tagged and 
non-tagged jets to facilitate the training. This approach could 
be useful for light-jets where the number of non-tagged jets 
is O(100) larger than the tagged ones. Even if this factor 
was found to be helpful in tests conducted with feedforward 
networks, for GNNs it was found to have a negligible impact 
on the final results. Therefore, � =1 is assumed in the follow-
ing discussions.

(5)
BCEe =

1

Njets

Njets∑
i

[
−(�����i) log(�NN(�e)i)

]

−
[
�(1 − �����i) log(1 − �NN(�e)i)

]
,

Using a well-known result, the neural network trained 
using BCE as loss function converges to the following ratio 
[17]:

�NN(�e)i is the output of the network for the i-th jet in the 
event e which approximate the true efficiency �jeti given in 
Eq. 2.

It is worth noticing that the NN computes directly the effi-
ciency �NN(�e)i without regressing ptag(�e)i and pnon-tag(�e)i 
independently.

Additional details on the training procedure can be found 
in “Appendix C”.

Results

In this section, the result of approximating �jet and �event 
using the jet b-tagging efficiencies calculated from the NN 
are presented and compared to the results obtained with the 
map-based technique discussed in Section 4. Three main 
aspects are discussed: the modeling of single-jet distribu-
tions after jet weighting, the capability of the NN technique 
to provide an unbiased estimation of �event , and the independ-
ence of the GNN performance on the choice of the sample 
used for training.

The true and predicted efficiencies are shown as a func-
tion of the set of relevant parameter � in Fig. 5 for b-jets.2 
The relative residuals between �true and �predicted for all jets 

(6)�NN(�e)i ≈
ptag(�e)i

ptag(�e)i + pnon-tag(�e)i
≈ �jeti

,

Fig. 5   Violin plot illustrating the distributions of the true and predicted efficiency as a function of different kinematic variables for b-jets

2  Similar results were found for c-jets and light-jets and are thus not 
shown for simplicity.

1  d
hidden

 , a hyperparameter of the model, is the size of this representa-
tion and it is fixed to 256.
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in the dataset is shown in Fig. 6. For both Figures, �true is 
computed during the generation of the data-set following 
Eq. 2. While, as expected, the map-based approach is unable 
to provide good modeling of the ΔR(i, j) distribution, the 
NN predictions are in good agreement with the distribu-
tions obtained when jets pass the tagging selection (direct 
tagging) and with true efficiency weights. These results give 
us confidence about the ability of the GNN to build an inter-
nal representation capable of capturing additional jet-to-jet 
information relevant to estimating the true tagging efficiency

Results of the reweighing procedure are further studied 
when both the leading and sub-leading jets are classified as b
-jets, and compared to those from direct tagging. In this case, 
the event weight is simply computed as the product of the 
efficiencies of b-tagging each of the two jets, �event = �1 ⋅ �2 . 
It is therefore important to study the modeling of distribu-
tions that capture correlations among individual jet observa-
bles, once event weights are applied.

The invariant mass distribution computed from the lead-
ing and subleading jets in each event is shown in Fig. 7. The 
figures are further sub-divided based on the true flavors of 
the two jets. The uncertainty on the efficiency prediction are 
estimated using a bootstrap procedure. The source of this 
uncertainty originates from the limited size of the training 
data-set and the inherent randomnesses of the training pro-
cess. A more detailed discussion on the uncertainty bands 
can be found in Appendix 10. Similarly to the single-jet 
case, the NN predictions show good agreement compared to 
the true efficiency while the map-based approach is unable 
to properly capture the effect of close-by jets on b-tagging. 
It can also be noted that the reweighing procedure based 
on NN predictions improves the statistical uncertainly com-
pared to the direct tagging.

Finally, the generality of the method is probed by using 
the same network to reweight events from a separate sample 
with different jet pT , � and ΔR(i, j) distributions compared 
to the training sample. More details about this sample can 
be found in “Appendix A”. Figure 8 shows the results for 
the angular separation between the two decay products as 
well as for the reconstructed invariant mass of the generated 
boson. An overall good agreement is found between the NN 
results and direct tagging, similarly to the previous cases. 
This gives confidence about the universality of the proposed 
approach: as long as the phase space is sampled adequately 
during training, the efficiency estimated using the neural 
network is expected to be independent on the chosen sample.

