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Abstract

Fisher’s noncentral hypergeometric distribution (FNCH) describes a bi-
ased urn experiment with independent draws of differently coloured balls
where each colour is associated with a different weight (Fisher (1935),
Fog (2008a)). FNCH potentially suits many official statistics problems.
However, such distribution has been underemployed in the statistical
literature mainly because of the computational burden given by its prob-
ability mass function. Indeed, as the number of draws and the number
of different categories in the population increases, any method involv-
ing evaluating the likelihood is practically unfeasible. In the first part
of this work, we present a methodology to estimate the posterior distri-
bution of the population size, exploiting both the possibility of includ-
ing extra-experimental information and the computational efficiency of
MCMC and ABC methods. The second part devotes particular attention
to overcoverage, i.e., the possibility that one or more data sources erro-
neously include some out-of-scope units. After a critical review of the
most recent literature, we present an alternative modelisation of the la-
tent erroneous counts in a capture-recapture framework, simultaneously
addressing overcoverage and undercoverage problems. We show the util-
ity of FNCH in this context, both in the posterior sampling process and
in the elicitation of prior distributions. We rely on the PCI assumption
of Zhang (2019) to include non-negligible prior information. Finally, we
address model selection, which is not trivial in the framework of log-linear
models when there are a few (or even zero) degrees of freedom.
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Introduction

In recent years, the National Statistics Institutes (NSIs) have been more
and more interested in producing statistics using administrative data
only. The idea of replacing censuses with the integration of data from
multiple sources is attractive due to the former’s several shortcomings.
First, there exists a well-known and unavoidable trade-off between time-
liness and accuracy; second, the response rate becomes lower year after
year. Third, censuses imply huge costs. In these terms, a data integra-
tion approach would potentially produce an enormous gain.
Since October 2018, the Italian Statistical Institute (Istat) has shifted
from a census-based statistics paradigm to a register-based one, initiat-
ing the “permanent census of the Population and Housing” (see Istat
(2018)). Unlike the decennial census in use until then, the survey in-
volves only a sample of households; simultaneously, it provides detailed
information about the whole population yearly, thanks to data integra-
tion from statistical sample surveys and administrative sources. In this
sense, sample surveys support the information collected by the admin-
istrative registers and not the other way around. Nevertheless, since
the aims of who collect data and who use them differ, several method-
ological issues emerge; thus, more uncertainty and the risk of biasedness
naturally arise. Istat itself is paying attention to the issues caused by
the “paradigm shift” in official statistics; see Filipponi et al. (2017), and
Chiariello and Tuoto (2018), among others.

In line with NSIs interests, academia is producing a vast literature. One
of the most recent examples is “Analysis of Integrated Data”, edited by
Zhang and Chambers (2019). The contributes therein deal with statisti-
cal uncertainty and inference issues that arise when a dataset is created
via multiple sources’ integration. Among the key issues, there is under-
coverage. A list is subject to undercoverage when it enumerates only a
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subset of the population of interest (or target population). In the case of a
single list, such a problem is intrinsic and challenging to treat. However,
it is pervasive, especially when the target population is elusive, e.g. non-
resident inhabitants in a big city, homeless people, irregular migrants. In
the case of multiple lists, undercoverage occurs if the union of the lists is
still a subset of the target population.
Literature has primarily treated this issue in such multiple sources case.
The predominant models are the capture-recapture models, so called be-
cause they were born in the ecological field. In such models, the capture
of specimens belonging to a target animal population is registered, and
the animal marked; the registration is repeated for several capture occa-
sions. Hence, it is possible to infer the entire multiple recapture history
of any specimens from its unique mark anytime. A milestone is Fienberg
(1972). In his work, Fienberg uses a contingency table to describe the
capture histories of the registered units; the table is incomplete since the
cell referring to those units that have never been captured is unobserved.
The use of log-linear models allows the estimation of the missing cell
count and, consequently, the total population size. Since 1972, a vast
literature dealing with population size estimation in a capture-recapture
framework has been developing, shifting focus from wildlife to human
populations; see Böhning et al. (2018) for the most recent developments
in capture-recapture models for social sciences. When dealing with hu-
mans, we must devote special attention to the possibility that one or
more data sources erroneously include some out-of-scope units, i.e., the
overcoverage problem. The overcoverage issue, which has become rele-
vant only with the increase in interest of the NSIs in the production of
statistics through data integration, does not boast literature as detailed
as that of undercoverage. The approach which has spread the most is
latent class modelling: see Di Cecco (2019), and Di Cecco et al. (2020),
among others.

This work aims to make a methodological contribution to the open ques-
tions in the population size estimation field. On the one hand, we are
interested in the size estimation of population sub-groups for whom data
are scarce in the case of i) a single list is available or ii) there is more
than one list, but we lack unique identifiers. On the other hand, we aim
to contribute to the estimation problem in the presence of out-of-target
units.
We investigate the application of an underused probability distribution,
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i.e. the Fisher’s noncentral hypergeometric, to these scopes. Such distri-
bution applies to a biased urn problem: some coloured balls have been
independently drawn from an urn, and the probability of observing that
sample depends not only on the total number of balls of each colour but
also on the relative odds, or weights, of the colours. Fisher’s noncen-
tral hypergeometric distribution has a high potential in official statis-
tics. Assume that a sample survey partially enumerates a heterogeneous
population and that the coverage probabilities vary among the differ-
ent sub-groups; this is equivalent to observing different coloured balls
drawn according to their different weights. Moreover, assume to cross-
classify some sources affected by overcoverage: the cell’s counts of the
contingency table will be the sum of target units and erroneous enumer-
ations. Under certain specifications, the full conditional distribution of
the erroneous enumerations is Fisher’s hypergeometric, whether the lists
differently cover the target and non-target units.

This work, entirely embracing a Bayesian approach, is organised as fol-
lows.
Chapter 1 introduces Fisher’s noncentral hypergeometric distribution in
comparison with its “twin”, i.e. the Wallenius’ noncentral hypergeomet-
ric. For decades, the two distributions had been homonymous, leading to
confusion that - together with the complexity of their probability masses
- slowed down their spread. In 2008, Agner Fog clarified the misunder-
standing, also giving methods for sampling from these distributions. We
highlight the primary analogies and differences between the two, both
under the formal aspect and their uses, and introduce part of the nota-
tion we will use throughout the work.

After a brief overview of the approaches to heterogeneity in population
size estimation problems, chapter 2 applies Fisher’s noncentral hyper-
geometric to the context of the official statistics. Therein we present a
methodology involving such underused distribution in the size estima-
tion of the population’s sub-groups for whom data are scarce. Firstly, we
describe the problem for the univariate case; afterwards, we extend the
model to the multivariate one, proposing two different ways to overcome
the computational complexity of Fisher’s mass. We conclude the chapter
with the case study that motivated this work.

Starting from chapter 3, the considered framework becomes that of multi-
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way contingency tables, i.e. we have more than one sample, and we can
infer the “capture history” of a unit from its unique identifier.
In particular, chapter 3, which is a modified version of Ballerini (2020),
contains an overview of the literature on capture-recapture models with
a specific focus on the population size estimation problem in the presence
of out-of-scope units.

In light of the considerations that emerged reviewing the literature, chap-
ter 4 presents a model to estimate the population size that includes an
alternative way to treat the overcoverage. There, Fisher’s noncentral
hypergeometric distribution comes up again: we rely on it in the latent
erroneous enumerations’ sampling process. The chapter results from a
collaboration with Prof. Li-Chun Zhang1 during a visiting period at the
University of Oslo in 2019.

In the conclusions, we will summarise the main results of this work and
express some considerations concerning the directions of further research
in the field of population size estimation.

1Statistics Norway, University of Oslo and University of Southampton



Part I

The use of Fisher’s noncentral
hypergeometric distribution

for official statistics
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Chapter 1

The noncentral
hypergeometric distributions

In 2008, Agner Fog clarified the distinction between two distributions,
both known in the literature as “the” noncentral hypergeometric distri-
bution (see Fog (2008a) and Fog (2008b)). He firstly solved the nomen-
clature issue, attributing to each of them a “patronymic”: Wallenius’
and Fisher’s, after the persons who first proposed them.
Indeed, Professor R. A. Fisher first described Fisher’s noncentral hyper-
geometric distribution (FNCH) in 1935, in “The Logic of Inductive Infer-
ence”, published in the Journal of the Royal Statistical Society (Fisher
(1935)); however, he did not name it. Thirty years later, W. L. Harkness
give the distribution the name of “extended hypergeometric” (Harkness
(1965)), but the term “extended” has been barely used in the literature,
as asserted by Fog (2008b). Instead, the most prevalent name attributed
to Fisher’s is “noncentral hypergeometric distribution”.
Wallenius’ noncentral hypergeometric distribution (WNCH) owes its name
to K. T. Wallenius, who first described it in the univariate case in his
PhD thesis in 1963, and named it “noncentral hypergeometric distribu-
tion” (see Wallenius (1963)). J. Chesson extended the distribution to the
multivariate case (see Chesson (1976)), and preserved the name given by
Wallenius. Therefore, it was natural that some confusion surrounded the
terminology of the two distributions.

In this work, we adopt the solution proposed by Fog (2008a) identify-
ing the two noncentral hypergeometrics with their attributes.
In §1.1, we describe the two distributions, highlighting the primary analo-
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gies and differences; we will refer to Fog (2008a) throughout the section.
In §1.2, we provide some examples to let the differences between the
two be more evident to the reader and highlight potential uses of the
noncentral hypergeometric distributions.

1.1 Definitions

Wallenius’ noncentral hypergeometric

Assume an urn of size N contains M1 balls of color 1 and M2 balls of
color 2. In the univariate case, Wallenius’ noncentral hypergeometric
distribution describes a situation in which the balls are drawn without
replacement until n balls are sampled, and the probability to sample
X1 balls of colour 1, and X2 balls of colour 2 depends on some weights
wW1 , wW2 . It is said to describe a biased urn experiment since the weight
associated with each colour can be seen as the probability to retain a
ball of that colour when drawn (as suggested by Chesson (1976)). The
probability of collecting a ball of colour 1 at the mth draw is then equal
to the weighted proportion of balls of colour 1 still in the urn, i.e.

(M1 −X1,m−1)wW1
(M1 −X1,m−1)wW1 + (M2 −X2,m−1)wW2

, (1.1)

where Xc,m−1, c = 1, 2, is the number of balls of color c sampled in the
first m− 1 draws.
Hence, the univariate WNCH is built on five parameters:

X1|X1 +X2 = n ∼WNCH(M1,M2, n, w
W
1 , w

W
2 ) . (1.2)

However, since wW1 and wW2 are defined up to a constant, we may state
that the distribution is defined by their ratio. The probability mass
function, derived by Wallenius (1963), is

P (X1 = x1|X1+X2 = n) =

(
M1

x1

)(
M2

x2

)∫ 1

0

∏
c=1,2

(1− twWc /d)xc dt (1.3)

where d = (M1 − x1)wW1 + (M2 − x2)wW2 and x2 = n− x1.
The extension to the multivariate case is straightforward (see Chesson
(1976)). The probability to observe X = {Xc} balls of colours {c}, c =
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1, 2, ..., C, given that the total number of sampled balls is n, is equal to

P (X1 = x1, X2 = x2, ..., XC = xC |
C∑
c=1

Xc = n) =

=
C∏
c=1

(
Mc

xc

)∫ 1

0

C∏
c=1

(1− twWc /d)xc dt

(1.4)

where M = {Mc} is the total number of balls of each colour contained
in the urn, and wW = {wWc } is the vector of respective weights. As in
the univariate case, d is a weighted sum of the balls still in the urn after
n have been sampled, i.e.

d =
C∑
c=1

(Mc − xc)wWc . (1.5)

The lack of a closed form for the probability mass function makes complex
to evaluate it, even in the univariate case.

Fisher’s noncentral hypergeometric

Instead, the univariate Fisher’s noncentral hypergeometric distribution
describes an urn experiment when the balls are drawn independently,
without replacement, and the sample size n is observed only at the end
of the experiment. It is the conditional distribution of two independent
Binomial distributions given their sum (Harkness (1965)):

X1 ∼ Binom(M1, ζ1)

X2 ∼ Binom(M2, ζ2)
(1.6)

X1|X1 +X2 = n ∼ FNCH(M1,M2, n, w
F
1 , w

F
2 ) (1.7)

with probability mass function

P (X1 = x1|X1 +X2 = n) =

(
M1

x1

)(
M2

x2

)
wF1

x1wF2
x2∑

(z1,z2)∈Z

(
M1

z1

)(
M2

z2

)
wF1

z1wF2
z2
. (1.8)

where Z = {(x1, x2) ∈ Z2 : x1 + x2 = n ∩ 0 ≤ xc ≤Mc, c = 1, 2}.
Here the weights are the odds:

wFc =
ζc

1− ζc
, c = 1, 2 . (1.9)
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(see Appendix A for all steps). The notation in (1.7) highlights the
similarity to Wallenius’ distribution. Since M2 = N−M1 and x2 = n−x1,
the formulation (1.7) is equivalent to:

X1|n ∼ FNCH(M1, N, n, w
F
1 , w

F
2 ) . (1.10)

We will interchangeably use the two parameterisations throughout this
work. Moreover, (1.7) is also equal to

X1|X1 +X2 = n ∼ FNCH(M1,M2, n, k · wF1 , k · wF2 ) , k ∈ R+ (1.11)

i.e., the odds ratio w = wF1 /w
F
2 defines the noncentral hypergeometric

distributions rather than the weights themselves (see Appendix A) - this
is also valid for WNCH.
In the multivariate case, we have

X|
C∑
c=1

Xc = n ∼ FNCH(M , n,wF ) (1.12)

and the probability mass function is

P (X1 = x1, X2 = x2, ..., XC = xC |
C∑
c=1

Xc = n) =

C∏
c=1

(
Mc

xc

)
wFc

xc

∑
z∈Z

C∏
c=1

(
Mc

zc

)
wFc

zc

(1.13)

where Z = {x ∈ Zc :
C∑
c=1

xc = n ∩ 0 ≤ xc ≤Mc,∀c}.

In the next section, we propose some examples of interest to help clarify
the differences between the two hypergeometric distributions and suggest
their potential applications in the socio-economic and official statistics’
fields.

1.2 Examples

The subsidy

The central government allocates funding for households at poverty risk.
In a first scenario, assume that families with more than two children are
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favoured, i.e. the probability to obtain the subsidy after the request is
higher for those families with more than two underage siblings. More-
over, assume that the allocated funding allows subsidising one hundred
thousand households. Therefore, the number of subsidised families with
two or less than two children and those with more than two, given that
their sum is one hundred thousand, will follow WNCH distribution of
parameters i) M1 = the total number of families with more than two
children; ii) M2 = the total number of families with two or less than
two children; iii) n = one hundred thousand; iv) wW1 = the probability
of obtaining the subsidy for a family with more than two children once
asked for it; v) wW2 = the probability of receiving the subsidy for a family
with two or less than two children once asked for it.

Now assume the government does not decide the amount of funding in
advance. Instead, households can request the subsidy for a year, and
all the requests are automatically approved. Let us assume that families
with more than two children apply for the contribution with a higher
probability. After a year, the government observes the total number of
subsidised households. In this case, the number of subsidised families
with more than two children will follow FNCH distribution with param-
eters i-iii) same as the previous case; iv) wF1 = the odds ratio of families
with more than two children asking for the subsidy; v) wF2 = the odds
ratio of families with two or less than two children asking for the subsidy.

The real estate market

In a city, there exist two neighbourhoods, i.e. the Centre (C) and the
Periphery (P). For the sake of simplicity, assume that the number of
empty houses in the two neighbourhoods is the same, i.e. MC = MP ; the
properties are identical and have the same price.
As a first option, assume that the monthly goal of the only agency in the
city is to sell n = 20 properties. Since the real estate agent’s commission
is higher when selling houses in the Centre, they will accept appoint-
ments of the buyers interested in such kind of houses1 more likely. The
number of houses sold in the Centre will follow WNCH distribution.

As a second option, assume that properties’ sales are open for a month.

1We are assuming that the customer will buy the house with probability equal to
1, after visiting it.
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Since the Centre has more services, it is more likely that buyers will be
interested in purchasing houses there. At the end of the month, the real
estate agency observes the total number of houses sold is twenty, i.e.
n = 20. Hence, the number of sold properties in the Centre will follow
FNCH distribution.
In both cases the parameters of the distributions will be MC , MP = MC ,
n = 20, and w∗C , w∗P such that w∗C > w∗P , where ∗ stands for either W or
F .

The prestigious M.Sc. program

The Department of Statistics of a prestigious University opens the enrol-
ment to its M.Sc. program, which is known to be very challenging. For
this reason, students may apply only if during their Bachelor they have
registered an average grade of either A or B.
Firstly, assume that the program can host a limited number of students,
e.g. 20; the Department wants to guarantee a certain level of hetero-
geneity within them, including students with grades A and B. However,
it gives the “priority” to the best performing students, preferring those
with A. The number of students of the two groups enrolled on the pro-
gram will follow WNCH distribution of parameters i) MA = total number
of applying students with an average grade of A; ii) MB = total number
of applying students with an average grade of B; iii) n = 20; iv-v) wWA
and wWB such that wWA > wWB .

As a second option, assume that the program does not contemplate a
limited number of students. However, since the course is very challeng-
ing, a sort of self-selection occurs: the odds ratio of students with grade
A applying for the program is higher than that of students with average
grade B. At the end of the enrolment period, the Department observe the
total number of those enrolled, e.g. 20. The number of best-performing
students enrolled in the M.Sc program will follow FNCH distribution
with MA and MB defined as in the Wallenius case; n = 20; wFA and wFB
such that their ratio is greater than 1.

The surveys

The Global Statistical Institute (GSI) collects two samples of individuals
for two different scopes:
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• it wants to study the association between individuals’ hair colour
and their income;

• it wants to infer which eyes colour is dominant in the world.

In the first case, assume that the GSI knows that those with dark hair
are twice more common than those with light hair thanks to some extra-
experimental information, such as previous censuses. To have a signifi-
cant number of light-haired people in a sample of size n, the interviewer
validates their participation in the survey twice more probably than peo-
ple with dark hair. Once collected n interviews, the number of dark hair
individuals in the sample will follow WNCH distribution with parame-
ters i) MD = total number of dark-haired people; ii) ML = total number
of light-haired people; iii) n = sample size; iv) wWD and v) wWL such that
wWD = 2wWL .

In the second case, the GSI knows nothing in advance and wants to
collect as many interviews as possible. It assigns the task to its office
in North Africa, where it is five times more likely to find a person with
brown or black eyes than one with blue or green eyes. At the end of the
period, the GSI observes that the interviewer has collected n interviews;
the number of people with brown eyes in the sample will follow FNCH
distribution of parameters i) MBB = total number of people with brown
or black eyes in the world; ii) MBG = total number of people with blue
or green eyes in the world; iii) n = sample size; iv) wFBB and v) wFBG such
that wFBB = 5wFBG.

This last case will be the critical issue of the next chapter.



Chapter 2

Fisher’s noncentral
hypergeometric distribution
for the size estimation of
population’s subgroups

This chapter presents a methodology based on Fisher’s noncentral hyper-
geometric distribution that aims at the size estimation of a heterogeneous
population. In this framework, we say that a population is homogeneous
if the probability of being registered in a list is the same for any individ-
ual i, i = 1, ..., N belonging to the target population of (unknown) size
N ; otherwise, the population is said to be heterogeneous. We allow such
probability to vary across different “capture occasions” 1.

