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Cell adhesion is essential for survival, it plays important roles in physiological cell functions, and it is an innovative target in
regenerative medicine. Among the molecular interactions and the pathways triggered during cell adhesion, the binding of cluster
of differentiation 44 (CD44), a cell-surface glycoprotein involved in cell-cell interactions, to hyaluronic acid (HA), a major
component of the extracellular matrix, is a crucial step. Cell therapy has emerged as a promising treatment for advanced liver
diseases; however, so far, it has led to low cell engraftment and limited cell repopulation of the target tissue. Currently, different
strategies are under investigation to improve cell grafting in the liver, including the use of organic and inorganic biomatrices
that mimic the microenvironment of the extracellular matrix. Hyaluronans, major components of stem cell niches, are attractive
candidates for coating stem cells since they improve viability, proliferation, and engraftment in damaged livers. In this review,
we will discuss the new strategies that have been adopted to improve cell grafting and track cells after transplantation.

1. Introduction

Cell adhesion plays a pivotal role in maintaining the physio-
logic functions of cells in solid organs, contributing to cellu-
lar organization and structure, proliferation, survival, and
differentiation. Cell adhesion molecules (CAMs), a family
of transmembrane proteins, are involved in cell-to-cell adhe-
sion and in the interaction between cells and the extracellular
matrix (ECM) [1, 2]. CAMs are generally characterized by
three conserved domains: an intracellular domain that inter-
acts with the cytoskeleton, a transmembrane domain that
crosses the lipid bilayers of the cell membrane, and an extra-
cellular domain that interacts either with the same CAMs by
homophilic binding or with the ECM by heterophilic binding
[3, 4]. The modulation of cell adhesion is a key issue in regen-
erative medicine [5].

Although tissue engineering has so far aimed at recon-
structing organs and tissues or recellularizing natural bioma-

trices, recently, cell therapy of solid organs has attracted the
interest of many scientists and led to promising results in sev-
eral clinical trials [6–22]. However, the uncertain efficacy of
grafted cells in the target organ is the main obstacle to cell
therapy [11, 22–26]; thus, recent research has focused on
developing new strategies to tackle this issue [22, 27, 28].

Hyaluronic acid (HA) is one of the most used biomatrices
in human medicine, and multiple studies have suggested
that it improves the engraftment efficacy of transplanted cells
[9, 12, 18, 20–22, 29, 30]. Preclinical data have also
highlighted some properties of HA that are promising for
future applications in cell therapy of liver diseases. However,
clinical applications of cell therapies are hindered by the lack
of techniques that can track transplanted cells and verify
their fate after injection.

In this review, first, we will summarize recent studies
on HA and its cell receptor, cluster of differentiation 44
(CD44); second, we will give an overview of the use of HA
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in regenerative medicine and cell therapy; and lastly, we will
discuss recent approaches to cell tracking with potential
applications in humans.

2. Engraftment Efficiency and Factors Affecting
Liver Engraftment

Human stem cell therapy is an active field of research.
Understanding how to modulate the engraftment of trans-
planted or infused cells represents an important goal to
improve the homing of grafted cells in the target organ and
to minimize ectopic colonization. Although it has been
hypothesized that cells cannot survive in ectopic sites, recent
data from athymic mouse models have shown that cells can
survive for months in ectopic sites, such as the lung, spleen,
and kidney, and that they can be followed with positron
emission tomography (PET) [22].

Several research groups are striving to find new strategies
to reduce the ectopic localization of cells, and HA, a natural
biomatrix found in most of the organs, is one of the most
investigated molecules in the field of hepatology because of
its multiple interesting properties [4, 9, 21, 31–36].

2.1. Cell Engraftment Efficiency. Experiments on different
mouse models have shown that the highest liver engraftment
efficiency of hepatic stem/progenitor cells was less than 5%
when cells were transplanted via the intraportal route or
other vascular routes [26, 37, 38]. Similar results were
obtained by infusing stem cells via vascular routes into pri-
mate livers [26] or via the intraportal route in humans [24];
however, the engraftment efficiency in patients increased to
20-25% when the cells were infused through the hepatic
artery [24].