Discussion

In this section we summarize some of the main considera-
tions aimed at generalizing the proposed approach for use 
cases beyond the toy model presented in this paper.

The size of � : In the toy data-set we used a relatively 
small number of variables that control the efficiency the 
network was required only to infer the ”hidden” variable 
ΔR(i, j) . In more realistic applications, � may include 
more variables and the function �(�) may be more compli-
cated. To cope with this, the inputs features � may need to 
be extended with additional variables. The number of the 
model learnable parameters also needs to be large enough 
so that the model is sufficiently expressive to describe 
�(�) . Any variables potentially correlated with the tagging 
decision could be used to ensure that all correlations are 
captured. Neural networks are a particularly suitable tool 
to perform this task due to their flexibility to cope with 
higher dimensions.
The functional form of �(�) : We assumed a relatively 
simple efficiency in Eq. 2. In principle, the neural net-
work can learn any function, no matter how complex the 
functional form is, as shown in Ref. [18]. The method can 
be used in scenarios where the form of �(�) may present 
more complex dependencies between the efficiency and 
the relevant variables �.
Systematic uncertainties: In the applications of the sim-
ple efficiency maps, the insufficient capture of the exist-
ing underlying correlations requires the introduction of 
systematic uncertainty. This method is aimed at avoiding 
this systematic error, it will, however, require thorough 
checks to ensure that its estimates are accurate.
Generalization of the method: In the proposed 
approach we have focused our studies to approximate 
efficiency, i.e. density ratios between two complemen-
tary classes. The method can also be generalized to 

Fig. 6   Relative residuals distributions as predicted by the NN and the 
map-based approach for each individual jet in the event. The mean 
and RMS of the distributions are outlined in the plot
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approximate ratios between two separate classes.3 A 
multidimensional ratio between two classes could be 

used in a variety of different applications, such as to 
derive multi-dimensional scale factors from data to 
correct the tagging efficiency in Monte Carlo simula-
tion.

Fig. 7   istribution of the invari-
ant mass of the two leading jets, 
when the events are weighted by 
the product of true efficiencies, 
as calculated in Eq. 2 (grey). 
Also shown is the distribution 
for events where both jets are b
-tagged (direct tagging, black), 
or when the events are weighted 
using the estimated efficiency 𝜖 
from the map-based approach 
(blue) or using the NN output 
(red). The lower pad shows the 
ratio between all distributions 
and the one obtained with true 
weights. Events are split into 
categories based on the true 
flavor of the two leading jets

3  In such cases, the loss function needs to be changed to cope with 
non-complementary classes as discussed in Ref. [17]
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Conclusions

The parametrization of classifier efficiencies can play an 
important role to mitigate the limitations in the number of 
simulated events at LHC experiments. To be effective, par-
ametrized classifier efficiencies need to be accurate in any 
context and therefore need to capture the dependencies on 
event properties that are used in analyses and which entail 
variations of efficiencies. A new technique that optimally 

exploits these dependencies is proposed. This technique 
is based on graph neural networks that provide an esti-
mate of ratios between multidimensional local densities. 
We use the case of the identification of heavy-flavor jets 
as a topical example building a toy model based on ad-
hoc parameterizations of the classifier efficiency inspired 
by the observed dependencies of b-tagging performance 
in the ATLAS and CMS experiments. A Graph Neural 
Network is used to exploit correlations between jets in the 
event to provide a less biased parametrization compared 
to the canonical map-based method.

A toy example is used to probe the performance of 
the method, which takes as an input the true flavors and 
momenta of reconstructed jets, and returns the b-tagging 
efficiency of each. These efficiencies are used to build the 
per-event weights in a sample of simulated events with 
multiple b-tagged jets. We use the estimated efficiency for 
the event reweighing technique which is used to reduce 
the statistical fluctuations of Monte Carlo samples after 
classification.