Capture probabilities may vary among individuals due to some mea-
surable attributes, e.g. sex or age, or given unmeasurable characteristics
(Johnson et al. (1986)). There is a vast literature on estimating pop-
ulation size in the presence of heterogeneity when the source of such
heterogeneity is unknown. Chronologically speaking, one of the first ap-
proaches in modelling heterogeneity in the capture-recapture context is
the random-effects one, introduced by Darroch et al. (1993) and Agresti
(1994); for Bayesian versions, see Fienberg et al. (1999) and Basu and
Ebrahimi (2001). Based on the Rasch model, such an approach over-
come the traditional log-linear models’ inability to consider the depen-

1This situation is that described by model Mth in Otis et al. (1978).

13
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dence given by capture heterogeneity properly. A different and more
recent approach is the latent classes modelling: see Bartolucci et al.
(2004), Di Cecco (2019) and Di Cecco et al. (2020)2. For a nonparamet-
ric approach to the latent class models, see Johndrow et al. (2016) and
Manrique-Vallier (2016).

In the official statistics’ field, there are plenty of specific applications
of capture-recapture models in the presence of heterogeneity. Chiariello
and Tuoto (2018) succeed in estimating the size of the hidden crimi-
nal population in Italy during 2006-2014, accounting for heterogeneity
by including a set of available individual covariates. Kaskasamkul and
Böhning (2018) estimate the size of the illegal immigrant population in
the Netherlands, allowing for heterogeneity. The just cited Manrique-
Vallier (2016) proves how the estimates of the number of killings during
the Kosovo war in 1999 improve once we account for the possibility that
capture probabilities vary among individuals. Such difference in cap-
ture probabilities might be due to different “weights” each group of the
target population has in the various capture occasions; in other words,
“the presence of capture heterogeneity is equivalent to bias in the sam-
pling process” (Johndrow et al. (2016)). The noncentral hypergeometric
(NCH) distributions described in the previous chapter arise naturally in
such situations. However, to our knowledge, they have not been used in
official statistics yet.

Such distributions have been underemployed in the statistical literature
mainly because of the computational complexity given by their proba-
bility mass functions. Nowadays, modern computational tools allow for
exploiting such distributions, suitable for various contexts; their main
(recent) applications are in natural sciences - genomics, genetics, physics
(e.g. Lodato et al. (2018), Barrett et al. (2019)). Another obstacle to the
extensive use of such distributions has been the rooted confusion con-
cerning the existence of two different NCH distributions, now known as
Wallenius’ and Fisher’s NCH (see Fog (2008a)). As clarified in chapter
1, the major difference between the two lies in the draws’ dependence
structure: if a ball’s draw affects another’s, i.e. the balls compete among
them, then the draws follow Wallenius’ distribution; yet, independent

2The latent classes approach can nimbly adapt to the overcoverage problem; we
discuss it in detail in Chapter 3
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draws follow Fisher’s distribution. For this reason, Wallenius’ distribu-
tion fits perfectly, for instance, in a context of preference or ranking data
- see the very recent Grazian et al. (2019). On the other hand, Fisher’s
distribution potentially suits the population size estimation problems;
indeed, we aim to give Fisher’s NCH a new guise, using it in the context
of the official statistics.
Suppose a list partially enumerates a population’s subgroups; the ob-
jective is to estimate the total number of individuals belonging to those
subpopulations. Likely, the different groups, or categories, have not the
same weight in the same capture occasion; however, experts may express
their opinion about the presence of such different groups in terms of rel-
ative odds.

This chapter examines how to infer a target population size when ob-
serving at least one sample, assuming it to be Fisher’s NCH distributed.
Here the source of heterogeneity is known, and the attributes are avail-
able; however, there is a lack of units’ unique labels. Hence, even when
multiple lists are available, the use of log-linear models is not feasible.

In this work, the Bayesian methodology allows us to estimate the pos-
terior distribution of the population size, exploiting both the possibility
of including extra-experimental information and the computational effi-
ciency of MCMC and ABC methods when dealing with distributions as
complex as FNCH.
We first present different scenarios concerning the univariate FNCH, and
then we extend the framework to the multivariate case. The model’s ap-
plicability to the case in which only one list is available makes it suitable
to estimate elusive target populations, e.g. non-resident inhabitants in a
city, homeless people, irregular migrants, unemployed people.
Precisely the last example is the object of the case study in §2.4, which is
the result of an in-progress collaboration with Stefano De Santis (Istat).
The following sections describe how to infer Fisher’s NCH parameters
with a Bayesian approach, both in the univariate (§2.1) and multivariate
(§2.2) cases. For the multivariate case, we propose two methods, which
are compared in §2.3.
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2.1 The univariate case

A list enumerates n units belonging to a population of unknown size
N . Assume that the population comprises only two groups of sizes M1

and M2, and whose number of units captured by the list is X1 and X2,
respectively. Hence, M1 +M2 = N and X1 +X2 = n. Exactly as in the
example of the coloured balls presented in chapter 1, assumeX1 andX2 to
follow a Binomial distribution, as in (1.6). Therefore, the distribution of
X1 conditional to the sum X1 +X2 = n is univariate Fisher’s noncentral
hypergeometric, with probability mass function described by equation
(1.8). The weight parameters, or odds, are defined by equation (1.9),
and the odds ratio can be seen as a measure of exposure to the register
of one population group over the other. With a little abuse of notation,
and since we never refer to Wallenius’ distribution in this chapter, we
will write w instead of wF to indicate the Fisher’s weight parameter.

2.1.1 Prior setting

It is reasonable to assume that experts, e.g. who collected the data, can
give their opinion about the odds ratio value. Hence, w may be fixed,
or we may subjectively elicit a prior distribution for it. The subjective
elicitation is a debated issue since the attribute “subjective” is often per-
ceived as including personal beliefs in a negative sense. Instead, making
the elicitation process a rational way to incorporate experts’ knowledge
and take advantage of their experience. For a deep and detailed discus-
sion about the probabilities’ elicitation process, see Berger (1985) and
O’Hagan et al. (2006).

Even fixing the value of w, if everything else is unknown, we can only
estimate the relative size of the two groups in the population; we show
it from the empirical point of view in Appendix B. Nevertheless, we
may have some prior information on one of the groups: such a situation
is prevalent when dealing with administrative data. Indeed, consider a
sample of resident (group 1) and non-resident (group 2) persons living
in a city; assuming M1 known will be a proper assumption. Yet, if we
have a sample of self-employed individuals, depending on their working
condition, they may have (group 1) or have not (group 2) a VAT number;
again, we may reasonably assume M1 to be known.
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The information may be a point or an interval estimate, and we can
either fix M1 or elicit a prior distribution for it.
Hence, to estimate N , we assume the following hierarchical model:

X1|X1 +X2 = n ∼ FNCH(M1, N −M1, n, w1, w2)

N |M1 ∼ Unif(M1 + x2, N
upper)

(2.1)

where Nupper ∈ Z is a large value. According to the extra-experimental
information, N |M1 may have any suitable alternative distribution.
If M1 is unknown, we can specify, e.g.,

M1 ∼ Pois(λ1) (2.2)

or
M1 ∼ Unif(a1, b1) (2.3)

or assume any other suitable distribution. In the next paragraphs, we
test the results’ sensitivity to the prior specification and provide results
for both (2.2) and (2.3).

If also w1, w2 are unknown, we include an informative prior distribution
for their ratio, i.e. w:

w ∼ Unif(aw, bw) (2.4)

where the hyperparameters aw and bw are chosen such that the associ-
ated density matches some quantiles that are subjectively estimated (see
Berger (1985)). Also for w, we test how different priors impact the results
in the following paragraphs. In the case of strong prior information, we
could also assume

w ∼ Normal(µw, σ
2
w) . (2.5)

We denote with π(N,M1, w) the joint prior distribution, which can be
factorised into π(N |M1)π(M1)π(w) assuming that the odds ratio for the
two groups of being included in the sample is independent on the groups’
sizes:

ζ1/(1− ζ1)

ζ2/(1− ζ2)
⊥ N,M1 . (2.6)
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2.1.2 Posterior computation

The joint posterior distribution will be

π(M1, N, w|x1, n) ∝ L(x1|M1, N, n, w)π(M1, N, w)

∝ L(x1|M1, N, n, w)π(N |M1)π(M1)π(w) ;
(2.7)

we compute it using a Metropolis-within-Gibbs algorithm. The following
boxes show the algorithms in the cases of

• both M1 and w known: in this case, we run a Metropolis-Hastings
since we only estimate N (Algorithm 1);

• both M1 and w unknown (Algorithm 3).

We may also assume the “mixed” situations, for which the posterior com-
putation derives directly from the two described above; see Algorithm 2.

Algorithm 1: Metropolis-Hastings, known M1 and w

1 Choose initial value N (0) ;
2 for t← 1 to T do
3 draw N∗ from a proposal distribution qt(N

∗|N t−1) ;
4 compute the acceptance ratio

γN = min
(

1; π(N∗|M1,w,n,x1)π(N∗)
π(Nt−1|M1,w,n,x1)π(Nt−1)

qt(Nt−1|N∗)
qt(N∗|Nt−1)

)
;

5 draw u ∼ Unif(0, 1) ;
6 if γN > u then
7 set N t = N∗;
8 else
9 set N t = N t−1

10 end

11 end
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Algorithm 2: Metropolis-within-Gibbs, unknown M1

1 Choose initial values N (0), M0
1 ;

2 for t← 1 to T do
3 draw M∗

1 from a proposal distribution qt(M
∗
1 |M t−1

1 ), e.g.
M∗

1 ∼ Pois(M t−1
1 ) ;

4 compute the acceptance ratio

5 γM1 = min
(

1;
π(M∗1 |Nt−1,w,n,x1)

π(Mt−1
1 |Nt−1,w,n,x1)

qt(M
t−1
1 |M∗1 )

qt(M∗1 |M
t−1
1 )

)
;

6 draw u ∼ Unif(0, 1) ;
7 if γM1 > u then
8 set M t

1 = M∗
1 ;

9 else
10 set M t

1 = M t−1
1

11 end
12 draw N∗ from a proposal distribution qt(N

∗|N t−1), e.g.
N∗ ∼ Pois(N t−1) ;

13 compute the acceptance ratio

γN = min
(

1;
π(N∗|Mt

1,w,n,x1)

π(Nt−1|Mt
1,w,n,x1)

qt(Nt−1|N∗)
qt(N∗|Nt−1)

)
;

14 repeat lines 6-11 for N using γN
15 end



20

Algorithm 3: Metropolis-within-Gibbs, unknown M1 and w

1 Choose initial values N (0), M
(0)
1 and w(0) ;

2 for t← 1 to T do
3 draw M∗

1 from a proposal distribution qt(M
∗
1 |M t−1

1 ), e.g.
M∗

1 ∼ Pois(M t−1
1 ) ;

4 compute the acceptance ratio

5 γM1 = min
(

1;
π(M∗1 |Nt−1,wt−1,n,x1)

π(Mt−1
1 |Nt−1,wt−1,n,x1)

qt(M
t−1
1 |M∗1 )

qt(M∗1 |M
t−1
1 )

)
;

6 draw u ∼ Unif(0, 1) ;
7 if γM1 > u then
8 set M t

1 = M∗
1 ;

9 else
10 set M t

1 = M t−1
1

11 end
12 draw N∗ from a proposal distribution qt(N

∗|N t−1), e.g.
N∗ ∼ Pois(N t−1) ;

13 compute the acceptance ratio

γN = min
(

1;
π(N∗|Mt

1,w
t−1,n,x1)

π(Nt−1|Mt
1,w

t−1,n,x1)
qt(Nt−1|N∗)
qt(N∗|Nt−1)

)
;

14 repeat lines 6-11 for N using γN ;
15 draw w∗ from a proposal distribution qt(w

∗|wt−1), e.g.
w∗ ∼ Norm(wt−1, s2

w) ;

16 compute the acceptance ratio γw = min
(

1;
π(w∗|Nt,Mt

1,n,x1)

π(wt−1|Nt,Mt
1,n,x1)

)
;

17 repeat lines 6-11 for w using γw
18 end
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2.1.3 Sensitivity analysis: the posterior distribu-
tion of N under the different specifications of
M1 with fixed w

Here we show the sensitivity of N to the different specifications of M1 (as
in (2.2) and (2.3)). We simulate 200 observed vectors (x1, x2) and test
the model for three population sizes, i.e. N = 1000 (purple in figures),
N = 10000 (blue) and N = 100000 (green). Figures 2.1, 2.2 and 2.3
show the distribution of the posterior means of N estimated on the 200
samples. Table 2.1 shows the mean, the standard deviation and the 95%
Highest Posterior Density interval of the posterior means of N obtained
via simulation.

The posterior of N strongly reflects M1’s prior uncertainty; the wider the
prior, the greater the standard deviation associated with the posterior
and the larger the Highest Posterior Density interval for the population
size. It appears more evident as the population size increases.

Figure 2.1: Posterior mean of N for different specification of the M1 prior,
200 samples. True value of N = 1000
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Figure 2.2: Posterior mean of N for different specification of the M1 prior,
200 samples. True value of N = 10000

Figure 2.3: Posterior mean of N for different specification of the M1 prior,
200 samples. True value of N = 100000
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Prior on M1 True value of N Mean Sd HPD

Pois(m∗1)
1000 1006.823 23.009 [971.74; 1057.226]
10000 10000.53 72.833 [9881.172; 10174.839]
100000 99995.29 223.763 [99543.02; 100412.41]

Unif(m∗1 ± 20%m∗1)
1000 1011.091 24.381 [965.873; 1061.187]
10000 10049.64 212.101 [9602.222; 10419.035]
100000 100616.2 4493.005 [93533.26; 107774.07]

Table 2.1: Sensitivity of the posterior mean of N to different prior specifications of M1. Mean, standard deviation and 95%
Highest Posterior Density interval for the posterior mean of N , estimated on 200 samples for N = 1000, 10000 and 100000,
with m∗1 = 266, 2655, 26551 being M1 true values in the respective cases.

Prior on w True value of N Mean Sd HPD

Unif(w∗ ± 20%w∗)
1000 1006.764 23.163 [969.348; 1056.271]
10000 10013.47 74.727 [9878.628; 10183.178]
100000 100120.3 532.9 [99177.34; 101224.76]

Unif(w∗ ± 50%w∗)
1000 1015.297 24.397 [971.147; 1060.923]
10000 10105.36 126.209 [9799.559; 10314.797]
100000 101128 2522.769 [96321.36; 105173.56]

Table 2.2: Sensitivity of the posterior mean of N to different prior specifications of w. Mean, standard deviation and 95%
Highest Posterior Density interval for the posterior mean of N , estimated on 200 samples for N = 1000, 10000 and 100000.
w∗ = 0.188.
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2.1.4 Sensitivity analysis: the posterior distribu-
tion of N under different specifications of w
with fixed M1

Now we study how N is sensitive to the prior of w getting larger, with
fixed M1; in particular, we set a Uniform prior for w, centred on the
true value, and observe the impact of widening its support. We test it
for N = 1000 (Figure 2.4), N = 10000 (Figure 2.5), and N = 100000
(Figure 2.6).
When N = 1000, there is no significant difference between the two pos-
terior means’ distributions; the standard deviation associated with the
widest distribution is only about 1.2 points bigger; see Table 2.2. How-
ever, as the population size increases the prior uncertainty of w highly
affects the posterior estimates of N ; the difference in the standard devi-
ations is about 51.5 for N = 10000 and just under 2000 for N = 100000.

Figure 2.4: Posterior mean of N , 200 samples, M1 fixed. True value of
N = 1000.
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Figure 2.5: Posterior mean of N , 200 samples, M1 fixed. True value of
N = 10000.

Figure 2.6: Posterior mean of N , 200 samples, M1 fixed. True value of
N = 100000.
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2.1.5 Sensitivity analysis: the posterior distributions of N
and w under different specifications of w and M1

This paragraph shows how the posteriors of N and w change as the prior interval
specified for w becomes wider and under the two different prior specifications of
M1.
Table 2.3 summarises the posterior mean of N in the separate cases; we report
only the smallest and the largest population sizes considered so far. For N = 1000,
the standard deviation does not vary significantly with the change of the priors;
however, introducing more uncertainty leads to an increasing bias of small size
(up to 2%) for the posterior mean (see also Figures 2.7 and 2.8). Yet, when
the population size is larger, the standard deviation of the posterior mean of N
increases with the increase in prior uncertainty of both w and M1 (see Figures 2.9
and 2.10). In the most uncertain case, the width of the 95% Highest Posterior
Density interval amounts to the 20% of the true value.
Table 2.4 summarises the posterior mean of w for each case. As the prior on w
widens, the posterior mean suffers a slight upward bias. Nevertheless, the Highest
Posterior Density intervals always include the true value w∗. The prior choice for
M1 seems not to affect the posterior of w (see Figures 2.11,2.12,2.13 and 2.14).

Figure 2.7: Posterior mean of N , 200 samples, with Uniform prior on M1. True value
of N = 1000.
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Figure 2.8: Posterior mean of N , 200 samples, with Poisson prior on M1. True value of
N = 1000.

N = 1000 Prior on M1 Mean Sd HPD

Unif(w∗ ± 20%w∗)
Pois(m∗1) 1006.5 28.242 [952.503; 1060.003]

Unif(m∗1 ± 20%m∗1) 1010.479 26.857 [959.571; 1058.614]

Unif(w∗ ± 50%w∗)
Pois(m∗1) 1016.306 26.05 [973.654; 1072.973]

Unif(m∗1 ± 20%m∗1) 1021.495 26.609 [974.742; 1072.473]

N = 100000

Unif(w∗ ± 20%w∗)
Pois(m∗1) 100002.9 230.338 [99529.47; 100434.93]

Unif(m∗1 ± 20%m∗1) 100368.4 4580.214 [91837.33; 107422.06]

Unif(w∗ ± 50%w∗)
Pois(m∗1) 101052 2543.402 [95828.24; 105080.86]

Unif(m∗1 ± 20%m∗1) 101293.4 5750.152 [92120.33; 112927.97]

Table 2.3: Sensitivity of the posterior mean of N to different prior specifications of w and
M1 (as in the previous tables). Mean, standard deviation and 95% Highest Posterior Den-
sity interval for the posterior mean of N , estimated on 200 samples for N = 1000, 100000.
m∗1 = 266, 26551 for the respective sizes of N , and w∗ = 0.188
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Figure 2.9: Posterior mean of N , 200 samples, with Uniform prior on M1.
True value of N = 100000.

Figure 2.10: Posterior mean of N , 200 samples, with Poisson prior on M1.
True value of N = 100000.
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Figure 2.11: Posterior mean of w, 200 samples, with M1 Poisson (left) or
Uniform (right). w ∼ Unif(w∗ ± 20%w∗), with w∗ = 0.188. N = 1000

Figure 2.12: Posterior mean of w, 200 samples, with M1 Poisson (left) or
Uniform (right). w ∼ Unif(w∗ ± 50%w∗), with w∗ = 0.188. N = 1000
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Figure 2.13: Posterior mean of w, 200 samples, with M1 Poisson (left) or
Uniform (right). w ∼ Unif(w∗ ± 20%w∗), with w∗ = 0.188. N = 100000

Figure 2.14: Posterior mean of w, 200 samples, with M1 Poisson (left) or
Uniform (right). w ∼ Unif(w∗ ± 50%w∗), with w∗ = 0.188. N = 100000
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N = 1000 Prior on M1 Mean Sd HPD

Unif(w∗ ± 20%w∗)
Pois(m∗1) 0.187 0.017 [0.159; 0.216]

Unif(m∗1 ± 20%m∗1) 0.188 0.016 [0.162; 0.213]

Unif(w∗ ± 50%w∗)
Pois(m∗1) 0.2 0.008 [0.185; 0.216]

Unif(m∗1 ± 20%m∗1) 0.2 0.009 [0.181; 0.214]

N = 100000

Unif(w∗ ± 20%w∗)
Pois(m∗1) 0.188 0.001 [0.188; 0.19]

Unif(m∗1 ± 20%m∗1) 0.188 0.001 [0.188; 0.189]

Unif(w∗ ± 50%w∗)
Pois(m∗1) 0.202 0.032 [0.136; 0.251]

Unif(m∗1 ± 20%m∗1) 0.199 0.031 [0.138; 0.252]

Table 2.4: Sensitivity of the posterior mean of w to different prior specifications of w and M1 (as in the previous
tables). Mean, standard deviation and 95% Highest Posterior Density interval for the posterior mean of w, estimated
on 200 samples for N = 1000, 100000. m∗1 = 266, 26551 for the respective sizes of N , and w∗ = 0.188



32

2.1.6 Multiple lists

So far, we have addressed the case where a single list is available, which
is perhaps the case of most interest. However, the findings discussed in
the previous sections are also applicable when there is more than one list,
but we lack unique identifiers. Such a situation lies outside the capture-
recapture framework, and popular models like the log-linear ones are not
feasible. In this paragraph, we briefly discuss the multiple lists’ case.