Intrasplenic hepatocyte transplantation has been per-
formed in animal models with chronic liver failure. After
transplanting hepatocytes into the splenic parenchyma of
rats, researchers observed a transient portal hypertension
and noticed that approximately 26% of the cells remained
in the spleen, 72% colonized the liver, and 2% were
entrapped in the small capillaries of the lungs [26]. Recently,
we have shown that transplantation via the intrasplenic

route of HA-coated human biliary tree stem/progenitor cells
(hBTSCs) in mice increased the engraftment efficiency by
fivefold without significant cell distribution in ectopic sites
[27]. It is important to point out that, after cell transplanta-
tion, grafted cells were present in nontarget organs [39], but
in certain cases, most of the ectopic cells were no longer
detectable after two days [40]. Liver parenchymal repopula-
tion by exogenous cells is a prerequisite for successful cell
therapies [41]. Cell translocation from sinusoids into liver
plates requires the disruption of the sinusoidal endothelium
and the progressive proliferation of the transplanted cells
through a sequential process that involves chemokine-
activated integrins and the ECM [42].

2.2. Factors Affecting Engraftment Efficiency. Several factors
may affect the engraftment, such as the host characteristics
and response, the cell source, and the administration route
(see Box 1).

(i) Factors related to the host may be tissue vascula-
ture, alterations in the blood system, pathologic
conditions (necrosis, transmissible factors, inflam-
mation, and fibrosis), and the ECM composition
and structure (adhesion molecules, remodeling
factors) [11, 22, 25, 39]

(ii) Factors regarding the cell source may be cell size
[41], cell proliferation [11, 43, 44], intrinsic immu-
nogenicity [45–47], tolerance to toxic and ischemic
injuries [45], metabolic/metabolomic cell properties
[48], and the adhesion molecules associated with the
cytoskeleton, whose expression is affected by both
environment cues and the ECM [22, 28, 49]

(iii) The engraftment efficiency depends also on the
administration route. For instance, hepatic artery
infusion and portal vein infusion lead to different
engraftment levels [50]

Cell features associated with high engraftment efficiency
include the aggregate size [41] and the cell size: cells with
large size may cause venous thrombosis after transplantation

Factors affecting the engraftment into the liver.
(i) Host factors [11, 22, 25, 37]

(a) Vasculature
(b) Pathologic conditions (necrosis, transmissible factors, inflammation, and fibrosis)
(c) Extracellular matrix (major driver adhesion molecule expression; remodeling factors)

(ii) Cell source
(a) Cell size [39]
(b) Proliferation [11, 41, 42]
(c) Immunogenicity [43–45]
(d) Tolerance to toxic and ischemia [43]
(e) Metabolic/metabolomic [46]
(f) Adhesion molecules and associated cytoskeleton (highly inducible by environment factors/ECM) [22, 28, 47]

(iii) Administration route: arteriosus vs. venous, hepatic artery vs. portal vein in the liver [48]

Summary of the factors that affect liver engraftment. The major factors are host characteristics, cell source, and administration route.

Box 1: The engraftment challenge: candidate modulators.
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and ischemia-related issues that can lead to loss of tissue
functions. Regarding cell proliferation, the grafted cells
should be able to proliferate more than the resident cells
and acquire organ-specific physiological functions [11, 27,
44]. With regard to immunogenicity, the host’s immune sys-
tem should not be overstimulated to avoid rejection and toxic
injuries in donor cells [45–47].

2.3. Strategies for Cell Delivery. Cell delivery techniques
should maximize regenerative benefits while minimizing side
effects [42]. In humans, both the portal vein and the hepatic
artery are considered as safe administration routes in liver
cell therapy. Although further comparative studies are
needed to define the best delivery method [51, 52], both
routes have so far shown complications, such as hepatic
artery dissection following hepatic artery infusion [53] and
increased portal hypertensive bleeding upon portal vein infu-
sion [54].