Results show good compatibility between per-jet and 
per-event kinematic distributions obtained with the pro-
posed approach and the distributions expected from the 
direct application of b-tagging. We also show that the 
proposed technique can generalize to samples with input 
distributions differing significantly compared to the train-
ing sample while covering the same phase space.

Appendix A: Sample Generation Details

This section describes the event generation of the toy 
model employed throughout this paper. The number of jets 
in the event is sampled using the following function: e−

Njets

4  . 
At least two jets with pT > 20GeV and |𝜂| < 2.0 are gener-
ated. For each jet in the event, the jet transverse momen-
tum is sampled from a gaussian distribution centered at 20 
GeV with a width of 200 GeV, the sampling range is cho-
sen to be [20, 600] GeV. The pseudo-rapidity of the lead-
ing jet in the event is sampled from a gaussian distribution 
centered at 0 with a width of 0.5 while the the azimuthal 
angle is sampled from a uniform distribution bounded in 
[0, 2 � ]. The angular variables of the other jets in the event 
are chosen by sampling from the square root of the angular 
distance, 

√
ΔR(i, j) , with ΔR(i, j) =

√
(�i − �j)

2 + (�i − �j)
2 

computed w.r.t. the leading jet. For a given value of 
ΔR(i, j) , the jet angles are sampled from a uniform distribu-
tion in the � − � plane at the fixed ΔR(i, j) value. The 
masses of the single jets are fixed at 2 GeV. These param-
eters ensure an invariant mass distribution similar to the 

Fig. 8   Distribution of the ΔR(i, j) (top) and invariant mass (bottom) 
of the leading-subleading jet system, obtained for events where these 
jets are classified as b-tagged (black), compared to the same distribu-
tions obtained when these jets are instead weighted with their prob-
ability of passing b-tagging, calculated using the true weight � from 
Eq.  2 (grey), using the efficiency 𝜖 from the map-based approach 
(blue) or using the NN output (red). The lower pad shows the ratio 
between the two latter distributions and the one obtained with true 
weights
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one obtained in W∕Z+jets events, as mentioned in the 
main body of the paper.

A second sample, referred to as alternative sample, was 
generated with different kinematic distributions compared to 
the training sample. For this purpose, events were simulated 
in which a boosted scalar particle decays in exactly two jets 
per event, where the pT of the decaying particle is generated 
from an exponentially decaying distribution, and its mass is 
generated from a Gaussian distribution peaked at 90 GeV. 
The boson decays with a rate of 33% to light-, c- or b-jets. A 
comparison of the kinematic variables between the training 
sample and the boson sample is shown in Fig. 9. It is worth 
noticing that the overall distributions are different between 
the training and the alternative samples but there is overlap 
between the jets phase space.

Appendix B: Model Architecture

GNN Architecture. The GNN is built from a stack of ”GN 
blocks” as described in [8]. The GN block is shown sche-
matically Fig. 10.

Each GN block takes in a matrix with shape njets × din , 
where din is the size of the vector representing each jet. The 
output is a njets × dout matrix where each jet representation 
has been updated based on the representation of the other 
jets in the event.

Internally, the output representation is formed from a con-
catenation of two components.

The first component is a jet representation created by col-
lecting information from other jets—first the input is rear-
ranged to form all the ordered pairs of jets ( n ⋅ (n − 1) for n 
jets in an event) by concatenating the input features of the 
two jets. A MLP is then applied to the jet-pairs (MLP1 in 
Fig. 10). The output is summed for groups of jet-pairs who 
share the same ”first jet” (note the pairs are ordered), result-
ing in a representation of size 1

2
dout for each of the njets . This 

representation is passed through another MLP (MLP3, not 
shown in Fig. 10), which maintains the same output size.

The second component is formed by an MLP (MLP2 in 
.reffig:gnnspsarch) applied to each jet, creating a representa-
tion of size 1

2
dout.

