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Abstract

In the present thesis, we aim at alleviating the inherent limitations affecting current solu-
tions in password security. First and foremost, this process requires to devise adversary
models that accurately describe real-world guessing attacks. Then, it necessitates the im-
plementation of techniques that are capable of guiding users to choose secure and usable
passwords at composition time.

Unfortunately, despite more than three decades of active research dedicated to define
and improve these methodologies, existing approaches still present two major drawbacks:
(1) current adversary models rely on simplistic adversarial behaviors that only imperfectly
describe the guessing strategies adopted by real-world attackers; (2) existing proactive
techniques such as password strength meters, by construction, are unable to fully support
users during the password composition process.

Here, we show how Deep Learning techniques allow us to define novel approaches,
that were either unfeasible or unpractical before and that move towards addressing those
issues:

(1) We introduce dynamic adversary models in password guessing. Similarly
to real-world adversaries, dynamic models automatically adjust their guessing strategy
for the current attacked-set of passwords by exploiting information collected during the
running attack.

(2) We introduce new guessing techniques that make dictionary attacks consis-
tently more resilient to inadequate configurations. This novel framework allows
dictionary attacks to self-heal and move towards optimal attacks’ performance, requiring
no supervision.

(3)We introduce Interpretable Probabilistic Password Strength Meters. This
novel class of meters exhibits a natural and general feedback mechanism capable of de-
scribing to the users the latent relation between password strength and password struc-
ture. Unlike existing heuristic constructions, this method is free from any human bias,
and, more importantly, its feedback has a clear probabilistic interpretation.

Eventually, these general techniques allow us to increase the rigorousness and reliabil-
ity of password security analysis and proactive methodologies that stem on top of them.
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Chapter 1

Introduction

In spite of their known security issues, passwords remain, by large, the most widely
used authentication mechanism [34]. As a matter of fact, textual passwords have dom-
inated human-computer authentication [36] and will probably continue to dominate it
in the foreseeable future. Unfortunately, users tend to select their passwords as easy-to-
remember sequence of characters, which result in very skewed distributions that can be
easily modeled by an attacker. This makes passwords, and authentication systems that
implement them, inherently susceptible to guessing attacks.

In this context, a crucial step to protect the security and privacy of users is to help
them in choosing passwords that can be hardly guessed. It is apparent that this pro-
cess requires to (1) devise adversary models that accurately describe real-world guessing
attacks; and then, (2) provide proactive techniques that are capable of guiding users to
choose secure and usable passwords at composition time. However, despite more than
three decades of active research, both current password models and proactive approaches
suffer of inherent limitations that prevent them from fully accomplishing their tasks.

The most pervasive limitation of current adversary models is that they apply the same
static guessing strategy on each attacked-set of passwords, ignoring trivial information
that can be either a priori collected or gained from the running attack. However, as widely
documented [33, 46, 84], passwords composition habits change from sub-population to
sub-population, and, although passwords tend to follow the same general distribution, cre-
dentials created under different environments exhibit unique biases. Real-world attackers
exploit such biases and perform their guessing attacks incorporating prior knowledge on
the targets and dynamically adjusting their guesses during the attack [108]. This allows
them to drastically boost attacks’ effectiveness and, ultimately, compromise accounts that
would not be compromised otherwise. Eventually, the inadequacy of current approaches
to model realistic adversarial behaviors prevents them from soundly estimating password
strength and fundamentally biases the conclusion of password security analysis.

Additionally, current adversary models mostly rely on probabilistic password models
that are only imperfect descriptions of real-world guessing attacks. The main reason is
that real attackers would rather rely on more pragmatic methods such as dictionary
attacks. However, correctly modeling and simulating this class of attacks in password
security studies is inherently difficult. In order for dictionary attacks to be representative
of the real-world threat, they must be thoughtfully configured and tuned according to a
process that requires domain-knowledge and expertise that cannot be easily replicated
by researchers and security practitioners. Ultimately, the consequence of inaccurately
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calibrating dictionary attacks is a quite limited reliability of password security analyses,
due to a strong measurement bias. In this direction, developing techniques capable of
automatically producing or simulating expert attack setups remains a critical [76] as well
as open problem [108].

For similar reasons, also proactive solutions such as password strength meters suffer of
evident shortcomings. These tools aim at evaluating the security of candidate passwords
and preventing users from choosing insecure credentials at composition time. In the pro-
cess, password meters should be able to support and guide users towards secure passwords
by implementing explanatory mechanisms. Unfortunately, state-of-the-art password me-
ters base their estimates on blackbox parametric probabilistic models that leave no room
for interpretation of the evaluated passwords; they do not provide any natural form of
feedback to users on what is wrong with their password or how to improve it. In this
direction, enabling interpretability in password strength meters is one of the core chal-
lenges in password security. Unfortunately, while solutions have been proposed [104, 115]
and carefully implemented, these lack of generality and soundness. Solely by relying on
hardwired, heuristic mechanisms that address only a few common feedback scenarios,
they fail, by construction, to give full support to the user during the composition process.

1.1 Thesis contributions
In the present thesis, we demonstrate how deep learning techniques allow us to reduce
the most inherent limitations that affect reactive and proactive approaches in password
security, moving towards a new generation of methodologies.

Dynamic password models: Basing on deep generative models [58, 103] and the
representation learning paradigm [29], we account for dynamic attackers in password
guessing. Here, we devise a technique that is capable of dynamically modifying and
improving itself by relying on the information recovered from the passwords guessed dur-
ing the attack [94]. We achieved this by exploiting the smoothness and the geometric
properties exhibited by latent representation of passwords learned from GANs [58] and
congruent models. With these techniques, we are the first to implement and demonstrate
the effectiveness of automatic, dynamic attacks in password guessing. In a dynamic at-
tack, the password model autonomously adapts to the attacked distribution of passwords
by generalizing the information gained by the passwords recovered within the running
attack. Eventually, relying on these techniques, we demonstrate that the strength of a
password is not a static property, but it is a function of the other passwords that occur
in the same environment. The reported evidence change our understanding of password
security and suggest us to rethink current approaches aimed at estimating it.

Dynamic and Adaptive Dictionary attacks: Relying on the same general intuition,
we increase the reliability of dictionary attacks by introducing and validating the concept
of dynamic dictionaries. Congruently, we use deep learning networks to measure func-
tional compatibility between dictionary words and mangling rules for simulating the profi-
ciency of expert attack configurations. Combining these two complementary approaches,
we cast a new generation of dictionary attacks that is consistently more resilient to inac-
curate configurations and that reduces measurement bias in modeling password strength.
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The proposed attack permits to assign sounder strength estimates to passwords as they
better describe real-world adversarial strategies and their threat.

Interpretable Probabilistic Password Strength Meters: Finally, by extending
our work on generative models, we introduce probabilistic interpretable mechanisms in
password strength meters. We devise and implement the first password strength meter
capable of producing a general and rigorous feedback mechanism. For the first time, we
demonstrate that the class of probabilistic password meters inherently owns the capabil-
ity of describing the latent relation between password strength and password structure.
Unlike existing approaches, the proposed method is completely free from any human bias,
and, more importantly, its feedback has a probabilistic interpretation. By leveraging this
approach, we cast a new class of interpretable password meters that have the natural
capability of smoothly guiding users to choose stronger passwords and improve their un-
derstanding of password security.

1.2 List of publications
The present thesis is based on research papers that have been previously published. This
Section briefly lists such contributions, while Section 1.2.1 covers works that have not
been included in the thesis.

(Papers are listed following the order on which they are covered in the thesis)

• [94] Dario Pasquini, Ankit Gangwal, Giuseppe Ateniese, Massimo Bernaschi,
Mauro Conti. Improving Password Guessing via Representation Learning. In 42th
IEEE Symposium on Security and Privacy (S&P21), May 2021.

In this paper, we demonstrate that representation learning [29] enabled by deep gen-
erative models can be used to cast novel attacks that further threaten password-based
authentication systems. More importantly, the paper firstly introduces the concept of
dynamic password guessing and dynamic attackers that will be extended in [93].

• [93] Dario Pasquini, Marco Cianfriglia, Giuseppe Ateniese, Massimo Bernaschi.
Reducing Bias in Modeling Real-world Password Strength via Deep Learning and
Dynamic Dictionaries. In 30th USENIX Security Symposium (USENIX21), Au-
gust 2021

In this work, we increase the rigorousness and reliability of password strength estimates
via dictionary attacks. We achieved this by introducing deep learning approaches in
mangling rules attacks and advanced techniques aimed at replicating dynamic attackers.

• [91] Dario Pasquini, Giuseppe Ateniese, Massimo Bernaschi. Interpretable Proba-
bilistic Password Strength Meters via Deep Learning. In 25th European Symposium
on Research in Computer Security (ESORICS20), September 2020.

In this work, we introduce a new estimation process for password distributions that
enables the creation of the first probabilistic interpretable password strength meter. The
proposed meter is based on a complete, undirect description of password probability
implemented via deep convolutional neural networks.
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1.2.1 Additional publications

Adversarial Machine Learning

A second part of our research, which is not reported in this thesis, has been dedicated to
asses the security of deep learning models and distributed training procedures.

• [92] Dario Pasquini, Giuseppe Ateniese, Massimo Bernaschi. Unleashing the
Tiger: Inference Attacks on Split Learning ACM Computer and Communications
Security (CCS21), (to appear) November 2021.

In this paper, we investigate the security of split learning—an emerging collaborative ma-
chine learning framework that enables peak performance by requiring minimal resources
consumption. Here, we make explicit the vulnerabilities of the protocol and demonstrate
its inherent insecurity.

• [95] Dario Pasquini, Marco Mingione, Massimo Bernaschi. Adversarial out-
domain examples for generative models. In 2019 IEEE European Symposium on
Security and Privacy Workshops, EuroS&P Workshops, 2019

In this paper, we show the existence of an attack against deep generative models such
as Generative Adversarial Networks (GAN). The attack demonstrates that an adversary
can force a trained generative model to reproduce arbitrary data instances as output by
casting suitable adversarial input. In the paper, we show how this adversarial input can
be forged to be indistinguishable from legit inputs.

Numeric methods on GPUs

A third part of our research, which is not reported in this document, has been dedicated
to develop numeric methods on GPUs. This line of research primarily resulted in:

• [30] Massimo Bernaschi, Pasqua D’Ambra, Dario Pasquini. AMG based on com-
patible weighted matching for GPUs. Parallel Computing, 2020.

• [31] Massimo Bernaschi, Pasqua D’Ambra, Dario Pasquini. BootCMatchG: an
Adaptive Algebraic MultiGrid Linear Solver for GPUs. Software Impacts, 2020

These papers present an Algebraic Multigrid (AMG) method designed and implemented
to run on NVIDIA’s GPUs. AMG methods are used to reduce the number of iterations
required for the numerical solution of very large and sparse linear systems of equations
using a multilevel strategy of relaxation and coarse-grid correction. The implemented
AMG method relies on a new approach for coarsening sparse symmetric positive definite
(spd) matrices, “named coarsening based on compatible weighted matching”. It exploits
maximum weight matching in the adjacency graph of the sparse matrix, driven by the
principle of compatible relaxation, providing a suitable aggregation of unknowns which
goes beyond the limits of the usual heuristics applied in the current methods. We adopt
an approximate solution of the maximum weight matching problem, based on a recently
proposed parallel algorithm, referred as the Suitor algorithm, and show that it allow
us to obtain good quality coarse matrices for our AMG on GPUs. We exploit inherent
parallelism of modern GPUs in all the kernels involving sparse matrix computations both
for the setup of the preconditioner and for its application in a Krylov solver, outperforming

8



preconditioners available in Nvidia AmgX library. We report results about a large set of
linear systems arising from the discretization of partial differential equations (PDEs).

In [30, 31] we implemented a single GPU version of the software, a distributed version
of the latter is in its final phase of development and will be released soon.

1.3 Thesis Organization
The thesis starts in Chapter 2, where we give a brief overview on the fundamental concepts
needed for the comprehension of the various topics covered within the thesis. Then, the
core contributions are organized in two disjointed parts i.e., Part I and Part II. In
Part I , we introduce novel adversary models that are based on deep learning techniques.
This includes two works—[94] and [93] which are reported in Chapter 3 and Chapter 4
respectively. Part II, instead, is dedicated to proactive mechanisms enabled via deep
learning. This is mainly based on the paper [91] which is covered in Chapter 5. The
thesis terminates with the conclusion in Chapter 6, although additional resources are
reported in the Appendices.
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Chapter 2

Background

In the present Chapter, we cover general concepts that are essential to a better under-
standing of the various contributes that follow. We start by providing core concepts in
password security. Then, in Section 2.2 we present a brief introduction to neural net-
works and deep learning, mainly focusing on deep generative models. When necessary,
additional and specific background is reported within the respective Chapters of Part I
and Part II of the thesis.

2.1 Password security
Human-chosen passwords do not distribute uniformly in the highly dimensional space of
the possible passwords. Users tend to choose easy-to-remember sequence of characters
that aggregate in relatively few dense zones of the passwords space. Real-world pass-
words, therefore, tend to cluster in very bounded distributions that can be modeled by an
attacker, making authentication-systems intrinsically susceptible to guessing attacks.
In a guessing attack, the attacker aims at recovering plaintext credentials by attempt-
ing several candidate passwords (guesses) till success or budget exhaustion; this happens
by either searching for pre-images of password hashes (offline attack) or attempting re-
mote logins (online attack). In this process, the attacker relies on a so-called password
model that defines which, and in which order, guesses should be tried to maximize the
effectiveness of the attack.1

2.1.1 Guessing Attacks

Offline attack In an offline guessing attack, the attacker has been capable of leaking
a set of stored passwords from a compromised system; typically, a web application. This
can be achieved through various vectors. Very often, password leaks are enabled by SQL-
injections or similar vulnerabilities affecting the application layer. As a matter of fact,
passwords leaks occur very frequently [8] and represent a critical security threat due to
the users’ password reuse habits [64, 44].