Many ongoing studies are trying to improve the outcome
of cell engraftment in the liver (Box 2). For instance,
researchers are aiming to determine the best host precondi-
tioning for hepatocyte cell therapy (i.e., the physiopathologi-
cal conditions of the receiver before cell infusion) [39], the
most appropriate matrix components to use (e.g., fibrin
[26], cross-linked HAs [22, 28], or other biomatrix scaffold
components [55]), the efficiency of direct injection as com-
pared to vascular infusion (preclinical study) [22], or the effi-
cacy of combination approaches (for instance, combining a
grafting device with direct injection or transplanting recellu-
larized liver scaffolds [56, 57]). However, there are no studies
comparing how different cell types affect liver cell therapy.

3. CD44 as an HA Receptor

In human, the CD44 gene maps to the chromosomal locus
11p13. CD44 encodes for a glycoprotein involved in cell
adhesion, and it is the best-characterized member of the hya-
luronate receptor family.

3.1. CD44 Functions. Alternative splicing of the CD44 gene
generates variants of the extracellular domain that confer
different functions to the protein. The expression of vari-
ant isoforms has been observed in breast [58] and pancreatic
ducts [59, 60].

CD44 binds to HA, and its activation is finely regulated.
While the inhibition of N-glycosylation enhances HA binding,

the mutation of specific sites converts the CD44 inducible
form to the constitutively active form [61]. The receptor is
involved in sensing the extracellular microenvironment and
in intercellular cross-talk. CD44 proteins primarily maintain
the 3D structure of organs and tissues and control the prolifer-
ation of epithelia and repairing of stressed cells. When cells
expand on specific scaffolds, the expression of both CD44
and HA is enhanced [62, 63].

3.2. CD44 and HA. HA is the main ligand of CD44, and it is
involved in cell-cell and cell-matrix adhesion, cell migration,
and signaling. HA is a polymeric linear glycosaminoglycan
that contains at least three sites that bind to CD44: a “link”
domain encoded by exon 2 [64] and another two domains
encoded by an overlapping region in exon 5 [65]. The HA
binding sites consist of amino acid clusters that include
specific arginine residues that mutation studies proved to
be required for the binding [64, 66]. A detailed mutational
analysis of amino acid clusters in the cytoplasmic domain
of CD44 has identified specific arginine and lysine residues
through which reagents stimulating protein kinase C (PKC)
differentially regulate the binding of CD44 to HA [67]. Cells
can express CD44 in an active, inducible, or inactive state
depending on HA binding [61].

3.3. Other Ligands of CD44. Besides HA, CD44 binds to other
ligands, including osteopontin, serglycin, collagen, fibronectin,
and laminin, through its extracellular N-terminal domain,
which is highly conserved (it displays about 85% homology
among mammals) [68].

3.4. Other Receptors of HA.HA is also bound by hyaluronan-
mediated motility receptor (RHAMM) and by lymphatic ves-
sel endothelial receptor-1 (LYVE-1). RHAMM and CD44 are
coexpressed, and RHAMM has similar but fewer functions
than CD44 [69]. RHAMM promotes migration and prolifer-
ation of normal and tumor cells [69]. A recent study has sug-
gested that LYVE-1 mediates leukocyte extravasation from
lymphatic vessels [70].

4. Hyaluronic Acid

HA is expressed on the cell surface of both normal and tumor
cells. It is an important component of the stem cell niches as
it preserves the multipotency of stem/progenitor cells and
prevents their differentiation; also, HA modulates stem cell
migration during embryonic development [34].

(i) Host preconditioning: hepatocyte cell therapy strategy [37]. Different clinical protocols available
(ii) Matrix components: fibrin [26], synthetic biomatrix scaffolds, mostly cross-linked HAs [22, 28], and biomatrix scaffold

components [51]
(iii) Direct injection versus a vascular route (preclinical stage) [22]
(iv) Combination strategies: evoluted grafting device+direct injection (patch grafting under development) and recellularized liver

scaffold transplantation [52]

Summary of the current strategies to improve the outcome of liver cell engraftment. Currently, there are no trials that have compared
different cell types.