Assume K lists of size nk partially enumerate a population composed of
two subgroups, which are differently exposed to each list k, k = 1, 2, ..., K.
Denote with Xk ∈ R2 the bi-dimensional vector whose elements are the
two subgroups’ number of units observed at the kth occasion, i.e.

Xk := (Xk,1, Xk,2) (2.8)

for each k. Clearly,
Xk,1 +Xk,2 = nk (2.9)

We assume

Xk,1|Xk,1 +Xk,2 = nk ∼ FNCH(M1,M2, nk, wk) (2.10)

where wk is the relative exposure of subgroup 1 with respect to subgroup
2 at occasion k. We also admit wk = w for some or all k.
Hence, the likelihood will be

L(M1,M2, w|xk) =
K∏
k=1

FNCH(xk;M1,M2, nk, wk) (2.11)

The prior setting is quite similar to the single list case. Algorithm 1, 2
and 3 (as well as the ones we will describe in the next section) nimbly
adapt to the multiple lists context.

To check the results’ sensitivity to an increase in information, we simulate
100 samples with K = 1, K = 3 and K = 10 and compare the results in
terms of variation of summary statistics of the empirical posterior of N .
Figure 2.15 clearly shows how the posterior uncertainty of N decreases
as K increases. As expected, when more information is included in the
model, the HPD intervals shrink; see Table 2.5.
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K Mean Sd HPD

1 9995.58 72.634 [9878.219; 10174.692]
3 10004.85 43.33 [9914.891; 10070.752]
10 9999.989 26.154 [9953.16; 10046.67]

Table 2.5: Summaries of the posterior mean of N to different K. Mean,
standard deviation and 95% Highest Posterior Density interval for the pos-
terior mean of N , estimated on 100 samples. Poisson prior on M1 and fixed
w.

Figure 2.15: Posterior mean ofN , 100 samples, for K = 1, 3, 10, with Poisson
prior on M1 and w fixed. N = 10000
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2.2 The multivariate case

2.2.1 Prior setting

Let X = (X1, ..., Xc) be the vector of the number of units belonging to
C different groups, or categories, registered in a list of size n. For each
group c, c = 1, ..., C, we assume:

Xc ∼ Binom(Mc, ζc) (2.12)

We indicate with wc the ratio
ζc

1− ζc
, ∀c. Note that

∑
c

Mc = N . Hence,

we can say that X is distributed as a multivariate Fisher’s NCH with
parameters M = (M1, ...,MC), n and w = (w1, ..., wC) and probability
mass function

P (X = x|
C∑
c=1

Xc = n) =

C∏
c=1

(
Mc

xc

)
wc

xc

∑
z∈Z

C∏
c=1

(
Mc

zc

)
wczc

(2.13)

where

Z = {x ∈ Zc :
C∑
c=1

xc = n ∩ 0 ≤ xc ≤Mc,∀c} (2.14)

As in the univariate case, we need to introduce some prior information
on at least one of the Mc’s; for convenience, we refer to such parameter
as M1. The hierarchical model in the multivariate case will be:

X|
∑
c

Xc = n ∼ mvFNCH(M , n,w)

M1, ...,Mc
ind∼ f(mc)

(2.15)

where f(·) stands for any suitable distribution. The vector w can be ei-
ther known or unknown. For simplicity, we fix w in this section, but the
extension to the case of unknown weights is straightforward and similar
to the univariate case.

As the number of draws and the number of different categories in the
population increases, the set Z (as defined by (2.14)) enlarges; thus, it
takes longer to evaluate the probability mass function. For n sufficiently
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large, the computational capacity of popular software like R may be in-
sufficient, making any method involving the evaluation of the likelihood
of such a multivariate variable X practically unfeasible. In the following
paragraphs, we propose different methods for estimating M .

2.2.2 Posterior computation: ABC method

To avoid evaluating the likelihood, we take inspiration from Grazian et al.
(2019). In that paper, the authors use an ABC (Approximate Bayesian
Computation) method to estimate the weights of a Wallenius’ distribu-
tion.
Originally developed by Pritchard et al. (1999), ABC methods have
spread enormously for the last two decades thanks to their flexibility.
Such methods replace the evaluation of the likelihood with the simula-
tion of a synthetic data set z and the computation of a summary statistics
η(z); then, η(z) is compared to η(x), namely the statistics relative to
the observed data, on the base of some metric ρ(η(x), η(z)). There exist
several reviews of such methods; see Sisson et al. (2018) among others.
For the sake of clarity, we describe the most basic ABC algorithm for a
generic parameter θ below, i.e. the ABC rejection, or “Vanilla ABC” (as
referred to in Clarté et al. (2020)); see Algorithm 4.

Algorithm 4: ABC rejection

1 for t← 1 to T do
2 repeat
3 draw θ∗ from its prior distribution π(θ) ;
4 simulate z ∼ L(θ|z)

5 until ρ(η(x), η(z)) < ε;
6 θt = θ∗

7 end

In Grazian et al. (2019), the use of ABC works around the problem linked
to the complexity of Wallenius’ NCH density, allowing for sampling from
an approximation of the posterior π(w|x). Although our scope is differ-
ent, i.e. the target parameter isM instead ofw, we can use the approach
of Grazian et al. (2019) in a different context.
As a summary statistics for data drawn from WNCH distribution, Grazian
et al. (2019) propose the arithmetic mean of the observed and simulated
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frequency vectors, i.e.

η(x) =
1

K

K∑
k=1

(
xk,1
nk

, ...,
xk,C
nk

)
and η(z) =

1

K

K∑
k=1

(
zk,1
nk

, ...,
zk,C
nk

)
(2.16)

where zk is a vector of counts randomly drawn from a multivariate Walle-
nius distribution at the kth occasion. Then, to compare the two statistics,
Grazian et al. (2019) employ the “distance in variation” (see Brémaud
(2013)) metric

ρ(η(x), η(z)) =
1

2

C∑
c=1

|η(x)− η(z)| . (2.17)

In the case of fixedw, we strictly follow Grazian et al. (2019). The follow-
ing figures show the distribution of the posterior means of the parameters,
computed over 100 samples simulating a single list case, implying K = 1
in (2.16). We fix N = 10000 and simulate M = (M1,M2,M3) and the
respective ζc parameters.
Figure 2.16 shows how well Algorithm 5 estimates the posterior of N
(summarised by the expected value). Figure 2.17 shows the posterior of
M1,M2,M3 and their relative sizes, again summarised by the expected
values.

Algorithm 5: ABC rejection for population subgroups’ size es-
timation
1 for t← 1 to T do
2 repeat
3 draw M ∗ from the joint prior distribution π(M ∗) ;
4 simulate z ∼ mvFNCH(M ∗, n,w) ;
5 compute ρ(η(x), η(z))

6 until ρ(η(x), η(z)) < ε;
7 M t = M ∗ ;

8 end



37

As shown in Table 2.6, the estimates obtained via ABC rejection are
close to the real values, always included in the HPD intervals. However,
there is a trade-off between precision and computational speed: as ε gets
smaller, the time required by the algorithm increases. Such a scenario
worsen as the dimension of the parameters’ vector increases. In the next
paragraph, we propose an alternative method that turns out to be more
effective.

Parameter’s true value Mean Sd HPD

N = 10000 10039.7 50.11 [9954.128; 10134.172]
M1 = 4841 4844.085 3.093 [4838.795; 4849.506]
M2 = 3701 3725.654 41.345 [3664.424; 3819.45]
M3 = 1458 1469.914 15.907 [1425.489; 1488.672]

Table 2.6: Mean, standard deviation and 95% Highest Posterior Density
interval of the posterior mean of N and M , estimated on 100 samples via
ABC. Poisson prior on M1 and fixed w.

Figure 2.16: Posterior mean of N simulated via ABC, 100 samples. |M | = 3
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(a) M1 (b) p1

(c) M2 (d) p2

(e) M3 (f) p3

Figure 2.17: Posterior means of M = (M1,M2,M3) (left) and p =
(p1, p2, p3) (right) simulated via ABC, 100 samples.
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2.2.3 Posterior computation: MCMC method

As an alternative to the algorithm proposed in the previous section, we
present a simple Metropolis-within-Gibbs.
At each iteration t, we first simulate M∗

1 via Metropolis-Hastings. The
acceptance ratio will be

γM1 = min

(
1;

mvFNCH(x|M∗
1 ,M

t−1
2 , ...,M t−1

C , n)π(M∗
1 )

mvFNCH(x|M t−1
1 ,M t−1

2 , ...,M t−1
C , n)π(M t−1

1 )

×qt(M
t−1
1 |M∗

1 )

qt(M∗
1 |M t−1

1 )

) (2.18)

which still involves the evaluation of the multivariate likelihood.
However, we can write the probability mass function of X as

P (X|
C∑
c=1

Xc = n) = P (X1, X2, ..., XC |
C∑
c=1

Xc = n)

= P (X1, Xc′|X−(1,c′),
C∑
c=1

Xc = n)

× P (X−(1,c′)|
C∑
c=1

Xc = n)

= P (X1, Xc′|X1 +Xc′ = n−
∑

c,−(1,c′)

Xc)

× P (X−(1,c′)|
C∑
c=1

Xc = n)

(2.19)

where c′ can be any c 6= 1.

P (X1, Xc′|X1 +Xc′ = n−
∑

c,−(1,c′)

Xc) (2.20)

is the probability mass function of a univariate Fisher’s NCH. The ratio
in (2.18) then becomes

FNCH(x1, xc′|M∗
1 ,M

t−1
c′ , n1c′)f(x−(1,c′)|M t−1

−(1,c′), n)π(M∗
1 )

FNCH(x1, xc′ |M t−1
1 ,M t−1

c′ , n1c′)f(x−(1,c′)|M t−1
−(1,c′), n)π(M t−1

1 )

×qt(M
t−1
1 |M∗

1 )

qt(M∗
1 |M t−1

1 )

(2.21)
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where n1c′ = x1 + xc′ . We sample the remaining Mc, c 6= 1 in the same
fashion, always setting Mc′ = M1; the acceptance ratio γMc will be the
minimum between 1 and

FNCH(xc, x1|M∗
c ,M

t
1, nc1)π(M∗

c )

FNCH(xc, x1|M t−1
c ,M t

1, nc1)π(M t−1
c )

qt(M
t−1
c |M∗

c )

qt(M∗
c |M t−1

c )
(2.22)

See Algorithm 6 below for the complete procedure.

Algorithm 6: MCMC

1 Choose initial values M (0), N0 ;
2 for t← 1 to T do
3 draw M∗

1 from a proposal distribution qt(M
∗
1 |M t−1

1 ) ;
4 compute the acceptance ratio γM1 =

min
(

1;
FNCH(x1,x2|M∗1 ,M

t−1
2 ,x1+x2,w12)π(M∗1 )

FNCH(x1,x2|Mt−1
1 ,Mt−1

2 ,x1+x2,w12)π(Mt−1
1 )

qt(M
t−1
1 |M∗1 )

qt(M∗1 |M
t−1
1 )

)
where w12 = w1/w2;

5 draw u ∼ Unif(0, 1) ;
6 if u < γM1 then
7 set M t

1 = M∗
1

8 else
9 set M t

1 = M t−1
1

10 end
11 for c← 2 to C do
12 draw M∗

c from a proposal distribution qt(M
∗
c |M t−1

c ) ;
13 compute the acceptance ratio γMc =

min

(
1;

FNCH(x1,xc|Mt
1,M

∗
c ,x1+xc,w1c)π(M∗c )

FNCH(x1,xc|Mt
1,M

t−1
c ,x1+xc,w1c)π(Mt−1

c )

qt(M
t−1
c |M∗c )

qt(M∗c |M
t−1
c )

)
where w1c = w1/wc;

14 draw u ∼ Unif(0, 1) ;

15 set M t
c =

{
M∗

c if u < γNMc
M t−1

c otherwise
;

16 end

17 set N t =
∑C

c Mc

18 end
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Figure 2.18 and 2.19 show the distribution of the posterior means of
the parameters of interest, estimated over 200 samples, for the three-
dimensional case. Table 2.7 presents the Highest Posterior Density in-
tervals for such summaries of the posterior distributions. The results are
pretty good.
We will test the method’s efficacy compared to the ABC one in higher-
dimensional problems in the next section.

Figure 2.18: Posterior mean of N simulated via MCMC, 100 samples.

Parameter’s true value Mean Sd HPD

N = 10000 10021.72 116.98 [9807.55; 10272.85]
M1 = 404 404.688 0.571 [403.432; 405.764]
M2 = 4899 4904.414 33.758 [4854.575; 4995.473]
M3 = 4697 4712.617 88.368 [4561.827; 4893.473]

Table 2.7: Mean, standard deviation and 95% Highest Posterior Density
interval of the posterior mean of N and M , estimated on 100 samples via
MCMC. Poisson prior on M1 and fixed w.
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(a) M1 (b) p1

(c) M2 (d) p2

(e) M3 (f) p3

Figure 2.19: Posterior means ofM (left) and p (right) simulated via MCMC,
100 samples.
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2.3 Methods comparison: simulation stud-

ies

This section compares the results of two simulation studies aiming to
estimate the total population size N in the presence of 5 subgroups. For
the same true value of N = 10000, we implement both the methodologies
described in the previous sections.
Figures 2.20, 2.21 and 2.22 clearly show a better ability of the MCMC
approach in centring the parameters’ true values. However, considering
the whole distributions, we observe that the ABC approach’s wider in-
tervals always include the true values; see Tables 2.8, 2.9 and 2.10.

N

MCMC 0.960
ABC 1.000

Table 2.8: The 95% Highest posterior density intervals for N include the
true value, frequencies over 100 samples.

Figure 2.20: Posterior means of N simulated via MCMC (left) and ABC
(right), 100 samples
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M1 M2 M3 M4 M5

MCMC 1.000 0.990 0.960 0.990 0.960
ABC 1.000 1.000 1.000 1.000 1.000

Table 2.9: The 95% Highest posterior density intervals for M include the
true values, frequencies over 100 samples.

(a) M1

(b) M2
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(c) M3

(d) M4

(e) M5

Figure 2.21: Posterior means of M simulated via MCMC (left) and ABC
(right), 100 samples.
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p1 p2 p3 p4 p5

MCMC 0.920 1.000 0.980 1.000 1.000
ABC 1.000 1.000 1.000 1.000 1.000

Table 2.10: The 95% Highest posterior density intervals for p include the
true values, frequencies over 100 samples.

(a) p1

(b) p2
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(c) p3

(d) p4

(e) p5

Figure 2.22: Posterior means of p simulated via MCMC (left) and ABC
(right), 100 samples.
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2.4 A case study: graduated job seekers in

Italy

A critical task for the institutions is to guarantee an efficient transition
into the labour market for the youngsters who concluded their education.
Adopting appropriate policies favouring employment is crucial for many
reasons, which concern the individual and the collective spheres. Indeed,
it is instrumental in paying back the education, whose investment is pri-
vate (made by the individuals/households themselves) and public (since
the education system burdens the public expenditure). Furthermore,
adequate employment policies support the pension system’s intergener-
ational contract’s stability and boost growth. A final (not less crucial)
point concerns that human work contributes to society’s development;
employment is thus a primary objective for the welfare systems.
It is straightforward that implementing efficient policies requires knowl-
edge about the entity of the phenomenon of unemployment. Eurostat3

identifies unemployed persons as individuals aged 15 to 74 years who
are not employed, currently available for work and actively seeking em-
ployment. This definition includes those previously employed and those
who have never been employed and seek their first job. It is crucial to
distinguish unemployed from inactive persons who are not employed or
actively seeking work. The latter category also includes children, full-
time students, pensioners and housewives (men).

In this section, we aim at estimating the size of a subpopulation of
graduates, namely those who are still seeking a job after one year from
graduation. Our final goal is to have a yearly estimate, exploiting the
Interuniversity Consortium “Almalaurea” annual survey.

Every year the Italian National Statistics Institute provides data on
the population size of that year’s graduates4. Before the academic year
2012/2013, the collection of such data was survey-based; since then, it
has come from the Student National Register of the Ministry of Educa-
tion, University and Research (MIUR). Hence, the degree of accuracy is
high.

3EU labour force survey - methodology
4available at I.stat

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=EU_labour_force_survey_-_methodology##EU-LFS_concept_of_labour_force_status
http://dati.istat.it/Index.aspx?DataSetCode=DCIS_LAUREATI
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Variables Value Notes

Degree’s classification

Laurea Triennale
the first level of the higher education system
(corresponding to a Bachelor Degree)

Laurea Magistrale
the second level of the higher education system
(corresponding to the Master Degree)

Laurea Magistrale a ciclo unico
a program that contemplates a 5/6 years course
e.g. Law, Architecture, Medicine

Laurea Vecchio Ordinamento programs in effect before the Bologna process, 1999

Degree’s achievement date dd-mm-yy

University that released the degree The whole set of Italian Universities

Date of the first job contract dd-mm-yy

Table 2.11: Variables in the available dataset
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Thanks to the collaboration with Stefano De Santis5, we can access a
microdata sample collecting information about individuals who gradu-
ated in 2011. The dataset includes some variables about the achieved
degree and the individuals’ employment contract history from their first
contract - that can date from before 2011 - to 2016. Hence, the available
data allow detecting the number of graduates who were still unemployed
one year after their graduation. Table 2.11 shows the variables of interest
included in the dataset. We decide to exclude from the sample those who
achieved a Bachelor degree (Laurea Triennale) since we are interested in
the employment level of those who had completely concluded their edu-
cation. Master’s graduates may decide to continue their education; how-
ever, we assume such units’ incidence to be negligible. We also exclude
the units that were employed when they graduated. After the cleaning
procedures, the sample contains nI = 3798 individuals, xI,u = 1372 of
them who were still unemployed one year after graduation. The units
who entered the labor market within a year are xI,e = nI − xI,u = 2426.
We can assume

XI,u ∼ Binom(Mu, ζI,u)

XI,e ∼ Binom(Me, ζI,e)
(2.23)

where Mu, Me are the total number of people who graduated in 2011
and who were still unemployed or were employed one year after their
graduation, respectively. Hence,

XI,u|nI ∼ FNCH(Mu, N −Mu, nI , wI) (2.24)

with wI =
ζI,u/(1− ζI,u)
ζI,e/(1− ζI,e)

being the relative weight of the unemployed

persons in the Istat sample. In this case, the urn is not biased, i.e. we
know that the sample has been randomly selected, and the probability of
inclusion of the unemployed is the same as the employed ones. Therefore,
wI = 1 and FNCH is a hypergeometric distribution; nevertheless, we can
still use the algorithms described in §2.1. Concerning N , although the
high level of accuracy of the Istat estimate, we prefer considering the in-
trinsic uncertainty linked to any estimate; for this reason, we elicit a prior
distribution for it, that is centred on the value estimated by the Istat, i.e.
a Poisson(λN = 130067). Finally, we consider Mu approximately Nor-
mal, centred on the value of Mu obtained via numerical approximation,

5Istat
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σMu N Mu

5000 130054(353.031) 47001.88(976.818)
1000 130065.2(371.175) 47025.09(1011.288)
15000 130088.6(365.825) 47022.19(972.446)

Table 2.12: Estimated posterior mean and standard deviation (in parenthe-
sis) of N and M1, for different values of σ2

Mu
. Data source: Istat.

assuming N fixed and equal to λN :

Mu ∼ N(µMU
= 46998, σ2

Mu
) . (2.25)

We tested the sensitivity of the results for different values of σMu = 5000,
10000, 15000; the results are robust (see Table 2.12).
Figure 2.23 shows the empirical posterior distributions of N and M1 sim-
ulated via MCMC. As we expect, the posteriors are centred on the prior
means. They give us a measure of uncertainty about the total number
of people who graduated in 2011 (who were unemployed for at least one
year). The results suggest that about 36% of the 2011 graduates had not
found a job within the year. We can see such an estimate as an upper
bound for Mu: indeed, it could include the inactive people, that include
who continued their studies, and those who were employed without a
regular contract.