Once gained access to the set of stored passwordsX = {h(x1), . . . , h(xn)}, the attacker
starts the offline attack relying on his/her computational resources. In the most common

1In the present thesis, we use the term password model to refer to all kinds of approximation of the
password generative process; not only the probabilistic ones that are often referred with such name in
literature.
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case, the leaked passwords are stored under a one-way function h.2 Targeting a password
hash hx, the attacker tries to recover the original pre-image by applying h on suitable
guesses until a collision h(g) = hx is found. When no additional information is maintained
on the single attacked users, this results in a so-called trawling attack, where each guess
g is hashed and compared to each entry in X.

To prevent the attacker from speeding-up the attack using a suitable pre-computation
process (e.g., rainbow tables), passwords are hashed with a salt—a random token e.g.,

hx = h(x+ s),

where “+” refers to the string concatenation operation and s is a sampled salt. The use of
salt also slows down trawling attacks as the attacker has to recompute the hash function
for each comparison against X, incrementing the attack cost of a factor O(|X|).

The adopted h used to store the passwords plays a critical role in reducing the adver-
sarial capabilities in offline attacks. Indeed, the computational cost of computing h is the
only limiting factor that decides how many guesses the attackers can perform and thus,
how many passwords they can recover. In this direction, iterative application of hash func-
tions (i.e., work factor) or “bruteforce-aware” hash functions can be used to artificially
increase the computational cost of h or limit its parallelization [97, 98, 66]. Typically,
these solutions come with adjustable parameters that allow the passwords owner to de-
fine the required computational burned to the attacker. However, this must be carefully
chosen as to not limit the service usability and/or enable further vulnerabilities in the
system (e.g., denial of service attacks for web applications).

Online attack Online guessing attacks require the attacker to verify the attempted
guesses using the standard login procedure deployed from the attacked service. This
strongly slows down the attack procedure and puts an hard limit on the number of guesses
the attacker can perform. Indeed, it has become a common practice to implement blocking
(i.e., deny login after a certain number of failed authentications) and throttling mech-
anisms (i.e., slow down the login procedure after each failed authentication) in remote
authentication systems.

In the online scenario, attackers cannot soundly rely on general trawling guessing
strategies used in offline attacks. They have to resort to more tailored attacks such
as targeted attacks. Here, the attacker exploits additional information on the specific
targeted user such as username or previously leaked passwords [90, 112] to shrink the
hypothesis space and maximize the probability of guessing the correct password in the
first few guesses.

In this thesis, we mainly focus on studying offline attacks.

2.1.2 Password models

Generally speaking, a password model can be understood as a suitable approximation of
the password distribution that enables an educated exploration of the key-space. Existing
password models construct over a heterogeneous set of assumptions and rely on either
intuitive or rigorous security definitions. From a very practical point of view, we divide
those into two macro-classes: namely, parametric and nonparametric password models.

2Differently, passwords can be encrypted with a symmetric encryption scheme such as in the cases of
password vaults. Here, the guessing attack is on the encryption key that is a low-entropy key as well.
However, in this case, honey encryption [41] can be used to slowdown the attacker.
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Parametric approaches

Parametric approaches typically build on top of a pure probabilistic reasoning; they as-
sume real-world password distributions sufficiently smooth to be accurately described by
suitable parametric probabilistic models. Here, explicitly [85, 89, 40] or implicitly [62, 94]
a password mass function is derived from a set of observable data (e.g., previously leaked
passwords) and used to attribute a probability to each element of the key-space. During
the guessing attack, guesses are produced by traversing the key-space following the de-
creasing probability ordering imposed by the modeled mass function. While such class of
models can potentially enumerate the whole key-space, during the attack, a reasonable
cutoff probability is chosen and only the guesses above that threshold are eventually is-
sued. Implementation-wise, the first form of parametric password model is concretized
in the work of Narayanan et al. [89], where a Markov filter was used to reduce the
search-space of brute-force attack. Further studies extended such initial contribute by
introducing suitable regulation techniques [78, 35] and improved enumeration algorithms
[53]. Later, Melicher et al. [85] overcome the expressivity limitation of Markov models3
by modeling password distribution with a recurrent neural network (RNN). This is an
autoregressive, character-level model which enables state-of-the-art accuracy in password
strength estimation. However, due to intrinsic computational limitations of the enumer-
ation algorithm, such approach results unsuited for real-world password guessing.

Nonparametric models

Nonparametric models rely on more intuitive constructions which tend to be closer to
human reasoning. Generally, those assume passwords as realizations of templates and
generate novel guesses by abstracting and applying such templates over tokens dictio-
naries. These approaches maintain collections of tokens that are either directly given
as part of the model configuration (e.g., dictionary for dictionary attacks) or extracted
from observed passwords in a setup phase. In contrast with parametric models, these
can produce only a limited number of guesses which is a function of the chosen initial
configuration.
Dictionary-based attacks and their extensions were among the first forms of nonparamet-
ric password models. Among dictionary attacks, the extension with mangling-rules [88]
widely demonstrated its effectiveness on the trawling attack scenario [6]. These ap-
proaches persist nowadays in the form of highly tuned off-the-shelf software: John The
Ripper (JTR) [12] and HashCat [7]. Due to their efficiency and easy customization, these
tools are the primary weapons of professional security practitioners [108].

Another class of nonparametric models is the one based on Probabilistic Context-Free
Grammars (PCFGs). Weir et al. [114] proposed a technique capable of inferring grammars
from a set of observed passwords and use those to cast new password guesses. Conceptu-
ally, this approach strongly relates to the mangling rules approach, as it exploits a simi-
lar assumption and underlying generative process. Nevertheless, PCFG introduces many
advantages over the mangling rules. More prominently, this model can learn password-
templates directly from the raw data and have a probabilistic interpretation, although
PCFGs may not have full support on the key-space.

Given their relevance in the present thesis, a detailed analysis on dictionary attacks
follows.

3Due to the Markov property assumed for the underlying stochastic process.
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Dictionary Attacks and Mangling Rules

Dictionary attacks can be traced back to the inception of password security studies
[101, 88]. They stemmed from the observation that users tend to pick their passwords
from a bounded and predictable pool of candidates; common natural words and numeric
patterns dominate most of this skewed distribution [100]. An attacker, collecting such
strings (i.e., creating a dictionary/wordlist), can use them as high-quality guesses dur-
ing a guessing attack, rapidly covering the key-space’s densest zone. These dictionaries
are typically constructed by aggregating passwords revealed in previous incidents and
plain-word dictionaries.

While dictionary attacks can produce only a limited number of guesses4, these can
be extended through mangling rules. Mangling rules attacks describe password dis-
tributions by factorizing guesses in two main components: (1) dictionary-words and (2)
string transformations (mangling rules). These transformations aim at replicating users
composition behavior such as leeting or concatenating digits (e.g., “pa$$w0rd ” or “pass-
word123 ”) [65]. Mangling transformations are modeled by the attacker and collected in
sets (i.e., rules-sets). During the guessing attack, each dictionary word is extended in
real-time through mangling rules, creating novel guesses that augment the guessing at-
tack’s coverage over the key-space. Hereafter, we use the terms dictionary attack and
mangling rules attack interchangeably.

The most widely known implementations of mangling rules are included in the “pass-
word cracking” software Hashcat [7] and John the Ripper [12] (JtR). Here, mangling rules
are encoded through simple custom programming languages. Hashcat and JtR share al-
most overlapping mangling rules languages, although few peculiar instructions are unique
to each tool. However, they consistently differ in the way mangling rules are applied dur-
ing the attack. Hashcat follows a word-major order, where all the rules of the rule-set
are applied to a single dictionary-word before the next dictionary word is considered. In
contrast, JtR follows a rule-major order, where a rule is applied to all the dictionary
words before moving to the next rule. The community behind these software packages
developed numerous mangling rules sets that are publicly available.

Despite their simplicity, mangling rules attacks represent a substantial threat in offline
password guessing. Mangling rules are extremely fast and inherently parallel; they are
naturally suited for both parallel hardware (i.e., GPUs) and distributed setups, making
them one of the few guessing approaches suitable for large-scale attacks (e.g., botnets).
Furthermore, real-world attackers update their guessing strategy dynamically during the
attack [108]. Basing on prior knowledge and the initially matched passwords, they tune
their guesses generation process to describe their target set of passwords better and
eventually recover more of them. To this end, professionals prefer extremely flexible
tools that allow for fast and complete customization. While state-of-the-art probabilistic
models fail at that, mangling rules make any form of customization feasible as well as
natural.

2.1.3 Password Strength Meters (PSMs)

PSMs are password models aimed to an explicit estimation of password strength. These
are used to proactively induce secure passwords at composition time, when users choose

4The required disk space inherently bounds the number of guesses issued from plain dictionary attacks.
Guessing attacks can easily go beyond 1012 guesses, and storing such a quantity of strings is not practical.
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their passwords. The produced estimates are then returned to the users who are notified
of the possible weakness of the chosen password and invited to change their password
accordingly. This process is often supported by suitable visual feedback mechanisms that
aim to guide users towards secure passwords.

A PSM can be formalized as a scalar function rather than a generative model. This
associates each password in the key-space5 to an estimate of its strength i.e., its resistance
to a guessing attack. In modern approaches, the concept of password strength mostly
overlaps with the concept of guessability [67]; that is, how many guesses an attacker has
to perform to guess a specific password using a password model. Ideally, all the password
models can be used as a password meter. However, not all the password models are
equally suited in practice. Indeed, given the proactive application of PSMs, these are often
developed to run client-side on the user’s browser.6 This requires PSMs to be lightweight
and capable of estimating guessability at runtime. In this direction, the most convenient
class of password models results being that of explicit, parametric probabilistic models.
Relying on probabilistic approaches to estimate password strength defines Probabilistic
Password Strength Meters which will be detailed next.

Probabilistic Password Strength Meters (PPSMs)

Probabilistic password strength meters are PSMs that base their strength measure on
an explicit estimate of password probability. In the process, they resort to probabilistic
models to approximate the probability distribution behind a set of known passwords,
typically, instances of a password leak. Having an approximation of the mass function,
strength estimation is then derived by leveraging adversarial reasoning. Here, password
robustness is estimated in consideration of an attacker who knows the underlying pass-
word distribution, and that aims at minimizing the guess entropy [83] of her/his guessing
attack. To that purpose, the attacker performs an optimal guessing attack, where guesses
are issued in decreasing probability order (i.e., high-probability passwords first). More
formally, given a probability mass function P (x) defined on the key-space X, the attacker
creates an ordering XP (x) of X such that:

XP (x) = [x0, x1, . . . , xn] where ∀i∈[0,n] : P (x
i) ≥ P (xi+1) . (2.1)

During the attack, the adversary produces guesses by traversing the list XP (x). Under
this adversarial model, passwords with high probability are considered weak, as they will
be quickly guessed. Low-probability passwords, instead, are assessed as secure, as they
will be matched by the attacker only after a considerable, possibly not feasible, number
of guesses.

A review of previous works on password strength meters will be given in Chapter 5,
when we introduce and discuss interpretable probabilistic password strength meters.

2.2 Deep Learning
This section briefly covers specific topics in the deep learning landscape that appear
frequently throughout the thesis. Section 2.2.1 glances neural networks and deep neural

5Not all the PSMs define each elements of the key-space. For instance, meter based on PCFG are
only able to score passwords that can be represented with the leaned grammar.

6Generally, we do not want the plaintext user’s password to leave the client-side. Therefore, client-
server strength meters are not appealing solutions.
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networks as well as discusses specific neural architectures. Then, Section 2.2.2 focuses on
deep generative models, introducing them and explicating the formalization used later in
the thesis.

2.2.1 On Neural Networks and Architectures

A neural network is a differentiable, non-linear7, function f(· | θ) defined over a family
of parametric functions indexed by the set of parameters/weights θ of the network. The
family of functions is defined by the so-called architecture of the network that is spec-
ified as a sequence of logic partitions called layers i.e., non-linear parametric functions
on their own. Deep neural networks, in turn, are functions defined by the composition
of many layers. They are a powerful function approximator capable of accurately de-
scribing relations among high-dimensional spaces. Once a target function is chosen, a
differentiable loss function is defined and used to guide the approximation. This pro-
cess, named learning, consists in finding the configuration of parameters θ that minimize
the discrepancy between the target function and the neural network by relying on a
gradient-descent-based optimization technique. Furthermore, deep neural networks have
vastly demonstrated the peculiar and natural capability of generalizing over the input
domain. This mainly relates to the qualities of the data representation learned during
the training [29].

Convolutional Neural Networks Most of the neural networks employed in the con-
tributions reported in this thesis are Convolutional Neural Network (CNN). These are
networks whose architecture mainly assembles convolutional layers. A convolutional layer
is a neural layer that leverages parameters sharing to both reduce the number of learnable
parameters of the networks8 and enforce spatial invariance over the input space which
can further help generalization int the suitable domains. In this process, Convolution
layers approximate functions by learning suitable kernels that are applied over the input
channels. Those permit the accurate description of relations among features occurring
in spatial proximity. Such properties make CNNs perfectly suited to learn tasks over
the image domain, where space invariance and local, spatial relations are natural as well
as crucial at the end of learning suitable data representations. Nonetheless, CNN have
been widely applied over sequential data such as text, often performing equally or better
than Recurrent Neural Networks (RNN) which are naturally suited for sequential data.
Throughout the thesis, we heavily apply CNNs over sequential data (i.e., mainly pass-
words) as those can offer peculiar advantages over recurrent neural networks: they allow
faster inference and permit to drop the autoregressive paradigm that appears in recur-
rent networks and that may not fully describe relations properties among characters in
passwords.

