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Abstract. We prove that the Robin ground state and the Robin torsion function are
respectively log-concave and 1

2 -concave on an uniformly convex domain Ω ⊂ RN of class
Cm, with [m− N

2 ] ≥ 4, provided the Robin parameter exceeds a critical threshold. Such
threshold depends on N , m, and on the geometry of Ω, precisely on the diameter and
on the boundary curvatures up to order m.

1. Introduction

Concavity properties of solutions to elliptic boundary value problems on convex domains
have been widely investigated in the literature. Their study was started in the seventies
by Makar-Limanov, who proved the power-concavity of the torsion function in planar
domains [32] and then by Brascamp-Lieb, who in the pioneering paper [8] established
the log-concavity of the Dirichlet ground state via a parabolic approach. During the
eighties, different methods were developed to deal with more general elliptic equations,
see the monograph [27] and the references therein. In particular, Korevaar invented a new
concavity principle [28], and Caffarelli-Friedmann introduced their celebrated method of
continuity [13], then extended in higher dimensions by Korevaar-Lewis [29]. Later, after
the advent of viscosity theory, also the case of fully nonlinear equations has been treated,
with fundamental contributions by Alvarez-Lasry-Lions [1], Guan-Ma [23], and Caffarelli-
Guan-Ma [12] (see the survey paper [24] for more references and historical notes).
A central role is this matter is played by the boundary conditions imposed on the solutions:
to the best of our knowledge, all concavity results available in the literature concern
problems under Dirichlet boundary conditions. In quick terms, the reason is that such
conditions allow establishing concavity near the boundary, which is a key step for any
among the known methods to work. Yet, under Dirichlet boundary conditions, it is possible
to go farther and obtain refined concavity estimates, such as the one given by Andrews-
Clutterbuck in [2], with a far-reaching application to the proof of the fundamental gap
conjecture; for different ‘refinements’ of concavity results, see also Ma-Shi-Ye [31] and
Henrot-Nitsch-Salani-Trombetti [25].
Very recently, in the ground-breaking paper [3], Andrews-Cluttedbuck-Hauer have at-
tacked the investigation of concavity properties under different boundary conditions, of
Robin type. The study of the Laplace operator under such kind of boundary conditions
is a recent trend which is raising an increasing interest in the communities of shape opti-
mization and spectral geometry, see for instance the review papers [10,30]. The discovery
in [3] is that the Robin ground state of a convex set in RN is, in general, not log-concave.
More precisely it is proved, via a perturbation argument, that log-concavity fails for small
(positive) values of the positive Robin parameter on suitable polyhedral domains.
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In the final section of the paper, the Authors conjecture that the Robin ground state might
be log-concave for sufficiently large values of the Robin parameter; moreover, they raise
the question of understanding the dependence of the concavity threshold on the space
dimension, and possibly on the geometry of the underlying domain.
Our paper answers positively to such conjecture, for domains with sufficiently smooth
boundary, and provides precise information on the log-concavity threshold. We also prove
an analogous power-concavity result for the Robin torsion function. More precisely, our
main results read as follows.
Let Ω ⊂ RN be an open convex bounded domain, and let β be a positive real parameter.
We call Robin ground state of Ω a positive solution, normalized so to have unit L2-norm,
to

(1)

−∆u = λβ u in Ω
∂u

∂ν
+ β u = 0 on ∂Ω ,

where λβ is the first Robin eigenvalue of Ω.
We also call Robin torsion function of Ω the unique solution to

(2)

−∆u = 1 in Ω
∂u

∂ν
+ β u = 0 on ∂Ω .

We set the following definitions related to the open set Ω:
· δm(Ω) := the sum of the maximum over ∂Ω of the moduli of all derivatives up
to order m of a function representing locally ∂Ω in a principal coordinate system
(provided the latter is of class Cm, see (3) below for a more detailed definition);
· d(Ω) := the diameter of Ω;
· κmin(Ω) := minx∈∂Ω mini=1,...,N−1{κi(x)}, where κ1, . . . κN−1 are the principal cur-
vatures of ∂Ω (provided the latter is of class C2).

Furthermore, for γ ∈ R, we denote by [γ] its integer part.
We prove:

Theorem 1.1. Let Ω ⊂ RN be an open uniformly convex domain of class Cm, with
[m − N

2 ] ≥ 4. There exists a positive threshold β∗ such that, for β ≥ β∗, the Robin
ground state of Ω is strictly log-concave. Moreover, β∗ depends only on N,m, and on the
geometry of Ω through δm(Ω), d(Ω) and κmin(Ω), with a continuous monotone dependence
(increasing in δm(Ω), d(Ω), decreasing in κmin(Ω)).

Theorem 1.2. Let Ω ⊂ RN be an open uniformly convex domain of class Cm, with
[m − N

2 ] ≥ 4. There exists a positive threshold β∗∗ such that, for β ≥ β∗∗, the Robin
torsion function of Ω is strictly 1/2-concave. Moreover, β∗∗ depends only N,m, and on the
geometry of Ω through δm(Ω), d(Ω) and κmin(Ω), with a continuous monotone dependence
(increasing in δm(Ω), d(Ω), decreasing in κmin(Ω)).

We do not know, at present, whether the assumptions of boundary regularity and uniform
convexity are necessary for the validity of the above results. For sure, they play a crucial
role in our proofs, and it is highly expected that they may be strictly related to the
behaviour of solutions to problems (1)-(2): if few results are known in general under Robin
boundary conditions, it is precisely because they are much more sensitive to the boundary
regularity, and hence considerably more difficult to handle with respect to Dirichlet ones.
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Our proofs are based on the constant rank theorem by Korevaar-Lewis [29], combined with
the continuity method. For its implementation, one needs firstly to know that solutions to
problems (1)-(2) on the ball are strictly log-concave, and this is easily checked to be true
for any value of the Robin parameter β. But one needs also another crucial information,
namely the fact that, on the domain Ω under consideration and for β large enough, solu-
tions are strictly log-concave in some portion of the domain, typically a neighbourhood of
the boundary. Such property is the heart of the matter. The approach we adopt to prove
it is inspired by Korevaar [28], and heavily exploits the regularity of Robin solutions and
their convergence to the corresponding Dirichlet ones as β tends to +∞. Several results
are available in this direction in the literature (see [4,15–19,33] for convergence properties
and [35] about regularity). Nevertheless, none of them covers the C2-convergence that
we need for our purposes: roughly speaking, we need that the Hessian matrices of Robin
and Dirichlet solutions are uniformly close one to each other. For this reason, we need
to establish some global regularity estimates for solutions to Robin problems in Sobolev
spaces of sufficiently high order (which require a boundary regularity of sufficiently high
order), so that we get the C2-convergence via Morrey-Sobolev embedding theorem.
The most delicate aspect of this analysis is the need of tracking the dependence of the log-
concavity threshold on the geometry of the domain, which in particular requires tracking
all the constants appearing in the regularity and convergence estimates. We emphasize
that tracking the log-concavity threshold is needed not only to gain information on it, but
to get its own existence: indeed, without monitoring the behaviour of the threshold, in
principle it might diverge during the deformation process of the ball into a given domain
Ω via the method of continuity. For the same reason, the deformation cannot occur in
an arbitrary way, but must be carefully performed so to keep under control the regularity
of the whole family of ‘intermediate’ domains; at this stage, we take advantage of some
results for the Minkowski addition of smooth convex bodies given by Ghomi in [20].
Let us also point out that it would not be possible to control the log-concavity threshold
without having at disposal some lower bound for the gradient of the Dirichlet ground state
(in case of problem (1)) and the Dirichlet torsion function (in case of problem (2)). While
the latter, in terms of boundary curvatures, is a classical result due to Bandle [5], the
former cannot be found in the literature, so that we needed to set it up. For the proof of
this result, contained in the Appendix, we are indebted to the kind suggestions of David
Jerison, that we warmly acknowledge.
Finally, let us mention that one of the motivations of the interest by Andrews-Clutterbuck-
Hauer in studying the log-concavity of the Robin ground state was its implications in esti-
mating the Robin fundamental gap. In this direction, as a by-product of our convergence
results, we get a lower bound for the Robin fundamental gap of convex sets of class C1,1,
which is meaningful for large values of the parameter, see Corollary 3.6.

In the light of Theorems 1.1 and 1.2, we may address the following open questions:

· Is it possible to remove or weaken the regularity assumptions of Theorems 1.1 and
1.2?

· Is it possible to characterize convex sets whose Robin ground state (or Robin
torsion function) is log-concave (resp. 1/2-concave) for all positive values of β?