Box 2: Current strategies to improve the outcome of liver cell engraftment.
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For many years, the ECM was believed to have only
mechanical properties; however, in the last decades, multiple
studies have shown how the ECM plays a crucial and
dynamic role in regulating cell homeostasis. Indeed, the HA
matrix supports cell adhesion, growth, and differentiation,
it regulates cell trafficking, and it affects various processes,
such as development and organogenesis, inflammation,
wound healing, and tissue remodeling [4].

Among the ECM components, HA has a crucial role
because of its rheological, viscoelastic, and hygroscopic prop-
erties [4]. HA molecules interact with high efficiency and
form large polymers in combination with other molecules,
generating different complexes involved in cell motility,
proliferation, adhesion, and differentiation [9]. HA can also
adapt to variable three-dimensional configurations depend-
ing on pH, salt concentration, and associated cations. The
HA complexes can form in highly viscous solutions with
low concentrations of HA. By increasing HA concentration,
solutions become more viscous since the linear polymers
associate with each other forming bigger structures, which
are stabilized by hydrophobic bonds between the chains
[31]. HA prevents the accumulation of other macromole-
cules and delays the spread of contaminants and the migra-
tion of cells other than immune cells into tissues because of
steric hindrance, the rotation around the linkages between
sugar residues, and the dynamic and weak hydrogen bonds
between the residues [31].

4.1. Anti- and Pro-inflammatory Properties of HA. Depend-
ing on the polymer length and the ability to bind to multiple
CD44 molecules, HA can exert opposite functions. For
instance, it can either promote or inhibit inflammation and
fibrosis [9, 71]. CD44 binds to HAwith low-affinity hydrogen
bonds; as a result, multiple receptors need to bind to HA to
trigger downstream signaling [72]. Two papers have sug-
gested that the binding of CD44 to HA enhances T-cell anti-
gen receptor (TCR) signaling leading to the activation of
regulatory T-cell populations [73, 74]. Other authors have
hypothesized that their binding induces the production of
anti-inflammatory cytokines, such as IL-10 [71] and TGF-β
[71, 75, 76], and it inhibits the pro-inflammatory Toll-like
receptor (TLR) signaling and NF-κB translocation [72].
However, the pathways through which CD44 enhances
anti-inflammatory signals are unknown.

HA long-chains (HA-l) exhibit anti-inflammatory prop-
erties in many in vitro and in vivo models [35, 77]; studies
have also reported that HA-l increase the phagocytosis by
macrophages, reduce pro-inflammatory cytokine production,
and limit cell oxidative damage and apoptosis [32, 36, 78].

HA short-chains (HA-s), which are generated by HA
proteolysis, exhibit pro-inflammatory properties by modu-
lating TLR-4 and TLR-2 signaling [79]. It has also been
suggested that HA-s may play a double role during the
inflammatory process by inducing both the expression of
pro-inflammatory cytokine and TRL-4-mediated pathways
[80]. A study by Saikia et al. [81] supports this hypothesis:
the authors found that the miRNA miRNA-181b-3p was
downregulated in Kupffer cells of alcoholic liver disease
(ALD) patients. This miRNA dampens inflammation by

inhibiting the expression of importin α5, which activates
NF-κB. Interestingly, treating Kupffer cells with hyaluronic
acid 35 (HA35), a small specific-sized HA, restored the
expression of miRNA-181b-3p. Indeed, HA-s makes the
ECM more accessible to immune cells and induces pro-
inflammatory pathways in the surrounding cells that, in turn,
release cytokines that attract more immune cells [82].

5. Biologic Rationale for the Use of HA and Its
Derivatives in Regenerative Medicine

Currently, HA is one of the most important molecules used
to craft biomaterials, and it has been employed in different
areas because of its multiple roles [9].