Residual architectures Despite Convolutional layers can be arbitrarily combined to
assemble suitable CNNs, modern architectures tend to follow a residual structure [61],
creating neural nets called residual neural networks (or resnet in brief). A resnet is
composed of a block of layers (namely, residual blocks) presenting skipping connec-
tions; that is, layers that are not adjacent can be connected via an additional connection

7Linear neural networks exist, but they are surely less interesting than the non-linear ones.
8This property allows the construction of deep architectures with a limited memory fingerprint.
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Algorithm 1: Example of residual block:
Data: input tensor: xin

1 x = batchNormalization(xin);
2 x = ReLU(x);
3 x = 1D-Convolution(x, f, k);
4 x = batchNormalization(x);
5 x = ReLU(x);
6 x = 1D-Convolution(x, f, k);
7 return xin + x

that bridges input features skipping intermediate layers. A residual block typically com-
poses of few convolutional layers alternated with the application of point-wise activation
functions and features normalization such as batch-normalization [63]. In the block, input
features are then directly point-wised added to the output of the last layer of the block,
creating an internal residual connection. An example of convolutional block is reported
in Algorithm 1. Residual connections have been proven to improve both the gradient
flow and the depth/accuracy ratio of networks [61]. Most of the neural networks used
throughout the thesis have a residual architecture based on 1D Convolution layers; that
is, convolution layers that apply on mono-dimensional channels (i.e., kernels move over a
single dimension).

2.2.2 Deep Generative models

Within the thesis, we rely on different deep learning models. However, the most used
class is the one of deep generative models. Hereafter, we intend a deep generative model
as a probabilistic model trained to perform implicit estimation of an unknown target
data distribution p∗(x), given a set of observable data (i.e., a train-set) [58, 57]. In the
process, a deep neural network is used to parametrize the description of the underlying
data distribution.

In contrast to the common prescribed probabilistic models [49], implicit probabilistic
models do not explicitly estimate the probability density of data. They instead approx-
imate the stochastic procedure that generates data [87]. In other words, we can sample
data points from the model as if they were sampled from a random variable following p(x).
However, in general, we cannot directly compute the probability of a given state xi of x.
Normalizing flows based models [50, 70] allow exact density estimation by employing
suitable neural architectures.

In the used deep generative models are latent variable models. That is, the network
is implicitly guided to learn a set of latent variables that unfold the complex interactions
among the factors describing data. During the training, a prior distribution is imposed
on the learned latent variables so that we can eventually sample realizations of them
after the training. Such a prior, referred to as prior latent distribution or ṗ(z), is an
easy-to-sample, uninformative and factorized prior. Its factorized form requires that the
network assigns a disjointed and independent semantic meaning to each latent variable,
and, consequently, learns a disentangled latent data representation for the input domain.
In other words, the latent representation is modeled to capture the posterior distribution
of the underlying explanatory factors of the observed data [99].

Once trained, a generative network is a deterministic mapping function G : Z → X
between the latent space Z : Rk and the data space X (i.e., where the observed data is
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defined), specifically, a bridge between ṗ(z) and the distribution p(x) learned by
the model. More formally, under this construction, the probabilities of data instances
have the following form:

p(x) = p(x | z; θ)ṗ(z), (2.2)

where θ is the set of learnable parameters of the generator. Typical choices for ṗ(z) are
N (0, I) or U [0, 1] [57].

Sampling points z from the latent space according to ṗ(z) and then mapping them
in the data-space through the generator, is equivalent to sampling data points from the
data space X according to p(x). During this operation, we can generally also consider an
arbitrary p(z) that can be different9 from ṗ(z). In the rest of this thesis, we will refer to
the probability density function p(z) of the latent space with the general term of latent
distribution.

Additionally, the smoothness of the generator forces a geometric organization in the
learned latent space. Similar to the feature embedding techniques [59, 74], indeed, the
latent representations of semantically bounded data points show strong spatial coherence
in the latent space [99].

In the thesis, two deep generative model frameworks are mainly used, namely, Gener-
ative Adversarial Networks and generative models based on the auto-encoding paradigm.

Generative Adversarial Networks (GANs) The GANs framework learns a deep
generative model by following an adversarial training approach. The training process
is guided by a second network D (i.e., the critic/discriminator), which gives a density
estimation-by-comparison [87] loss function to the generative network G (i.e., the gener-
ator). The adversarial training bypasses the necessity of defining an explicit likelihood-
function and allows us to have a good estimation of very sharp distributions [57].
During the training, latent points z are directly sampled from ṗ(z) and given as input to
G. In turn, the latter maps those in the data-space, where they are fed to the network D.
The critic, receiving both ground-truth data instances from the train-set and generating
data from G, is trained to allocate density only to real data instances. The generator G,
instead, is adversarially trained to force D to arrange probability estimates on the output
of G(z). The optimization follows from a coordinate minimization of the losses of the
two networks.

Autoencoders (AE) With the term Autoencoder we can refer to any model that con-
ceptually compounds of two networks: an encoder network Enc : X→ Z and a decoder
network Dec : Z→ X trained to learn a form of identity function: x = Dec(Enc(x)), or
a more useful variation of it. Unlike GANs, no adversarial training is exploited during
the training. Typically, a maximum likelihood approach is used, instead, although adver-
sarial training can be used to force topological properties in the codomain of Enc [81].
Once trained, the network Dec can serve as a data generator where meaningful latent
points are fed as input to it. However, to allow for efficient sampling from the latent
space, an AE needs a form of explicit regularization during the training; that is, the la-
tent space must be forced to be coherent with a chosen prior latent distribution. Widely
known AEs implementing this strategy are described in [69, 81, 103].

In the rest of the thesis, we abstract over the concept of generative model and make
no distinction between the decoder network Dec and the GAN generator; we refer to

9At a cost of representing a distribution different from p∗(x).
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either of them as G. In the same way, we employ E to refer to the encoder network used
to model the inverse mapping.
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Part I

Adversary Models
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As discussed in the introduction of the thesis, the low-entropy inherent in human-
chosen passwords makes them naturally susceptible to guessing attacks. Within this
context, where theoretical security bounds are unrepresentative, it is crucial to accurately
model attackers’ capabilities and behaviors, as this is the only way we have to discriminate
what is secure from what is not.

In this part of the thesis, we demonstrate how deep learning techniques can be used to
model powerful attackers and disclose novel threats that further jeopardize the security
of passwords. These techniques allow us to grasp a more accurate understanding of real-
world adversary and automatize their attack strategies, enabling guessing attacks that
more soundly estimate password security.

We start in Chapter 3, by introducing novel guessing techniques based on the repre-
sentation learning paradigm.

Chapter 4 extends the intuitions presented in Chapter 3 by applying deep learning
models on dictionary attacks. With those, we increase the rigorousness and reliability of
password strength estimates via dictionary attacks which are the kind of attack that is
the most employed by real-world adversaries.
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Chapter 3

Guessing attacks based on
Representation Learning

As discussed in Section 2.1.3, real-world password distributions are typically composed of
several dense zones that can be feasibly estimated by an adversary to perform password-
space reduction attacks [118]. Along that line, several probabilistic approaches have been
proposed [85, 53, 114]. These techniques—under different assumptions—try to directly
estimate the probability distribution behind a set of observed passwords. Such estimation
is then used to generate suitable guesses and perform efficient password guessing attacks.

Orthogonal to the current lines of research, we demonstrate that an adversary can fur-
ther expand the attack opportunities by leveraging representation learning techniques [29].
Representation learning aims at learning useful and explanatory representations [29] from
a massive collection of unstructured data. By applying this general approach on a cor-
pus of leaked passwords [21], we demonstrate the advantages that an adversary can gain
by learning a suitable representation of the observed password distribution, rather than
directly estimating it. In this chapter, we show that this type of representation allows an
attacker to establish novel password guessing techniques that further threaten password-
based authentication systems.

We model the representation of passwords in the latent space of (1) an instance of
Generative Adversarial Networks (GANs) [58] generator and (2) an instance of Wasser-
stein Auto-Encoders (WAEs) [103]. This type of representation, thanks to its inherent
smoothness [29], enforces a semantic organization in the high-dimensional password space.
Such an organization mainly implies that, in the latent space of the generator, respec-
tive representations of semantically-related passwords are closer. As a result, geometric
relations in the latent space directly translate to semantic relations in the data space. A
representative example of this phenomenon is loosely depicted in Figure 3.1, where we
show some latent points (with their respective plain-text passwords) localized in a small
section of the induced latent space.

We exploit such geometric relations to perform a peculiar form of conditional password
generation. Namely, we characterize two main properties: password strong locality and
password weak locality. These locality principles enforce different forms of passwords
organization that allow us to design two novel password guessing frameworks, Conditional
Password Guessing (CPG) and Dynamic Password Guessing (DPG). We emphasize that
state-of-the-art approaches are unable to perform such types of advanced attacks or, if
somehow altered, become very inefficient. The major contributions of our work are as
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Figure 3.1: A small section of the induced latent space around the latent point for the
password “rockyou”.

follows:

1. We are the first to demonstrate the potential of using fully unsupervised represen-
tation learning in the password guessing domain.

2. We introduce a probabilistic and completely unsupervised form of template-based
passwords generation. We call this framework CPG. CPG generates arbitrarily
biased passwords that can be used: (1) by an adversary to increase the impact of
side channels and similar password attacks [27, 82, 110, 28]; or (2) by a legitimate
user to recover his/her password. We show the efficiency of CPG against existing
solutions via experimental evaluations.

3. We introduce the concept of DPG: DPG is the password guessing approach that dy-
namically adapts the guessing strategy based on the feedback received from the in-
teraction with the attacked passwords set. We build an Expectation Maximization-
inspired DPG implementation based on the password locality enforced by the deep
generative model. DPG shows that an attacker can consistently increase the im-
pact of the attack by leveraging the passwords successfully guessed during a running
attack.

It is important to highlight that ongoing developments in deep generative frameworks
would naturally translate into further improvements in our approach.

Organization: In Section3.1, we present our model improvements and the tools upon
which our core work is based. We introduce password locality along with CPG in Sec-

22



tion 3.2 and DPG in Section 3.3. The evaluation of our proposed techniques is presented
in their respective sections.

3.1 Password guessing with Deep Generative Models
Hitaj et al. in their seminal work PassGAN [62] trained a GAN generator as an implicit
estimator of password distributions. PassGAN harnesses an off-the-shelf Wasserstein
GAN with gradient penalty [60] over a residual-block-based architecture [61]. It assumes
a latent space with a standard normal distribution as its prior latent distribution and
dimensionality equal to 128. The model is trained on the RockYou [21] password leak,
and only passwords with 10 or fewer characters were considered. Despite its underlying
potential, the password guessing approach presented in PassGAN suffers from technical
limitations and inherent disadvantages in its application.1 Most limitations can be ad-
dressed as shown in Section 3.1.1. However, some limitations are intrinsic to the model
itself. A prominent example is the model’s inability to assign probabilities to the pro-
duced guesses consistently and thus sort them based on popularity. This drawback might
make the GAN approach undesirable in a standard trawling scenario. However, in the
present Chapter, we show the existence of novel and valuable properties intrinsic to the
class of deep generative models. Abstracting the underlying model under the perspective
of representation learning, we prove that these properties can be used to devise unique
guessing techniques that are infeasible with any existing approaches.

Next, we introduce the necessary improvements to the original PassGAN construction
(Section 3.1.1). In Section 3.1.2, we introduce a different and novel deep generative model
in the password guessing domain.

3.1.1 Improved GAN model

The password guessing approach presented in PassGAN suffers from an inherent training
instability. Under such conditions, the generator and the critic cannot carry out a suf-
ficient number of training iterations. This may lead to an unsuitable approximation of
the target data distribution and reduced accuracy in the password guessing task. In the
original model, the discrete representation of the strings (i.e., passwords) in the train-
set2 introduces strong instability for two main reasons: (1) The discrete data format is
very hard to reproduce for the generator because of the final softmax activation function,
which can easily cause a low-quality gradient; and (2) the inability of the generator to
fully mimic the discrete nature of the train-set makes it straightforward for the critic
to distinguish between real and generated data. Hence, the critic can assign the cor-
rect “class” easily, leaving no room for an enhancement of the generator, especially in the
final stages of the training.

To tackle the problems above, we apply a form of stochastic smoothing over the rep-
resentation of the strings contained in the train-set. This smoothing operation consists
of applying an additive noise of small magnitude over the one-hot encoding representa-
tion of each character. The smoothing operation is governed by a hyper-parameter γ,
which defines the upper-bound of the noise’s magnitude. We empirically chose γ = 0.01

1As a matter of fact, PassGAN requires up to ten times more guesses to reach the same number of
matched passwords as the probabilistic and non-probabilistic competitors.

2Each string is represented as a binary matrix obtained by the concatenation of the one-hot encoded
characters.
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Number
guesses

PassGAN
(%)

Our GAN
(%)

1 · 108 6.72 9.51
1 · 109 15.09 23.33

1 · 1010 26.03 40.48
2 · 1010 29.54 45.55
3 · 1010 31.60 48.40
4 · 1010 33.05 50.34
5 · 1010 34.19 51.80

Table 3.1: The matched passwords by PassGAN and our improved model over the Rock-
You test-set

and re-normalize each distribution of characters after the application of the noise. This
smoothing operation has a significant impact on the dynamics of the training, allowing
us to perform 30 times more training iterations without training collapse [39]. We keep
the general GAN framework mostly unchanged because of the excellent performance of
the gradient-penalty-WGAN [60].

With our improvements in the training process, we can exploit a deeper architecture
for both the generator and the critic. We substitute the plain residual blocks with deeper
residual bottleneck blocks [61], leaving their number intact. We find the use of batch
normalization in the generator to be essential for increasing the number of layers of the
networks successfully.

The new architecture and the revised training process allow us to learn a better
approximation of the target password distribution, and consequently, outperform the
original PassGAN. A comparison between the original and our improved approach is
reported in Table 3.1. In this experiment, both models are trained on 80% of RockYou
leak and compared in a trawling attack3 on the remaining 20% of the set. As the 20%
test-set does not contain passwords present in the train-set, the performance of a model
in this test demonstrates its ability to generate new valid passwords, excluding over-
fitting artifacts. Hereafter, we use the improved settings described in the present section.
We train three different generators, using a 80-20% split of RockYou leak, considering
passwords with a maximum length of 10, 16, and 22, respectively.