Fig. 9   Normalized distribution of the jet-pT , jet-� and ΔR(i, j) for the training and the alternative sample

Fig. 10   GN block architecture
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The resulting njets × dout representation is normalized, 
such that each jet representation has Euclidean norm of 1.

The GN blocks are applied to the input data sequentially. 
After the application of each GN block, the initial input of 
size njets × jet features is concatenated with the output (a 
”skip connection”). This is done to optimally exploit the 
known dependencies of the b-tagging efficiency with the jet 
transverse momentum and pseudo-rapidity. While the output 
of the GN block is essential to encode the jet-by-jet as well 
as single-jet dependencies, the skip connection is only used 
to facilitate the convergence of the training procedure.

Appendix C: Model Details

GNN layer sizes ( din,dout):

–	 (4, 256)
–	 3 layers of (256 + 4, 256)

GN block MLP1: ReLU activation between each layer, and 
a final Tanh activation on the final layer.

–	 (2 ⋅ din,
1

2
⋅ (2 ⋅ din +

1

2
⋅ dout))

–	 (
1

2
⋅ (2 ⋅ din +

1

2
⋅ dout),

1

2
⋅ (2 ⋅ din +

1

2
⋅ dout))

–	 (
1

2
⋅ (2 ⋅ din +

1

2
⋅ dout),

1

2
dout)

GN block MLP2: ReLU activation between each layer, and 
a final Tanh activation on the final layer.

–	 (din,
1

2
⋅ (din +

1

2
⋅ dout))

–	 (
1

2
⋅ (din +

1

2
⋅ dout),

1

2
dout)

GN block MLP3: ReLU activation between each layer, and 
a final Tanh activation on the final layer.

–	 (
1

2
dout,

1

2
dout)

–	 (
1

2
dout,

1

2
dout)

Jet Efficiency MLP layers ( din,dout):

–	 (256 + 4, 256)

–	 (256, 128)
–	 (128, 50)
–	 (50, 1)

Training Procedure and Uncertainty 
Estimation

The uncertainty of the neural network estimate comes from 
two sources. The first, referred to as training uncertainty, is 
related to the network training procedure and the fact that 
it will not always lead to the same final network parameters 
depending on the choice of initial training parameters. This 
is due to the inherent randomness of the training processes 
with stochastic gradient descent. The second is the statistical 
uncertainty related to the finite size of the training sample.

The training is done on 1.5 million events, for 40 epochs, 
with a batch size of 5000 events. 500 K events are used as 
a validation set and 100 k events are used for evaluation. 
After each epoch of training, the loss is evaluated over the 
validation set and the model with the smallest validation set 
loss over the 40 training epochs is saved. The batch size is 
particularly important for this task as a significant amount 
of tagged and non-tagged jets needs to be present to reduce 
statistical fluctuations during training.

The training uncertainty can be reduced by using ensem-
bles of networks, where for one given training dataset, the 
training is repeated multiple times, and the ensemble of 
trained models is considered as our final estimator—using 
the mean of the network predictions as the efficiency esti-
mate. To estimate the training uncertainty of either a single 
network or the ensemble, we repeat the training 100 times, 
training either 100 single networks or 500 networks (100 
ensembles of 5 networks).

The statistical uncertainty can be estimated by using a 
bootstrap procedure. Toy-data of size 1.5 M events are sam-
pled with replacement from the original dataset. Similarly 
to what is done to estimate the training uncertainty, for each 
toy dataset 5 different networks are trained. The evalua-
tion is run over this ensemble of networks and the standard 
deviation is used as an estimate of the statistical uncertainty. 
The uncertainty estimated with this method is expected to 
encompass both the uncertainty from the finite size sample 
and the training uncertainty. Figure 11 shows the distribu-
tions of relative uncertainties in each case, training-only for 
the single net and the ensemble and the total uncertainty 
from the bootstrap procedure. It can be noted that increasing 
the number of networks in an ensemble is clearly beneficial 
to reduce the training uncertainty. The total uncertainty esti-
mate from the bootstrap procedure is used to define uncer-
tainty bands on the estimated efficiency parametrization.
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