5.1. HA Modifications. The carbohydroxilic groups of HA
can be modified generating two main groups of molecules
by covalent cross-linking of native HA. The first group is
created by a reaction that requires toxic reagents and harsh
conditions and that makes the resulting hydrogel unable to
bind to tissues and cells. On the other hand, the second group
can be further modified and is able to interact with cells, tis-
sues, and therapeutic agents. Therefore, this second type of
HA derivatives is useful for clinical studies [83].

5.2. Tyramine-Modified HA. Recently, a tyramine-modified
HA has been generated by in situ enzymatic cross-linking
by adding hydrogen peroxide to solutions of HA-tyramide;
further developments will allow using tyramine-modified
HA for cell delivery [84]. Tyramine-modified HA can form
hydrogels that can modulate, in vitro and in vivo, cellular
mechanisms such as delivery, recovery, and expansion.

5.3. Thiol-Modified HA. Thiol-modified HA, used for drug
evaluation and regenerative medicine, is obtained by modify-
ing the carbohydroxilic groups through hydrolysis of the
disulfide bonds [19, 85]. The biodegradation rate and specific
mechanical properties of thiol-modified HA, such as physical
form, viscosity, and transparency, can be modified [86]. For
instance, the aldehyde-modified HA has been proposed for
vocal fold wound healing because of its adjustable viscoelas-
ticity conferred by the double cross-linked networks between
HA microgels and cross-linked hydrogels [9]. Shu et al.
investigated the potential application of the thiol-modified
HA in tissue repair by using a range of HA concentrations
between 1.0 (w/v%) and 0.0 (w/v%) in order to obtain differ-
ent levels of hydrogel stiffness; they observed that cells prolif-
erated better in thiol-modified HA hydrogels than in culture
dishes [85].

5.4. Mixing HA and Soluble Signals. Turner et al. have studied
how to improve liver engraftment of human hepatic stem
cells (hHpSCs) by using a mix of soluble signals and extracel-
lular matrix biomaterials that are found in stem cell niches
(hyaluronans, type III collagen, and laminin) [22, 28]. In
their works, Turner and colleagues used different HAs with
high molecular weight (average MW: 1,500,000), and they
diluted them to obtain a range of final concentrations of 1.0
and 2.0% solution (w/v).
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Recently, a functional wound dressing composed of dif-
ferent biomaterials, including HA and collagen, and contain-
ing epidermal growth factor (EGF) and vitamin C derivative
(VC) has been developed [18, 30, 87, 88]. Niiyama and Kur-
oyanagi investigated the properties of this wound dressing as
a cultured dermal substitute (CDS), its potential to facilitate
the production of vascular endothelial growth factor (VEGF)
and hepatocyte growth factor (HGF) in vitro, and its ability
to enhance granulation tissue formation associated with
angiogenesis and collagen deposition in vivo [18].

5.5. Parameters of HA Hydrogels. Both the composition and
the mechanical properties of the microenvironment in which
cells are seeded are key factors to control the cell phenotype
and differentiation. Lozoya et al. discovered that they were
able to guide the differentiation of human hepatic stem cells
by changing the HA concentration from 1.0 to 2.0 (w/v %)
in hydrogels [49]. Their results may be useful to find new
strategies to expand and differentiate stem/progenitor cells
isolated from soft organs. The mechanical and biochemical
properties of cells embedded in a matrix can be analyzed sep-
arately; the combination of these properties guides the design
of parenchymal tissues for cell therapies and the develop-
ment of bioreactors [49].