3.1.2 Autoencoder for password guessing

To highlight the generality of the proposed approaches, we introduce a second and
novel deep generative model for password guessing. It is based on Wasserstein Autoen-
coder (WAE) [103] with moment matching regularization applied to the latent space
(called WAE-MMD [103]). To allow for sampling from the latent space, WAE regularizes
the latent space to make it coherent with a chosen prior latent distribution.

A WAE learns a latent representation that shares several properties with the one
coming from the GAN-based technique. Nevertheless, these models naturally provide a
very accurate inverse mapping, i.e., Enc, which makes the model superior to the default
GAN-based one in certain scenarios.

To add further regulation to the WAE, we train the model as a Context AE (CAE) [96].
During every iteration of the training process of a CAE, the encoder receives a noisy
version x̃i of the input password xi. The noisy input is obtained by removing each of the

3Under the same configuration proposed in [62].
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characters in the password x with a certain probability p = ε
|xi| where |xi| is the number of

characters in the password, and ε is a hyper-parameter fixed to 5 in our setup. Our model
receives the mangled input x̃i, and then it is trained to reproduce the complete password
as the output (x = Dec(Enc(x̃))); that is, the model must estimate the missing characters
from the context given by the available ones. Furthermore, the CAE training procedure
allows us to contextualize the wildcard character that we will use in Section 3.2.2. We
refer to our final model as the Context Wasserstein Autoencoder, or CWAE.

We set up the CWAE with a deeper version of the architecture used for the GAN
generator. We use the same prior latent distribution of our GAN generator, i.e., N (0, I)
with a dimension of 128. The training process is performed over the same train-sets of
the GAN.

3.2 Conditional password guessing (CPG) and Pass-
words strong locality

In this section, we present the password locality concept, and its possible applications for
password guessing. In Section 3.2.1, we describe the most natural form of locality that we
call password strong locality. In Section 3.2.2, we demonstrate the practical application of
password locality by introducing a technique that we call “password template inversion”
for conditional and partial knowledge passwords generation. Finally, we demonstrate
the advantages that our technique offers over existing probabilistic and non-probabilistic
password models.

3.2.1 Password strong locality and localized sampling

As we briefly introduced in Section 2.2.2, the latent representation learned by the gen-
erator enforces geometric connections among latent points that share semantic relations
in the data space. As a result, the latent representation maintains “similar” instances
closer.

In general, the concept of similarity harnessed in the latent space of a deep generative
model solely depends on the modeled data domain (e.g., images, text) and its distribution.
However, external properties can be incentivized by the designer via injection of inductive
bias during the training. An example is reported in Appendix A.1. In the case of our
passwords latent representations, the concept of similarity mainly relies on a few key
factors such as the structure of the password, the occurrence of common substrings, and
the class of characters. Figure 3.2 (obtained by t-SNE [80]) depicts this observation by
showing a 2D representation of small portions around three latent points (corresponding
to three sample passwords “jimmy91”, “abc123abc”, and “123456”) in the latent space.
Looking at the area with password “jimmy91” as the center, we can observe how the
surrounding passwords share the same general structure (5L2D, i.e., 5 letters followed by
2 digits) and tend to maintain the substring “jimmy” with minor variations. Likewise, the
area with the string “abc123abc” exhibits a similar phenomenon, where such a string is
not present in the selected train-set and does not represent a common password template.

We loosely name password strong locality the representation’s inherent property of
grouping together passwords that share very fine-grained characteristics. The password
strong locality property asserts that latent representation of passwords sharing some
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Figure 3.2: 2D representation of small portions around three latent points corresponding
to three sample passwords “jimmy91”, “abc123abc”, and “123456” in the latent space
learned from the RockYou train-set. Note: for the sake of better illustration, the image
has been cropped.
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specific characteristics, such as identical substrings and structure, are organized in close
proximity to each other. In Section 3.3.1, we will show that strong locality also implies
a weaker but general form of semantic bounding, which we refer to as weak locality.

The strong locality becomes particularly compelling when selecting where to focus on
the sampling operation during the password generation process. Indeed, since different
classes of passwords are organized and bounded into different zones of the
underlying space, it is possible to generate specific classes of passwords by
sampling from specific areas of it. We leverage this technique to induce arbitrary
biases in the generation process.4 However, we must first define a meaningful and practical
way to express such biases, that is, to localize the zones of the latent space we are
interested in.

One naive solution resorts to a prototype password x to guide the localization process.
In particular, we can generate passwords strictly related to the chosen prototype pass-
word x, by fetching latent points around the latent representation z of x (i.e., x = G(z)).
Thanks to the strong locality, the obtained latent points should be valid latent repre-
sentations of passwords with an arbitrary strong relation with x. In this context, we
refer to the chosen x (or its corresponding latent representation z) with the term pivot.
The three dark red boxes in Figure 3.2 are the pivot points in the latent space for their
corresponding passwords.

To infer the latent representation z from x, we use the encoder network described
in Section 3.1.2, as that z = E(x). We highlight that, being this process general and
model-independent, other deep generative models such as [51, 69, 81] can be used as well.

Once we obtain the intended pivot z, we can easily generate coherent passwords by
restricting the generator’s sampling in a confined area of the latent space around z (loosely
represented by the small dashed circles in Figure 3.2). To that purpose, we consider a new
latent distribution for the generator. The new distribution has the latent representation
of the pivot password as its expected value and an arbitrarily small scale. To remain
coherent with prior latent distribution and partially avoiding distribution mismatch for
the sampled points [116], we chose a Gaussian distribution: N (z, σI).

According to the concept of password locality, the strength of the semantic relation
between a sampled latent point and its pivot should be proportional to the spatial distance
between them. Consequently, the chosen value of σ (i.e., standard deviation) offers us a
direct way to control the level of semantic bounding existing in the generated passwords.
This intuition is better explained by Table 3.2, where passwords obtained with different
values of σ for the same pivot password are reported.
Lower values of σ produce highly aligned passwords, whereas larger values of σ allow us
to explore areas far from the pivot and produce a different type of “similar” passwords.
As shown in Table 3.2, all the passwords generated with σ = 0.05 retained not only the
structure of the pivot (i.e., 5L2D), but also observed minor variations coherent with the
underlying password distribution. Of note, passwords generated with σ = 0.15 tend to
escape the password template imposed by the pivot and reaching related-but-dissimilar
password structures (e.g., “jimmy91992” and “j144988”).

4From the model’s point of view, this is equivalent to changing the latent distribution, and in partic-
ular, reallocating its expected value to a different zone of the latent space.
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σ=0.05 σ=0.08 σ=0.10 σ=0.15

jimmy91 jimmy99 mnmm988 jimmy91992
jimmy11 micmy91 tbmmy98 jrm6998
jimmy21 jimsy91 jismyo15 sirsy91
jimmy88 mimmyo1 jizmyon jrz4988
jimmy81 jbmmy88 j144988 Rimky28
jimmy98 simmy98 jbmm998 missy11
mimmy98 dijmy91 timsy91 jimmy119
jimmy28 jimmy98 jrm4985 sikjy91
simmy91 timsy91 jhmmy88 licky916
mimmy91 jnmm988 jhmm988 gimjyon

Table 3.2: The first-ten passwords obtained with different values of σ starting from the
pivot string “jimmy91”

3.2.2 Localized passwords generation with password template in-
version

As briefly discussed in Section 3.2.1, the password locality property offers a natural way to
generate a very specific/confined class of passwords for a chosen pivot, a task accomplished
by exploiting an encoder network E. This encoder is trained to approximate the inverse
function G−1, and it is the only tool we have to explore the latent space meaningfully. The
default behavior of the encoder is to take as an input a string s and precisely localize the
corresponding latent representation in the latent space. As shown in Table 3.2, sampling
from a distribution centered on the obtained latent point, allows us to generate a set of
related passwords. However, this approach alone is not sufficient within the password
guessing scenario.

In this section, we show that it is possible to “trick” the encoder network into further
localizing general classes of passwords. We can arbitrarily define these classes via a
minimal template, which expresses the definition of the target password class.

The encoder network can be forced to work around a specific password definition by
introducing a wildcard character into its alphabet. The wildcard character - represented
by the symbol ‘•’ in the present thesis—can be used as a placeholder to indicate an
unspecified character. For instance, the template “jimmy••” expresses a class of passwords
starting with the string “jimmy” followed by two undefined characters. When the encoder
inverts this string, the obtained latent point represents the center of the cluster of
passwords in the latent space with a total length of 8 characters and a prefix “jimmy”.

A B C D E F G H I L M

jimmy•• jimmy•••• ••jimmy ••mm•91 •••••91 12•••91 A••••• •••A••• Ra••••91 (•••1•••) •••#••!!!

jimmy11 jimmybean majimmy summy91 1111991 1231991 Andres RONALDO Raider91 (2001999) 123#1!!!!
jimmy13 jimmybear mujimmy sammy91 9111991 1211991 ANDRES MALANIA Rainer91 (1701939) tom#!!!!!
jimmy01 jimmy1001 mojimmy tommy91 a111991 1221991 Andrea MANANA1 Rain1991 (toe1234) bom#!!!!!
jimmy12 jimmyjean myjimmy tammy91 jan1991 1201991 A10123 SALAN11 Raidel91 (13@1932) Bom#1!!!!
jimmy10 jimmylove 12jimmy mommy91 cao1991 1271991 Angela RATALIS Ranger91 (gar1k()) Bam#99!!
jimmy20 jimmy2004 jojimmy jimmy91 ban1991 1234591 A12123 123A123 Rana1991 (1031123) 190#1!!!!
jimmy21 jimmy1234 gojimmy gimmy91 5121991 1219991 Andrey BRIANA1 Raid1991 (1231234) abc#2!!!!
jimmy16 jimmybabe jjjimmy iammy91 man1991 1205091 ANDREY MALA123 Raynay91 (sot123)) 123#11!!!’
jimmy19 jimmygirl aajimmy mimmy91 1811991 1280791 ABC123 AAIANA1 Rayder91 (Go)12(7) Bom##!!!!
jimmyes jimmy1000 m0jimmy sommy91 jao1991 12g1991 ABERES BALAND1 RaIN1991 (11_199%) 123#16!!!

Table 3.3: An example of exploiting strong locality property over a generator trained on
RockYou train-set for some password templates. Passwords are generated by sampling
10000 strings with α = 0.8 and reported in decreasing frequency order.
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Therefore, sampling around this latent point allows us to generate good instantiations
(according to p(x)) of the input template. Column A of Table 3.3 shows an example
for the template “jimmy••”. In practice, we implement this behavior by mapping a
wildcard character to an empty one-hot encoded vector when the matrix corresponding
to the input string is given to the encoder. The wildcard characters can be placed in any
position to define an arbitrarily complex password template; some examples are reported
in Table 3.3.

Relying on this technique, the template inversion guides us towards the most plausible
zone of the latent space. When we sample from that zone, the wildcards are replaced
with high-probability characters according to the distribution p(x), i.e., the probabil-
ity distribution modeled by the generator. This phenomenon can be observed in the
generated samples (Column A of Table 3.3): wildcards in most of the generated pass-
words have been replaced with digits to conceivably reproduce the frequent password
pattern ‘lower_case_string+digits ’ [107]. On the contrary, passwords from the template
“•••••91” are reported in Column E of Table 3.3. In this example, we ask the generator
to find 7-character long passwords where the last two characters are digits. Here, the
generated passwords tend to lie towards two most likely password classes for this case,
i.e., ‘lower_case_string+digits ’ complementary to the previous case and ‘all_digits.’ As
the localized zone of the latent space is a function of all the observed characters, the same
template with more observable digits (e.g., Column F of Table 3.3) ends up generating
all_digits passwords with higher probability.

3.2.3 Conditional Password Guessing (CPG)

One of the most significant limitations of available probabilistic guessers is their intrinsic
rigidity. The inductive bias imposed on such models allows them to be extremely suitable
for general trawling attacks, yet it causes them to fail at adapting to different guessing sce-
narios. For instance, they fail to handle a natural as well as a general form of conditional
password generation, such as the template-based one that we proposed in Section 3.2.2.
Despite the limitations of existing approaches, generating guesses under arbitrary biases
is a useful and helpful procedure. This applies to both security practitioners and common
users. Some examples are below:

• An attacker can be interested in generating an arbitrary number of guesses hav-
ing a particular structure or common substring. For instance, an attacker might
want to generate passwords containing the name of the attacked web application
as substring.5

• A conditional password generation capable of working with partial knowledge can
be used by an attacker to improve the impact of side-channel attacks targeting user
input [27, 82, 110, 28]. These attacks often recover only an incomplete password
(e.g., some characters) due to their accuracy. An attacker can leverage conditional
password generation mechanisms to input missing characters and recover the target
password.

• Similarly, a legitimate user can be interested in recovering her/his forgotten pass-
word while remembering a partial template, for example, “***Jimmy**1**8#”.

5It has been widely observed that many users tend to incorporate such names in their passwords.
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In this direction, conditional password generation is particularly difficult for autoregres-
sive password guessers, such as the RNN-based ones (e.g., FLA [85]). Indeed, these
approaches, in the general case, are unable to assign a probability to missing characters
of a template efficiently; the forward-directionality, intrinsic in their generation process,
eliminates the possibility of an efficient appreciation of wildcards occurring before a given
substring (e.g., the case in Columns C and E of Table 3.3). In these cases, the probability
of an exponential number of passwords could be computed before using the characters
in the template to prune the visit tree. This is the case of the template reported in
Column E, where the required computational cost for these approaches is not far from
computing all the passwords into the chosen probability threshold and filter the ones co-
herent with the template. More generally, these approaches cannot be efficiently applied
when a large number of wildcards is considered. Sampling from the posterior distribution
over the missing variables (i.e., wildcards), indeed, is intractable for not minimal alpha-
bets; for instance, for an alphabet of size |Σ| , it requires O(|Σ|) runs of network inference
per step of Gibbs sampling or iterated conditional modes [37]. Yet, they can handle the
generation for a special case of templates (e.g., Column A and Column B), where the
prefix of the template is fully known, and no observable character appears among the
wildcards.