Suppose we had information about the employment condition of a sam-
ple of recently graduated people for each year. In that case, we could
estimate the time series of the number of those who have found it difficult
to enter the labour market. Yet, our sample is part of the census survey
that used to take place on a ten-year basis6. As an alternative, we con-
sider exploiting the information collected every year by the Graduates’
Employment Status Survey (GESS) by AlmaLaurea 7.
AlmaLaurea is an interuniversity consortium that yearly conducts sur-
veys on a sample of people who graduated the year before. The GESS
collects information on the employment condition of the respondents
via CAWI (Computer-Assisted Web Interview) and CATI (Computer-
Assisted Telephone Interview) methodologies. The data is integrated

6As discussed in the Introduction, since 2018, Istat has started the “permanent
census of the Population and Housing” (see Istat (2018)).

7AlmaLaurea - Consulta i dati

https://www.almalaurea.it/universita/indagini/laureati/occupazione
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with the universities’ administrative archives involved in the investiga-
tion (such as gender, date of birth, information on the course attended,
etc.).
The response rate for the 2012 survey is 85%8, for a total sample size
of nA = 75443. However, we expect the propensity to participate in the
survey for purely statistical purposes to be different between those em-
ployed and those who have not found a job yet. Likely, the unemployed
would be less enticed to fill a questionnaire about their employment con-
dition.
The observed number of unemployed after one year from their gradua-
tion9 is xA,u = 22853, and the number of employed nA − xA,u = 52590.
To estimate the unemployed’s exposure in the Almalaurea survey, we ex-
ploit the estimates previously obtained using the Istat sample. We elicit
prior distributions for N and Mu that are centred on the posterior means
estimated in the “first step”; in this “second step”, we aim at estimating
wA, i.e. the relative weight of the unemployed in the Almalaurea survey.
We opt for a wide prior for wA, i.e.

wA ∼ Unif

(
1

10
, 10

)
; (2.26)

it means that we consider the possibility that the employed are up to ten
times more exposed than the unemployed, and vice-versa. The posterior
of wA produced via MCMC (Algorithm 3) is shown in Figure 2.24 (a)
and summarised in Table 2.13. From Figure 2.24 (b), it emerges a quite
strong autocorrelation that is expected when all parameters are unknown;
however, the range of values that wA covers is very narrow. The results
seem to confirm our initial guess; the estimated posterior mean of wA
suggests that the employed are about 1.8 times more exposed to the
Almalaurea questionnaire than the unemployed.

8Excluding those who achieved the Bachelor degree.
9precisely, who have never been employed for the year after their graduation.
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(a) Total graduated (σMu
= 5000) (b) Total graduated (σMu

= 5000)

(c) Still unemployed (d) Still unemployed

Figure 2.23: Posterior of N and M1. Data source: Istat

(a) Relative weight of
the unemployed

(b) Relative weight of
the unemployed

Figure 2.24: Posterior of wA. Data source: Almalaurea
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Posterior mean Posterior sd 95%HPDi

N 130062.2 341.066 [129393; 130723]
Mu 46871.22 459.734 [46181; 47634]
wA 0.554 0.021 [0.518; 0.590]

Table 2.13: Estimates for the posterior mean, standard deviation and Highest
Posterior Interval of the parameters of interest. Almalaurea, GESS 2012.

Assume that the propensity to fill the Almalaurea questionnaire does not
significantly change once we control for the employment status. In this
case, we can use the obtained results to make inference for the following
years. Indeed, the 2011 cohort can be seen as a “training sample”: it
makes possible the yearly estimation of the number of recently graduated
unemployed people avoiding further surveys or needing only targeted post
enumeration surveys. As an example, we show the results for the 2012
cohort.

We use the Istat’s estimate of the number of graduates in 201210 to
elicit the prior for N2012:

N2012 ∼ Pois(λN2012 = 127161) . (2.27)

For the exposure of the unemployed to the 2013 survey11, i.e. w2012
A , we

exploit the information obtained in the second step of our analysis, and
set

w2012
A ∼ N(w̄A, (10 sdwA)2) (2.28)

where w̄A is the estimated posterior mean of wA and sdwA is the standard
deviation. For M2012

u , we opt again for a Normal distribution centred on
the value obtained via numerical approximation assuming N2012 = λN2012

and w2012
A set equal to the posterior mean’s estimate of wA (wA = 0.554,

as in Table 2.13). The results are shown in Table 2.14.

The mean estimate for the number of 2012 graduates who were still
unemployed after one year is 66733.7, about the 52.5% of the total grad-
uates. This result appears dramatic and worthy of attention. We wonder
if such an increase in unemployment among recent graduates is plausible.

10We still excludes those who achieved the Bachelor degree.
11referred to 2012 graduates



55

Posterior mean Posterior sd 95%HPDi

N2012 127146.4 339.016 [126443; 127784]
M2012

u 66733.68 1517.433 [63914; 69290]
w2012
A 0.572 0.047 [0.499; 0.664]

Table 2.14: Estimates for the posterior mean, standard deviation and Highest
Posterior Interval of the parameters of interest. Data source: Almalaurea,
GESS 2013.

Indeed, once we considered the Italian economic situation in 2012, the
number seems reliable. The last quarter of 2011 saw the beginning of the
sovereign public debt crisis, which led to the then Prime Minister Silvio
Berlusconi’s resignation and the installation of a technical government
headed by Mario Monti. During 2012 the economic activity slowed down
drastically, and the unemployment rate increased. At the end of 2012,
the Italian GDP was still 8% points lower than five years before, and the
level of investment more than 20% lower (see, for example, Busetti and
Cova (2013)).
Therefore, the two estimated proportions of still unemployed graduates
likely arise in the context of that time, characterised by increasing un-
employment.

2.5 Discussion

In this chapter, we addressed the estimation of the size of a heteroge-
neous population when a single list is available, or we have multiple lists,
but we lack unique identifiers. We presented a model relying on the un-
deremployed Fisher’s noncentral hypergeometric distribution and faced
the issues arising from the computational burden of its probability mass
function, especially in the multivariate context.
Indeed, in §2.2 we presented two methods for estimating the population
size in the presence of multiple subgroups. On the one hand, the “ABC
method” bypasses evaluating the likelihood; it results being a valid so-
lution even though not computationally efficient. Moreover, it is very
approximate, as its name suggests. On the other hand, the “MCMC
method” is exceptionally performing in the parameters’ estimation. Nev-
ertheless, even though we lightened the computation by sampling one
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subgroup’s size at the time, it becomes onerous as N increases.

The simulation studies performed in §2.1 for the single list case show
how the parameters’ posterior strongly reflects prior uncertainty; this is
typical of models with little information. Indeed, the estimated posterior
intervals shrink when more lists are considered and more information is
injected into the model. The Bayesian approach allows us to formalise
such uncertainty and give credible intervals for the population size when
other methods appear unfeasible. The case study we presented in §2.4
gives the motivation to the whole work. Nowadays, data integration is a
crucial task; an advantage of our model is the ability to extract informa-
tion from one (or a few) data sources and integrate it in a multisource
environment.



Part II

Capture-recapture in the
presence of overcoverage
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Chapter 3

Multisource population size
estimation in the presence of
out-of-scope units: an
overview

This chapter aims to review the influential and most recent literature
about the problem of population size estimation via multiple lists and
can be seen as preparatory to chapter 4. §3.1 introduces the basic no-
tation we will use throughout this chapter and the next. §3.2 presents
the most recent literature about capture-recapture models, which fol-
lows Fienberg’s line, from its milestone Fienberg (1972) to the Bayesian
version of log-linear models. In §3.3, we will present an example of inter-
est. §3.4 extends the models previously introduced to the overcoverage
issue, and §3.5 compares them with two examples simulating different
scenarios. The conclusions follow.

3.1 Notation

We are interested in estimating the unknown sizeN of a closed population
U . Assume K lists partially enumerating U are available. Let δik = 1 if
unit i, i ∈ Z, is enumerated in the list k, k = 1, ..., K , and 0 otherwise.
Define

δi = (δi1, ..., δiK) (3.1)

58
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δi1 = 1 δi1 = 0

δi2 = 1 δi2 = 0 δi2 = 1 δi2 = 0

δi3 = 1 x123 x13 x23 x3

δi3 = 0 x12 x1 x2 ?

Table 3.1: Three lists observed contingency table

i.e. δi is the capture vector (or capture history) of unit i. If δi = 0, it
means that the unit i has never been captured.
Let ωi be a position index indicating which δik = 1 in δi. For instance,
assume K = 3; if δi = (1, 0, 1), ωi will be equal to the set {13}. Let xω
be the number of individuals whose capture vectors are summarised by
the same ωi; e.g., x1 is the number of units captured only by list 1 or,
equivalently, whose δik = 1 for k = 1 and 0 otherwise. The counts can be
summarised in an incomplete contingency table, as shown in Table 3.1.
We might need to refer to the number of individuals captured at least

by the first list, i.e. those individuals whose δik = 1 for k = 1 and either
0 or 1 for k = 2, 3; we indicate it with x1+, {1+} being a shortcut to
indicate {1} ∪ {12} ∪ {13} ∪ {123}. Therefore, we denote with xω+ the
marginal count and with xω the cross-classified one (as in Zhang (2019)).
Now assume that any list k may also enumerate some units that do not
belong to the target population U . Let us order the lists such that the
first K ′ do not enumerate out-of-scope units. Hence, let A = {1, 2, ..., K ′}
be the lists’ set only enumerating units belonging to U and B = {K ′ +
1, K ′ + 2..., K} be the one also including some i /∈ U . It follows that
the observed number of units captured by some k ∈ B is equal to xω =
yω + rω, where yω represents the number of in-scope units and rω the
number of the out-of-scope ones. Both yω and rω are unobserved. If ω
indicates at least one δk = 1, k ∈ A, then rω = 0 and xω = yω.
We will denote the cross-classified error rate, i.e. the probability of being
erroneously enumerated given that one belongs to the cell indexed by ω,
with ξω; similarly, τω = 1− ξω will be the cross-classified hit rate.

Finally, let us indicate with y0 the unknown number of in-scope units
not captured by any list; thus, the unknown size of the population U
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δA1(i) = 1 δA1(i) = 0

δA2(i) = 1 δA2(i) = 0 δA2(i) = 1 δA2(i) = 0

δA3(i) = 1
δU(i) = 1 y123 y13 y23 y3

δU(i) = 0 r123 r13 r23 r3

δA3(i) = 0
δU(i) = 1 y12 y1 y2 y0

δU(i) = 0 r12 r1 r2 ?

Table 3.2: Latent structure of three lists contingency table where all sources
are affected by overcoverage

will be N =
∑
ω

yω. Table 3.2 helps clarifying the notation; it shows a

three-way incomplete contingency table where all sources are affected by
overcoverage.

3.2 Capture-recapture

Capture-recapture models were born in ecology at the end of the 19th

century when the need for accurate tools able to estimate the number
of specimens belonging to a target animal population became stronger.
Indeed, C. G. J. Petersen1 and F. C. Lincoln2 are the ones who can be
considered the “fathers” of capture-recapture methods; a marine biologist
and an ornithologist, respectively. Starting from the popular Lincoln-
Petersen estimator, capture-recapture models have evolved and found
one of their primary applications in social sciences. In the following
paragraph, we briefly review the most recent models suitable for official
statistics’ needs.

1see Petersen (1985)
2see Lincoln (1930)
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3.2.1 Log-linear models’ setup

Log-linear models have been the most popular representation for count
data so far. The way these models work is self-explanatory; considering
the observed counts as random variables’ realisations, we may express
the natural logarithm of their expected values as a linear function of a
set of unknown parameters.
Assume we can classify y units belonging to a particular population in
a contingency table according to K characterising factors. Also, assume
that each factor has different levels, l1 = 1, ..., c1, l2 = 1, ..., c2 up to
lK = 1, ..., cK respectively.
Let Yl1l2...lK be the random variable indicating the number of counts for
the cell corresponding to level l1l2 . . . lK . In case of independence among
factors, i.e. P (δi12...K = 1) = P (δi1+ = 1)P (δi2+ = 1) · ... · P (δ1K+ = 1),
its expected value is

λl1l2...lK =
yl1+
y

yl2+
y
· ... ·

ylK+

y
y (3.2)

where λl1l2...lK = E(Yl1l2...lK ) and y =
∑
l1

∑
l2

...
∑
lK

yl1l2...lK is the total num-

ber of counts.
Analogously to the analysis of the variance, Fienberg (1970) expresses
the natural logarithm of such expected value as

log(λl1l2...lK ) = φ+ βl1 + βl2 + ...+ βlK (3.3)

where the β’s represent deviations from the grand mean, i.e. φ. How-
ever, if the factors’ independence assumption does not hold, we need to
introduce additional parameters, i.e. the interaction terms. In the case of
three factors, the so-called saturated model will include three two-factor
interaction terms and one three-factor:

log(λl1l2l3) = φ+ βl1 + βl2 + βl3 + βl1l2 + βl1l3 + βl2l3 + βl1l2l3 (3.4)

Any model which does not include all the interaction terms is said to be
unsaturated. Generalizing,

log(λl1...lK ) = φ+
∑
k

βlk +
∑
k

∑
j>k

βlklj + ...+ βl1...lK . (3.5)

The overparameterization of the model emerges clearly, asking for a con-
straint which will allow for the model’s identification. One possibility is
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the sum-to-zero constraint:

ck∑
lk=1

βlk =

c1∑
l1=1

βl1lk = ... = 0 ∀k . (3.6)

Another option is the corner point constraint, which we will use through-
out this work:

β(lk=1) = 0, ..., β(lk=1)...lj = 0 ∀k 6= j . (3.7)

Fienberg (1972) applied log-linear models to capture-recapture data for
the first time. Here, the K factors are the capture occasions, or lists.
For each list, only two levels lk are possible: captured (lk = 1) or missed
(lk = 0). As a result, the observed units can be classified in an incomplete
contingency table of dimension 2K . By incomplete we mean that it will
presents a missing cell, the one corresponding to {l1 = 0 ... lK = 0}, by
construction. In this framework, three assumptions play a crucial role.
First, the population is assumed to be closed (Fienberg (1972)). Second,
the probability of being captured in one or more lists is the same for any
individual i belonging to the target population; in other words, there is
capture homogeneity. Another crucial assumption is that the units have
unique labelling: one can infer the entire multiple recapture history of
any observed individual from its label anytime. In the conclusions, we
will see how literature has addressed the deviations from the last two
assumptions.
To our knowledge, the entire capture-recapture literature on log-linear
models has only focused on the hierarchical ones, i.e. those models where
the higher-order relatives of a zero term are constrained to be zero as well
(see Fienberg (1972)). For instance, assume K = 3; the saturated model
results being

log(λl1=1 l2=1 l3=1) = φ+ βl1=1 + βl2=1 + βl3=1 + βl1=l2=1 + βl1=l3=1+

+ βl2=l3=1 + βl1=l2=l3=1

(3.8)

Since the levels for each list are only 0 and 1, with a little abuse of
notation, we replace the subscript lk with its index k when lk = 1, and
we omit it when lk = 0. The result is in line with the notation described
in §3.1. Therefore, we can rewrite the equation above as

log(λ123) = φ+ β1 + β2 + β3 + β12 + β13 + β23 + β123 (3.9)
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Model specification Highest order interactions

φ+ β1 + β2 + β3 + β12 + β13 + β23 + β123 [123]
φ+ β1 + β2 + β3 + β12 + β13 + β23 [12][13][23]
φ+ β1 + β2 + β3 + β12 + β13 [12][13]
φ+ β1 + β2 + β3 + β12 + β23 [12][23]
φ+ β1 + β2 + β3 + β13 + β23 [13][23]
φ+ β1 + β2 + β3 + β12 [12]
φ+ β1 + β2 + β3 + β13 [13]
φ+ β1 + β2 + β3 + β23 [23]
φ+ β1 + β2 + β3 [1][2][3]

Table 3.3: Different model specifications for log(λ123)

Generalising,

log(λω) = φ+
∑

ν∈Ω(ω)

βν (3.10)

where Ω(ω) is the set of all non-empty subsets of ω; equivalently,

log(λω) = φ+ dω
Tβ (3.11)

where φ ∈ R is the grand mean and dω is the design vector that indicates
which elements of the regression parameters vector β apply to the cell
indexed by ω. β is the vector of the factors’ effects and interaction terms:

β = (β1, ..., βK , ..., βk1k2 , ..., βk1k2k3 , ..., β1...K)T (3.12)

Table 3.3 shows all possible model specifications for the number of counts
y123 when K = 3.

Fienberg’s approach is to estimate the most parsimonious log-linear model,
restricted to the incomplete table, and use it to predict the count of the
missing cell. To give an insight into the effectiveness of such an estima-
tion procedure, we briefly describe the main steps; see Fienberg (1972)
for the details.
Let {yω} be Multinomial with parameters N, pω, where pω is function
of some parameters ζ, i.e. pω = pω(ζ), and let L(N ; ζ) be the relative
likelihood function:

L(N ; ζ) =
N !

y0!
(1−

∑
ω

pω(ζ))y0
∏
ω

pω(ζ)yω

yω!
(3.13)
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As shown in Sanathanan (1972), the likelihood can be factorised and
expressed as

L(N ; ζ) = L1(N ;
∑
ω

pω(ζ))L2 (ζ) , (3.14)

where

L1(N ;
∑
ω

pω(ζ)) =
N !