We are also aware that Theorems 1.1 and 1.2 might be extended to more general elliptic
operators, but we preferred to restrict our attention to the Laplacian in order to keep the
paper more readable.
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The paper is organized as follows. Sections 2 and 3 contain respectively the global regu-
larity estimates for solutions of Robin problems and their convergence in Sobolev norms
to solutions of Dirichlet problems as β → +∞. We point out that such results, which may
be of independent interest, are established without asking the convexity of the domain.
We also warn the reader who is mainly interested in understanding the proof of Theo-
rems 1.1 and 1.2, that this is possible by skipping at first reading the technical Sections 2
and 3. In fact, in Section 4, before stating the crucial concavity property near the boundary
(see Proposition 4.3), we summarize the required achievements from previous sections.
The proofs of Theorems 1.1 and 1.2 are given in Section 5. Section 6 is devoted to the
boundary gradient estimate needed for the Dirichlet ground state.
Hereafter we fix some notation used throughout the paper.

Notation.
For k ∈ N \ {0}, we denote by λβk(Ω) and λDk (Ω) respectively the Robin and Dirichlet
eigenvalues of Ω; when k = 1, we simply write λβ(Ω) and λD(Ω).
We call Dirichlet ground state of Ω a first positive eigenfunction of the Dirichlet Laplacian
in Ω, normalized so to have unit L2-norm.
We call Dirichlet torsion function the unique solution in H1

0 (Ω) to the equation −∆u = 1
in Ω.
As usual, we say that Ω is of class Cm,α, m ∈ N, α ∈ [0, 1], if, for every x0 ∈ ∂Ω, there
exists a bijective diffeomorphism Ψ of class Cm,α from Q := {(x′, xN ) ∈ RN−1×R : |x′| <
1, |xN | < 1} onto an open neighbourhoof U of x0, such that Ψ(Q ∩ {xN > 0}) = U ∩ Ω
and Ψ(Q ∩ {xN = 0}) = U ∩ ∂Ω. Such a map Ψ is called a local chart around x0. In the
following, Cm will stand for Cm,0.
Let us also recall that, if Ω is of class Cm, for every x0 ∈ ∂Ω the principal coordinate system
at x0 is an orthogonal system with origin at x0 such that ∂Ω can be locally represented,
in a neighborhood of x0 = 0, as the graph of a Cm function ϕx0 : B′r → R, with B′r the
ball of radius r in RN−1, ϕx0(0) = 0, ∇ϕx0(0) = 0, and, if m ≥ 2, ∂2

ijϕx0(0) = κi δij
(i, j = 1, . . . , N − 1), where κ1, . . . , κN−1 are the principal curvatures of ∂Ω at 0.
By analogy, given a multi-index α = (α1, . . . , αN−1) with |α| := α1 + · · ·+ αN−1 ≤ m, we
can look at the derivatives ∂αϕx0(0) as higher order curvatures of ∂Ω at x0.
For any open domain Ω ⊂ RN of class Cm (with m ∈ N), we set

(3) δm(Ω) :=
∑
|α|≤m

max
x0∈∂Ω

|∂αϕx0(0)| ,

where ϕx0 is a function which represents locally ∂Ω around x0 in a principal coordinate
system at x0. We can extend this definition to domains of class Cm−1,1 (with m ∈ N ,
m ≥ 1), by setting

δm(Ω) :=
∑

|α|≤m−1
max
x0∈∂Ω

|∂αϕx0(0)|+
∑
|α|=m

ess-sup
x0∈∂Ω

|∂αϕx0(0)| .

Note that, by the definition of principal coordinates, δ0(Ω) = δ1(Ω) = 0, whereas δ2(Ω) is
the maximum over ∂Ω of the sum of the moduli of the principal curvatures. In particular,
if Ω is a convex set of class C1,1, we have that

δ2(Ω) =
N−1∑
j=1

ess-sup
x∈∂Ω

κj(x) .
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By saying that Ω is uniformly convex, we mean that all principal curvatures κi remain
uniformly positive along the boundary.
Furthermore:

· |Ω| denotes the Lebesgue measure of Ω;
· κmax(Ω) := ess supx∈∂Ω maxi=1,...,N−1{κi(x)}, where κi are the principal curva-
tures of the boundary of a convex set Ω of class C1,1;
· q(Ω) denotes the minimum over ∂Ω of the modulus of the gradient of the Dirichlet
ground state;
· p(Ω) denotes the minimum over ∂Ω of the modulus of the gradient of the Dirichlet
torsion function.

By writing Γ = Γ(α↑, β↓, . . .) we mean that Γ is a constant depending continuously and
monotonically on the parameters in parentheses, with increasing monotonicity with respect
to α, decreasing with respect to β, and so forth.
We tacitly agree that any of the constants involved in our estimates on a domain Ω of
class Cm in RN may depend on N and m.

2. Global regularity estimates

In this section we provide uniform upper bounds, in terms of traceable constants inde-
pendent of β, for the Hm and C2 norms of the Robin ground state and the Robin torsion
function.

Theorem 2.1. (i) Let Ω ⊂ RN be an open domain of class Cm (with m ∈ N). Then the
Robin ground state uβ on Ω belongs to Hm(Ω), and satisfies the estimate

(4) ‖uβ‖Hm(Ω) ≤ C ,

for some positive constant C = C(δm(Ω)↑, λD(Ω)↑). In particular, if [m − N
2 ] ≥ 2, uβ

belongs to C2,θ(Ω) (with θ := m− N
2 − [m− N

2 ]) and satisfies, for some positive constant
C as above, the estimate
(5) ‖uβ‖C2,θ(Ω) ≤ C .

(ii) Under the same assumptions of the previous item, the estimates (4)-(5) hold as
well for the Robin torsion function uβ, with C replaced by a positive constant C ′ =
C ′(δm(Ω)↑, |Ω|↑, λD(Ω)↓).

In order to prove Theorem 2.1, we exploit as main tool the following result:

Theorem 2.2. Let Ω be an open domain in RN , and let f ∈ Hm(Ω) (with m ∈ N). Let
u be the unique solution to the Robin problem

(6)

−∆u+ u = f, in Ω,
∂u

∂ν
+ β u = 0, on ∂Ω .

If Ω ∈ Cm+2, then u belongs to Hm+2(Ω) and satisfies the estimate
(7) ‖u‖Hm+2(Ω) ≤ C ‖f‖Hm(Ω) ,

for some positive constant C = C(δm+2(Ω)↑).
For m = 0, the estimate (7) holds true for any convex domain Ω, regardless its regularity,
with C =

√
6.
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Some comments are in order. We collect them in the next remark, and then we proceed
by proving first Theorem 2.2 and then Theorem 2.1.

Remark 2.3. (i) In the casem = 0 and Ω convex, the above result is proved in [22, Theorem
3.2.3.1 and inequality (3.2.3.11)]. For general m, results quite similar to Theorem 2.2 can
be found in classical literature about regularity theory (see e.g. [9, §9.6], [34, Chap. IV,
§2, Thm. 4] or [21, §6.4]). However, to the best of our knowledge, the fact that the upper
bound (7) holds true for a constant C = C(δm+2(Ω)↑) (in particular independent of β) has
not been explicitly stated. Since this property is crucial to our purposes, we are going to
provide a detailed proof.

(ii) The proof of Theorem 2.2 given below can be readily adapted to obtain the esti-
mate (7) in the (simpler) case when the Robin boundary condition in (6) is replaced by
the homogeneous Dirichlet one, u = 0 on ∂Ω. Consequently, also the estimates (4)-(5)
in Theorem 2.1 hold true as well for the Dirichlet ground state, or the Dirichlet torsion
function. We shall exploit this observation in the next section (precisely in the proof of
Theorem 3.1).

Proof of Theorem 2.2. By a standard argument (see e.g. the first part of the proof of
Theorem 4 in [34, Chap. IV, §2], or [9, §9.6-C2]) it is enough to prove that, when Ω is
replaced by RN+ := {x ∈ RN : xN > 0}, the inequality (7) holds true with C equal to
a constant CN,m depending only on N and m. Specifically, assume this result has been
proved, and consider an open domain Ω ⊂ RN of class Cm+2. Using a partition of unity,
we can write u =

∑n
i=0 ζi u, with ζi ∈ C∞c (RN ) and with all partial derivatives bounded by

some constant independent of Ω, ζ0 with support in Ω, and ζ1, . . . , ζn with support in local
charts covering ∂Ω. Estimate (7) plainly holds if u is replaced by ζ0 u (with a possibly
larger constant C ′ depending only on N and m). Consider now ζi u, for some i = 1, . . . , n,
with ζi supported in a local chart around x0 ∈ ∂Ω. Using the principal coordinate system
at x0, i.e., locally parameterizing the boundary of ∂Ω as the graph of a function ϕ ∈ Cm+2,
it follows that (7) holds true for ζi u instead of u, with a new constant C depending on
CN,m and (increasingly) on δm+2(Ω).