To generate over arbitrary templates, a possible trivial approach for autoregressive
models would be to enumerate passwords according to the chosen cut-off probability and
then filter the ones compatible with the chosen bias. However, this solution has two
main drawbacks. First, this operation is costly, as well as storage-demanding. More
significantly, such an approach can easily become intractable for small cut-off probability
values, as the enumeration could require an exponential-scale cost due to the unpruned
visit of the space. The second and more substantial limitation of this approach resides in
the difficulty of generating relative low-probability guesses. In other words, if the chosen
bias results in candidate passwords having low probabilities (according to the
estimated password distribution), those will be unlikely generated during the
enumeration process, at least, for a reasonable cut-off probability. In turn, this
translates into the impossibility of enumeration-based approaches to generate the number
of valid guesses required to a sound password guessing attack.

By contrast, conditional password generation can seamlessly be implemented within
our representation-learning-based approach and its locality property. The password or-
ganization imposed by this locality principle maintains similar passwords bounded in a
precise zone of the latent space. Localizing such zones using the template inversion tech-
nique and sampling from them allow us to enumerate biased passwords with minimal
effort. We can conditionally produce suitable guesses for each meaningful bias, even if
this yields low probability passwords. Algorithm 2 briefly formalizes this approach. Cho-
sen a template t, we use the encoder network E to obtain the latent representation zt

of t. Then, we sample latent points from a distribution centered in zt and with scale σ.
During the process, we filter the guesses coherent with t (if statement at line 6). The
effectiveness of this conditional guesses generation process will be demonstrated in the
next section.

3.2.4 Evaluation

In this section, we evaluate our proposed CPG framework against state-of-the-art pass-
word guessers.
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Biased test-sets creation

To create a suitable scenario to evaluate our conditional generation technique CPG, we
cast a set of biased password test-sets. In our setup, a bias ti is a password template;
a string ti ∈ {Σ ∪ {•}}∗ where Σ is the password alphabet (210 unicode characters in
our case) and ‘•’ is the wildcard character. Every password template ti is randomly
extracted from a password sampled from a validation set Xv. We chose the LinkedIn [14]
password leak as the validation-set. From this set, we keep passwords with length 16 or
less, obtaining 6 · 107 unique passwords, which is ∼ 5 times the RockYou train-set used
to train our model.

More precisely, sampled a ground-truth password x from Xv, we derive ti by sub-
stituting (with a certain probability p) each character in x with a wildcard (e.g., from
x=“jimmy1991” to t=“•i•my•••1”). In our setup, we select p = 0.5. In this process, we
select only those of the produced templates that contain at least 4 observable characters
and at least 5 wildcards. The latter constraint aims at rendering not trivial a brute-force
solution (∼ 3 · 1011).

After obtaining a large enough collection of valid templates, we create a set of bi-
ased password test-sets. This is achieved by collecting all the passwords matching the
templates in Xv with an exhaustive search. More precisely, for each template, we col-
lect all the instances x of Xv, such that x satisfies the template ti; that is, the set
X ti
v = {x|x ∈ Xv ∧ x ` ti}. Based on the cardinality of the various X ti

v , we divide those
into four classes:

1. Tcommon, if |X ti
v | ∈ [1000, 15000]

2. Tuncommon, if |X ti
v | ∈ [50, 150]

3. Trare, if |X ti
v | ∈ [10, 15]

4. Tsuper-rare, if |X ti
v | ∈ [1, 5]

Eventually, each of the 4 classes of templates composes of 30 different template sets
(i.e., X ti

v ). Samples of these templates and respective matching passwords are reported
in Table A.3 in Appendix A.4.

In the next section, we will use the created biased password sets to evaluate the
proposed CPG framework with a set of probabilistic and non-probabilistic state-of-the-
art password guessers. We evaluate the ability of each guesser to match the passwords
contained in every biased set X ti

v .

Algorithm 2: Conditional Password Guessing (CPG)
Data: Template: t, Int: n, Real: σ

1 X = {};
2 zt = E(t);
3 for i := 1 to n do
4 zi ∼ N (zt, σI);
5 xi = G(zi);
6 if xi ` t then
7 X = X ∪ {xi};
8 return X
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Results

We perform our guessing attack using the CWAE. This model showed slightly better
performance than the GAN approach in this guessing scenario.6 We report results for
the model trained on passwords with a maximum length of 16, as no consistently different
results have been obtained with models trained on password lengths 10 and 22.

In our setup, we follow the CPG described in Section 3.2.3. More precisely, for each
biased password set X ti

v , we invert the template ti using the encoder network. Then we
sample password around the obtained latent vector using standard-deviation σ = 0.8
(see Algorithm 2). We generate n = 107 valid passwords for each template, and then we
compute the cardinality of the intersection of the generated guesses with X ti

v to calculate
the number of the guessed passwords.

We compare our CPG with five state-of-the-art guessers; namely, OMEN [53] and
FLA [85] for the fully-probabilistic, PCFG [114] for token-based probabilistic, and Hash-
Cat [7] for non-probabilistic class. Additionally, we compare against a min-auto configu-
ration [108].
As these guessers are not able to perform a natural form of conditional password gen-
eration, we exploit the naive approach discussed in Section 3.2.3; that is, we generate a
large number of passwords in default mode and then filter the guesses coherently with
the requested bias. In particular, we produced 1010 passwords for each approach. Details
on the specific setup of these tools follow:

• OMEN: We trained the Markov chain using the same train-set used for our deep
generative model (i.e., 80% RockYou). After that, we generated 1010 sorted guesses.

• PCFG: Like in the OMEN case, we used the train-set employed for the training of
our deep generative model to infer the grammar.

• HashCat: We performed a mangling rules-based attack leveraging the train-set
used for the training of our deep generative model as a dictionary (considering only
unique passwords sorted by frequency), and we use PasswordsPro [11] as the set
of rules. We chose the latter based on a suitable number of rules (i.e., 3120) that
allowed us to produce a suitable number of guesses.

• FLA: We trained the largest model described in [85], i.e., an RNN composed of
three LSTM layers of 1000 cells each and two fully connected layers. The training
is carried out on the same train-set used for our model.

• CMU-PGS: In CMU Password Guessability Service (PGS) [23], the passwords are
guessed according to the min-auto configuration [108], where guesses of multiple
tools (i.e., FLA, Hashcat, John The Ripper, PCFG, Markov Model) are combined.
We query the guess-numbers via the web interface and consider passwords requiring
fewer than 1010 guesses. Recommended tools setup and “1class1” have been used.

When we test each of these guessers in the conditional generation, we transform each
template in a regular expression (i.e., replacing the wildcards with the point operator) and
extract all the guesses matching the template in the 1010 generated passwords. Then, we
compute the cardinality of the intersection of the correct guesses with each X ti

v to explicit
the number of the guessed passwords.

6This is due to the higher quality of the encoder network included with the auto-encoder.

32



Templates
class OMEN HashCat

(PasswordPro) PCFG FLA CMU-PGS
(min-auto)

Our CPG
(CWAE)

Common
[1000-1500]

0.4383
(± 0.1835)

0.5563
(± 0.1274)

0.7546
(± 0.092)

0.7936
(± 0.0757)

0.8617
(± 0.0517)

0.8136
(± 0.0641)

Uncommon
[50-150]

0.2744
(± 0.1322)

0.3656
(± 0.1897)

0.5794
(± 0.1987)

0.6365
(± 0.1137)

0.7208
(± 0.1015)

0.8606
(± 0.0686)

Rare
[10-15]

0.1182
(± 0.1272)

0.2007
(± 0.1655)

0.4013
(± 0.2514)

0.3983
(± 0.1827)

0.5102
(± 0.2005)

0.8482
(± 0.1444)

Super-Rare
[1-5]

0.0555
(± 0.1448)

0.0900
(± 0.1700)

0.1527
(± 0.2298)

0.1500
(± 0.2961)

0.2277
(± 0.2763)

0.7722
(± 0.2910)

Table 3.4: Average matched passwords (and relative standard deviation) over the biased
passwords test-set divided into 4 classes.

The mean percentage of guessed passwords for each templates class is reported in
Table 3.4. Coherently with the discussion done in Section 3.2.3, our CPG framework
allows us to produce a large number of biased guesses, and it matched a large portion of
passwords accordingly.

As anticipated, CPG maintains a high match ratio (i.e., > 70%) for each template
class independently of the corresponding passwords’ low probabilities. In contrast, other
guessers are not able to produce such a specific class of passwords. Therefore, they
provide shallow coverage of the rare templates. This is also true for the min-auto attack,
where heterogeneous guesses from multiple tools are combined. For instance, the min-
auto approach would require three orders of magnitude more guesses to match the same
number of passwords as ours in the edge-case of the Super-Rare templates. Interestingly,
given the strong bias imposed during the generation, CPG matches most passwords of
other single guessers also under the common templates case. The second best guesser
turns out to be FLA that matches a comparable number of passwords as ours in the case
of common templates and matches an acceptable number of passwords in the uncommon
and rare classes (i.e., ≥ 40%). Note that we limited our CPG to generate 107 guesses per
template; however, more biased passwords can be sampled in a linear cost.

3.3 Dynamic Password Guessing (DPG) and Passwords
weak locality

In this section, we present our major contribution, i.e., Dynamic Password Guessing. In
Section 3.3.1, we outline the concept of password weak locality. Section 3.3.2 introduces
DPG from theoretical (Section 3.3.2) as well as practical (Section 3.3.2) viewpoints.

3.3.1 Password weak locality

The embedding properties of the latent representation map passwords with similar char-
acteristics close to each other in the latent space. We called this property strong locality,
and we exploited it to generate variants of a chosen pivot password or template (dis-
cussed in Section 3.2.1). In that case, the adjective “strong” highlights the strict semantic
relation among the generated set of passwords. However, the same dynamics enable a
broader form of semantic bounding among passwords. This latter property partially cap-
tures the general features of the entire password distribution. Such features could be
very abstract properties of the distribution, such as the average passwords length and
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(a) myspace (b) hotmail (c) phpbb

Figure 3.3: Password Weak Locality: 2D visualization of the latent points for three
different passwords sets for a generator trained on the RockYou train-set. The red points
represent the latent points corresponding to the passwords in the respective password set
whereas the blue points loosely represent the dense part of the latent space. Please refer
to the color version for better illustration.

character distribution ascribable to password policies. We refer to this observed property
as password weak locality to contrast it with the strong locality.

As a representative example, Figure 3.3 depicts the 2D representation of passwords
from myspace [15], hotmail [9], and phpbb [20] on the latent space learned by a generator.7
We can observe that the passwords coming from the same dataset tend to be concentrated
in the latent space and do not spread abruptly all over the spectrum. The dimensionality
of the fraction of latent space covered by an entire password set (the red parts in Figure 3.3
(a), (b), and (c) clearly depends on the heterogeneity of its passwords. Passwords from
smaller sets (e.g., myspace) are concentrated in restricted and dense zone of the latent
space, whereas passwords from larger sets (e.g., as phpbb) tend to cover a more significant
section while they are still tightly knitted.

In the following sections, we will present evidence of this locality property, and we
will show how to exploit it to improve password guessing.

3.3.2 DPG for covariate shift reduction

First, we present the theoretical motivation behind DPG in Section 3.3.2 followed by its
instantiation in Section 3.3.2.

Theoretical motivation

Probabilistic password guessing tools implicitly or explicitly attempt to capture the data
distribution behind a set of observed passwords, i.e., the train-set. This modeled distribu-
tion is then used to generate new and coherent guesses during a password guessing attack.
A train-set is usually composed of passwords that were previously leaked. By assump-
tion, every password-set leak is characterized by a specific password distribution p∗(x).
When we train the probabilistic model, we implicitly assume p∗(x) to be general enough

7It is important to emphasize that these graphical depictions are obtained by a dimension reduction
algorithm. Hence, they do not depict latent space accurately. So, they merely serve as a representative
illustration. We will verify our assumption empirically later in the Chapter.
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to well-represent the entire class of password distributions. This generality is essentially
due to the fact that the real-word password guessing attacks are indeed performed over
sets of passwords that potentially come from completely different password distributions.
As a matter of fact, we typically do not have any information about the attack-set dis-
tribution. This can indeed be completely different from the one used for model training.
As a representative example, different password policies or users’ predominant languages
can cause the test-set’s distribution to differ from the train-set’s distribution drastically.
This discrepancy in the distribution of the train-set and test-set is a well-known issue in
the domain of machine learning, and it is referred to as covariate shift [102].

As stated above, typically, we do not know anything about the distribution of the
attacked-set. However, once we crack the first password, we can start to observe and
model the attacked distribution. Every new successful guess provides valuable informa-
tion that we can leverage to improve the quality of the attack, i.e., to reduce the covariate
shift. This iterative procedure recalls a Bayesian-like approach since there is continuous
feedback between observations and the probability distribution.

For fully data-driven approaches, a naive solution to incorporate the acquired infor-
mation from successful guesses is to fine-tune the model to change the learned password
distribution. However, prescribed probabilistic models such as FLA directly estimate the
password distribution using a parametric function:

p(x) = p(x; θ), (3.1)

where θ is the set of weights of a neural network. In this case, the only possibility of
modifying the distribution p(x) in a meaningful way is to act on θ by harnessing the
learning process. However, this is not an easy/attractive solution mainly because the
new guessed passwords are potentially inadequate representatives8 and will not force the
model to generalize over the new information. Additionally, the computational cost of
fine-tuning the network is considerable, and the final results cannot be guaranteed due
to the sensitivity of the learning process.