The most important benefit of HA is its biocompatibility
[13, 85, 89]; indeed, Shu et al. have shown that it facilitates
tissue regeneration in nude mice [85]. HA is an attractive
candidate for stem cell grafting because of its abundance in
embryogenesis, wound repair, and organ regeneration [49].
However, a good matrix for tissue engineering needs to rep-
licate both the biochemical and the mechanical properties of
the environment where the cells are transplanted [20, 21, 90].
Lozoya and colleagues studied hHpSC grafting by using a
range of concentrations of hydrogel with thiol-modified HA
derivatives (CMHA-S) and polyethylene glycol diacrylate
(PEGDA) as a cross-linking agent. They demonstrated that
both composition and mechanical properties of the microen-
vironment regulate cellular phenotypic changes; further-
more, their model allows studying stem cell functions in 3D
cultures [49].

5.6. HA Hydrogels and Gels for Cell Delivery in Non-hepatic
Tissues. Chang et al. used human HA hydrogels to transplant
epicardial stem cells (they used high molecular weight HA at
a final concentration of 10% w/v) [12]. The authors decided
to test HA-blood hydrogels because they are easy to synthe-
size, promote stem cell survival and proliferation, and are
promising candidates for cell delivery in the epicardium
[12]. Compared to HA or PEG-based gels, HA-blood hydro-
gels offer the possibility of synthesizing hydrogels with autol-
ogous blood, which is important for a potential application
into the clinic [6, 29]. Combining autologous blood and
HA has several advantages as both components provide
adhesion motifs that activate prosurvival pathways [91].
Blood contains vitronectin and fibronectin with arginine-
glycine-aspartate motifs that activate integrins, and HA
receptors (CD44), which are expressed by many stem cells.
Moreover, blood provides growth factors to the transplanted
cells before new vasculature is established, and HA and its

degradation products promote angiogenesis, vasculogen-
esis, and cardiogenesis [20]. Hydrogels can be degraded by
enzymes such as hyaluronidases and proteases and also by
hydrolysis. Covalent cross-linking allows HA-blood hydrogel
synthesis, and adhesion to transplanted tissue without using
ultraviolet light, heat, or sutures can facilitate their clinical
translation [12]. Although pioneering, the study by Chang
et al. is limited by the fact that the researchers evaluated the
survival and the proliferation of cardiosphere-derived cells
only in vitro. Moreover, the authors suggest that additional
studies on different types of stem cells and hydrogels are
needed to assess the efficacy of blood-HA hydrogels in small
and large animal models [12].

Dietrich et al. analyzed the engraftment efficiency of
human adipose-derived stem cells (ADSCs) in HA gel when
subcutaneously injected in athymic mice [14]. The vascula-
ture that developed in the ADSC implants for two months
was probably supported by the paracrine interaction between
ADSCs, host ECM, and endothelial cells, and it was induced
by the proangiogenic signals released by HA degradation.
The authors hypothesized that ADSCs promote angiogenesis
by secreting chemotactic cytokines that attract endothelial
cells. Another factor that may have contributed to the vascu-
larization of the implants is the secretion of hyaluronidase by
ADSCs, which leads to the release of HA fragments [14].

Altman et al. implanted in a photoaged skin murine
model ADSCs seeded into a new-generation HA preparation:
the nonanimal stabilized HA, an HA entirely produced from
nonanimal sources, which provides an organized fibrovascu-
lar network able to support the implants [7].

6. Cell Tracking

Cell labeling and tracking are important tools to understand
the biological mechanisms behind cell engraftment and ver-
ify the therapeutic effects of inoculated cells in vivo. Indeed,
they allow analyzing cell behavior, engraftment efficiency,
cell localization, and cell fate. Recent negative clinical trials
have highlighted the need for new noninvasive methods of
cell tracking and markers of cell engraftment efficiency for
liver cell therapy, especially in cases of liver cirrhosis and
acute liver failure [92, 93].

Many approaches, either direct or indirect, have been
developed to visualize engrafted cells in vivo and to distin-
guish transplanted cells from host cells [7, 94–100]. In
direct labeling approaches, the target cells are labeled with
probes prior to transplantation but, once inoculated, the
biological environment hampers their tracking even with
appropriate imaging equipment. To overcome these limita-
tions, researchers have developed indirect labeling methods
that involve genetic modifications to tag and track cells
[101–103]. However, using either nonviral or viral vectors
to mutate genes may increase the risk of uncontrolled gene
expression and, therefore, of tumor formation [104, 105].