Let us prove that, when Ω = RN+ , the inequality (7) holds true with C equal to a constant
CN,m depending only on N and m. Recall that the unique weak solution u ∈ H1(Ω) of (6)
is characterized by the weak formulation

(8)
∫

Ω
∇u · ∇v dx+

∫
Ω
u v dx+ β

∫
∂Ω
u v dσ =

∫
Ω
f v dx, ∀v ∈ H1(Ω).

We are going to use tangential translations along the directions

T := {h ∈ RN : h 6= 0, hN = 0}.

Let be given h ∈ T . We denote by τh the shift operator defined by (τhv)(x) := v(x + h).
Clearly, we have h + Ω = Ω, and v ∈ H1(Ω) if and only if τhv ∈ H1(Ω). Moreover, we
denote by Dh the difference quotient operator, defined by

Dhv := τhv − v
|h|

, i.e. Dhv(x) := v(x+ h)− v(x)
|h|

.
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Now, for h ∈ T , let us insert v := D−hDhu as test function in (8). Observing that∫
Ω
∇u · ∇(D−hDhu) dx =

∫
Ω
|∇Dhu|2 dx,

∫
Ω
uD−hDhu dx =

∫
Ω

(Dhu)2 dx,∫
∂Ω
uD−hDhu dσ =

∫
∂Ω

(Dhu)2 dσ ,

we obtain ∫
Ω
|∇Dhu|2 dx+

∫
Ω

(Dhu)2 dx+ β

∫
∂Ω

(Dhu)2 dσ =
∫

Ω
f D−hDhu dx .

Since β ≥ 0, from Hölder’s inequality we deduce that
‖Dhu‖2H1(Ω) ≤ ‖f‖L2(Ω)‖D−hDhu‖L2(Ω) .

Now recall that
‖D−hv‖L2(Ω) ≤ ‖∇v‖L2(Ω), ∀v ∈ H1(Ω), ∀h ∈ T

(see [9, Lemma 9.6]). Using such inequality with v = Dhu, we thus conclude that
(9) ‖Dhu‖H1(Ω) ≤ ‖f‖L2(Ω) , ∀h ∈ T.

Let j ∈ {1, . . . , N}, i ∈ {1, . . . , N − 1}, h = t ei (t ∈ R) and let ϕ ∈ C∞c (Ω). Integrating
by parts and using (9) we have that∣∣∣∣∫

Ω
uD−h∂jϕdx

∣∣∣∣ =
∣∣∣∣− ∫

Ω
ϕDh∂ju dx

∣∣∣∣ ≤ ‖f‖L2(Ω) ‖ϕ‖L2(Ω) ,

hence, taking the limit as t→ 0,

(10)
∣∣∣∣∫

Ω
u ∂2

ijϕdx

∣∣∣∣ ≤ ‖f‖L2(Ω) ‖ϕ‖L2(Ω) , ∀j ∈ {1, . . . , N}, i ∈ {1, . . . , N − 1} .

From (8), using (10) and (9) we deduce that∣∣∣∣∫
Ω
u ∂2

NNϕdx

∣∣∣∣ ≤ N−1∑
j=1

∣∣∣∣∫
Ω
u ∂2

jjϕdx

∣∣∣∣+ ∣∣∣∣∫
Ω

(f − u)ϕdx
∣∣∣∣ ≤ (N + 1)‖f‖L2(Ω) ‖ϕ‖L2(Ω) ,

hence we conclude that u ∈ H2(Ω) and

‖u‖2H2(Ω) = ‖u‖2H1(Ω) +
N∑

i,j=1
‖∂2

iju‖
2
L2(Ω) ≤ [N(N − 1) + (N + 1)2 + 1]‖f‖2L2(Ω) .

This is the required estimate (7) in the case m = 0, with C = 2N2 +N + 2.
Let us consider the case m = 1, so that f ∈ H1(Ω). For every i ∈ {1, . . . , N −1}, we claim
that the partial derivative ∂iu satisfies

(11)
∫

Ω
∇(∂iu) · ∇v dx+

∫
Ω
∂iu v dx+ β

∫
∂Ω
∂iu v dσ =

∫
Ω
∂if v dx, ∀v ∈ H1(Ω).

In other words, ∂iu satisfies the same Robin problem (6) as u, with source term ∂if
instead of f . Equation (11) easily follows choosing ∂iv, with v ∈ H2(Ω), as test function
in (8), observing that the maps RN−1 3 x′ 7→ u(x′, 0), RN−1 3 x′ 7→ v(x′, 0) belong to
H3/2(RN−1), so that∫

∂Ω
u ∂iv dσ =

∫
RN−1

u(x′, xN ) ∂iv(x′, xN ) dx′ = −
∫
RN−1

∂iu(x′, xN ) v(x′, xN ) dx′

= −
∫
∂Ω
∂iu v dσ ,
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and then arguing by density.
By the previous step we deduce that ∂iu ∈ H2(Ω) and

‖∂iu‖2H2(Ω) ≤ (2N2 +N + 2)‖∂if‖2L2(Ω), i ∈ {1, . . . , N − 1}.

Moreover,

∂2
NNu = −

N−1∑
j=1

∂2
jju+ u− f ∈ H1(Ω) ,

so that all third derivatives ∂3
ij`u belong to L2(Ω) and, for a suitable constant CN,1,

‖∂3
ij`u‖L2(Ω) ≤ CN,1 ‖f‖H1(Ω) , i, j, ` ∈ {1, . . . , N} .

The general case now follows by induction on m. Assume that the claim is true up to
order m, and let us prove that it holds for m+ 1. By the inductive step we already know
that u ∈ Hm+2(Ω) and, for every i ∈ {1, . . . , N − 1}, the partial derivative ∂iu satisfies
(11). Since ∂if ∈ Hm(Ω), we deduce that ∂iu ∈ Hm+2(Ω). Arguing as above, we also
deduce that ∂2

NNu ∈ Hm+1(Ω), so that all the partial derivatives of order m+ 3 belong to
L2(Ω), and estimate (7) (for m+ 1) holds. �

Proof of Theorem 2.1. (i) To prove (4) we proceed by induction on m. From the weak
formulation of the problem, the Robin ground state uβ satisfies∫

Ω
∇uβ · ∇v + β

∫
∂Ω
uβv = λβ

∫
Ω
uβv ∀v ∈ H1(Ω) .

Choosing v = uβ, using the normalization condition in L2 and the inequality λβ(Ω) ≤
λD(Ω), we get ∫

Ω
|∇uβ|2 ≤

∫
Ω
|∇uβ|2 + β

∫
∂Ω
|uβ|2 = λβ

∫
Ω
|uβ|2 ≤ λD(Ω) .

We infer that the estimate (4) is satisfied form = 0 andm = 1 (with a monotone increasing
dependence of C on λD(Ω)).
To perform the inductive step, assume that (4) holds true for a fixed integer m ∈ N,
m ≥ 1. We observe that uβ satisfies

−∆uβ + uβ = (λβ + 1)uβ in Ω
∂uβ

∂ν + βuβ = 0 on ∂Ω .

Then, in view of the assumption Ω ∈ Cm+2, we can apply Theorem 2.2 to infer that the
the estimate (4) is satisfied also for the integer m+ 2.
Finally, under the assumption [m − N

2 ] ≥ 2, the estimate (5) follows from (4) combined
with classical Morrey-Sobolev embedding theorem (in which the embedding constant only
depends on N and δm(Ω), see e.g. [9, Section 9.3]).

(ii) For the Robin torsion function uβ the proof is the same except that, starting from the
weak formulation ∫

Ω
∇uβ · ∇v + β

∫
∂Ω
uβv =

∫
Ω
v ∀v ∈ H1(Ω)
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and choosing v = uβ, one gets∫
Ω
|∇uβ|2 ≤

∫
Ω
|∇uβ|2 + β

∫
∂Ω
|uβ|2 =

∫
Ω
uβ

≤ |Ω|1/2
[ ∫

Ω
|uβ|2

]1/2
≤ |Ω|1/2[λD(Ω)]−1/2

[ ∫
Ω
|∇uβ|2

]1/2
.