Similar to FLA, our generative model also exploits a neural network as an estimator.
However, its modeled distribution is a joint probability distribution, shown in Eq. 3.2:

p(x) = p(x, z) = p(x | z; θ)p(z), (3.2)

where p(z) is referred to as the latent distribution.
As introduced in Section 2.2.2, when p(z) = ṗ(z) (i.e., prior latent distribution),

p(x | z; θ)p(z) acts as a good approximation of the target data distribution (i.e., the
distribution followed by the train-set). Nevertheless, p(z) can be arbitrarily chosen and
used to indirectly change the probability distribution modeled by the generator. The RHS
of the Eq. 3.2 clearly shows that θ is not the only free parameter affecting the distribution
of the final passwords. Indeed, p(z) is completely independent of the generator, and so
it can be modified arbitrarily without acting on the parameters of the neural network.

This possibility, along with the passwords locality of the latent space, allows us to
correctly and efficiently generalize over the new guessed passwords, leading the pre-trained
network to model a password distribution closer to the guessed ones. It is noteworthy that
this capability of generalizing over the new points is achieved via the weak locality and not
from the neural network itself. The intuition here is that when we change p(z) to
assign more density to a specific guessed password x, we are also increasing

8A very few guessed passwords against a dataset of millions of unknown passwords.
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(a) Target (b) 104 guesses (c) 105 guesses (d) 106 guesses (e) 107 guesses

Figure 3.4: 2D visualization of: (a) the entire hotmail dataset (red-part) mapped on
the latent space learned from the RockYou train-set and (b-e) the latent space in four
progressive attack steps for DPG on the hotmail test-set. The red markers portray the
guessed passwords at each step (i.e., the Zi), whereas the color intensity of the blue
regions depicts the probability assigned from the used latent distribution (i.e., mixture
of Gaussians) to the latent space.

the probability of its neighboring passwords that, due to the weak locality
property, share similar characteristics. This, in turn, makes it possible to highlight
the general features of the guessed passwords (e.g., structure, length, character set, etc.).

(a) myspace (b) hotmail (c) phpbb

Figure 3.5: The performance gain obtained by DPG (with α = 0.15) with respect to
static attack for three different test-sets

Thus, by controlling the latent distribution, we can increase the probabilities of the
zones potentially covered by the passwords coming from the target distribution. We call
this technique Dynamic Password Guessing (DPG). In the case of homogeneous
distribution (e.g., myspace), we can narrow down the solution space around the dense
zones, and avoid exploring the entire latent-space. On the other hand, for passwords sets
sampled from distributions far from the one modeled by the generator, we can focus on
zones of the latent space, which, otherwise, would have been poorly explored. In both
cases, we can reduce the covariate shift and improve the performance of the password
guessing attack.

In a broad sense, DPG can potentially adapt to very peculiar password
distributions; distributions induced from the contexts where no suitable train-
sets can be collected. E.g., passwords created under an unmatched compo-
sition policy or rare/unobserved users’ habits. As long as the generator has
a non-zero probability of generating such rare passwords, the feedback given
from the correct guesses can consistently be used to reweigh the latent distri-
bution and mimic the unknown target password distribution. We will validate
this claim in the next section.
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Figure 3.6: Performance of various password models on three password leaks. For DPG,
we used σ = 0.35 and α = 10%.

Practical implementation

In this section, we cover DPG from a practical viewpoint. Algorithm 3 briefly describes
DPG.

In Algorithm 3, O represents the target set of passwords, Z is the collection of all
the passwords guessed by the generator, and α is defined as the hot-start parameter of
the attack, an element that we describe later in this section. The variable platent in the
pseudo-code, represents the latent distribution from which we sample latent points. The
procedure makeLatentDistribution returns the latent distribution induced from the group
of guessed passwords Zi at step i. Leveraging the maximum-likelihood framework, we
choose such a distribution to maximize the probability of the set of observed passwords
Xi = {G(z) | z ∈ Zi}. This is accomplished by considering a latent distribution p(z | Zi)
conditioned to the set of passwords guessed at each step i. The final password distribution
represented by the generator during DPG is reported in Eq. 3.3.

p(x) = p(x | z; θ)p(z | Zi). (3.3)

As a natural extension of the proximity password generation harnessed in Section 3.2.2,
we choose to represent p(z | Zi) as a finite mixture of isotropic Gaussians. In particular,
the mixture is composed of n Gaussians, where: (1) n is the number of the latent points
in Zi; and (2) for each zj ∈ Zi, a Gaussian is defined as N (zj, σI) with center as zj and
a fixed standard deviation σ.

Algorithm 3: Dynamic Password Guessing (DPG)
Data: Set: O, Int: α

1 i = 0;
2 platent = ṗ(x);
3 Z = {};
4 forall z ∼ platent do
5 x = G(z);
6 xi = G(zi);
7 if x ∈ O then
8 i+ +;
9 Zi = Z = Z ∪ {z};

10 if i ≥ α then
11 platent = makeLatentDistribution(Zi);
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Figure 3.7: Cumulative statistic for a guessing attack over phpbb. The figures report the
password guessed in the first 109 guesses for both static and dynamic.

When the probability of a password, i.e., xj = G(zj), is known, we weight the im-
portance of the jth distribution as P (xj); otherwise a uniform distribution among the
Gaussians is assumed. In the reported experiments, we always used uniform weighting.
Equation 3.4 defines the probability density function of the latent space.

p(z | Zi) =
n∑
j=0

P (G(zj)) · N (z | zj, σI). (3.4)

Every new guessed password x introduces a new Gaussian centered at z to the mix-
ture. Consequently, every new guessed password contributes to changes in the latent
distribution p(z | Zi) by moving the density of the distribution in the zone of the latent
space where it lies. Figure 3.4 visualizes this phenomenon.

In the context of DPG, the GAN generator performs slightly better than CWEA.
For this reason, all the experiments reported in this section are obtained with our GAN
generator trained on the RockYou train-set. Figure 3.5 depicts the performance compar-
ison between a static attack (e.g., PassGAN) and DPG over the three passwords sets.
Adaptively changing the latent distribution allows us to boost the number of guessed
passwords per unit of time. Importantly, this improvement comes without any additional
information or assumption over the attacked passwords set. In addition, the computa-
tional overhead due to the new sampling technique is negligible. The steep improvement
in the performance obtained with DPG supports our view that reducing the covariate
shift is a sound strategy.

The sudden growth in the guessed passwords in DPG (shown in Figure 3.5) is due
to the hot-start or α parameter; in DPG, we use the prior latent distribution until a
predetermined number (α) of passwords has been guessed. After that, we start to use the
conditional latent distribution p(z | Zi). The reason is that if DPG starts with the very
first guessed password, then the latent distribution can be stuck in a small area of the
latent space. However, launching DPG after guessing a sufficient number of passwords
(i.e., after finding a set of uncorrelated latent points in the latent space) gives us the
possibility to match a heterogeneous set of passwords, which correctly localize the dense
zones of the latent space where the attacked passwords are likely to lie.

The final hyper-parameter of our attack is the standard deviation (σ) assigned to every
Gaussian in the mixture. Under the Kernel Density Estimation (KDE) perspective, σ
represents the bandwidth of our Gaussian kernels. In the guessing scenario, instead,
this value defines how far we want to sample from the clusters of observed passwords.
A larger value of σ allows us to be less biased and explore a wider zone around the
guessed passwords; whereas a smaller value enables a more focused inspection of the
latter. Appendix A.3 better explicates the effect of σ and α on DPG.
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LinkedIn Guess o2linkedln w2linkedln ydlinkedln linked6in6 j*linkedln linked!in. wslinked1n linkedgcin linked6in2 lslinkedln
FLA G 8.2 · 1015 6.3 · 1015 3.6 · 1015 3.6 · 1015 3.0 · 1015 2.8 · 1015 2.6 · 1015 2.5 · 1015 1.4 · 1015 1.4 · 1015

DPG G 3.4 · 109 3.1 · 109 3.6 · 109 4.3 · 109 4.3 · 109 4.8 · 109 4.4 · 109 2.1 · 109 5.6 · 109 4.5 · 109

Youku Guess guoxuange2 xuhaidong7 caoxia521. woailc521. woyijiu521 woaicyhx0 xuhaidong1 woaifiy520 yishwng521 woshiqujie
FLA G 2.5 · 1015 1.7 · 1015 1.3 · 1015 9.6 · 1014 7.3 · 1014 6.5 · 1014 6.4 · 1014 6.4 · 1014 5.3 · 1014 5.1 · 1014

DPG G 3.2 · 109 3.9 · 109 3.5 · 109 3.7 · 109 3.5 · 109 3.3 · 109 3.9 · 109 3.8 · 109 3.7 · 109 3.0 · 109

Zomato Guess z0mato2016 z0mato2015 zomato9a00 2defd0 zomat_997 3aee0f zomato_496 zomato_443 zomato.921 zomato_591
FLA G 1.9 · 1014 1.5 · 1014 1.2 · 1014 7.3 · 1013 4.0 · 1013 3.8 · 1013 3.5 · 1013 3.4 · 1013 3.2 · 1013 3.1 · 1013

DPG G 4.5 · 108 7.7 · 108 7.8 · 108 5.1 · 108 1.0 · 109 8.1 · 108 8.0 · 108 1.1 · 109 1.1 · 109 1.1 · 109

phpbb Guess phpbb3.14 phpbb0472 phpbb4s2 phpbb7825 phpbbid12 phpbb8424 phpbb3546 phpbb4291 phpbb8686 phpbb9801
FLA G 2.1 · 1014 2.1 · 1013 2.0 · 1013 1.3 · 1013 1.0 · 1013 9.9 · 1012 8.0 · 1012 7.2 · 1012 5.5 · 1012 5.4 · 1012

DPG G 2.4 · 108 6.5 · 108 4.8 · 108 4.2 · 108 1.2 · 108 1.1 · 108 1.3 · 108 1.0 · 108 1.4 · 108 2.0 · 108

Table 3.5: Example of peculiar passwords guessed via DPG for four password leaks. The
required numbers of guesses (i.e., G) are reported for both FLA and our DPG. These
passwords have been obtained by ordering all the guessed passwords of the DPG attacks
in decreasing order based on the guess-number assigned from FLA . The table reports
the first 10 entries of the list for each leak.

In Figure 3.6, we report a direct comparison of the proposed DPG against state-of-the-
art password models for three password leaks. For the comparison, we used the same tools
and configurations described in Section 3.2.4.9 In the figure, DPG refers to the dynamic
guessing attack, whereas SPG to the static one. min-auto is obtained by combining the
guesses of FLA, Hashcat, OMEN, and PCFG. min-auto+DPG is then obtained by adding
DPG to the min-auto ensemble. Figure 3.6 (a) reports the results for the LinkedIn leak.
Here, the dynamic adaptation allows us to guess up to 10% more passwords then the
static approach. However, it cannot directly match the performance of FLA and PCFG
in this general case. Nevertheless, our models behave better than mangling rules and the
Markov model. Given the different nature of the dynamic guessing strategy, combining
DPG with min-auto permits us to guess more passwords. We will better motivate this
phenomenon in the next section.

Consistently better results are observed as soon as we consider leaks that exhibit
peculiar biases in their password distributions. Figure 3.6 (b) reports the results for the
leak Youku [13, 5] - a Chinese video hosting service. In this case, the inherent distribution
shifts induced by a different class of users causes a substantial covariate shift phenomenon.
Here, the dynamic adaptation allows us to guess more passwords than the other tools;
DPG improves guess after guess, each time evolving and eventually surpassing the min-
auto configuration obtained by combining all other models.

Even more interesting results can be observed when we consider leaks that introduce
heavier biases. Figure 3.6 (c) reports the results for the Zomato [26, 25] leak. This leak
is an extreme case since ∼ 40% of its content includes random tokens of six alphanumeric
characters. That creates a sharply segmented bimodal distribution that can be detected
and efficiently captured by DPG. In this instance, the dynamic adaptation of the latent
space allows us to guess up to ∼ 5 times more passwords than the static attack (i.e., SPG),
allowing our model to match more than 50% of the set in less than 109 iterations. On
the other hand, static approaches, including min-auto, cannot match the performance of
DPG in this extreme case. Of note, adding DPG to the ensemble of min-auto (i.e., min-
auto+DPG) allows us to guess ∼ 70% of the set.

The last two examples highlight the ability of DPG to adapt to the target password
distribution. However, the result of the LinkedIn leak tells us that the dynamic attack

9For the min-auto, we do not use CMU-PGS [23] directly given their limits on the number of queries
allowed and the cardinality of the tested sets.
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cannot directly match the performance of state-of-the-art solutions in case there is no
evident covariate shift. In the next section, we will show that the DPG algorithm is
indeed useful also in such cases, as it soundly permits to guess peculiar passwords of the
attacked distribution that would be otherwise ignored.

The impact of the dynamic adaptation

In this section, we clarify the effect of the dynamic latent adaptation over the password
distribution originally modeled from the deep generative model. To this end, we compare
the probability of the guessed passwords according to different password distributions,
namely, (1) the distribution of the train-set and (2) the distribution of the attacked-set of
passwords. To soundly represent and generalize such probability distributions, we rely on
FLA [85] as an explicit password mass estimator. We train two instances of FLA on the
two passwords sets and use the trained models to infer probabilities over the password
guessed during the dynamic and static attacks.

Figure 3.7 summarizes our measurements for the phpbb password leak (i.e., the at-
tacked distribution). Here, the cumulative probability of the guessed password is reported
for both dynamic and static attacks. In particular, Figure 3.7 (a) describes the proba-
bilities assigned from the probability distribution of the train-set (i.e., the FLA instance
trained on RockYou), whereas Figure 3.7 (b) reports the same data points, but com-
puted according to the probability distribution of the attacked-set (i.e., the FLA instance
trained on phpbb).