(
∑
ω

yω)!y0!
(1−

∑
ω

pω(ζ))y0(
∑
ω

pω(ζ))

∑
ω
yω

(3.15)

and

L2 (ζ) = (
∑
ω

yω)!
∏
ν

pν(ζ)yν

yν !(
∑
ω

pω(ζ))yν
(3.16)

Maximizing L(N ; ζ), we obtain the unrestricted estimates of N , N̂U , and
ζ, ζ̂. Yet, maximizing L1(N,

∑
ω

pω(ζ̂C)) where ζ̂C is the MLE of L2, we

obtain a conditional estimate of N , N̂C . Sanathanan (1972) proves that
(N̂U , ζ̂U) and (N̂C , ζ̂C) are both consistent estimators; hence, Fienberg
(1972) suggests to use (N̂C , ζ̂C) to assess the appropriateness of a given
model.
The maximum likelihood estimator for NC is

N̂C =


∑
ω

yω∑
ω

pω

 , (3.17)

where [.] stands for the the closest integer. After some algebraic manip-
ulation, we get

N̂C =
∑
ω

yω + λ̂0 (3.18)

where, for any K,

λ̂0 =
Λ̂odd

Λ̂even

, (3.19)

Λ̂odd (Λ̂even) being the product of all λ̂ω whose ω has an odd (even)
number of elements. λ̂ω’s are the MLE’s obtained from the incomplete
contingency table, given by setting the expected values of the marginal
totals corresponding to the highest order interaction terms in the model
equal to their observed value (see Fienberg (1972)). It is possible to
compute a confidence interval relying either on the asymptotic normality
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of the estimator N̂ Bishop et al. (1975), or the profile likelihood of N̂
(see Cormack (1992)). We can assess the appropriateness of a given
model using either Pearson’s Chi-squared or the likelihood ratio statistics.
Indeed, it is feasible to use any information criterion, such as the Akaike
or the Bayesian, as well. However, notice that for small K and a large
number of model’s parameters, the available degrees of freedom may be
very few (0 in case of K = 2 and independence model). Moreover, as
proved by Regal and Hook (1991), more than one specification can fit
the data perfectly, even with the same number of parameters, giving
very different confidence intervals for the population size. Zhang (2019)
proposes a model selection criterion based on a so-called latent likelihood
ratio that may help to select a model in cases of zero degrees of freedom.
Another limitation of Fienberg’s approach is the difficulty of including
any information on the population’s size that may be available a priori.

3.2.2 Decomposable graphical models

Intending to overcome the limitations mentioned above of Fienberg (1972),
Madigan and York (1997) presented the Bayesian approach to popula-
tion size estimation problem, which has deeply influenced the following
literature. This approach is hierarchical log-linear models based, but it
focuses only on a subset of such models, namely the so-called decompos-
able graphical models. A statistical model is said to be graphical if it
embodies a set of conditional independence relationships, which can be
summarised by a graph. For the sake of clarity, we briefly introduce the
basic terminology of graph theory, mainly relying on Madigan and York
(1995).

Define a graph as a pair G = (V,E), with V being a finite set of vertices
and E being the set of edges, i.e. a subset of V × V ordered pairs of
distinct vertices. In practice, the vertices represent the model’s variables
and the edges the dependence relations among them. A graphical model
consists of a statistical model describing the conditional independence
relationships among variables via a graph. Two variables may be just
correlated, or there might be a causal relation between them. In the for-
mer case, both (Vj, Vj′), (Vj′ , Vj) ∈ E,∀ j, j′ and we represent such edge
as a straight line; Vj and Vj′ are said to be neighbours, and the resulting
is a graph so-called undirected. Instead, if (Vj, Vj′) ∈ E but (Vj′ , Vj) /∈ E,
the edge is a directed arrow, and the graph is directed. When an edge
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δ1δ2 δ3

Figure 3.1

δ1

δ2 δ3

Figure 3.2

joins all pairs of vertices, the graph is complete. A complete subset of
the vertex set not contained in any other complete subset is a maximal
clique C. In an undirected graph, G = ∪Hh=1Ch, (C1, ..., CH) is a perfect
ordering of the cliques when the vertices of each clique Ch also contained
in previous cliques are all members of one previous clique only; the sets
Sh = Ch ∩ (∪h−1

g Cg) are called clique separators.
Figure 3.1 shows an undirected graph composed of two cliques, C1 =
{δ2, δ1} and C2 = {δ1, δ3}, whose ordering is perfect and where δ1 is
a separator. Now focus on undirected graphs. Define a path as a se-
quence V0, ..., Vn of distinct vertices such that (Vi, Vi−1) are neighbours
for all i = 1, ..., n. If V0 and Vn coincide, that path is said to be a cy-
cle. An undirected graph is chordal when it contains no cycles of four or
more vertices without a chord, i.e. two non-consecutive vertices that are
neighbours. Only if a graph is chordal, it admits a perfect ordering of its
cliques. An undirected chordal graph represents a decomposable model.

Let us go back to log-linear models. Let δk be the variable indicating
a unit’s presence or absence in each of the K lists. Allowing for all the
pairwise interactions [12]...[(K − 1)K] the resulting graph would be a
cycle, and there is no way to exclude the Kth-order interaction [1...K].
Figure 3.2 shows this concept in the case K = 3. It results that de-
composable graphical models are only a subset of the log-linear models.
Although restrictive, if we can represent a log-linear model as a decom-
posable graph, its analysis results much more tractable from a computa-
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tional point of view. Indeed, Dawid and Lauritzen (1993) show that if
a model is decomposable, the joint distribution can be factorised into a
product of conditional distributions. Following the notation in Di Cecco
(2019):

pG =
H∏
h=1

pCh

(
H∏
g=2

pSg

)−1

= pC1

H∏
h=2

pCh
pSh

= pC1

H∏
h=2

pCh|Sh (3.20)

where pCh (pSg) is the marginal distribution over the variables in-
cluded in the hth clique (gth separator), and pCh|Sh is the conditional
distribution of the hth clique given the relative separator. This way,
solving both the maximisation and the integration tasks in closed form
becomes viable; see Dawid and Lauritzen (1993). Following the Bayesian
approach, it is possible to set a prior distribution on cells probabilities
conjugate with multinomial sampling, as proved by Dawid and Lauritzen
(1993). Notably, a Dirichlet marginal distribution on the probability of
each clique Ch, ρCh must be placed following the perfect ordering of
the cliques. Such prior distribution is the so-called hyper-Dirichlet. To
account for model uncertainty, Madigan and York (1997) suggests to av-
erage all posterior distributions of N conditional on different models m
weighted by their posterior model probabilities to obtain an uncondi-
tional posterior distribution. On model averaging for graphical models,
see Madigan and Raftery (1994). An illustration of the model in Madi-
gan and York (1997) follows.

Indicate with M the class of possible models for the cell probabilities
of the contingency table, indexed by M = {1, 2, ..., s}. Define p(m) as
being the vector of cell probabilities for each model m ∈M.
Let y|N, β,M = m be Multinomial with parameters (N,p(m)), where

• the prior on N might be

· π(N) ∝ 1
N

, i.e. Jeffreys prior;

· π(N) ∝ 2− log∗(N), with log∗(N) is the sum of the positive
terms in {log2(N), log2{log2(N)}, ...}, i.e. the Rissanen’s prior;

· N ∼ Poisson(λ) and λ ∼ Gamma(a, b) if needed;

• the prior on M is Uniform, and
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• p(m) ∼ hyper-Dirichlet, as stated before, with pC(m) ∼ Dirichlet(ρ)
for each clique. As non-informative choice, ρ is set equal to 1 or 1

2
.

The R package dga (Johndrow et al. (2015)) implements the model. It is
easy to compute all posterior distributions of N conditional on different
model M when K is low within the decomposable models. However, as
K increases, the number of parameters grows exponentially; thus, the
calculation becomes cumbersome and the model averaging impractica-
ble. Madigan and York (1995) suggest using Markov Chain Monte Carlo
Model Composition to approximate the average of the posterior distribu-
tions under each model. On the other hand, Madigan and Raftery (1994)
propose to average over a small set of models, facilitating the communi-
cation of model uncertainty (Madigan et al. (1994)). Green (1995) sug-
gests an entirely different approach that introduces the reversible jump
MCMC. The RJMCMC is a sampler able to move (“jump”) across differ-
ent dimensions’ parameters spaces, thus exploring different dimensions’
models in a single chain. Dellaportas and Forster (1999) and King and
Brooks (2001) apply the RJMCMC to the log-linear models, going be-
yond the class of decomposable graphical ones.
In the next paragraph, we will review Bayesian hierarchical log-linear
models for capture-recapture and give an insight into the RJMCMC.

3.2.3 Bayesian log-linear models and the Reversible
Jump sampler

Dealing with the decomposable class of graphical log-linear models from
a Bayesian perspective requires a prior specification for the cell proba-
bilities. However, specifying a prior for the model parameters implies
the possibility of going beyond the decomposable model and taking into
account the broader class of log-linear ones.
Dellaportas and Forster (1999) and King and Brooks (2001) are the first
references for a detailed specification of a fully Bayesian log-linear model.
Nowadays, Overstall and King (2014b) is a popular approach; mainly
based on Forster (2010), it is the original theoretical support of the R
package conting3 (see also Overstall and King (2014a)). Notice that
these works mainly deal with general log-linear models; they can be eas-
ily adapted to capture-recapture problems though. Below we outline a

3available from the CRAN at https://cran.r-
project.org/web/packages/conting/index.html
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model common to the most recent literature on Bayesian log-linear mod-
els but plugging it in the particular framework of incomplete contingency
tables. We mainly refer to Overstall and King (2014a), dwelling on the
differences when not negligible.
Following the notation of the previous sections, let yω be the number of
population units count in cell ω. Moreover,

yω|φ,β,m ∼ Poisson(λω) (3.21)

log(λω) = φ+ dTωβ . (3.22)

Then, introducing the model indicator m as in §3.2.2 we obtain

log(λω) = φ+ dTm,ωβm . (3.23)

In compact form,
log(λ) = (12K ,dm)θm (3.24)

where dm is a the matrix whose rows are given by dm,ω, and θm =
(φ,βm)T . As an alternative model for the data counts, we can also con-
sider

y|N,β,m ∼ Multinomial(N,p) (3.25)

with p being the vector of pω’s, and pω = λω∑
ω
λω

. Whatever the model

specification, we need to specify the joint prior

π(φ,βm,m) = π(φ,βm|m)π(m) (3.26)

For the first factor, Overstall and King (2014a) follows Sabanés Bové and
Held (2011) using the hyper-g prior, i.e. decomposing the joint prior on
φ and βm as

π(φ,βm|m) = π(φ)π(βm|m) (3.27)

with π(φ) ∝ 1, and
βm|σ2,m ∼ N(0,S) (3.28)

S = σ2n(dTmdm)−1 (3.29)

σ2 ∼ Inverse Gamma

(
a

2
,
b

2

)
(3.30)

Additionally, a Uniform prior is set over the model space, i.e.

π(m) =
1

|M|
=

1

s
(3.31)
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Overstall et al. (2014) proves that under the prior specifications depicted
above and choosing the Jeffreys prior for N , the joint posterior for βm,
m and y0 are identical under Poisson or Multinomial models.
We report the presence of sensible differences to the other references
exclusively concerning the specification of the variance-covariance matrix
Σ.
We refer the reader to Dellaportas and Forster (1999) and King and
Brooks (2001) for more details.
The joint posterior distribution results being

π(y0, φ,βm,m|y) ∝ π(y, y0|φ,βm,m)π(βm|σ2,m)π(σ2)π(m) (3.32)

Updating y0 and σ2 from their full conditional distributions is straight-
forward; yet, to simulate from the full conditional distribution of the
other parameters, Overstall and King (2014a) implement an RJMCMC
algorithm.

Let m be the current model at iteration t; denote θ
(t)
m the current pa-

rameter vector.

1. Propose a move from model m to model m′ ∈ M with probability
πm,m′ . Typical jumps are those to models with parameters’ dimen-
sion close to that of model m; in the case of log-linear models, this
is equivalent to limit the moves to models with one more or one
less interaction term. A move to model m itself is also allowed.
If m′ = m, the algorithm turns up being a Metropolis-Hastings,
otherwise step 2 follows;

2. generate a vector of innovation variables um,m′ from a proposal
distribution qm,m′(u);

3. apply a mapping function T to (θm,um,m′) to obtain θm′ ;

4. set θ(t+1) =

{
θm′ with probability γ

θm with probability 1− γ
where

γ = min

{
1;
π(y, y0|θm′ ,m′)πm′,mqm′,m(um′,m)

π(y, y0|θ(t)
m ,m)πm,m′qm,m′(um,m′)

∣∣∣∣∣∂T (θ
(t)
m , um,m′)

∂(θ
(t)
m , um,m′)

∣∣∣∣∣
}

(3.33)
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δi1 = 1 δi1 = 0

δi2 = 1 δi2 = 0 δi2 = 1 δi2 = 0

δi3 = 1
δi4 = 1 27 32 42 123

δi4 = 0 18 31 106 306

δi3 = 1
δi4 = 1 181 217 228 936

δi4 = 0 177 845 1131 ?

Table 3.4: Number of casualties during the conflict in Kosovo, March-June
1999. Ball et al. 2002

See Green (1995) or Robert and Casella (2004) for more details. The
RJMCMC can adapt to the restricted class of decomposable models; see
King and Brooks (2001).

Once simulated from the posterior distribution, it is possible to assess
model adequacy via information criteria or the computation of the Bayesian
p-value (see Gelman et al. (2004)), as in Overstall et al. (2014).

3.3 A comparing example: killings in Kosovo

We compare the methods outlined in the previous section using the
dataset reported in Ball et al. (2002) about killings in Kosovo during
March-June 1999. Four different sources have documented a total of
4400 deaths, i.e. the interviews conducted by the American Bar Asso-
ciation/Central and East European Law Initiative (1), the exhumation
reports produced on behalf of the International Criminal Tribunal for
Former Yugoslavia (2), the Human Rights Watch (3), and the Organiza-
tion for Security and Cooperation in Europe (4). Table 3.4 summarises
the number of casualties recorded by the four sources.
A decade after the conflict, the Humanitarian Law Center (HLC) has
published a near-exhaustive list of victims (Center (2014)) for the whole
period 1998-2000. Manrique-Vallier (2016) uses these data to compute
the total number of casualties for the period considered by Ball et al.
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Model N̂ 95% CI

Cormack 1992 [124][23][34] 10356 (9002 12122)
Madigan and York 1997 – 11257 (9352 14318)
Overstall and King 2014 – 12672 (9888 15728)

Table 3.5: Killings in Kosovo: results

(2002), giving us a point of reference for the “true” N , which is NHLC =
10401.
Ball et al. (2002) estimates N̂ for all possible hierarchical log-linear mod-
els, computing the confidence interval according to the profile likelihood
method of Cormack (1992). According to the adjusted Pearson Chi-
square statistic, the best model has one three-factor and two two-factor
interaction terms, as shown in Table 3.5. The 95% confidence interval
contains NHLC . To obtain comparative estimates of the total number
of casualties, we use the R packages dga and conting implementing
Madigan and York (1997) and Overstall and King (2014b) methods, re-
spectively. We remind that, according to the former, N̂ represents the
posterior mean of the unconditional posterior distribution of N ; for the
latter, N̂ is the posterior mean of a distribution sampled via a reversible
jump algorithm. Table 3.5 shows the results. We decided to use the
default priors when implementing these models, which are noninforma-
tive priors. The credible intervals contain NHLC as well, but they are
much wider than the confidence interval obtained with Cormack (1992)
method since they incorporate the uncertainty linked to the model.

3.4 Dealing with out-of-scope units

The overcoverage issue has become relevant only recently, with the in-
crease of the interest of the NSIs in the production of statistics through
data integration. Such a problem naturally arises since the aims of who
collect the data and who use them differ. Out-of-scope units cannot
be ignored; the estimate would result strongly biased otherwise. In the
following paragraphs, we show how the models discussed in the previ-
ous section have since been extended to deal with the presence of latent
out-of-scope units in the lists.
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δi1 = 1 δi1 = 0

δi2 = 1
i ∈ U y12 y2

i /∈ U r12 r2

δi2 = 0
i ∈ U y1 y0

i /∈ U r1

Table 3.6

3.4.1 Log-linear models

In the log-linear models’ framework Zhang (2015) addresses the over-
coverage issue directly modelling the probability of being erroneously
classified, i.e. the error rate. The author introduces two alternatives to
deal with out-of-scope units when K = 2, the first of which relies on the
conditional independence assumption (CIA) at the base of the standard
log-linear models; we briefly discuss the details.
Consider the latent structure of a contingency table of two lists, both
affected by overcoverage, as in Table 3.6. Assume the cell counts to
be Multinomial with parameters N∗, defined as the sum of N and the
captured out-of-target units, and pδUω:

pδUω =

{
p1ω if i ∈ U
p0ω otherwise

(3.34)

We defined in §3.1 the cross-classified error rates as the probability that
a unit does not belong to the target population given that it has been
captured by the set of lists summarised by ω; we write it

ξω = P (i /∈ U |ω) (3.35)

The error rates {ξω} can be defined as functions of pUω, i.e.

ξ12 =
p0{12}

p+{12}
(3.36)

ξ1 =
p0{1}

p+{1}
(3.37)
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ξ2 =
p0{2}

p+{2}
(3.38)

Since we only observe x1, x2, x12, the vector pδUω can not be estimated
without further assumptions. Hence, assume that a coverage survey S
exclusively affected by undercoverage is available and that its inclusion
probability is equal to τS; also, let yS be the number of units listed
in S, and ySω the number of units captured by both S and the set of
lists indexed by ω. Then, Zhang (2015) introduces a system of moment
equations to model the observations as a function of the error rates:

E(yS12|x) = x12(1− ξ12)τS

E(yS1|x) = x1(1− ξ1)τS

E(yS2|x) = x2(1− ξ2)τS

E(yS0|x) = (E(N |x)− x12(1− ξ12)− x1(1− ξ1)− x2(1− ξ2))τS
(3.39)

The system is underidentified due to the presence of four parameters in
the first three equations; the additional unknown in the fourth equation,
E(N |x), can be derived given the estimates of the others. The idea is to
impose a constraint on the ξω’s to make the system identifiable. Let us
define a log-linear model for the pδUω’s; the largest nonsaturated model
will be

log(pUω) = β + βU + β1 + β2 + βU1 + βU2 + β12 (3.40)

Now consider the logit of ξ12; after some algebra, it results

logit(ξ12) = logit(ξ1) + logit(ξ2) + p1{0} ; (3.41)

the model above is said to be incidental since it introduces a constraint
between the error rate and the population size; thus, it can not be con-
sidered. To overcome this issue, Zhang (2015) sets a log-linear model for
a transformation of pUω, namely qUω = pUω

1−p1{0}
. Again, we can express

the error rate as a function of the qUω’s, i.e. ξω =
q0{ω}
p+{ω}

and logit(ξ12)

becomes
logit(ξ12) = logit(ξ1) + logit(ξ2) (3.42)

which is not an incidental model and makes the system (3.39) identifiable.
For small ξω, logit(ξω) ≈ log(ξω); hence,

ξ12 = ξ1ξ2 . (3.43)
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However, in the case of good data quality and low error rates, it is rea-
sonable to assume that the domain {12} is much larger than both {1}
and {2}. Moreover, the error rate among the units in {12} must be much
lower than that in {1+} and {+2}. Therefore, as an alternative to the
previous model, Zhang (2015) suggests expressing ξ12 as the product of
the marginal error rates; in other words, we can assume

P (i /∈ U |ω = {12}) = P (i /∈ U |ω+ = {1+})P (i /∈ U |ω+ = {2+}) ,
(3.44)

or
ξ12 = ξ1+ξ2+ . (3.45)

Contrarily to identity (3.43), the condition above can not be derived
from a standard log-linear model; thus, it does not rely on the concept of
conditional independence; Zhang (2015) calls that in (3.45) the pseudo
conditional independence (PCI) assumption. Zhang (2019) extends this
concept to the case of K ≥ 2.
The idea is to define a general log-linear model for the marginal ξω+

log(ξω+) =
∑

ν∈Ω(ω)

logψν+ (3.46)

such that each unsaturated model corresponds to a different specification
of the PCI assumption; e.g. the model including none of the interaction
terms corresponds to the mutual PCI between the marginal list domains.
ξω is estimated via ML; we refer the reader to Zhang (2019) for the details.