6.1. Tetra-acetylated N-Azidoacetyl-D-mannosamine Cell
Labeling. Kang et al. introduced an innovative tracking strat-
egy in vivo based on bioorthogonal chemical reporters [106].
First, they treated cells with tetra-acetylated N-azidoacetyl-
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D-mannosamine (Ac4ManNAz) to induce the expression of
unnatural azide-modified sialic acids on the surface of target
cells. Ac4ManNAz has high reactivity and low toxicity [107–
110], and it does not affect cell viability [111]. However, it is
worth mentioning that studies have reported that sialic
acids may affect cell adhesion, cell-cell interactions, and
migration [107, 108, 110]. After transplanting the cells into
the livers of nude mice, Kang and colleagues injected intra-
venously dibenzylcyclooctyne-conjugated Cy5 (DBCO-Cy5)
to visualize the target cells in vivo. By using this strategy,
the authors were able to enhance labeling efficacy and facil-
itate cell tracking. Moreover, they reduced the false positive
signal caused by macrophages engulfing engrafted cells
since the macrophages did not express azide groups after
phagocytosis [111].

6.2. Using Nanoparticles for Cell Labeling. In order to track
cell engraftment, some research groups have used nanoparti-
cles (NPs) and visualized them with magnetic resonance
imaging (MRI). Since protein-based NPs cannot be imaged
by MRI because they do not generate enough contrast, they
need to be labeled with paramagnetic or superparamagnetic
nanomaterials (magnetically labeled nanoparticles (MLNPs))
[112]. Vera et al. have shown that MLNPs can be traced by
MRI in a rat’s brain. Even though they used a clinical MRI
machine with limited sensitivity, they were able to detect
the diffuse and global accumulation of MLNPs by imple-
menting a new histogram technique [113].

MRI was used to detect the presence of labeled human
cells transplanted into the liver of murine and rat models.

The proposed method may be used to monitor the engraft-
ment of any types of cells in any animal models.

6.3. Supermagnetic Iron Oxide Cell Labeling. MRI of super-
paramagnetic iron oxide- (SPIO-) labeled cells is a sensitive
and noninvasive method that allows tracking of cell popu-
lations inside the brain [114–119], bone marrow [120–
122], kidneys [123, 124], and myocardial tissue [125–127].
SPIO is considered as a promising labeling agent for
in vivo cell tracking because it maximizes the spatial resolu-
tion of MRI; moreover, as SPIO causes a strong susceptibil-
ity effect, it allows the detection of small amounts of labeled
cells [128, 129].

Wang et al. tracked and quantified with MRI SPIO-
labeled endothelial progenitor cells (EPCs) after transplanta-
tion into murine injured livers [130]. The results indicated
that the relaxation rates R2 and R2∗ depended on the number
of cells that were labeled in vitro before injection; therefore,
the authors suggested that measuring the relaxation rates,
and R2∗ in particular, may help to quantify cell homing
in vivo and be useful parameters to take into account for cell
transplantation therapies [130].

6.4. Cell Labeling with Antibody-Conjugated Magnetic
Microbeads. McClelland et al. tracked in vivo-transplanted
human hepatic stem/progenitor cells (hHpSCs and hHBs)
by labeling them in situ with magnetic microbeads conju-
gated to an antibody against a surface antigen that is
expressed only by hepatic progenitors. The labeled cells were

Human Ab
anti-EpCAM

Mechanical dissection

Filtered up to 30 �휇m

Digestion buffer: type I collagenase
+deoxyribonuclease for 20-30 min

at 37°C

Characterization
(FACS, PCR)

EpCAM+

cells
NOD SCID

HA coating

HA-coated
hBTSCs

Cirrhotic
patient

Tissues from therapeutic abortion
of foetus from 13 to 22
gestational weeks

Foetal biliary tree+

gallbladder

Figure 1: Our proposal for a cell therapy to treat cirrhotic patients. The figure shows a schematic representation of our protocol to treat
cirrhotic patients that are not eligible for orthotopic liver transplantation.
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imaged both in NOD-SCID mice and in Sprague-Dawley
rats [131].