In particular, by the use of Hölder’s inequality in the last line above, one sees that C ′
depends also (increasingly) on |Ω|, while it now depends decreasingly on λD(Ω). �

3. Convergence to solutions of Dirichlet problems

This section is devoted to prove a convergence result in Hm of solutions to Robin’s bound-
ary value problems to solutions of the corresponding Dirichlet problems.
In the particular case m = 2 and without tracking the dependence of the constant M on
the domain, the estimate (12) for the ground states has been proved in [19, Theorem 4]
(in the two-dimensional setting, see also [33]). Actually, our main objective is getting the
estimate (12) for higher values of m, so to arrive at the convergence in C2 in (13) that we
need specifically in the next section (along with a full control on the involved constants).1

Theorem 3.1. (i) Let Ω ⊂ RN be an open domain of class Cm+2, with m ∈ N. For every
β > 0, let uβ and uD be respectively the Robin and the Dirichlet ground states. There
exists a positive constant M = M(δm+2(Ω)↑, d(Ω)↑, λD(Ω)↑) such that

(12) ‖uβ − uD‖Hm(Ω) ≤
M

β
.

In particular, if [m− N
2 ] ≥ 2, and for a positive constant M as above, it holds that

(13) ‖uβ − uD‖C2,θ(Ω) ≤
M

β
.

(ii) Let Ω ⊂ RN be an open domain of class Cm+h, with m,h ∈ N, h ≥ 2 and [h− N
2 ] ≥ 1.

The estimates (12)-(13) hold as well when uβ and uD are the Robin and the Dirichlet tor-
sion functions, with M replaced by a positive constant M ′ = M ′(δm+h(Ω)↑, |Ω|↑, λD(Ω)↓).

The proof of Theorem 3.1, given at the end of this section, will be by induction on m.
The case m = 0 is considered separately in Proposition 3.3 below. We shall make repeated
use of the next lemma.

Lemma 3.2. Let Ω ⊂ RN be an open domain of class Cm,1, m ≥ 1. Then the unit outer
normal vector ν to ∂Ω admits an extension b ∈Wm,∞(Ω;RN ) such that

‖b‖Wm,∞(Ω;RN ) ≤ K , with K = K(δm+1(Ω)↑) .

Proof. Let d denote the distance function from ∂Ω. Consider an inner tubular neighbour-
hood Uε := {x ∈ Ω : 0 < d(x) < ε). We fix ε ∈ (0, 1) sufficiently small so that d is of
class Cm,1 in Uε (see [14, Theorem 6.10]), and δm+1(Ut) ≤ 2 δm+1(Ω) for every t ∈ [0, ε].

1Incidentally, let us further mention that we were not able to check the independence from the Robin
parameter of the constant C13 in the estimate (5.19) in the proof of [19, Theorem 4], since it does not seem
clear how to deal with the boundary integral I that appears in such proof.
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By the implicit function theorem, we may find a positive constant K1 = K1(N,m) such
that, for every multi-index α with 2 ≤ |α| ≤ m+ 1 and every t ∈ [0, ε], it holds that

ess-sup
{d(x)=t}

|Dαd| ≤ K1 δm+1(Ut) .

Hence,

(14) ‖∇d‖Wm,∞(Uε) ≤ 1 + 2K1 δm+1(Ω) .

By Theorems 5 and 5′ in [36, VI.§3], we can extend d from Uε to a function d̃ ∈Wm+1,∞(Ω)
satisfying, for a positive constant K2 = K2(N,m),

(15) ‖d̃‖Wm+1,∞(Ω) ≤ K2 ‖d‖Wm+1,∞(Uε) .

(Actually, according to [36, VI.§3, Theorems 5′], the constant K2 should also depend on
the Lipschitz constant of Uε, but we have omitted this dependence since we can assume
with no loss of generality that Uε is 1-Lipschitz.)
Now, choosing b = ∇d̃, the claim follows by using (14) and (15), and recalling that
d < ε < 1 in Uε. �

Proposition 3.3. (i) Let Ω ⊂ RN be an open domain of class C2, and let uβ, uD be
respectively the Robin and Dirichlet ground states.
There exist positive constants Λk = Λk(δ2(Ω)↑, λDk (Ω)↑) and Λ = Λ(δ2(Ω)↑, d(Ω)↑), such
that

|λβk(Ω)− λDk (Ω)| ≤ Λk
β

(16)

‖uβ − uD‖L2(Ω) ≤
Λ
β
.(17)

(ii) Let h ∈ N, and let Ω ⊂ RN be an open domain of class Ch, with [h − N
2 ] ≥ 1. The

estimate in (17) holds as well when uβ and uD are the Robin and the Dirichlet torsion
functions, with Λ replaced by another positive constant Λ′ = Λ′(δh(Ω)↑, |Ω|↑, λD(Ω)↓).

Remark 3.4. Though the asymptotic results stated in Proposition 3.3 can be proved more
in general on Lipschitz domains, we work on C2 domains in order to control the rate of
convergence. Let us also mention that, even if higher order Robin eigenfunctions converge
as well to Dirichlet ones, we neglect them since they are not needed in the sequel.

Remark 3.5. If Ω is a convex sets of class C1,1, by inspection of the proof of Proposition 3.3
given below (and recalling that for Ω convex the constant C in Theorem 2.2 is explicit),
one can easily check that the estimates (16) and (17) hold true with

Λk =
√

6‖b‖W 1,∞(λDk + 1)2 , Λ = 4
√

3d(Ω)2

3π2 ‖b‖W 1,∞ ,

where b ∈ W 1,∞(Ω;RN ) is an extension of the unit outer normal vector to Ω as given by
Lemma 3.2. (We precise for later use that here ‖b‖W 1,∞ := ‖|b|‖L∞ + ‖|Db|‖L∞ , |b| and
|Db| being respectively the Euclidean norm of the vector b and of the matrix Db).

Proof of Proposition 3.3. (i) We follow the same arguments as in [19], where the estimates
(16)-(17) are given without control of the involved constants. Our main concern is precisely
to track the dependence on the domain of the constants appearing in these estimates.
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Note firstly that, given g ∈ L2(Ω) and Φ ∈ H1(Ω), the unique solution z ∈ H1(Ω) to the
non-homogeneous Dirichlet boundary value problem{

−∆z + z = g in Ω
z = Φ on ∂Ω ,

satisfies the inequality
(18) ‖z‖H1(Ω) ≤ ‖g‖L2(Ω) + ‖Φ‖H1(Ω) .

This is readily checked by writing the weak formulation of the problem (see e.g. [34, eq.
(47) p.196]).
Consider the linear operators Aβ, AD : L2(Ω)→ L2(Ω) defined by Aβf = u and ADf = v,
with {

−∆u+ u = f in Ω
∂u
∂ν + βu = 0 on ∂Ω ,

{
−∆v + v = f in Ω
v = 0 on ∂Ω .

In order to prove (16), let us determine a bound from above for the norm of the difference
operator Aβ − AD. We observe that, given f ∈ L2(Ω), and setting u := Aβf , v := ADf ,
the function w := u− v satisfies{

−∆w + w = 0 in Ω
w = 1

β
∂u
∂ν on ∂Ω .

By Lemma 3.2, there exists a vector field b ∈ W 1,∞(Ω;Rn), with b = ν on ∂Ω, such that
‖b‖W 1,∞(Ω;RN ) ≤ K(δ2(Ω)↑). Moreover, by Theorem 2.2, applied with m = 0, we know
that u ∈ H2(Ω), and satisfies ‖u‖H2(Ω) ≤ C(δ2(Ω)↑)‖f‖L2(Ω).
Then, by the inequality (18) (applied with z = w, g = 0, and Φ = 1

β∇u · b), we obtain, for
a positive constant C = C(δ2(Ω)↑),

(19) ‖w‖H1(Ω) ≤
1
β
‖∇u · b‖H1(Ω) ≤

1
β
‖u‖H2(Ω)‖b‖W 1,∞(Ω;RN ) ≤

1
β
C‖f‖L2(Ω) .

We infer that
‖(Aβ −AD)f‖L2(Ω) ≤ ‖w‖H1(Ω) ≤

C

β
‖f‖L2(Ω) ,

and hence

(20) ‖Aβ −AD‖ ≤ C

β
.

In the remaining of the proof, C = C(δ2(Ω)↑) denotes the constant appearing in (20).
Then we observe that the eigenvalues µβk , µDk of the self-adjoint positive compact operators
Aβ, AD, are related to λβk , λDk by the equalities

µβk = 1
λβk + 1

, µDk = 1
λDk + 1

,

and satisfy the estimate |µβk − µDk | ≤ ‖Aβ − AD‖ (see [19, Theorem 5]). Hence, recalling
that λβk ≤ λDk (see [30, Section 2]), we have

|λβk − λ
D
k | ≤

1
β
C(λβk + 1)(λDk + 1) ≤ 1

β
C(λDk + 1)2 ,

which proves (16) with
Λk = C(λDk + 1)2 .
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Denoting by ρD the fundamental gap of the Dirichlet Laplacian, namely the difference
between the first two Dirichlet Laplacian eigenvalues, by [19, Lemma 1 and Theorem 7]
we have that

‖uβ − uD‖L2(Ω) ≤
2
√

2
ρD
‖Aβ −AD‖ ,

and hence, thanks to the lower bound for ρD proved in [2], we have

‖uβ − uD‖L2(Ω) ≤
2
√

2d(Ω)2

3π2 ‖Aβ −AD‖ ,

which in view of the inequality (20) proves (17) with

Λ = 2
√

2d(Ω)2

3π2 C .