When we perform DPG, we expect the password distribution represented from the
deep generative model to gradually diverge from the one learned at training time. Fig-
ure 3.7 (a) graphically describes this phenomenon; here, we note how the latent adap-
tation is causing the model to guess passwords that have a lower probability according
to the train-set distribution. More interestingly, whereas the discrepancy between the
modeled and the train distribution grows, the discrepancy sharply reduces for the at-
tacked distribution. Figure 3.7 (b) explicates the convergence process towards the latter.
Furthermore, this figure gives us a piece of more valuable information. It shows that the
DPG guesses passwords that have high-probability according to the attacked distribution,
i.e., passwords associated with a higher number of users in the attacked service. Sudden
jumps in the latter cumulative probability curve, indeed, can be attributed to the event of
guessing such high-probability passwords. To note, once we guess a first high-probability
password, we start sampling new guesses around it, guessing more high-probability pass-
words consequently and making those jumps even steeper.

Relying on the same example, more practical results can be appreciated when we con-
sider the adversarial interpretation. Figure 3.7 (c) reports the cumulative guess-number
graph for the static and dynamic attacks measured using the FLA instance trained on
RockYou (i.e., the train-set of our model). The estimated cumulative guess-number of
the dynamic attack is two magnitudes larger than that of the static attack. Consid-
ering FLA’s accuracy [56], this result confirms that DPG can induce the generation of
passwords that have low belief according to the train-set distribution. Moreover, this ex-
ample shows how DPG can induce the earlier generation of passwords that would require
multiple magnitude more guesses to be produced for equivalent state-of-the-art password
guessers, such as FLA. In the reported example, we generate 109 guesses, matching several
passwords that would require up to 1014 iterations from FLA (and others; see Appendix
A.4). Table 3.5 reports some of those.
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We replicated the same analysis on different password leaks, observing the same gen-
eral behavior. We reported high-guess-number passwords for those other sets as additional
examples in Table 3.5. The listed guesses in the table give a clear intuition over the na-
ture of such peculiar passwords. These are induced from unique biases of the attacked
distribution. More evident examples are the passwords based on the name of web services
that dominate the table. These are indeed the prime examples of peculiar passwords, as
they univocally bound to the specific password distribution. More heterogeneous guesses
can be observed in the row dedicated to the Youku leak. Here, DPG captured passwords
composed of peculiar dictionary entries that are not well represented in the train-set of
the model (i.e., RockYou).
Additionally, the guess-numbers reported in Table 3.5 indicate that these are passwords
that are considered secure by state-of-the-art tools, but that can be easily guessed through
DPG. Indeed, our experiments show that DPG allows us to guess passwords that
are unique to the attacked password set. Such passwords, given their arbitrary
distance from the general password distribution, can be soundly guessed only
by leveraging additional sources of information over the attacked password
space. DPG distills this necessary knowledge directly through an unsuper-
vised interaction with the attacked set. This allows the guessing attack to
automatically focus on unique modalities of the target password distribution
that would otherwise be under-represented or ignored.

3.4 Conclusion
In conclusion, in this chapter, we demonstrated how deep learning can induce a complete
paradigm shift in the task of password guessing. We demonstrated that locality princi-
ples imposed by the latent representation of deep generative models open new practical
and theoretical possibilities in the field. Based on these properties, we discussed two
new password guessing frameworks, i.e., CPG and DPG. The CPG framework enables
the conditional generation of arbitrarily biased passwords. We empirically demonstrated
its inherent advantages with respect to well-established state-of-the-art approaches. In
addition, the DPG framework demonstrates that the knowledge from freshly guessed pass-
words can be successfully generalized and used to mimic the target password distribution.
More importantly, this guessing technique allows the generation of passwords that are
peculiar for the attacked password distribution, and that would require an impractical
effort to be guessed by other guessers.
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Chapter 4

Reducing Bias in Modeling Real-world
Guessing Attacks

More than three decades of active research provided us with powerful password models
[89, 114, 85, 94]. However, very little progress has been made to systematically model
real-world attackers [108, 76]. Indeed, professional password crackers rarely harness fully-
automated approaches developed in academia. They rely on more pragmatic guessing
techniques that present stronger inductive biases. In offline attacks, professionals use
high-throughput and flexible techniques such as dictionary attacks with mangling
rules [2]. Moreover, they rely on highly tuned setups that result from profound expertise
that is refined over years of practical experience [108, 76].

Reproducing or modeling these proprietary attack strategies is very difficult, and the
end results rarely mimic actual real-world threats [108]. This failure often results in an
overestimation of password security that sways studies’ conclusions and further jeopardize
password-based systems.

In this chapter, we describe a new generation of dictionary attacks that more closely
resembles real-world attackers’ abilities and guessing strategies. In the process, we de-
vise two complementary techniques that aim to systematically mimic different attackers’
behaviors:

(1) By rethinking the underlying framework, we devise the Adaptive Mangling
Rules attack. This artificially simulates the optimal configurations harnessed by expert
adversaries by explicitly handling the conditional nature of mangling rules. Here,
during the attack, each word from the dictionary is associated with a dedicated and pos-
sible unique rules-set that is decided at runtime via a deep neural network. Using this
technique, we confirmed that standard attacks, based on off-the-shelf dictionaries and
rules-sets, are sub-optimal and can be easily compressed up to an order of magnitude in
the number of guesses.Furthermore, we are the first to explicitly model the strong rela-
tionship that bounds mangling rules and dictionary words, demonstrating its connection
with optimal configurations.

(2) Our second contribution introduces dynamic guessing strategies within dic-
tionary attacks [94]. Real-world adversaries perform their guessing attacks incorporating
prior knowledge on the targets and dynamically adjusting their guesses during the at-
tack. In doing so, professionals seek to optimize their configurations and maximize the
number of compromised passwords. Unfortunately, automatic guessing techniques fail to
model this adversarial behavior. Instead, we demonstrate that dynamic guessing strate-
gies can be enabled in dictionary attacks and substantially improve the guessing attack’s
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effectiveness while requiring no prior optimization. More prominently, our technique
makes dictionary attacks consistently more resilient to misconfigurations by promoting
the completeness of the wordlist at runtime.

Finally, we combine these methodologies and introduce the Adaptive Dynamic Man-
gling rules attack (AdaMs). We show that it automatically causes the guessing strategy to
progress toward an optimal one, regardless of the initial attack setup. The AdaMs attack
consistently reduces the overestimation induced by inexpert configurations in dictionary
attacks, enabling more robust and sound password strength estimates.

4.1 Related work and preliminaries
In this Section, we start by covering previous relevant works in the dictionary attacks
domain. Then, we define the threat model in Section 4.1.2.

4.1.1 Related Works

Although dictionary attacks are ubiquitous in password security research [45, 54, 55, 85,
73], little effort has been spent studying them. This Section covers the most relevant
contributions.

Ur et al. [108] firstly made explicit the large performance gap between optimized
and stock configurations for mangling rules attacks. In their work, Ur et al. recruited
professional figures in password recovery and compared their performance against off-
the-shelf parametric/nonparametric approaches in different guessing scenarios. Here,
professional attackers have been shown capable of vastly outperform any password model.
This thanks to custom dictionaries, proprietary mangling rules, and the ability to create
tailored rules for the attacked set of passwords (referred to as freestyle rules). Finally,
the authors show that the performance gap between professional and non-professional
attacks can be reduced by combining guesses of multiple password models.

More recently, Liu et al. [76] produced a set of tools that can be used to optimize
the configuration of dictionaries attacks. These solutions extend previous approaches
[4, 10], making them faster. Their core contribution is an algorithm capable of in-
verting almost all mangling rules; that is, given a rule r and password to evaluate p,
the inversion-rule function produces as output a regex that matches all the preimages
of r(p) i.e., all the dictionary entries that transformed by r would produce p. At the
cost of an initial pre-computation phase, following this approach, it is possible to count
dictionary-words/mangling-rules hits on an attacked set without enumerating all the pos-
sible guesses. Liu et al. used the method to optimize the ordering of mangling rules in
a rules-set by sorting them in decreasing hits-count order.1 In doing so, the authors ob-
served that default rules-sets follow an optimal ordering only rarely.
Basing on the same general approach, they speedup the automatic generation of man-
gling rules [4] and augment dictionaries by adding missing words in consideration of
known attacked sets [10]. Similarly, they derive an approximate guess-number calculator
for rule-major order attacks.

1Primarily, for rule-major order setups (e.g., JtR).
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Figure 4.1: Distribution of hits per rule for 4 different input dictionaries for the same
attacked-set i.e., animoto. Within a plot, each bar depicts the normalized number of hits
for one of the 77 mangling rules in best64. We performed the attack with Hashcat.

4.1.2 Threat Model

In our study, we primarily model the case of trawling, offline attacks. Here, an adversary
aims at recovering a set of passwords X (also referred to as attacked-set) coming from
an arbitrary password distribution P (x) by performing a guessing attack. To better
describe both the current trend in password storing techniques [98, 66, 97] and real-world
attackers’ goals [32], we assume a rational attacker who is bound to produce a limited
number of guesses. More precisely, this attacker aims at maximizing the number of
guessed passwords in X given a predefined budget i.e., a maximal number of guesses the
attacker is willing to perform on X. Hereafter, we model this strategy under the form of
β-success-rate [38, 33]:

sβ(X) =

β∑
i=1

P (xi). (4.1)

Experimental setup In our construction, we do not impose any limitation on the
nature of P (x) nor the attacker’s a priori knowledge. However, in our experiments,
we consider a weak attacker who does not retain any initial knowledge of the target
distribution i.e., who cannot provide an optimal attack configuration for X before the
attack. This last assumption makes a better description of the use-case of automatic
guessing approaches currently used in password security studies.

In the attacks reported in the Chapter, we always sort the words in the dictionary
according to their frequency. The password leaks that we use through the Chapter are
listed in Appendix B.1.

4.2 The Adaptive Mangling Rules attack
In this Section, we introduce the first core block of our password model: the Adaptive
Mangling Rules. We start in Section 4.2.1, where we make explicit the conditional nature
of mangling rules while discussing its connection with optimal attack configurations.
In Section 4.2.2, we model the functional relationship connecting mangling rules and
dictionary words via a deep neural network. Finally, leveraging the introduced tools, we
establish the Adaptive Mangling Rules attack in Section 4.2.3.

Motivation: Dictionary attacks are highly sensitive to their configuration; while para-
metric approaches tend to be more robust to train-sets and hyper-parameters choices,
the performance of dictionary attacks crucially depends on the selected dictionary and
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rules-set [108, 76]. As evidenced by Ur et al. [108], real-world attackers rely on extremely
optimized configurations. Here, dictionaries and mangling rules are jointly created over
time through practical experience [2], harnessing a domain knowledge and expertise that
is mostly unknown to the academic community [76]. Very often, password security studies
rely on publicly available dictionaries and rules-sets that are not as effective as advanced
configurations adopted by professionals. Unavoidably, this leads to a constant overesti-
mation of password strength that skews the conclusions of studies and reactive analysis.

Hereafter, we show that the domain-knowledge of professional attackers can be suit-
ably approximated with a Deep Neural Network. Given that, we devise a new dictio-
nary attack that autonomously promotes functional interaction between the dictionary
and the rules-set, implicitly simulating the precision of real-world attackers’ configura-
tions.
We start by presenting the intuition behind our technique. Formalization and methodol-
ogy are reported later.

4.2.1 The conditional nature of mangling rules

As introduced in Section 2.1.2, dictionary attacks describe password distributions by fac-
torizing guesses into two main components—a dictionary word w and a transformation
rule r. Here, the word w acts as a semantic base, whereas r is a syntactic transfor-
mation that aims at providing a suitable guess through the manipulation of w. Generally
speaking, such factorized representation can be thought of as an approximation of the typ-
ical users’ composition behavior: starting from a plain word or phrase, users manipulate
it by performing operations such as leeting, appending characters or concatenation.

At configuration time, such transformations are abstracted and collected in arbitrary
large rules-sets under the form of mangling rules. Then, during the attack, guesses are
reproduced by exhaustively applying the collected rules on all the words in the dictionary.
In this generation process, rules are applied unconditionally on all the words, assuming
that the abstracted syntactic transformations equally interact with all the elements in
the dictionary. However, arguably, users do not follow the same simplistic model in their
password composition process. Users first select words and then mangling transformations
conditioned by those words. That is, mangling transformations are subjective and depend
on the base words on which those are applied. For instance, users may prefer to append
digits at the end of a name (e.g., “jimmy” to “jimmy91 ”), repeat short words rather
than long ones (e.g., “why” to “whywhywhy”) or capitalize certain strings over others
(e.g., “cookie” to “COOKIE ”).

Pragmatically, we can think of each mangling rule as a function that is valid on an
arbitrary small subset of the dictionary space, strictly defined by the users’ composition
habits. Thus, applying a mangling rule on words outside this domain unavoidably brings
it to produce guesses that have only a negligible probability of inducing hits during the
guessing attack (i.e., that do not replicate users’ behavior). This concept is captured in
Figure 5.3, where four panels depict the hits distribution of the rules-set “best64 ” for four
different dictionaries. Each dictionary represents a specific subset of the dictionary space
that has been obtained by filtering out suitable strings from the RockYou leak; namely,
these are passwords composed of: digits (Figure 4.1(a)), capital letters (Figure 4.1(b)),
passwords of length 5 (Figure 4.1(c)), and passwords of length 10 (Figure 4.1(d)). The
four histograms show how mangling rules selectively and heterogeneously interact with the
underlying dictionaries. Rules that produce many hits for a specific dictionary inevitably
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perform very poorly with the others.
Eventually, the conditional nature of mangling rules has a critical impact in defin-

ing the effectiveness of a dictionary attack. To reach optimal performance, an attacker
has to resort on a combination of dictionary and rules-set that mutually maximizes the
conditional activation of mangling rules. In this direction, we can see highly optimized
configurations used by experts as pairs of dictionaries and rules-sets that organically sup-
port each other in the guesses generation process.2 On the other hand, configurations
based on arbitrary chosen rule-sets and dictionaries may not be fully compatible and, as
we show later in the Chapter, generate a large number of low-quality guesses. Unavoid-
ably, this phenomenon makes adversary models based on mangling rules inaccurate, and
induce an overestimation of password strength [108].