3.4.2 Decomposable graphical models

Di Cecco (2019) extends the decomposable model described in §3.2.2, in-
troducing a latent class (LC) approach developed both from a frequentist
and a Bayesian perspective - the latter also proposed in Di Cecco et al.
(2020).
There is a vast literature on the use of LC models in the capture-recapture
framework, particularly addressing the heterogeneity problem; among
others, see Agresti (1994), Bartolucci and Forcina (2001) and Bartolucci
and Pennoni (2007). The first dealing with erroneous enumeration using
LC models was Biemer et al. (2001a), followed by Biemer et al. (2001b)
and Biemer et al. (2004). Such a strand of literature has led to frame the
identifiability problems arising in this context, highlighting that at least
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four lists are needed to estimate any LC model that includes interactions
among lists; see Brown et al. (2004) and Biemer (2011) for further de-
tails. Here we describe the approach by Di Cecco (2019) mainly because
of its computational advantages.
The class of model considered can be expressed as

pω =
∑
δU

pδUpω|δU (3.47)

Restrict the interest to decomposable models only. Since the latent vari-
able δU interacts with all other variables, 3.20 can be written as

pG = pδUpC1|δU

g∏
h=2

pCh|Sh . (3.48)

Such likelihood function may be maximised via the EM algorithm (see
Di Cecco (2019) for a detailed description) or used to compute population
size’s posterior distribution in a fully Bayesian analysis. In the latter
case, the prior specification is similar to that described in §3.2.2; it is
sufficient to add a Beta-prior to pδU . We can use MCMC methods to
sample from the posterior distribution; in particular, a Gibbs sampler
is appropriate in the case of Jeffreys prior on N ; otherwise, we need a
Metropolis-within-Gibbs.

3.4.3 Bayesian log-linear models

The last approach to overcoverage we analyse is that in Overstall et al.
(2014), also adopted in Overstall and King (2014a) as an extension of the
basic model. Assume that J < K lists include units that are not part of
the target population. For those cells ω affected by overcoverage, yω can
be seen as the true value of a left-censored cell count since only its upper
bound is observed, i.e. xω. Let y indicate the vector of counts such that
xω = yω; let xc and yc be the vectors of observed counts and number of
population units respectively such that yω < xω (c stands for censored).
Recall the joint posterior introduced in §3.2.3; now it becomes

π(y0,y
c, φ, βm, σ

2,m|y,xc) ∝π(y, y0,y
c|φ,βm,m)×

× π(xc|yc)π(βm|σ2,m)π(σ2)π(m)
(3.49)

The additional step to include in the algorithm relative to the model
described in §3.2.3 is the sampling of the latent true count for those cells
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affected by overcoverage;

ycω|φ,βm, xcω,m ∼ Truncated Poisson(λω, x
c
ω) (3.50)

3.5 Comparing examples with simulated data

As for the general capture-recapture setting, we may want to compare
the methods described in the previous section. Nevertheless, while the
three models introduced in the general framework apply to the same
context and aim at the same objective, the models proposed for facing
the overcoverage issue differ in their motivations. E.g. the idea behind
the strand of LC models for capture-recapture is to identify the different
behaviours of different (sub)populations captured on the same occasions,
to estimate the size of the population of interest reliably.
In Overstall et al. (2014), the cross-classified overcount can be seen as
a noise, a measurement error deriving from no specific underlying be-
haviour, yet Zhang (2019) models the erroneous enumerations relying
on the goodness of data. Moreover, Zhang (2019) models a situation in
which all the sources are affected by overcoverage but the enumeration
survey. In contrast, Overstall et al. (2014) define a maximum number of
cell counts with erroneous enumeration depending on the total number
of observations to preserve the identifiability of the model. For the same
reason, it is possible to estimate an LC model with less than four lists
only if local independence is assumed.

Having this premise in mind, in the following paragraphs, we present
two different simulated scenarios. For each of them, we compare the
models described in §3.4 to see how different assumptions impact the
results. The first scenario simulates the situation in which the presence
of erroneous enumerations affects the sources homogeneously. The sec-
ond scenario is the (typical) case in which a post-enumeration survey is
conducted to assess the goodness of administrative lists in covering the
target population and the data quality of such lists is pretty good.
We follow the frequentist approach in the estimation of the decompos-
able graphical models (see Di Cecco (2019)). We obtain the estimates for
Overstall et al. (2014) model using the R package conting (see Overstall
and King (2014a)).
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δi1 = 1 δi1 = 0

δi2 = 1 δi2 = 0 δi2 = 1 δi2 = 0

δi3 = 1

δi4 = 1
i ∈ U 25 40 22 446

i /∈ U 74 30 25 55

δi4 = 0
i ∈ U 148 245 134 2697

i /∈ U 200 81 67 148

δi3 = 0

δi4 = 1
i ∈ U 164 270 148 2981

i /∈ U 148 60 49 110

δi4 = 0
i ∈ U 992 1636 898 18034

i /∈ U 403 164 134

Table 3.7: Data from scenario 1

3.5.1 Scenario 1: capturing two groups

First, we generate the contingency table in Table 3.7 from a decompos-
able graphical LC model [δU12][δU3][δU4]. We set the coverage rates of
lists k = 1, 2, 3, 4 between 9% and 15%, yet their marginal error rates
are equal to 0.25, 0.3, 0.15 and 0.12 respectively; the target population
size N amounts to 28880, and the number of units captured by the four
sources is equal to 30927.
We compare the estimates obtained via the EM algorithm for capture-
recapture LC models by Di Cecco (2019) using the true data model with
those obtained using Zhang (2019) algorithm and the R package con-
ting. Table 3.8 shows the best results in terms of AIC or Bayesian
p-value.
For Zhang (2019), we indicate which of the sources is preferred as be-
ing the error-free source, whereas for Overstall et al. (2014) the maximal
model.
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Model N̂
∑
ω

ŷω

Di Cecco 2019 - [δU12][δU3][δU4] 28943 10903
Zhang 2019; error free list: k = 4 19238 9599

Overstall, King et al. 2014 - [12][13][14][A23][24][34] 28428 27925

True values 28880 10846

Table 3.8: Results from scenario 1

In this scenario, the PCI based model from Zhang (2019) performs poorly
in terms of y0 estimation, whatever the choice of the error-free list. How-
ever, it is right in detecting the amount of out-of-scope units in the sam-
ple; according to the information criterion, such model best performs
assuming list 4 to be the overcoverage-free source, which is, in fact, the
list with the lowest error rate. On the other hand, for the Bayesian
log-linear model by Overstall et al. (2014) the population size estimate
improves as the number of interaction terms included in the maximal
model increases, regardless of which of the cells are censored. Note that
to include at least all the two-way interactions, the number of censored
cells can not be more than three; the best performing model allows for
the censoring of cells (x1, x2).

3.5.2 Scenario 2: post-enumeration survey and ac-
curate administrative data

Table 3.9 summarises the capture histories of 40945 units during four
capture occasions. k = 1 is an error-free source with a high popula-
tion coverage rate, equal to 0.83. In contrast, the others are affected
by the presence of erroneous enumerations, with marginal error rates set
to be between 10% and 15%, with a total of 6288 out-of-target units.
Since a post-enumeration survey should capture target units uniformly,
we assume list 1 to be independent of the other sources. Indeed, lists
k = 2, 3, 4 target captures are dependent on each other, i.e. the tar-
get counts in Table 3.9 are generated from the log-linear model [1][234].
Counts of out-of-scope units are added such that the error rates domains
{23+}, {24+} and {34+} are smaller than {2+}, {3+} and {4+} and
larger than {234+}; moreover, cross-classified error rates are much big-
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δi1 = 1 δi1 = 0

δi2 = 1 δi2 = 0 δi2 = 1 δi2 = 0

δi3 = 1

δi4 = 1
i ∈ U 768 5474 164 1145

i /∈ U 0 0 6 380

δi4 = 0
i ∈ U 3660 3703 711 721

i /∈ U 0 0 172 2259

δi3 = 0

δi4 = 1
i ∈ U 4563 4951 843 1006

i /∈ U 0 0 403 1696

δi4 = 0
i ∈ U 4112 1659 834 343

i /∈ U 0 0 1372

Table 3.9: Data from scenario 2

ger than their respective marginal ones. We estimate the population size
implementing the three models described in §3.4. Table 3.10 shows the
results.

Zhang (2019) algorithm correctly detects list 1 as the error-free source,
although it overestimates the number of out-of-target units. Neverthe-
less, it performs well in the estimation of y0. On the other hand, Overstall
et al. (2014) overestimate both the number of out-of-target units and y0,
despite it recognizes the true data model; in this case, it allows for the
censoring of cells (x2, x3, x4, x23, x24, x34). Concerning the LC model, we
tested the EM algorithm in Di Cecco (2019), allowing for the interaction
between the latent variable and list 1; results are far from the true values.
Hence, we split the estimation procedure into two steps. Firstly the EM
for LC in capture-recapture is implemented considering the lists affected
by erroneous enumeration only. Given the identifiability problems previ-
ously discussed, we are constrained to the local independence model, i.e.
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Model N̂
∑
ω

ŷω

Di Cecco 2019 - local independence 37291 36876
Zhang 2019 - error free list: k = 1 33345 33089

Overstall, King et al. 2014; [1][234]: 35258 33807

True values 34657 34314

Table 3.10: Results from scenario 2

k = 2, 3, 4 are set to be independent given the latent variable. Then, we
use the vector ŷ to get an estimate of y0 fitting a log-linear model. Here,
the main issue consists of the impossibility of comparing (or average)
different models and allowing for the manifest variables’ interaction; this
leads to underestimating the number of out-of-scope units.

3.6 Further topics

This chapter reviewed the primary and most recent literature dealing
with the population size estimation problem, with an insight into the
overcoverage issue. Nevertheless, we do not claim to be exhaustive. There
exist methodological issues other than overcoverage that have not been
covered in this paper and deserve attention. In real applications, the
assumptions at the basis of log-linear models introduced in §3.2.1 may
not hold. There might be heterogeneity in the population, i.e. the cap-
ture probabilities vary among individuals; it may occur that the captured
units are not uniquely labelled across the multiple lists.

The latter case, i.e. the lack of unique labelling, implies a non-exact
match of the units observed in multiple lists, hence a potential overes-
timation of the population of interest; in this framework, linkage uncer-
tainty must be considered. Di Consiglio et al. (2019) reviews some of the
approaches considering such uncertainty in the population size estima-
tion procedure, from natural extensions of Fienberg (1972) model (see
Di Consiglio and Tuoto (2018)), to fully Bayesian models like that in
Tancredi and Liseo (2011). Unique labelling may miss within the sources
as well, implying the presence of duplicates in some lists; see Tancredi
et al. (2019) for an approach to this kind of issue.
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The former case includes scenarios in which heterogeneity is either due
to some measurable attributes, e.g. sex, age, or given by some unmea-
surable characteristics. If the source of heterogeneity is known and the
attributes are recorded in the available data, a convenient strategy is to
stratify the population to obtain different homogeneous groups. Other-
wise, literature offers a variety of methods to address the issue. Among
them, we cite Fienberg et al. (1999), which encompasses the log-linear
models and the Rasch model (Rasch (1960)) in a fully Bayesian hier-
archical framework. The latent variable approach described in §3.4.2
can nimbly adapt to the heterogeneity problem; actually, in Di Cecco
(2019) and Di Cecco et al. (2020) the mixture model is allowed to have
more than two components. A nonparametric Bayesian approach deal-
ing with population heterogeneity in capture-recapture experiments can
be found in Manrique-Vallier (2016). The underlying idea is that, in
the case of heterogeneous population and in the absence of covariates
allowing to stratify the sample appropriately, it is convenient to assume
that the population may be partitioned into an unknown number of ho-
mogeneous strata within which the independence model holds. In this
case, the generating mechanism of the capture vectors consists of a gen-
eral capture-recapture Multinomial model in which the probability mass
function of each capture vector is a Dirichlet-process mixture of product-
Bernoulli distributions. Indeed, letting the weights of the mixture be
generated from a stick-breaking process allows to avoid the specification
of the number of mixture components in advance; the identification of
the number of homogeneous groups within the heterogeneous population
occurs in an unsupervised way. Manrique-Vallier (2016) applies the non-
parametric latent class model to the data killings in Kosovo shown in
§1.2, and it performs very well. The point estimate of N is incredibly
close to the count NHLC. See Table 3.6 to compare Manrique-Vallier
(2016) results to the real count of casualties and to the best model in
Ball et al. (2002). We refer the reader to Manrique-Vallier (2016) for
the model’s details. From the same author, and specifically for casualties
estimation in capture-recapture experiments, see Manrique-Vallier et al.
(2019). Yet, for a review of most of the literature on heterogeneous ani-
mal populations in capture-recapture models, see Gimenez et al. (2018).
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N̂ 95% CI

HLC count 10401 –
Manrique-Vallier 2016 10442 (9020 13637)

Ball et al. 2002 [A1 A2 A4][A2 A3][A3 A4] 10356 (9002 12122)

Table 3.11: Killings in Kosovo: Manrique-Vallier 2016 results



Chapter 4

Log-linear models in the
presence of out-of-scope units

In the previous chapter, we revised the primary and most recent ap-
proaches to population size estimation in a capture-recapture framework
in the presence of out-of-scope units. It emerges that the best model’s
choice depends on the situation addressed since the discussed approaches
differ in their motivations. In particular, the described methods seem to
differ for the erroneous enumerations’ reference set. For instance, con-
sider the methods by Zhang (2019) and Di Cecco (2019). The former
explicitly defines the reference set for the out-of-scope units, which con-
sists of the union of the lists; in other words, the population of the
out-of-scope units is a subset of the lists’ universe. The latter does not
explicitly define a reference set; the presence of out-of-scope units is also
allowed in the unobserved cell, underlying the existence of two popula-
tions with different capture probabilities.
In this chapter, we assume an open erroneous enumerations’ set a priori,
but we constrain this set to the lists’ universe once we observe the con-
tingency table. The Bayesian approach allows us to formalise this kind of
assumption setting a Poisson prior on the latent erroneous enumerations;
a posteriori, their distribution will be conditioned on the observed data.

The framework we consider in this chapter is the current one for many
of the National Statistics Institutes in the developed countries. Indeed,
they are experiencing the “shift” from a census-based statistics paradigm
to a register-based one, where the data quality is good, and lists’ error
rates are low, as depicted by Zhang (2015). We propose a flexible model,

84



85

δi1 = 1 δi1 = 0

δi2 = 1 δi2 = 0 δi2 = 1 δi2 = 0

δi3 = 1 33630 24324 84175 621654

δi3 = 0 181495 332999 544792 ?

Table 4.1: Resident individuals in Lazio, Italy, simulated data

especially suitable to situations where strong prior information is avail-
able. Moreover, we address the problem of model selection, which is
not trivial in the framework of log-linear models for capture-recapture
when we have a few (or even zero) degrees of freedom, as highlighted
in Zhang (2019). To give an intuition about the importance of such an
issue, assume that for the first time, the Istat aims to estimate Italian
regions’ population size via administrative data only. Imagine having
three sources that partially enumerate the population of the region of,
e.g., Lazio: an enumeration survey (1), a list from the health system
(2), and the tax register (3). Assume Table 4.1 summarises the captured
individuals. Suppose we fit a log-linear regression on the observed contin-
gency table, depending on the model’s specification. In that case, we will
obtain very different results: the estimated total population varies from
slightly more than one million people to more than ten million. Whether
there is the likely presence of out-of-scope units, it does not matter how
precisely the model fits the data.

In §4.1, we present our alternative modelisations of the erroneous counts
in a Bayesian log-linear framework. We follow the notation introduced in
§3.1. After the prior setting in §4.2, §4.3 describes the scenario of good
data quality and low lists’ error rates, as depicted by Zhang (2015) and
extended by Zhang (2019); there, we introduce the Pseudo Conditional
Independence assumption in a Bayesian framework. §4.4 is devoted to
the computation of the joint posterior distribution of the parameters of
interest; there, we show how Fisher’s noncentral hypergeometric distribu-
tion, the main object of Part I of this work, enters the sampling process.
§4.5 suggests the well-known method by Chib and Jeliazkov (2001) as a
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model selection method for log-linear models’ in the presence of latent
variables. Finally, a simulation study is presented in §4.6.

4.1 Out-of-scope units in a Bayesian log-

linear models framework

Each observed cross-classified count xω can be seen as a realisation of a
random variable

Xω = Yω +Rω , (4.1)

where Yω represents the latent count of target units associated with the
cell indexed by ω, and Rω the relative out-of-scope units’ count. Con-
cerning the former, we may specify:

Yω ∼ Pois(λω) (4.2)

independently for all ω, where log(λω) = φ+ d′m,ωβm, φ being the grand
mean, βm the coefficients’ vector for model m, and dm,ω the design vector
that indicates which elements of βm apply to the cell indexed by ω (as
specified in §3.2.1). The log-linear models considered are the hierarchical
ones, the minimal being the independence model (no interaction terms)
and the maximal the saturated. As an alternative specification for the
in-target units, we could have assumed

Y ∼ Multinom(N,p := {pω}) (4.3)

where pω =
exp{d′m,ωβm}∑
ω

exp{d′m,ωβm}
. The two specifications are equivalent under

strict assumptions (see Overstall and King (2014b)).

Now let us focus on the erroneous enumeration problem. In §3.1 we
define A = {1, 2, ..., K ′} the lists’ set only enumerating units belonging
to the target population U and B = {K ′+ 1, K ′+ 2..., K} the set of lists
also including some units i /∈ U . Therefore, we assume

Rω

{
= 0 ∀ω s.t. δk = 1 for at least one k ∈ A
∼ Pois(µω) otherwise

(4.4)

where µ is set to be equal to xωξω, with ξω = P (i /∈ U |ω = {k}) being
the marginal error rate. Alternatively, we may specify

Rω ∼ Binom(xω, ξω) . (4.5)
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The main advantage of the above specification is its computational con-
venience.

4.2 Prior specification

We need to define π(θm, ξ), i.e. the joint prior distribution of the in-
target and out-of-target counts’ parameters. It is plausible to assume

π(θm, ξ) = π(θm)π(ξ) (4.6)

i.e. the parameters related to the target population are a priori indepen-
dent of the erroneous enumerations’ ones.
Concerning the log-linear model, under the Poisson specification Over-
stall and King (2014a) use the generalized hyper-g prior by Sabanés Bové
and Held (2011) for (θm), i.e. π(θm|m) = π(φ)π(βm|m) where π(φ) ∝ 1
and

βm|σ2,m ∼ N(0,Σm = 2Kσ2
β(d′mdm)−1) (4.7)

σ2
β ∼ InvGa

(
h1

2
,
h2

2

)
(4.8)

with h1, h2 fixed. We may interpret such prior distribution as the poste-
rior distribution from a locally uniform prior and an imaginary sample
where 1

σ2
β

is the size of the “prior sample”, i.e. the prior contains 1
σ2
β

as

much information as the data y (Sabanés Bové and Held (2011)). Ac-
cording to Sabanés Bové and Held (2011), φ parameterises the average
linear predictor in each model, thus using an improper flat prior seems
appropriate.
The specification of the prior distribution of βm looks coherent with our
purposes; however, we might need to introduce some extra-experimental
prior information about φ. One of the most common situations is where
the consulted experts can express their beliefs in terms of “confidence”
or “credible” intervals [q1, q2]. We can define φ

φ ∼ N(ϕ, σ2
φ) (4.9)

and specify {
q1 = ϕ− z1−ασN

q2 = ϕ+ z1−ασN
(4.10)
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where z1−α is the (1 − α)-quantile of the standard Normal distribution.
We obtain the hyperparameters ϕ and σN after simple algebra for fixed
α. Hence, assuming independence between φ and βm,

θm := (φ,βm) ∼ N((ϕ,0)′,Σφ
m) (4.11)

where Σφ
m is the variance-covariance matrix whose first row and first col-

umn elements are 0’s, except for the first element, which is equal to σ2
φ;

the remaining minor is equal to Σm.