(ii) Since in this case (uβ − uD) is a harmonic function in Ω, via the maximum principle
we obtain

(21) 0 ≤ sup
∂Ω

uβ ≤ sup
Ω

(uβ − uD) = sup
∂Ω

(uβ − uD) = 1
β

sup
∂Ω

∂uβ

∂ν
.

Next observe that the assumption Ω ∈ Ch with [h − N
2 ] ≥ 1 ensures the continuity of

the embedding of Hh(Ω) into C1(Ω). Hence, by Theorem 2.1 (ii), (21) and the Hölder
inequality, we infer that ‖uβ − uD‖L2(Ω) ≤ Λ′

β , for a positive constant Λ′ (depending only
on the quantities indicated in the statement). �

As a by-product of Proposition 3.3 we obtain the following lower bound for the fundamental
gap of the Robin-Laplacian:

Corollary 3.6. Let Ω ⊂ RN be an open convex domain of class C1,1. Then

λβ2 (Ω)− λβ1 (Ω) ≥ 3π2

d(Ω)2 −
1
β

√
6(1 + 2

√
N κmax)(λD2 + 1)2 .

Proof. By the lower bound in [2] for the Dirichlet fundamental gap, and the inequality
λβ1 ≤ λD1 , we have

λβ2 (Ω)− λβ1 (Ω) =
[
λD2 (Ω)− λD1 (Ω)

]
+
[
λβ2 (Ω)− λD2 (Ω)

]
+
[
λD1 (Ω)− λβ1 (Ω)

]
≥ 3π2

d(Ω)2 +
[
λβ2 (Ω)− λD2 (Ω)

]
.

By Proposition 3.3 and Remark 3.5, we have

(22) λD2 (Ω)− λβ2 (Ω) ≤ 1
β

√
6‖b‖W 1,∞(λD2 + 1)2 ,

where b is an extension of the unit outer normal vector to Ω as given by Lemma 3.2.
In turn, explicit bounds for the norm ‖b‖W 1,∞ as defined in Remark 3.5 in terms of the
principal curvatures of Ω can be easily constructed by using a smooth cut-off of the distance
function from the boundary. Specifically, in the same setting of the proof of Lemma 3.2,
let φ : [0,+∞) → R be the C1,1 function such that φ(0) = 0, φ′ = 1 in [0, ε/2], φ′ = 0 in
[ε,+∞), φ′ affine in [ε/2, ε], and let b = ∇(φ(d)), where d denotes the distance function
from the boundary. Then b ∈W 1,∞(Ω;RN ), and

Db = φ′′(d)∇d⊗∇d+ φ′(d)D2d a.e. in Ω.
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Using the explicit form of D2d (see [21, Lemma 14.17]) and choosing ε = 1/κmax we get
the estimate

‖b‖W 1,∞ = ‖|b|‖L∞ + ‖|Db|‖L∞ ≤ 1 + 2
√
N κmax ,

which, combined with (22), achieves the proof. �

Proof of Theorem 3.1. (i) We prove the estimate (12) by induction on m. Throughout the
proof, M denotes a constant which may vary in each inequality; moreover, let us pinpoint
that, in each occurrence, M may depend increasingly on d(Ω), and λD(Ω): we prefer to
omit this dependence for simplicity of writing, and we indicate just the dependence on
δm := δm(Ω) (since the choice of the parameter m changes during the inductive process).
We also omit to indicate the fact that the latter dependence is always increasing.
For m = 0, the estimate (12) holds true by Proposition 3.3 (i). Let us prove it for m = 1.
The function wβ := uD − uβ satisfies the boundary value problem

(23)
{
−∆wβ + wβ = hβ in Ω
wβ = 1

β
∂uβ

∂ν on ∂Ω ,

where
(24) hβ := (λβ + 1)wβ + (λD − λβ)uD .
By Proposition 3.3,

(25) ‖hβ‖L2(Ω) ≤
M(δ2)
β

.

Then
‖wβ‖H1(Ω) ≤ ‖hβ‖L2(Ω) + 1

β
‖uβ‖H2(Ω) ≤

M(δ2)
β

;

here the first inequality is obtained by arguing as in the proof inequality (19) (namely via
the estimate (18) applied to the non-homogeneous Dirichlet problem (23), after extending
ν to a vector field b ∈ W 1,∞(Ω;RN ), with ‖b‖W 1,∞(Ω;RN ) ≤ K(δ2(Ω)↑)), while the second
inequality follows from (25) and the estimate (4) in Theorem 2.1 (applied with m = 2).
To perform the inductive step, let m ≥ 1 be a fixed integer and assume that (12) holds
true for m. Under the assumption that Ω is of class Cm+3, let us show that (12) holds
true also for m+ 1.
From Lemma 3.2 there exists a vector field b ∈ Wm+2,∞(Ω;RN ) with b = ν on ∂Ω and
‖b‖Wm+2,∞(Ω;RN ) ≤ K(δm+3(Ω)↑).
The function

w̃β := wβ − 1
β
b · ∇uβ

satisfies the boundary value problem

(26)
{
−∆w̃β + w̃β = h̃β in Ω
w̃β = 0 on ∂Ω ,

where

(27) h̃β = hβ + 1
β

[
(∆b− (1 + λβ)b) · ∇uβ + 2∇2uβ · ∇b

]
.

By the inductive assumption, we know that

‖wβ‖Hm(Ω) ≤
M(δm+2)

β
,
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hence, by the definition (24) of hβ, the estimate ‖uD‖Hm ≤ C(δm(Ω)) (see Remark 2.3
(ii)), and (16), it holds that

‖hβ‖Hm(Ω) ≤
M(δm+2)

β
.

Recalling that ‖b‖Wm+2,∞(Ω;RN ) ≤ K(δm+3(Ω)↑), from (27) we obtain the estimate

‖h̃β‖Hm(Ω) ≤
M(δm+3)

β
.

Since w̃β is a solution to (26), it follows that

‖w̃β‖Hm+1(Ω) ≤ ‖h̃β‖Hm(Ω) ≤
M(δm+3)

β
.

The proof of the inductive step is then completed observing that

‖wβ‖Hm+1(Ω) ≤ ‖w̃β‖Hm+1(Ω) + 1
β
‖b · ∇uβ‖Hm+1(Ω) ≤

M(δm+3)
β

.

Finally, under the assumption [m− N
2 ] ≥ 2, the estimate (13) follows from (12), combined

with classical Morrey-Sobolev embedding theorem (see e.g. [9, Section 9.3]).
(ii) The proof is analogous to the case of the ground state. However, for the sake of
completeness, we sketch it in order to enlighten the main changes. We denote by M ′ a
constant which may vary in each inequality, and may depend increasingly on |Ω|, and
decreasingly on λD(Ω). We only denote the dependence of M ′ on δm := δm(Ω), which is
tacitly meant to be increasing.
We argue by induction on m. For m = 0, the statement holds by Proposition 3.3 (ii). Let
us prove it for m = 1. The function wβ := uD − uβ satisfies the boundary value problem{

∆wβ = 0 in Ω
wβ = 1

β
∂uβ

∂ν on ∂Ω ,

so that
‖wβ‖H1(Ω) ≤

M ′(δ2)
β
‖uβ‖H2(Ω) ≤

M ′(δ2)
β

.

Assume now that (12) holds true for a fixed integer m ∈ N, m ≥ 1, and let b ∈
Wm+2,∞(Ω;RN ) be a vector field such that b = ν on ∂Ω and ‖b‖Wm+2,∞(Ω;RN ) ≤ K(δm+3(Ω)↑).
The function

w̃β := wβ − 1
β
b · ∇uβ

satisfies {
−∆w̃β + w̃β = h̃β in Ω
w̃β = 0 on ∂Ω ,

where
h̃β = wβ + 1

β

[
(∆b− b) · ∇uβ + 2∇2uβ · ∇b

]
.