6.5. Quantum Dot Cell and Qtracker Labeling. Another
method to track cells is based on fluorescent nanoparticle
quantum dots (Qdots). These nanoparticles are excellent
tools for long-term tracking and imaging studies of living
cells. For example, Carpino et al. used Qtracker, a labeling
system based on Qdots, to isolate from human gallbladder
cells expressing the Epithelial Adhesion Molecule (EpCAM).
They noticed that the fluorescent nanocrystals were passed
on to daughter cells after replication without the need for
a specific enzyme. Moreover, the isolated cells showed
properties typical of stem cells, such as clonogenic prolif-
eration [132].

Lin et al. studied mobility, viability, proliferation, and
fusion of mouse embryonic stem cells by tagging them with
different Qtrackers (525, 565, 605, 655, 705, and 800) in
mouse models. They concluded that the labeling system did
not affect viability, proliferation, or differentiation potential
of stem cells, and they were able to detect Qtracker signals
after injecting labeled stem cells into athymic mice [133].
Another benefit of using Qtrackers is their size: as they are
larger than organic dyes, they cannot spread between cells,
unless the cells undergo cell fusion. For this reason, they are
excellent tools to study cellular interactions [134].

In conclusion, HA is of crucial importance for both the
ECM and in vitro scaffold matrices used for cell growth.
Modifying HA to generate hydrogels that can modulate
intra- and intercellular processes opens the way to pioneering
therapies. However, in order to verify the benefits of cell ther-
apy, HA scaffolds must be coupled with labeling systems that
allow characterizing cells in vitro and tracking them in vivo
after inoculation.

7. HA-Coated hBTSCs as Potential
Therapeutic Agents

The anti-inflammatory effect and the biocompatibility of HA
are among the main benefits of using this molecule for liver
engraftment [33, 85, 135, 136]. Indeed, it has been shown that
different forms of HA limit fibrosis and foster vascularization
in transplantations and that it can promote engraftment in
mice [85]. HA is also a good candidate for stem cell grafting
because of its abundance in embryogenesis, wound repair,
and organ regeneration. Importantly, HA is available in a
version that complies with cGMP manufacturing require-
ments and is approved for clinical use (in particular, for
osteoarticular, cartilage, and cutaneous inflammatory dam-
ages) [13, 89]. Moreover, 90% of HAs are actively cleared
by the liver [22, 135, 137].

We have recently demonstrated that injecting HA-coated
hBTSCs into the liver increases cell engraftment; our tech-
nique is simple, feasible, and clinical-grade, and it meets all
requirements for a fast transition from bench to clinical
application (Figure 1) [27]. On the other hand, transplanta-
tion by direct injection or via a vascular route resulted in inef-
ficient engraftment and cell spreading to ectopic sites [27];

similar results were obtained in previous studies that tested
fibrin coating [22, 28, 79].

8. Conclusion

Cell therapy is an innovative approach to treat advanced liver
diseases. It is of particular importance to understand the fac-
tors that regulate cell engraftment into the liver, such as cell-
cell and cell-ECM interactions, cell proliferation, and immu-
nogenicity, as well as to define the best transplantation routes.
Several strategies have been developed to increase the effi-
ciency of engraftment, and many of them are based on HA
hydrogels with or without chemical modifications that can
improve its biological properties. The use of HA in preclinical
studies has led to promising results because of its biocompa-
tibility and its role in regenerative processes. Moreover, sev-
eral authors have shown the potential of cell tracking as a
helpful tool in determining cell localization and engraftment
rate. However, further studies are required to improve
engraftment efficiency and move forward into clinical trials.
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