Concerning the erroneous enumerations, since xω is observed, we only
need to introduce some information on ξω, which represents a probabil-
ity; thus, we assume

ξω ∼ Beta(aω, bω) . (4.12)

4.3 Erroneous enumerations’ parameters elic-

itation

It is reasonable to assume that experts may have prior beliefs on the
error rate of each list k, namely on the probability to be out-of-scope
given that the units have been listed in the kth source.
Hence, the experts would express their guess in terms of confidence or
credible intervals [q1; q2] for marginal error rates {ξω+} rather than for
cross-classified ones1, {ξω}, where the cardinality of ω is equal to 1 and ω
can only be equal to {K ′ + 1}, {K ′ + 2}, . . . , {K}. We may either follow
the Normal approximation method mentioned in §4.2 or rely on the error
rates’ quantile function and proceed via numerical approximation. We
briefly describe both methods below.

- Normal approximation{
q1 = E(ξω+)− z1−α

√
V(ξω+)

q2 = E(ξω+) + z1−α
√

V(ξω+)
(4.13)

1as defined in chapter 3
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where
E(ξω+) =

aω+

aω+ + bω+

V(ξω+) =
aω+bω+

(aω+ + bω+ + 1)(aω+ + bω+)2
=

E(ξω+)(1− E(ξω+))

aω+ + bω+ + 1

.

(4.14)
After some algebra and for fixed α, we obtain the hyperparameters
aω+ and bω+

aω+ =
E(ξω+)

1− E(ξω+)

(
E(ξω+)(1− E(ξω+))2

V(ξω+)
+ E(ξω+)− 1

)
bω+ =

E(ξω+)(1− E(ξω+))2

V(ξω+)
+ E(ξω+)− 1

.

(4.15)
Such a method is straightforward to implement; the main short-
coming is that we are constrained to symmetric intervals.

- Quantile function and numerical approximation
Berger (1985) suggests estimating some quantiles of the prior distri-
bution subjectively and choose the parameters to obtain a density
matching these quantiles. Let qv, v ∈ [0, 1] be the v-quantile of the
ξω+ distribution, i.e. a point such that ξω+ has a probability v of
being less than or equal to qv:

P (ξω+ ≤ qv) =

qv∫
0

f(ξω+; aω+, bω+) dξω+ = v . (4.16)

The inverse of such cumulative distribution function is the quantile
function, F−1(v). Assuming to have at least two quantiles, qv1 and
qv2, we solve {

F−1(v1)− qv1 = 0

F−1(v2)− qv2 = 0
(4.17)

for aω+ and bω+ via Newton-Raphson algorithm, and obtain the
hyperparameters.
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The Pseudo Conditional Independence assumption

For those ξω+’s s.t. |ω| > 1, we refer to the Pseudo Conditional Indepen-
dence assumption by Zhang (2015) and Zhang (2019) discussed in §3.4.1
and we include it in this Bayesian framework.

Recall that, in the case of two lists, the PCI is defined as

ξ12 = ξ1+ξ2+ , (4.18)

whose meaning is that the probability of a unit to be an erroneous enu-
meration given that both the sources have captured it is much lower
than the probability to be out-of-target given that a single list captures
it. Such an assumption is a natural way to model the error rates struc-
ture in the considered framework, i.e. when the data quality is high, and
the error rates are low.
If the error rates are fixed in the case of K ≥ 3, it is sufficient to in-
troduce the PCI as in Zhang (2019). However, whether the error rates
have a prior distribution, a modification might be convenient. Hence,
we introduce a constraint on the first moment of the marginal error rate
rather than on its entire distribution, i.e.

E(ξω+) =
∏

ν∈Ω(ω)

E(ξν+) (4.19)

where Ω(ω) is the set of all non-empty subsets of ω. To uniquely identify
the two hyperparameters aω+ and bω+, we need another equation. One
possibility is to constrain higher moments, or the variance of ξω+

2. Then,
we use the equations in the system (4.15) to obtain the hyperparameters
for ξω+ when |ω| > 1.

Once defined the marginal error rates’ distributions, we can finally derive
the relative cross-sectionals’; see Appendix C for the cross-sectional error
rates derivation.

2V(ξω+) can be arbitrarily chosen. To have enough variability avoiding wide jumps

in the MCMC, a rule of thumb might be fixing V(ξω+) =
(

E(ξω+)
3

)2
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4.4 Posterior computation

We aim to estimate the joint posterior distribution of θm, ξ, y0 and r (or,
equivalently, the latent y):

π(θm, ξ, y0, r|x) ∝ f(y0,x|θm, ξ, r)π(r|x, ξ)π(θm)π(ξ) (4.20)

Given such distribution’s intractability, we generate an MCMC sample
using a Metropolis-within-Gibbs; see Algorithm 7.

Under the Poisson specification, we sample the latent erroneous counts
using Fisher’s noncentral hypergeometric distribution, which is the ob-
ject of chapters 1 and 2. The motivation lies in the proportionality of rω’s
full conditional to FNCH; the results we obtained from a mathematical-
computational point of view are shown in Appendix D.
From an applicative perspective, the use of FNCH in the posterior sam-
pling process is a crucial point. Indeed, sampling from such distribution
allows for the possibility of expressing prior beliefs about erroneous enu-
merations in the lists in terms of relative odds. For instance, assume to
know that the in-target units’ capture probability weights about twice
the out-of-target ones in the kth source; namely

P (ω+ = {k+}|i /∈ U)/(1− P (ω+ = {k+}|i /∈ U))

P (ω+ = {k+}|i ∈ U)/(1− P (ω+ = {k+}|i ∈ U))
' 1

2
. (4.21)

In the absence of further information, there exist infinite solutions to
the equation 4.21. However, the expression above reminds us of FNCH
weight parameter, namely

w =
ζr/(1− ζr)
ζy/(1− ζy)

;

see chapter 1 for further details. Hence, eliciting a prior for w we may
identify the latent erroneous enumerations via MCMC.
For the sake of completeness, we point out that assuming the Binomial
specification mentioned in §4.1 for Rω, the conjugacy makes the ξω sam-
pling step faster and the modification of Algorithm 7 straightforward.
However, introducing information about the erroneous enumerations in
terms of relative odds is no longer possible.
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Algorithm 7: Log-linear model in the presence of erroneous
enumerations

1 Choose initial values θ0, ξ0, r0, y0
0 and σ2

β
0

;

2 for t← 1 to T do

3 set Ñ = N t−1 ;
4 for ω = {k} s.t. k ∈ B do
5 draw ξ∗ω from a proposal distribution qξ,t(ξ

∗
ω|ξt−1

ω ) ;
6 compute the acceptance ratio

γξω = min
(

1; π(ξ∗ω |r
t−1
ω ,yt−1

ω )qt(ξ
t−1
ω |ξ∗ω)

π(ξt−1
ω |rt−1

ω ,yt−1
ω )qt(ξ∗ω |ξ

t−1
ω )

)
;

7 draw u ∼ Unif(0, 1) ;
8 if u < γξω then
9 set ξtω = ξ∗ω

10 else
11 ξtω = ξt−1

ω

12 end
13 set µtω = xωξ

t
ω ;

14 set wω = µtω/M

λt−1
ω /Nt−1

1−(λt−1
ω /Nt−1)

1−(µtω/M)
;

15 draw rtω ∼ FNCH (M,N t−1, xω, wω) ;
16 set ytω = xω − rtω ;

17 set Ñ equal to the sum of the latest yω
18 end
19 draw yt0 ∼ Pois(exp{φt−1}) ;

20 draw σ2
β
t ∼

InvGamma

(
a+ lm

2
,
d+ 2−Kβ′m

t−1X ′mXmβm
t−1

2

)
21 where lm is the dimension of βm ;
22 draw θ∗m from a proposal distribution qθ,t(θ

∗
m|θt−1

m );
23 compute the acceptance ratio

γθω = min
(

1;
π(θ∗m|yt)qθ,t(θ

t−1
m |θ∗m)

π(θt−1
m |yt)qθ,t(θ∗m|θ

t−1
m )

)
;

24 draw u ∼ Unif(0, 1) ;
25 if u < γθω then
26 θtω = θ∗ω
27 else
28 θtω = θt−1

ω

29 end
30 ;

31 end
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4.5 Model selection

To select the “best” among the possible models, according to their log-
linear specification, we proceed to the models’ comparison using the
Bayes factor. The Bayes factor is the ratio of the marginal distributions
under the alternative models 0 and 1:

BF =
mm(y)

mm′(y)
(4.22)

with mm(.) and mm′(.), being the normalizing constant of the mth and
m′th model posterior distributions respectively, i.e.

mm(y) =

∫
Ψ

f(y|ψm)π(ψm)dψm (4.23)

where ψm here is the vector of all mth model’s parameters. This ratio
is an indicator of the relative evidence of one model against the other
model. According to Kass and Raftery (1995), a value of Bayes factor
greater than 3.2 (or smaller than 1/3.2) is a substantial evidence in favor
of model m against model m′ (or the other way around)3.
Except for the models in which the parameters’ distribution is conjugate,
computing the normalising constant of a posterior is often challenging.
Chib (1995) introduced a new approach to compute the marginal density
of y under a particular model m when the posterior distribution can
only be approximated via MCMC, particularly by the output of a Gibbs
sampler. Exploiting the fact that m(y) can be written as

m(y) =
f(y|ψ)π(ψ)

π(ψ|y)
(4.24)

for any value of ψ, m(y) is computed evaluating all the quantities above
at a certain high posterior density value ψ∗; i.e., in this work,

m(y) =
f(y|θ∗m, ξ∗)π(θ∗m, ξ

∗)

π(θ∗m, ξ
∗|y)

. (4.25)

3We refer to the following scale of interpretation of the Bayes Factor’s value:

• 1
3.2 < BF < 3.2: not worth than a bare mention;

• 3.2 < BF < 10 or 1
10 < BF < 1

3.2 : substantial evidence in favour of one of the
models;

• BF < 1
10 or BF > 10: strong evidence in favour of one of the model.
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We need to estimate π(θ∗m, ξ
∗|y) in order to compute m(y). By the law

of total probability, our posterior will be

π(θ∗m, ξ
∗|y) = π(θ∗m|y)π(ξ∗|θ∗m,y) (4.26)

where

π(θ∗m|y) =

∫
π(θ∗m|y∗,yl, y0)π(yl, y0|y∗) dyl dy0 (4.27)

and

π(ξ∗|y,θ∗m) =

∫
π(ξ∗|y∗,yl, y0,θ

∗
m)π(yl, y0,θ

∗
m|y∗) dyl dy0 . (4.28)

Under the Binomial specification for R, the normalising constant of the
posterior distribution of the error rates ξ is known due to conjugacy.
In such a case, we can obtain an estimate of π(ξ∗|y,θ∗m) by taking the
average of the full conditional density evaluated at (θ∗m) for G iterations,
i.e.

π̂(ξ∗|y,θ∗m) =
1

G

G∑
g=1

π(ξ∗|y(g),θ∗m) (4.29)

However, we ignore the normalising constant of π(θm|y), making the
approach in Chib (1995) not feasible. Nonetheless, Chib and Jeliazkov
(2001) suggest how to estimate the posterior in such cases, setting

π̂(θ∗m|y) =
1
G

∑G
g=1 γ(θ

(g)
m ,θ∗m|y(g))q(θ∗m|θ

(g)
m )

1
J

∑J
j=1 γ(θ∗m,θ

(j)
m |y(j))

(4.30)

where {θ(g)
m } are the sampled draws from the posterior, and {θ(j)

m } are
additional draws from a proposal distribution q(θm|θ∗m) and

γ(θ(g)
m ,θ∗m|y(g)) = min

{
1,
f(y|θ∗m,y(g))π(θ∗m)

f(y|θ(g),y(g))π(θ(g))

q(θ(g)|θ∗m)

q(θ∗m|θ(g))

}
. (4.31)

Under the Poisson specification for R, we estimate π(ξ∗|y,θ∗m) in a sim-
ilar fashion. Now we can compute m(y) for each model and then obtain
the Bayes factor.
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4.6 Simulation studies

4.6.1 Model [12][13][23]

We simulate 100 three-lists complete contingency tables from fixed θ
coefficients, i.e. θ = (φ, β1, β2, β3, β12, β13, β23)′ = (6.80, 1.62, 0.90, 0.80,
−0.75, −0.86,−0.30)′. Then, we partition the lists’ universe as follows:
A = {1} and B = {2, 3}. For each sample, we simulate out-of-target
counts for the cells indexed by ω = ({2}, {3}, {23}) from fixed marginal
error rates, namely ξ1+ = 0.1 and ξ2+ = 0.2, deriving the cross-sectional
error rates’ prior hyperparameters with the quantile method mentioned
in §4.3. We run the MCMC4 described in the previous section for all
samples and, for each sample, for all model specifications, discarding the
saturated model. For convenience, we use the Binomial specification for
{Rω}.
All models manage to center the posterior distributions of the error rates
on their true values thanks to the strong prior information, and give
the estimates in Table 4.2. Table 4.3 summarises the posteriors of the
model’s coefficients for each log-linear model’s specification.

Marginal rates Cross-classified rates

ξ2+
0.101

ξ2
0.409

(0.010) (0.045)

ξ3+
0.203

ξ3
0.632

(0.006) (0.018)

ξ23+
0.019

ξ23
0.037

(0.004) (0.008)

Table 4.2: Estimates for marginal and cross-classified error rates.

Table 4.4 shows the mean and standard deviation of the Mean Square
Error computed for each model and each sample. The simulation study
provides the smallest MSE (on average and for every sample) with the
lowest standard deviation for the true model. Table 4.5 shows for each
model how often the true population size is included in different Highest
Posterior Density intervals. As the interval shrinks, all models lose their
ability to simulate values of N so near the true value; the true model still
performs well.

4number of iterations: 50000; burnin: 25000
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Model φ β1 β2 β3 β12 β13 β23

[1][2][3]
7.089 0.547 0.110 -0.069

(0.035) (0.030) (0.019) (0.022)

[12][3]
7.577 0.809 0.398 -0.032 -0.382

(0.049) (0.048) (0.053) (0.023) (0.057)

[13][2]
7.508 0.886 0.160 0.323 -0.531

(0.076) (0.076) (0.020) (0.078) (0.081)

[1][23]
7.865 0.533 0.039 -0.145 0.127

(0.034) (0.029) (0.030) (0.029) (0.039)

[12][13]
7.031 1.438 0.638 0.514 -0.622 -0.722

(0.089) (0.091) (0.055) (0.080) (0.060) (0.083)

[12][23]
7.600 0.798 0.368 -0.055 -0.370 0.037

(0.052) (0.048) (0.067) (0.031) (0.060) (0.044)

[13][23]
7.515 0.882 0.154 0.313 -0.528 0.011

(0.076) (0.075) (0.032) (0.082) (0.080) (0.042)

[12][13][23]
6.726 1.672 0.943 0.819 -0.790 -0.874 -0.305

(0.099) (0.097) (0.074) (0.091) (0.066) (0.086) (0.051)

Table 4.3: Estimates for θ. True model: [12][13][23].



97

Model Mean Sd MSE[12][13][23] < MSEm

[1][2][3] 615397.632 31162.066 1
[12][3] 413046.688 28388.089 1
[13][2] 290839.211 22171.050 1
[1][23] 685122.540 35859.447 1
[12][13] 63269.146 12018.815 1
[12][23] 428186.170 30910.644 1
[13][23] 294395.017 21996.929 1
[12][13][23] 1275.036 706.625 -

Table 4.4: Mean Square Errors. True model: [12][13][23]

Model N∗ ∈ HPD95% N∗ ∈ HPD80% N∗ ∈ HPD50%

[1][2][3] 0 0 0
[12][3] 0 0 0
[13][2] 0 0 0
[1][23] 0 0 0
[12][13] 1 1 0.56
[12][23] 0 0 0
[13][23] 0 0 0
[12][13][23] 1 1 0.71

Table 4.5: The true population size lies in the Highest Posterior Density interval,
frequencies. True model: [12][13][23]

[12][13][23] (−∞, 0.1) [1, 3.2) [3.2, 10) [10,∞)

[1][2][3] 0 0 0 1
[12][3] 0 0 0 1
[13][2] 0 0 0 1
[1][23] 0 0 0 1
[12][13] 0.04 0 0.01 0.94
[12][23] 0 0 0 1
[13][23] 0 0 0 1

Table 4.6: Interval values of the Bayes Factor. True model [12][13][23] against the
others
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Table 4.6 shows how often the Bayes Factor computed using Chib (1995)
and Chib and Jeliazkov (2001) method favours the true model against
the others. The true model is not favoured in very few cases, particularly
against model [12][13]: likely, it is because the interaction coefficient β23

is close to zero (equal to −0.3).

4.6.2 Model [13][2]

The scope of this second study is to test the performance of the model
selection method in the presence of fewer interaction terms. Indeed, to
allow for more interactions generally let the model fit better the data; we
need to verify that the true model can be recognised.
We run another simulation using 100 complete contingency tables with
K = 3 from a vector θ = (φ, β1, β2, β3, β13)′ = (6.80, 1.62, 0.90, 0.80,
−0.86)′. Hence, now our true model is [13][2]. As before, we partitioned
the lists’ universe in A = {1} and B = {2, 3} and we simulated out-of-
target counts for the cells indexed by ω = ({2}, {3}, {23}) from ξ1+ = 0.1
and ξ2+ = 0.2. Again, we derive the cross-sectional error rates’ prior
hyperparameters with the quantile method mentioned in §4.3.
The strong prior information leads again to unbiased estimates for the
error rates. Table 4.7 summarises the posteriors of the model coefficients
for each log-linear model’s specification. Table 4.8 shows the mean and
standard deviation of the Mean Square Error computed for each sample.
On average, the lowest MSE is registered for the model [13][23]; this is
quite expected since the presence of another interaction term allows for
more flexibility, and the model generally fits the data better.
Table 4.9 shows for each model how often the true population size has
been included in different Highest Posterior Density intervals. As the
interval shrinks, all models perform worse; however, the true model can
almost always include the true value of N in the 80% HPD.
Finally, we verify how often the Bayes Factor computed using the method
described in §4.5 favours the true model against the others; see 4.10.
The rows do not always sum up to one; the computational capacity of R
sometimes does not allow for the exact evaluation of the ratio, generally
due to too small values of the normalising constant mm′(y) that make
the denominator of the Bayes Factor go to 0. Since we cannot observe
the exact value of the BF, we do not include these cases in the table.
The true model is favoured at least in two-third of the cases against any
model, even against the most competing [12][23].
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Even without the high accuracy shown in the study of the previous section,
there is evidence that the Bayes Factor computed with Chib and Jeliazkov
(2001) method can recognise the true model.

Model φ β1 β2 β3 β12 β13 β23

[1][2][3]
7.273 1.083 0.868 0.112

(0.036) (0.029) (0.017) (0.018)

[12][3]
7.398 0.941 0.721 0.102 0.179

(0.052) (0.053) (0.058) (0.019) (0.061)

[13][2]
6.738 1.669 0.918 0.826 -0.886

(0.098) (0.097) (0.020) (0.099) (0.101)

[1][23]
7.346 1.072 0.782 0.002 0.148

(0.035) (0.029) (0.026) (0.030) (0.035)

[12][13]
6.651 1.770 1.006 0.850 -0.107 -0.910

(0.109) (0.111) (0.061) (0.098) (0.065) (0.100)

[12][23]
7.556 0.863 0.537 -0.056 0.257 0.207

(0.056) (0.052) (0.068) (0.033) (0.062) (0.040)

[13][23]
6.754 1.665 0.902 0.802 -0.883 0.028

(0.098) (0.096) (0.030) (0.103) (0.100) (0.041)

[12][13][23]
6.646 1.773 1.011 0.854 -0.109 -0.911 -0.005

(0.114) (0.112) (0.076) (0.104) (0.069) (0.099) (0.047)

Table 4.7: Estimates for θ. True model: [13][2].