Then we have

‖wβ‖Hm(Ω) ≤
M ′(δm+2)

β
⇒ ‖h̃β‖Hm(Ω) ≤

M ′(δm+3)
β

⇒

⇒ ‖w̃β‖Hm+1(Ω) ≤
M ′(δm+3)

β
⇒ ‖wβ‖Hm+1(Ω) ≤

M ′(δm+3)
β

,
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where each implication can be justified similarly as done in the case of the ground state. �

4. Strict convexity near the boundary

In this section we focus on the study of convexity near the boundary for the function
vβ = − log(uβ) (uβ being the Robin ground state) and for the function vβ = −(uβ)1/2 (uβ
being the Robin torsion function). Let us point out that both functions are defined in Ω.
Specifically, as soon as Ω satisfies an interior sphere condition, by Hopf’s Lemma and the
boundary condition, it holds that

(28) min
Ω
uβ = min

∂Ω
uβ > 0 .

The convexity near the boundary will be established when the parameter β exceeds a
threshold which remains uniform in the following class of domains.

Definition 4.1. For m ∈ N, m ≥ 2, and positive constants δ, d, and κ, we set

Am(δ, d, κ) :=
{
open convex domains Ω ∈ Cm : δm(Ω) ≤ δ , d(Ω) ≤ d , κmin(Ω) ≥ κ

}
.

We shall exploit the following elementary lemma.

Lemma 4.2. Let Ω be an open bounded convex set of class C2, let x0 be a given point
in ∂Ω, and let {e1, . . . , eN−1} and {κ1, . . . , κN−1} be respectively principal directions and
principal curvatures for ∂Ω at x0. For any function u ∈ C2(Ω) vanishing on ∂Ω, it holds
that
(29) uii(x0) = −|∇u(x0)|κi ∀ i = 1, . . . , N − 1 .

Proof. In the system of principal coordinates {e1, . . . , eN−1}, we can represent ∂Ω near
x0 = 0 as the graph of a function ϕ satisfying ϕ(0) = 0, ∇ϕ(0) = 0. The Dirichlet condition
satisfied by u along ∂Ω reads u(x′, ϕ(x′)) = 0. Differentiating twice such equality at 0,
and taking into account that ∇ϕ(0) = 0 and ∂iiϕ(0) = κi, leads to the identities (29). �

Proposition 4.3. Let Ω ⊂ RN be an open uniformly convex domain of class Cm, with
[m− N

2 ] ≥ 4.
(i) Let uβ be the Robin ground state of Ω, and let vβ := − log(uβ).
There exists a positive threshold β∗ = β∗(δm(Ω)↑, d(Ω)↑, κmin(Ω)↓, λD(Ω)↑, q(Ω)↓) such
that, for β ≥ β∗, the Hessian matrix of vβ is positive definite in an inner tubular neighbour-
hood of ∂Ω; in particular, for domains Ω ∈ Am(δ, d, κ), there exists a uniform threshold
β∗ = β∗(δ, d, κ) such that the above property holds true.
(ii) Let uβ be the Robin torsion function of Ω, and let vβ := −(uβ)1/2.
There exists a positive threshold β∗∗ = β∗∗(δm(Ω)↑, |Ω|↑, κmin(Ω)↓, λD(Ω)↓, p(Ω)↓) such
that, for β ≥ β∗∗, the Hessian matrix of vβ is positive definite in an inner tubular neigh-
bourhood of ∂Ω; in particular, for domains Ω ∈ Am(δ, d, κ), there exists a uniform thresh-
old β∗∗ = β∗∗(δ, d, κ) such that the above property holds true.

Remark 4.4. Let us point out that, since under domain dilation we have λβ(tΩ) =
t−2λtβ(Ω) and the first Robin ground state scales accordingly, the concavity threshold
β∗ must be homogeneous of degree −1 under domain dilation, i.e. β∗(tΩ) = t−1β∗(Ω).
Nevertheless, for the sake of simplicity, we do not trace such homogeneity in our estimates.
A similar observation is valid for the Robin torsion case.
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Before starting the proof of Proposition 4.3, it is useful to recall some results from the
previous sections. Let uβ, uD be respectively the Robin and Dirichlet ground states of Ω.
Since we are assuming Ω ∈ Cm, with [m− N

2 ] ≥ 4, by Theorem 2.1, Remark 2.3 (ii), and
Theorem 3.1, we have that

‖uβ‖C2,θ(Ω) ≤ C with C = C(δm(Ω)↑, λD(Ω)↑) ,(30)

‖uD‖C2,θ(Ω) ≤ C̃ with C̃ = C̃(δm(Ω)↑, λD(Ω)↑) ,(31)

‖uβ − uD‖C2,θ(Ω) ≤
M

β
, with M = M(δm(Ω)↑, d(Ω)↑, λD(Ω)↑) .(32)

Proof of Proposition 4.3. (i) Let uβ, uD be respectively the Robin and Dirichlet ground
states of Ω. Setting vβ := − log(uβ), we have to show that there exist a positive threshold
β∗, depending only on the quantities indicated in the statement, and positive constants
ρ, σ, such that
(33) min

η∈Sn−1

〈
∇2vβ(x)η, η

〉
≥ σ , ∀β ≥ β∗ , ∀x ∈ Ω with d(x, ∂Ω) < ρ.

To that aim we are going to prove that, given x0 ∈ ∂Ω, there exist a positive threshold β0,
depending only on the quantities indicated in the statement, and positive constants r, σ,
such that
(34) min

η∈Sn−1

〈
∇2vβ(x)η, η

〉
≥ σ, ∀β ≥ β0 , ∀x ∈ Ω ∩Br(x0) .

Then (33) will follow from (34) via a covering argument.
A straightforward computation yields the following expression for the quadratic form as-
sociated with the Hessian of vβ:

(35)
〈
∇2vβ(x)η, η

〉
= − 1

uβ(x)
〈
∇2uβ(x)η, η

〉
+ |∇u

β(x) · η|2

uβ(x)2 ∀η ∈ SN−1 .

Inspired by [28], the idea of the proof consists in getting the estimate (34) separately for
η ∈ Tε(x0) and for η ∈ SN−1 \ Tε(x0), Tε(x0) being a cone of the form

(36) Tε(x0) := {η ∈ SN−1 : |η · ν| < ε} , where ν := ν(x0) = − ∇u
D(x0)

|∇uD(x0)| .

Let us choose properly the openness ε of the cone.
We observe that there exists δ > 0 such that
(37) sup

τ∈SN−1∩Tx0

〈
∇2uD(x0)τ, τ

〉
< −3δ ,

where Tx0 := {η ∈ SN−1 : η · ν = 0} is the tangent space to ∂Ω at x0.
This follows from Lemma 4.2 applied to uD, taking into account that Ω is uniformly convex
and, by Hopf’s lemma, the minimum of |∇uD| along the boundary is strictly positive.
Notice that δ = δ(q(Ω)↑, κmin(Ω)↑), where we recall that

q(Ω) := min
x∈∂Ω

|∇uD(x)| and κmin(Ω) := min
x∈∂Ω,i=1,...,N−1

κi(x) .

We can assume without loss of generality that δ < 2
√

2C, where C is the constant
appearing in (30). Let us fix ε ∈ (0, 1) satisfying

(38) 2
√

2C
√

1−
√

1− ε2 = δ , i.e. ε =

√
1−

(
1− δ2

8C2

)2
,



CONCAVITY PROPERTIES OF SOLUTIONS TO ROBIN PROBLEMS 17

and let us consider the cone Tε(x0) defined in (36). Notice that ε is an increasing function
of the ratio δ/C, so that ε = ε(δ↑, C↓).
– Estimate for η ∈ Tε(x0). By (31), (32) and (37), we can choose a positive constant r1
and a positive threshold β1 = β1(δm(Ω)↑, d(Ω)↑, λD(Ω)↑) such that

uβ(x) < 1 , ∀β ≥ β1 , ∀x ∈ Ω ∩Br1(x0),(39)
sup

τ∈SN−1∩Tx0

〈
∇2uβ(x)τ, τ

〉
< −2δ , ∀β ≥ β1 , ∀x ∈ Ω ∩Br1(x0).(40)

We claim that
(41) inf

η∈Tε(x0)

〈
∇2vβ(x)η, η

〉
≥ δ, ∀β ≥ β1 , ∀x ∈ Br1(x0) .

Let us prove the claim. From (35) we see that〈
∇2vβ(x)η, η

〉
≥ − 1

uβ(x)
〈
∇2uβ(x)η, η

〉
∀η ∈ SN−1 .

Hence,
inf

η∈Tε(x0)

〈
∇2vβ(x)η, η

〉
≥ − 1

uβ(x) sup
η∈Tε(x0)

〈
∇2uβ(x)η, η

〉
,

and in view of (39) we are reduced to show that

(42) sup
η∈Tε(x0)

〈
∇2uβ(x)η, η

〉
≤ −δ , ∀β ≥ β1 , ∀x ∈ Ω ∩Br1(x0).

Let η be arbitrarily fixed in Tε(x0), and let ηt be the unit tangent vector η̃t/|η̃t|, where η̃t
is the projection of η onto Tx0 . By (40), we have that

(43)
〈
∇2uβ(x)ηt, ηt

〉
< −2δ , ∀β ≥ β1 , ∀x ∈ Ω ∩Br1(x0).

On the other hand,

(44) η ∈ Tε(x0) ⇐⇒ |η · ηt| >
√

1− ε2 ⇐⇒ |η − ηt|2 < 2(1−
√

1− ε2).
Then, by (30), (44) and (38), for every x ∈ Ω and every β > 1 we have

(45)

∣∣∣〈∇2uβ(x)η, η
〉
−
〈
∇2uβ(x)ηt, ηt

〉∣∣∣ ≤ 2|∇2uβ(x)| |η − ηt|

≤ 2
√

2C
√

1−
√

1− ε2 = δ.

The required inequality (42) follows from (43) and (45).
– Estimate for η ∈ SN−1 \ Tε(x0). Let us choose first β2 and then r2 > 0 such that

β2 >
2M
εq(Ω) , r2 ≤

1
C̃

[εq(Ω)
2 − M

β2

]
,

with
β2 = β2(M↑, ε↓, q(Ω)↓) = β2(M↑, C↑, δ↓, q(Ω)↓) = β2(M↑, C↑, q(Ω)↓, κmin(Ω)↓)

= β2(δm(Ω)↑, d(Ω)↑, λD(Ω)↑, q(Ω)↓, κmin(Ω)↓) .

Let η be arbitrarily fixed in SN−1 \ Tε(x0). For β ≥ β2 and x ∈ Ω∩Br2(x0), we have that

|∇uβ(x) · η| ≥ |∇uD(x0) · η| − |∇uD(x)−∇uβ(x)| − |∇uD(x0)−∇uD(x)|

≥ εq(Ω)− M

β
− C̃|x− x0| ,
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so that
|∇uβ(x) · η| ≥ ε q(Ω)

2 ∀β ≥ β2 , ∀x ∈ Ω ∩Br2(x0) ,

and hence, recalling (35),

inf
η∈SN−1\Tε(x0)

〈
∇2vβ(x)η, η

〉
≥ −C 1

uβ(x) + ε2q2(Ω)
4

1
uβ(x)2 , ∀β ≥ β2 ,∀x ∈ Br2(x0) .

It is readily checked that there exists s = s(C↓, q(Ω)↑, ε↑) > 0 such that

−C 1
uβ(x) + ε2q2(Ω)

4
1

uβ(x)2 ≥
C2

ε2q2(Ω) for uβ(x) ≤ s .

By (31)-(32), we can choose β3 and r3 such that
uβ(x) ≤ s ∀β ≥ β3 , x ∈ Ω ∩Br3(x0) ,

with
β3 = β3(s↓, δm(Ω)↑, d(Ω)↑, λD(Ω)↑) = β3(δm(Ω)↑, d(Ω)↑, λD(Ω)↑, q(Ω)↓, ε↓)

= β3(δm(Ω)↑, d(Ω)↑, λD(Ω)↑, q(Ω)↓, κmin(Ω)↓) .
We conclude that

(46) inf
η∈SN−1\Tε(x0)

〈
∇2vβ(x)η, η

〉
≥ C2

ε2q2(Ω) , ∀β ≥ β2 ∨ β3 ,∀x ∈ Ω ∩Br2∧r3(x0) .

By combining (41) and (46), we see that the required property (34) holds true with
σ := δ ∧ C2

ε2q2(Ω) , r := r1 ∧ r2 ∧ r3, and

β0 := β1 ∨ β2 ∨ β3 = β0(δm(Ω)↑, d(Ω)↑, λD(Ω)↑, q(Ω)↓, κmin(Ω)↓) .

Let us finally check the existence of a uniform threshold β∗ independent of Ω within
the class Am(δ, d, κ). By the monotone dependence of β∗ by the quantities indicated in
the statement, it is enough to show that, on the class Am(δ, d, κ), we have that λD(Ω)
is uniformly bounded from above and q(Ω) is uniformly bounded from below. Notice
that domains in the class Am(δ, d, κ) satisfy a uniform interior sphere condition of radius
ρ ≥ κ−1. This gives immediately the required upper bound for λD(Ω) thanks to the
monotonicity of λD(·) by inclusions. On the other hand, the required lower bound for q(Ω)
follows from Theorem 6.1 (see Section 6), since the right-hand side of the estimate (52) is
monotone decreasing in λD, d, and in the radius ρ of the uniform interior sphere condition
(which are bounded from above in our class) and increasing in the quantity σ defined
in (51) (which is bounded from below in our class).
(ii) Let uβ be the Robin torsion function of Ω. The quadratic form associated with the
Hessian of vβ := −(uβ)1/2 is written as〈

∇2vβ(x)η, η
〉

= − 1
2(uβ(x))1/2

〈
∇2uβ(x)η, η

〉
+ |∇u

β(x) · η|2

4(uβ(x))3/2 ∀η ∈ SN−1 .

Then the proof proceeds in parallel to the case of the ground state, invoking at each stage
the results from Section 2 (analogous to (30)-(31)-(32)), which involve the Robin torsion
function in place of the Robin ground state.
Concerning the existence of a uniform threshold β∗∗ independent of Ω within the class
Am(δ, d, κ), by the monotone dependence of β∗∗ by the quantities indicated in the state-
ment, we only have check that, on the class Am(δ, d, κ), |Ω| is uniformly bounded from
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above and λD(Ω), p(Ω) are uniformly bounded from below. The upper bound from above
for |Ω| is immediate in view of the boundedness from above for the diameter. The lower
bound for λD(Ω) follows from the fact that balls minimize λD(·) in the class of sets with
diameter bounded from above [7, Theorem 2.1]. Finally, the lower bound for p(Ω) follows
from Theorem 6.3 (see Section 6), since the right-hand side of the estimate (53) is mono-
tone decreasing in κmax(Ω) (recall that δ2(Ω), and hence κmax(Ω), is uniformly bounded
from above in the class Am(δ, d, κ)). �

5. Proof of Theorems 1.1 and 1.2

We use the continuity method of Caffarelli and Friedman [13]. In doing this, we must be
careful about the way we deform a given domain into a ball. To be more precise, let Ω
belong to Am(δ, d, κ) (recall Definition 4.1). For t ∈ [0, 1], we consider the following family
of convex bodies, where + denotes the usual Minkowski addition in RN :

Kt := (1− t)Ω0 + tΩ, with Ω0 =
{
|x| < r := κmin(Ω)−1

}
.

We claim that there exist positive constants (δ′, d′, κ′), depending only on (δ, d, κ) (in
particular, independent of the parameter t ∈ [0, 1]) such that

(47) Ωt := int(Kt) ∈ Am(δ′, d′, κ′) ∀t ∈ [0, 1] .
For the fact that Ωt is of class Cm for ever t ∈ [0, 1], we refer to [20, Proposition 5.1
(3)]. The existence of a uniform upper bound d′ for d(Ωt) follows immediately from the
definition of Minkowski addition. To check the existence of a uniform upper bound δ

′

for δm(Ωt) and a uniform lower bound κ′ for κmin(Ωt), one can proceed as follows (cf.
[20, Section 5]). Denote by ν0 and ν1 the Gauss map of Ω0 and Ω respectively. Notice
that, by the regularity assumptions made on Ω and since Ω0 is a ball, we have that Ω and
Ω0 are uniformly convex bodies at least of class C2, so that ν0 and ν1 are diffeomorphisms
respectively from ∂Ω0 and ∂Ω to SN−1. By the definition of Minkowski addition we have
that, for a given point x ∈ ∂Ωt:

x = (1− t)x0 + tx1 ⇒ ν0(x0) = ν1(x1) ⇒ x = (1− t)ν−1
0 (ν1(x1)) + tx1 .

Recalling that Ω0 is a ball of radius r, we infer that
x = ft(x1) := (1− t)rν1(x1) + tx1 .