Model Mean Sd MSE[13][2] < MSEM

[1][2][3] 650148.354 39014.298 1
[12][3] 647463.983 38629.172 1
[13][2] 6046.777 1619.855 −
[1][23] 709191.809 42142.492 1
[12][13] 8115.541 1517.174 0.94
[12][23] 761324.722 44876.640 1
[13][23] 5720.108 1559.573 0.47
[12][13][23] 7381.883 1499.072 0.81

Table 4.8: Mean square errors. True model: [13][2].
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Model N∗ ∈ HPD95% N∗ ∈ HPD80% N∗ ∈ HPD50%

[1][2][3] 1 0.82 0.01
[12][3] 0.62 0 0
[13][2] 1 0.99 0.08
[1][23] 0.98 0.05 0
[12][13] 1 0.73 0
[12][23] 0 0 0
[13][23] 1 0.99 0.09
[12][13][23] 1 0.65 0

Table 4.9: The true population size lies in the Highest Posterior Density
interval, frequencies. True model: [13][2].

[13][2] (−∞, 0.1) [1, 3.2) [3.2, 10) [10,∞)

[1][2][3] 0.02 0 0 0.66
[12][3] 0.05 0 0 0.80
[13][2] 0 0 0 0.75
[1][23] 0.28 0 0.03 0.68
[12][13] 0.02 0 0 0.85
[12][23] 0.36 0.01 0.01 0.61
[13][23] 0.19 0 0.01 0.79

Table 4.10: Relative frequency of Bayes Factor interval values. True model:
[13][2].

4.7 Discussion

In this chapter, we proposed an alternative model for population size
estimation in the presence of out-of-scope units. Our proposal is an “al-
ternative” to the models discussed in chapter 3 because it addresses a
precise context for which the introduction of strong prior information is
needed. The elicitation of error rates’ prior distributions relying on the
Pseudo Conditional Independence assumption is only one of the possible
ways we may walk to include such information; the good performance of
the model is independent of how we elicit the hyperparameters.
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The use of Fisher’s noncentral hypergeometric distribution in the pos-
terior sampling process is a key point that deserves attention. In the
context of official statistics, it is common to express information in rela-
tive terms; thus, allowing for the possibility to express prior beliefs about
erroneous enumerations in the lists in terms of relative odds can be cru-
cial.
Another aspect of this chapter we would like to stress is the model selec-
tion approach. The simulation studies showed how the method by Chib
and Jeliazkov (2001) could perfectly fit this context, and it confirms the
goodness of the model set. It can test many other models aiming at
the population size estimation, and it results more adaptable than other
approaches, such as the Reversible Jump used in Overstall and King
(2014a).



Conclusions

Nowadays, official statistics faces a dichotomic situation that we may
summarise in the following way. On the one hand, the high technologi-
cal development makes available a large amount of data. This situation
gives the official statistics many opportunities that often translate into
complex challenges. Indeed, data integration from multiple sources is a
crucial concept for all the National Statistics Institutes; it usually in-
volves methodological issues, such as handling erroneous enumerations.
On the other hand, and entirely in contrast with the “data full” context,
some populations, or groups, are elusive, making it difficult to estimate
their size.

Our work places itself in this context, giving a contribution to such
methodological issues. We devoted the first part to estimating a het-
erogeneous population’s size when a single list is available or we have
multiple lists, but we lack unique identifiers. Thanks to their ability to
extract information from one or a few data sources, the methods pre-
sented therein are particularly suitable when dealing with elusive popu-
lations, such as the recent graduates trying to enter the labour market,
as in the case study presented in §2.4.
The second part of the work deals with the erroneous enumerations prob-
lem in the multisource context. After a critical review of the main and
most recent literature about population size estimation, we propose an
alternative model that addresses both overcoverage and undercoverage
problems.

The model presented in chapter 2 leaves some open questions. Indeed,
both the estimation methods suggested therein have pros and cons; one
aspect that will deserve further research is the applicability of other (more
efficient) ABC methods to enhance the implementation’s speed. To ap-
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proach the multivariate problem using component-wise ABC steps as
proposed by Clarté et al. (2020) seems a feasible solution.
At the same time, we may enrich the model proposed in chapter 4 as
well. Including extra-experimental information is a real need; here, we
have mainly focused on including such information about the erroneous
enumerations. More attention will be devoted to the target units’ part,
refining the log-linear coefficients’ prior elicitation process.



Appendix A

FNCH distribution

Assume

X1 ∼ Binom(M1, ζ1)

X2 ∼ Binom(M2, ζ2)
(A.1)

Then, conditional on the sum X1 +X2 = n, the probability mass function
of X1 will be:

P (X1 = x1|X1 +X2 = n) =
P (X1 = x1 ∩X1 +X2 = n)

P (X1 +X2 = n)

=
P (X1 = x1)P (X2 = n− x1)

P (X1 +X2 = n)

=

(
M1

x1

)(
M2

n−x1

)
ζx11 (1− ζ)M1−x1ζn−x12 (1− ζ2)M2−(n−x1)

n∑
z1=0

(
M1

z1

)(
M2

n−z1

)
ζz11 (1− ζ)M1−z1ζn−z12 (1− ζ2)M2−(n−z1)

=

(
M1

x1

)(
M2

n−x1

)( ζ1

1− ζ1

)x1
(1− ζ1)M1

(
ζ2

1− ζ2

)n−x1
(1− ζ2)M2

n∑
z1=0

(
M1

z1

)(
M2

n−z1

)( ζ1

1− ζ1

)z1
(1− ζ1)M1

(
ζ2

1− ζ2

)n−z1
(1− ζ2)M2

=

(1− ζ1)M1(1− ζ2)M2
(
M1

x1

)(
M2

n−x1

)( ζ1

1− ζ1

)x1 ( ζ2

1− ζ2

)n−x1
(1− ζ1)M1(1− ζ2)M2

n∑
z1=0

(
M1

z1

)(
M2

n−z1

)( ζ1

1− ζ1

)z1 ( ζ2

1− ζ2

)n−z1
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Setting w1 =
ζ1

1− ζ1

, w2 =
ζ2

1− ζ2

;

P (X1 = x1|X1 +X2 = n) =

(
M1

x1

)(
M2

n−x1

)
wx11 w

n−x1
2

n∑
z1=0

(
M1

z1

)(
M2

n−z1

)
wz11 w

n−z1
2

(A.2)

=

wn2
(
M1

x1

)(
M2

n−x1

)(w1

w2

)x1
wn2

n∑
z1=0

(
M1

z1

)(
M2

n−z1

)(w1

w2

)z1 .

Finally, indicating the odds ratio as w =
w1

w2

,

=

(
M1

x1

)(
N−M1

n−x1

)
wx1

n∑
z1=0

(
M1

z1

)(
N−M1

n−z1

)
wz1

.

Writing A.2 as ∏
c=1,2

(
Mc

xc

)
wxcc∑

z∈Z

∏
c=1,2

(
Mc

zc

)
wzcc

, (A.3)

Z = {(x1, x2) ∈ Z2 : x1 + x2 = n}, the extension to the multivariate case
is straightforward.



Appendix B

Estimating the proportion of
sub-groups in a population

Whether
Mc

xc
, c = 1, ..., C , increases for all c,

FNCH(x|M , n,w)→ FNCH(x|k ·M , n,w) (B.1)

where k ∈ Z is any constant. Indeed, consider the probability mass
function of FNCH:

P (X = x|
C∑
c=1

Xc = n) =

C∏
c=1

(
Mc

xc

)
wc

xc

∑
z∈Z

C∏
c=1

(
Mc

zc

)
wczc

C∏
c=1

Mc!

(Mc − xc)!xc!
wc

xc

∑
z∈Z

C∏
c=1

Mc!

(Mc − zc)!zc!
wczc

(B.2)

For Mc � xc, Mc! and (Mc − xc)! cancel out.

Figure B.1a shows how the curves overlap almost exactly when M1 =
10n, M2 = 20n. As n increases, the overlap worsens (B.1b-B.1c); how-
ever, it is never completely lacking, not even for M1 = n (B.1d).

Figure B.2 shows how the curves become smoother and the overlap more
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precise for higher N and n, under the condition of Mc � n, ∀c. Figure
B.2c presents the only case where the overlap fails, i.e. n > M1.

Hence, whether we do not include information on at least one Mc, we
would be only able to estimate the subgroups’ proportions within the
population.
As an example, we simulate (x1, x2), i.e. the observed counts of two sub-
groups, from a population of size N = 10000. Table B.1 shows how to
assume different sizes of N a priori affects minimally the estimate of the
proportions of the two groups in the population.

N ∼ Pois(λN) M1/N
λN = 10000 0.553
λN = 100000 0.584
λN = 1000000 0.581

Table B.1: Estimated posterior mean of the proportion of the first subgroup
within a population of size N = 10000. True value for M1/N = 0.567.
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(a) n = 10

(b) n = 30
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(c) n = 50

(d) n = 100

Figure B.1: Probability mass of a univariate FNCH with M2 = 2M1 with
M1 +M2 = 300, 3000, 30000, 300000, 3000000, w = 2, and different n.
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(a) n = 300

(b) n = 500
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(c) n = 20

Figure B.2: Probability mass of a univariate FNCH with M2 = 2M1 with
M1 +M2 = 3000, 30000, 300000, 3000000, w = 2, and different n.



Appendix C

From marginal to
cross-sectional error rates

The marginal domain ω+ is the union of a J-dimensional partition ({ν1}, {ν2},
. . . , {νJ}) of the cross-sectional domains:

ω+ = ∪Jj=1νj (C.1)

e.g. in case of K = 3,

{3+} = {123} ∪ {13} ∪ {23} ∪ {3} (C.2)

Now, according to the definition of ξω+,

ξω+ = P (i /∈ U |ω+) =
P (ω+|i /∈ U)P (i /∈ U)

P (ω+)

=
P (∪j{νj}|i /∈ U)P (i /∈ U)

P (∪j{νj})
=

∑
j

P ({νj}|i /∈ U)P (i /∈ U)∑
j

P ({νj})

(C.3)

where
P ({νj}) =

xνj∑
ω 6=0

xω
(C.4)

and

P ({νj}|i /∈ U) =
P (i /∈ U |{νj})P ({νj})

P (i /∈ U)

= ξνj
xνj∑

ω 6=0

xω

1

P (i /∈ U)

(C.5)
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Hence

ξω+ =

∑
j

ξνj
xνj∑

ω 6=0

xω

P (i /∈ U)

P (i /∈ U)∑
j

xνj∑
ω 6=0

xω

=

∑
j

ξνj
xνj∑

ω 6=0

xω∑
j

xνj∑
ω 6=0

xω

=

∑
j

ξνjxνj∑
j

xνj
=

∑
j

ξνjxνj

xω+

(C.6)
and

ξνj =
xω+

xνj
ξω+ −

∑
j−
ξνj−xνj−

xνj
(C.7)

where {j−} exclude j.
E.g., in the case of K = 3, A = {1} and B = {2, 3}:

ξ2 =
x2+

x2

ξ2+ −
x23

x2

ξ23

ξ3 =
x3+

x3

ξ3+ −
x23

x3

ξ23

ξ23 =
x23+

x23

ξ23+

(C.8)


ξ2 =

x2+

x2

ξ2+ −
x23

x2

x23+

x23

ξ23+

ξ3 =
x3+

x3

ξ3+ −
x23

x3

x23+

x23

ξ23+

(C.9)

For the PCI: 
ξ2 =

x2+

x2

ξ2+ −
x23

x2

x23+

x23

ξ2+ξ3+

ξ3 =
x3+

x3

ξ3+ −
x23

x3

x23+

x23

ξ2+ξ3+

(C.10)

hence the cross-classified error rates are fully defined in terms of the
marginal ones.
Finally, taking the mean and variance of the expression above, we can
elicitate the hyperparameters for ξνj .



Appendix D

Sampling the erroneous
counts from FNCH

Each observed cross-classified count xω can be seen as a realisation of a
random variable

Xω = Yω +Rω , (D.1)

where Yω represents the latent count of target units associated with the
cell indexed by ω, and Rω the relative out-of-scope units’ count. We
specify:

Yω ∼ Pois(λω)

Rω ∼ Pois(µω := xωξω)
(D.2)

independently for all ω. Denote with y0 the unobserved count, i.e. the
number of units belonging to the target population captured by none of
the lists.
We aim to estimate the joint posterior distribution of λ1, ξ, y0 and r (or,
equivalently, the latent y):

π(λ, ξ, y0, r|x) ∝ f(y0,x|λ, ξ, r)π(r|x, ξ)π(λ)π(ξ) (D.3)

In (D.3),

π(r|x, ξ) =
∏
ωO

π(rω|xω, ξω) (D.4)

1for the sake of simplicity we directly use λ rather than θ
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where ωO indicates the cells affected by overcoverage. Each element in
the product in (D.4) can be written as

π(rω|xω, ξω) =
π(rω, xω|ξω)

π(xω|ξω)
(D.5)

Since xω = yω + rω by definition, we write:

π(rω, xω|ξω)

π(xω|ξω)
=
π(rω|ξω)π(yω = xω − rω|ξω)

π(xω|ξω)

=

e−xωξω(xωξω)rω

rω!

e−λω(λω)xω−rω

(xω − rω)!

e−(xωξω+λω)(xωξω + λω)xω

xω!

=

(xωξω)rω

rω!

λxω−rωω

(xω − rω)!

(xωξω + λω)xω

xω!

(D.6)

=
xω!

(xω − rω)!rω!

(
xωξω

xωξω + λω

)rω ( λω
xωξω + λω

)xω−rω
(D.7)

which is the probability mass function of a Binom

(
xω,

xωξω
xωξω + λω

)
.

Hence,

π(λ, ξ, y0, r|x) ∝ e−λ0λy00

y0!

∏
ω

e−(λω+xωξω)(λω + xωξω)xω

xω!

×
∏
ωO

xω!

(xω − rω)!rω!

(
xωξω

xωξω + λω

)rω ( λω
xωξω + λω

)xω−rω
π(λ)π(ξ)

(D.8)

In the Gibbs sampler, we sample rω from its full conditional. To derive
it, we must cancel out all terms in the posterior (D.8) that do not depend
on rω. It will be proportional to:

∝ 1

(xω − yω)!rω!

(
xωξω

xωξω + λω

)rω ( λω
xωξω + λω

)−rω
∝ 1

(xω − yω)!rω!

(
(xωξω)(xωξω + λω)

(xωξω + λω)λω

)rω
∝ 1

(xω − yω)!rω!

(
xωξω
λω

)rω (D.9)
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The expression above is different from (D.7), thus using

Binom

(
xω,

xωξω
xωξω + λω

)
to sample rt would not be a proper choice.
The ratio in D.9 can be seen as the relative weight of the erroneous counts
with respect to the in-target units in the cell indexed by ω. Therefore,
we consider a univariate FNCH distribution of parameters M1, M2 = N ,
n = xω and w = (w1, w1), where

wR =
xωξω/M

1− xωξω/M
=

xωξω
M − xωξω

wY =
λω/N

1− λω/N
=

λω
N − λω

(D.10)

The probability mass is proportional to:

FNCH(rω, yω|M,N, xω, wω) ∝ M !

(M − rω)!rω!

N !

(N − yω)!yω!
wrωR w

yω
Y

(D.11)

As M � rω, the above becomes:

N !

(N − yω)!yω!rω!
wrωR w

yω
Y (D.12)

and using interchangeably yω, xω − rω:

=
N !

(N − yω)!(xω − rω)!rω!

(
xωξω

M − xωξω

)rω ( λω
N − λω

)xω−rω
=

=
N !

(N − yω)!(xω − rω)!rω!


xωξω

M − xωξω
λω

N − λω


rω (

λω
N − λω

)xω
=

=
N !

(N − yω)!(xω − rω)!rω!

(
xωξω
λω

)rω ( N − λω
M − xωξω

)xω−yω ( λω
N − λω

)xω
(D.13)
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which is proportional to (D.9). Hence, introducing for convenience a
fixed and arbitrarily large M1, we can use FNCH distribution to sample
rω at each iteration t.

Alternatively, we can simply divide and multiply (D.9) by xrωω :

1

rω!(xω − rω)!

xrωω
xrωω

(xωξω)rω λ−rωω

=
1

rω!(xω − rω)!

(
xωξω
xω

)rω (λω
xω

)−rω (D.14)

By definition, Xω = Rω +Yω, and E(Yω) = λω, E(Rω) = xωξω. Hence, we
can see (D.14) as an approximation of the kernel of a Binomial distribu-
tion of parameters xω and ξω. Such a result gives us another option for
sampling rtω. In practise, the two sampling distributions give equivalent
results.
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D. Sabanés Bové and L. Held. Hyper-g priors for Generalized Linear
Models. Bayesian Analysis, 6(3):387–410, 2011.

L. Sanathanan. Estimating the size of a multinomial population. The
Annals of Mathematical Statistics, 43(1):142–152, 1972.

S. Sisson, Y. Fan, and M. Beaumont. Overview of ABC. Handbook of
approximate Bayesian computation, pages 3–54, 2018.

A. Tancredi and B. Liseo. A hierarchical Bayesian approach to record
linkage and population size problems. The Annals of Applied Statistics,
5(2B):1553–1585, 2011.

A. Tancredi, R. Steorts, and B. Liseo. A unified framework for de-
duplication and population size estimation. Bayesian Analysis, TBA
(TBA):1–26, 2019.

K. T. Wallenius. Biased sampling; the noncentral hypergeometric prob-
ability distribution. Technical report, Stanford University CA Applied
Mathematics and Statistics Labs, 1963.

L.-C. Zhang. On modelling register coverage errors. Journal of Official
Statistics, 31(3):381–396, 2015.



125

L.-C. Zhang. Log-linear Models of Erroneous List Data, chapter 9. Chap-
man and Hall/CRC, 2019.

L.-C. Zhang and R. L. Chambers, editors. Analysis of Integrated Data.
Statistics in the Social and Behavioral Sciences Series. Chapman and
Hall/CRC, 2019.


	Introduction
	I The use of Fisher's noncentral hypergeometric distribution for official statistics
	The noncentral hypergeometric distributions
	Definitions
	Examples

	Fisher's noncentral hypergeometric distribution for the size estimation of population's subgroups
	The univariate case
	Prior setting
	Posterior computation
	Sensitivity analysis: the posterior distribution of N under the different specifications of M1 with fixed w
	Sensitivity analysis: the posterior distribution of N under different specifications of w with fixed M1
	Sensitivity analysis: the posterior distributions of N and w under different specifications of w and M1
	Multiple lists

	The multivariate case
	Prior setting
	Posterior computation: ABC method
	Posterior computation: MCMC method

	Methods comparison: simulation studies
	A case study: graduated job seekers in Italy
	Discussion


	II Capture-recapture in the presence of overcoverage
	Multisource population size estimation in the presence of out-of-scope units: an overview
	Notation
	Capture-recapture
	Log-linear models' setup
	Decomposable graphical models
	Bayesian log-linear models and the Reversible Jump sampler

	A comparing example: killings in Kosovo
	Dealing with out-of-scope units
	Log-linear models
	Decomposable graphical models
	Bayesian log-linear models

	Comparing examples with simulated data
	Scenario 1: capturing two groups
	Scenario 2: post-enumeration survey and accurate administrative data

	Further topics

	Log-linear models in the presence of out-of-scope units
	Out-of-scope units in a Bayesian log-linear models framework
	Prior specification
	Erroneous enumerations' parameters elicitation
	Posterior computation
	Model selection
	Simulation studies
	Model [12][13][23]
	Model [13][2]

	Discussion

	Conclusions
	FNCH distribution
	Estimating the proportion of sub-groups in a population
	From marginal to cross-sectional error rates
	Sampling the erroneous counts from FNCH