Thus, if all the derivatives of ν1 up to a certain order are bounded from above, the same
holds true for the derivative of ft, in terms of a constant independent of t, which yields
the existence of the upper bound δ′. Moreover, by the choice of r, we have

dft = (1− t)rdν1 + tI ≥ (1− t)rκmin + t = I ,

which yields the existence of the lower bound κ′ and achieves the proof of our claim.
For every t ∈ [0, 1], we denote by uβt either the Robin ground state or the Robin torsion
function of Ωt, and we simply write uβ for uβ1 . For every t ∈ [0, 1], uβt is strictly positive
(cf. (28)), and by Theorem 2.1 it is of class C2(Ωt).
By the choice of the deformation (precisely, thanks to (47)) and by Proposition 4.3, there
exist positive thresholds β∗ and β∗∗ (independent of t ∈ [0, 1]) such that:

(i) For every β ≥ β∗ and every t ∈ [0, 1], the Hessian matrix of the function vβt :=
− log uβt (with uβt the Robin ground state) is positive definite in an inner ε-tubular
neighborhood of ∂Ωt (with ε = ε(t) > 0).
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(ii) For every β ≥ β∗∗ and every t ∈ [0, 1], the Hessian matrix of the function vβt :=
−(uβt )1/2 (with uβt the Robin torsion function) is positive definite in an inner ε-
tubular neighborhood of ∂Ωt (with ε = ε(t) > 0).

Fix now β larger than the above threshold. We claim that ∇2vβ is positive definite in Ω.
Indeed, assume by contradiction that this is not the case. By the explicit computation of
uβ0 on the ball Ω0, we have that ∇2vβ0 is positive definite in Ω0. Hence, for some critical
value s ∈ (0, 1), we would have that ∇2vβs is positive semi-definite but not positive definite
in Ωs. We observe that vβs satisfies respectively

∆vβs = λβs + |∇vβs |2 and ∆vβs = − 1
vβs

[1
2 + |∇vβs |2

]
in Ωs ,

where λβs := λβ(Ωs). In both cases, we have that ∆vβs = f(vβs ,∇vβs ), with 1/f(·,∇vβs )
convex. Then, by [29, Theorem 1], since∇2vβs is positive semidefinite in Ωs, it has constant
rank in Ωs. But, by the choice of β, ∇2vβs is positive definite in an inner ε-tubular
neighborhood of ∂Ωs (with ε = ε(s) > 0). Hence ∇2vβs is positive definite in Ωs, yielding
a contradiction.
Let us remark that, in order to get the existence of the critical value s as above, we have
implicitly exploited the following continuity property of the Hessian matrix of vβ with
respect to the parameter in the family of deformations: for every s ∈ [0, 1) and for every
open set A with A ⊂ Ωs, it holds that
(48) ‖∇2(vt − vs)‖C2(A) → 0, for t→ s .

The convergence in (48) follows by the interior Schauder estimates and the continuity of
the Robin ground states and the eigenvalues with respect to the parameter in the family
of domains (47) we are dealing with. Specifically, if |t − s| is small enough, given open
sets A ⊂ E ⊂ E ⊂ Ωs, we have that E ⊂ Ωt. By the classical interior Schauder estimates,
there exist α ∈ (0, 1) and positive constants K,K ′ > 0 such that

‖∇2(uβt − uβs )‖C2,α(A) ≤ K
(
‖∆(uβt − uβs )‖C0,α(E) + ‖uβt − uβs ‖L∞(E)

)
≤ K ′

(
|λβt − λβs |+ ‖u

β
t − uβs ‖C0,α(E)

)
.

The facts that |λβt − λβs | → 0 and ‖uβt − uβs ‖C0,α(E) → 0 as t → s are proved in [3,
Proposition 3.2] (see also [11]). �

6. Appendix: Boundary gradient estimates for Dirichlet problems

Let Ω ⊂ RN be a convex domain. Before stating a boundary gradient estimate for a first
Dirichlet eigenfunction uD of Ω, let us recall the following result, proved in [6, Corol-
lary 3.4], about the location of a hot spot, namely a maximum point x of uD: denoting by
r(Ω) the inradius of Ω, there exists a universal constant θ ' 0.0833 such that

(49) dist(x, ∂Ω) ≥ C0 r(Ω) , with C0 :=
√

θ

λD(BN
1 )

.

Here BN
1 is the unit ball in RN . We remark that, from the explicit computation of λD(BN

1 ),
we have that 0 < C0 < 1 in any space dimension N .

Theorem 6.1. Let Ω ⊂ RN be a convex domain satisfying a uniform interior sphere
condition of radius ρ > 0. Denote by d = d(Ω) the diameter of Ω and by r = r(Ω) its
inradius. Let uD > 0 be a first Dirichlet Laplacian eigenfunction in Ω.
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There exist dimensional constants C1 > 1, C2 > 0 such that

(50) min
∂Ω
|∇uD| ≥ C2

ρ
(max

Ω
u)C−d(

√
λD/2+2

√
N/σ)

1 ,

where, for C0 as in (49),

(51) σ := min
{
ρ

2 , C0 r

}
.

In particular, if we normalize uD so to have ‖uD‖L2(Ω) = 1, we have, for another dimen-
sional constant C3 > 0,

(52) min
∂Ω
|∇uD| ≥ C3

ρ
d−N/2C

−d(
√
λD/2+2

√
N/σ)

1 .

Remark 6.2. Since Ω contains a ball of radius ρ, estimate (52) implies, for another dimen-
sional constant C4,

min
∂Ω
|∇uD| ≥ C3

ρ
d−N/2C

−d/σ
4 .

Proof. Throughout the proof we write for brevity λ, u to denote respectively the first
Dirichlet eigenvalue of Ω and a first Dirichlet eigenfunction.
Step 1. For σ defined as in the statement, set Ωσ := {x ∈ Ω : dist(x, ∂Ω) > σ}. We claim
that there exists a dimensional constant C1 > 1 such that

min
Ωσ

u ≥ C−d(
√
λ/2+2

√
N/σ)

1 max
Ω

u .

Let x be a fixed point in Ωσ, and let x ∈ Ω be a maximum point of u. As in [26], we
consider a Harnack chain of balls from x to x, that is, a family B1, . . . , Bk of balls of radius
R = σ

4 , such that:
·) x ∈ B1 and x ∈ Bk;
·) dist(Bj , ∂Ω) ≥ σ ∀ j = 1, . . . , k;
·) ∃xj ∈ Bj ∩Bj+1 ∀ j = 1, . . . , k − 1;
·) k ≤ 2 d

σ .
(Since Ω is convex, the centers of all the balls can be chosen on the segment joining x to x.
Note also that we are exploiting (49) and the definition of σ which imply dist(x, ∂Ω) ≥ σ.)
By the Harnack inequality (see [21, Theorem 8.20]), for every ball B4R(y) ⊂ Ω, we have,
for a dimensional constant C1 > 1,

sup
BR(y)

u ≤ C
√
λR+

√
N

1 inf
BR(y)

u .

Applying the above estimate (with R = σ
4 ) to the Harnack chain, we get

u(xj) ≤ C
√
λσ/4+

√
N

1 u(xj+1), ∀j = 1, . . . , k − 1.
Hence,

max
Ω

u = u(x) ≤ Ck(
√
λσ/4+

√
N)

1 u(x) ≤ Cd(
√
λ/2+2

√
N/σ)

1 u(x) .

Step 2 (completion of the proof). Let x0 ∈ ∂Ω and let Bρ(z) ⊂ Ω be such that x0 ∈ ∂Bρ(z).
Without loss of generality we can assume that z = 0. Let

w(x) := u(x)− ε v(x), v(x) := e−µ|x|
2 − e−µρ2

, x ∈ U := Bρ \Bρ/2 ,



22 G. CRASTA, I. FRAGALÀ

where µ and ε are two positive constants. Since u ≥ 0 and v = 0 on ∂Bρ(0), we clearly
have that w ≥ 0 on ∂Bρ. Moreover, by Step 1, we have that w ≥ 0 also on ∂Bρ/2 provided
we choose

ε =
(
e−µ

ρ2
4 − e−µρ2)−1

(max
Ω

u)C−d(
√
λ/2+2

√
N/σ)

1 .

By a direct calculation

∆v(x) = 2µe−µ|x−z|2
(
2µ|x− z|2 −N)

so that, choosing

µ = 2N
ρ2 ,

then ∆v ≥ 0 in U , so that ∆w ≤ 0 in U , and hence w ≥ 0 in U . In particular,

|∇u(x0)| ≥ ε |∇v(x0)| = 2 ε µ ρ e−µρ2 = C2
ρ

(max
Ω

u)C−d(
√
λ/2+2

√
N/σ)

1 ,

where C2 is a positive dimensional constant.
Consider now a first Dirichlet eigenfunction u normalized so to have ‖u‖L2(Ω) = 1. Then,
since (maxΩ u)2|Ω| ≥ 1, (52) follows from (50). �

Theorem 6.3. Let Ω ⊂ RN be a convex domain of class C2. Let uD be the Dirichlet
torsion function in Ω. Then

(53) min
∂Ω
|∇uD| ≥ (Nκmax(Ω))−1 .

Proof. The result is due to C. Bandle [5], see also [31, Lemma 2.2]. �
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