Next, we show how modeling the conditional nature of mangling rules allows us to
cast dictionary attacks that are inherently more resilient to poor configurations.

4.2.2 A Model of Rule/Word Compatibility

We introduce the notion of compatibility that refers to the functional relation among
dictionary words and mangling rules discussed in the previous Section. The compati-
bility can be thought of as a continuous value defined between a mangling rule r and
a dictionary-word w that, intuitively, measures the utility of applying the rule r on w.
More formally, we model compatibility as a function:

π : R×W→ [0, 1],

where R and W are the rule-space (i.e., the set of all the suitable transformations r : W→
W) and the dictionary-space (i.e., the set of all possible dictionary words), respectively.
Values of π(w, r) close to 1 indicate that the transformation induced by r is well-defined
on w and would lead to a valuable guess. Values close to 0, instead, indicate that users
would not apply r over w, i.e., guesses will likely fall outside the dense zone of the
password distribution.

This formalization of compatibility function also leads to a straightforward probabilis-
tic interpretation that better supports the learning process through a neural network.
Indeed, we can think of π as a probability function over the event:

r(w) ∈ X,

where X is an abstraction of the attacked set of passwords. More precisely, we have that:

∀w∈W, r∈R
(
π(r, w) = P (r(w) ∈ X)

)
.

In other words, P (r(w) ∈ X) is the probability of guessing an element of X by trying the
guess g = r(w) produced by the application of r over w.
Furthermore, such a probability can be seen as an unnormalized version of the password
distribution, creating a direct link to probabilistic password models [85, 89]. Indeed, the

2This has also been indirectly observed by Ur et al. in their ablation study on pro’s guessing strategy,
where the greatest improvement was achieved with a proprietary dictionary in tandem with a proprietary
rules-set.
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compatibility function can be interpreted as an unnormalized version of the password
generating function P (x). That is:

∀w∈W, r∈R〈
π(r, w)

Z
= P (r(w))〉

for an intractable partition function Z. This follows from the observation that:

∀gi, gj ∈ X : P (gi) ≥ P (gj)⇔ P (ri(xi) ∈ X) ≥ P (rj(xj) ∈ X)
with : gi = ri(xi) and gj = rj(xj),

(4.2)

where X is the key-space. However, here, the password distribution is defined over the
factorized domain R×W rather than directly over the key-space.
This factorized form offers us practical advantages over the classic formulation. More in
detail, by choosing and fixing a specific rule-space R (i.e., a rules-set), we can reshape
the compatibility function as:

πR : W→ [0, 1]|R|. (4.3)

This version of the compatibility function takes as input a dictionary-word and outputs
a compatibility value for each rule in the chosen rule-set with a single inference. This
form is concretely more computational convenient and will be used to model the neural
approximation of the compatibility function.

Next, we show how the compatibility function can be inferred from raw data using a
deep neural network.

Learning the compatibility function

As stated before, the probabilistic interpretation of the compatibility function makes it
possible to learn π using a neural network. Indeed, the probability P (r(w) ∈ X), in any
form, can be described through a binary classification: for each pair word/rule (w, r),
we have to predict one of two possible outcomes: g ∈ X or g 6∈ X, where g = r(w). In
solving this classification task, we can train a neural network in a logistic regression and
obtain a good approximation of the probability P (r(w) ∈ X).

In the same way, the reshaped formulation of π (i.e., Eq. 4.3) describes a multi-label
classification. In a multi-label classification, each input participates simultaneously to
multiple binary classifications i.e., an input is associated with multiple classes at the
same time. More formally, having a fixed number of possible classes n, each data point
is mapped to a binary vector in {0, 1}n. In our case, n = |R| and each bit in the binary
vector corresponds to the outcome of the event rj(w) ∈ X for a rule rj ∈ R.

To train a model, then, we have to resort to a supervised learning approach. We have
to create a suitable training-set composed of pairs (input,label) that the neural network
can model during the training. Under our construction, we can easily produce such
suitable labels by performing a mangling rules attack. In particular, fixed a rules-set R,
we collect pairs (wi, yi), where wi is the input to our model (i.e., a dictionary-word) and
yi is the label vector associated with wi. As explicated before, the label yi asserts the
membership of the list of guesses [r1(wi), r2(wi), . . . , r|R|(wi)] over a hypothetical target
set of passwords X i.e., :

yi = [r1(wi) ∈ X, r2(wi) ∈ X, . . . , r|R|(wi) ∈ X] (4.4)

To collect labels, then, we have to concertize X by choosing a representative set of pass-
words. Intuitively, such a set should be sufficiently large and diverse since it describes
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Name Cardinality Brief Description

PasswordPro 3120 Manually produced.

generated 14728 Automatically generated.

generated2 65117 Automatically generated.

Table 4.1: Used Hashcat ’s mangling rules sets.

the entire key-space. Hereafter, we refer to this set as XA. This is the set of passwords
we attack during the process of collecting labels.
In the same way, we have to choose another set of strings W that represents and general-
izes the dictionary-space. This is used as input to the neural network during the training
process, and as the input dictionary during the simulated guessing attack. Details on the
adopted set are given at the end of the section.

Finally, given XA andW , and chosen a rules-space R, we construct the set of labels by
simulating a guessing attack; that is, for each entry wi in the dictionaryW , we collect the
label vector yi (E.q. 4.4). In doing so, we used a modified version of Hashcat described
in Appendix B.6. Alternatively, the technique proposed in [76] can be used to speedup
the labels collection.
Unlike the actual guessing attack, in the process, we do not remove passwords from XA

when those are guessed correctly; that is, the same password can be guessed multiple
times by different combinations of rules and words. This is necessary to correctly model
the functional compatibility. In the same way, we do not consider the identity mangling
rule (i.e., ‘:’) in the construction of the training set. When it occurs, we remove it from
the rules set. To the same end, we do not consider hits caused by conditional identity
transformations i.e., r(w) = w.

Training set configuration The creation of a training set entails the proper selection
of the sets XA and W as well as the rules-set R. Arguably, the most critical choice is the
set XA, as this is the ground-truth on which we base the approximation of the compati-
bility function. In our study, we select XA to be the password leak discovered by 4iQ in
the Dark Web [1]. We completely anonymized all entries by removing users’ information,
and obtained a set of ∼ 4 · 108 of unique passwords. We use this set as XA within our
models. Similarly, we wantW to be a good description of the dictionary-space. However,
in this case, we exploit the generalization capability of the neural network that can au-
tomatically infer a general description of the input space from a relatively small training
set. In our experiments, we use the LinkedIn leak as W .
Finally, we train three neural networks that learn the compatibility function for three
different rules-sets; namely PasswordPro, generated and generated2. Those sets are pro-
vided with the Hashcat software and widely studied in previous works [76, 94, 85]. Table
4.1 lists them along with some additional information.

Eventually, the labels we collect in the guessing process are extremely sparse. In our
experiments, more than 95% of the guesses are a miss, causing our training-set to be
extremely unbalanced towards the negative class.

Model definition and training We construct our model over a residual structure
[61] primarily composed of mono-dimensional convolution layers. Here, input strings are
first embedded at character-level via a linear transformation; then, a series of residual
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blocks are sequentially applied to extract a global representation for dictionary words.
Finally, such representations are mapped into the label-space by means of a single, linear
layer that performs the classification task. This architecture is trained in a multi-label
classification; each output of the final dense layer is squashed in the interval [0, 1] via the
logit function, and binary cross entropy is applied to each probability separately. The
network’s loss is then obtained by summing up all the cross-entropies of the |R| classes.

As mentioned in the previous Section, our training-set is extremely unbalanced to-
ward the negative class; that is, the vast majority of the ground-truth labels assigned
to a training instance are negative. Additionally, a similar disproportion appears in the
distribution per rule. Typically, we have many rules that count only a few positive exam-
ples, whereas others have orders of magnitude more hits. In our framework, we alleviate
the negative effects of those disproportions by inductive bias. In particular, we achieve
it by considering a focal regulation in our loss function [75].

Originally developed for object detection tasks in which there is a strong imbalance
between foreground and background classes, we adopt focal regulation to account for
sparse and underrepresented labels when learning the compatibility function. This focal
loss is mainly characterized by a modulating factor γ that dynamically reduces the im-
portance of well-classified instances in the computation of the loss function, allowing the
model to focus on hard examples (e.g., underrepresented rules). More formally, the form
of regularized binary cross entropy that we adopt is defined as:

FL(pj, yj) =

{
−(1− α)(1− pj)γ log(pj) if yj = 1

αpγj log(1− pj) if yj = 0
,

where pj is the probability assigned by the model to the j’th class, and yj is the ground-
truth label (i.e., 1/hit and 0/miss). The parameter α in the equation allows us to declare
an a priori importance factor to the negative class. We use that to down-weighting the
correct predictions of the negative class in the loss function that would be dominant
otherwise. In our setup, we dynamically select α based on the distribution of the hits
observed in the training set. In particular, we choose α= p̄

(1−p̄) , where p̄ is the ratio of
positive labels (i.e., hits/guesses) in the dataset. Differently, we fix γ=2 as we found this
value to be optimal in our experiments.
Summing up, our loss function is defined as:

Lf = Ex,y
|R|∑
j=1

FL(sigmoid(f(x)j), yj)

where f are the logits of the neural network. We train the model using Adam stochastic
gradient descent [68] until an early-stopping-criteria based on the AUC of a validation
set is reached.

Maintaining the same general architecture, we train different networks with different
sizes. In our experiments, we noticed that large networks provide a better approximation
of the compatibility function, although small networks can be used to reduce the com-
putational cost with a limited loss in utility. We report the results only for our biggest
networks.

We implemented our framework on TensorFlow ; the models have been trained on a
NVIDIA DGX-2 machine. A complete description of the architectures employed is given
in Appendix B.2.
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Figure 4.2: Two-dimensional visualization of the dictionary-space representation learned
from a model trained on the rule-set best64 and LinkedIn. The visualization is obtained
by projection into a two-dimensional space (the output of the last residual block via the
T-SNE algorithm). Reported colors represent the rules activated from the corresponding
dictionary-word. Those are obtained by mapping the label-space to a three-dimensional
space via T-SNE algorithm. Successively, the latter is mapped into the RGB domain,
achieving visible colors.

Ultimately, we obtain three different neural networks: one for each rule-set reported
in Table 4.1. Summing up, each neural network is an approximation of the compatibility
function πR for the respective rules-set R that is capable of assigning a compatibility
score to each rule in |R| with a single network inference i.e., Eq. 4.3. The suitability of
these neural approximations will be proven later in the Chapter.

Visualizing the compatibility function The dictionary-space representation learned
from the neural net during the training provides a valid intuition over the compatibility
concept formulated earlier. Indeed, just visualizing it, we can make explicit many of the
core assumptions we used to build Section 4.2.1.

Figure 4.2 reports a two-dimensional depiction of such dictionary-space representation
obtained using a small set of strings sampled from the RockYou password leak. In the
figure, every point represents a dictionary-word. Each point’s color indicates which rules
are activated from the corresponding string in consideration of XA. These colors are
arranged so that similar colors map to sets of active rules with a large intersection.
As shown in the figure, the representation learned from the model organizes dictionary-
words that activate the same/similar set of rules close to each other in the space, making
explicit sets of clusters that partition the dictionary-space. Intuitively, each of these
clusters describes a semantic partition of the dictionary-space, dedicated to activating
just a specific subset of mangling rules. Going back to the intuition of Section 4.2.1, such
clusters can be seen as the activation domains of the corresponding mangling rules.
Furthermore, the semantic segmentation phenomenon can also be explained by observing
samples from the various clusters. These are reported enclosed by dashed rectangles in
Figure 4.2.1. In general, in the representation learned by the model, larger clusters group
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Figure 4.3: Comparison between adaptive and classic mangling rules on four combination
password leaks (dictionary/attacked-set) using the rules-set PasswordPro. β=0.5 is used
for the adaptive case.

macro classes of dictionary-words, such as purely numeric or purely alphabetic strings.3.
Smaller clusters, instead, tend to bound more specific patterns. For example, clusters
on the picture’s bottom right indicate how the representation binds words representing
first names. It is important to note that no semantic features are given to the model.
The model learns this semantic relation solely from dictionary-words’ functional meaning;
that is, two strings are “similar ” as they activate the same rules.

Additional approaches To improve the performance of our method, we further in-
vestigated domain-specific constructions for multi-label classification. In particular, we
tested label embedding techniques. Those are approaches that aim at modeling, im-
plicitly, the correlation among labels. However, although unconditional dependence is
evident in the modeled domain, we found no concrete advantage in directly considering it
during the training. In the same direction, we investigated more sophisticated embedding
techniques, where labels and dictionary-words were jointly mapped to the same latent
space [119], yet achieving similar performance.

Additionally, we tested implementations based on transformer networks [109], ob-
taining no substantial improvement. We attribute such a result to the lack of dominant
long-term relationships among characters composing dictionary-words. In such a domain,
we believe convolutional filters to be fully capable of capturing characters’ interactions.
Furthermore, convolutional layers are significantly more efficient than the multi-head
attention mechanism used by transformer networks.

4.2.3 Adaptive Mangling Rules

As motivated in Section 4.2.2, each word in the dictionary interacts just with a limited
number of mangling transformations that are conditionally defined by users’ composi-
tion habits. While modern rules-sets can contain more than ten thousand entries, each
dictionary-word w will interact only with a small subset of compatible rules, say Rw.
As stated before, optimized configurations compose over pairs of dictionaries and rule-sets
that have been created to mutually support each other. This is achieved by implicitly
maximizing the average cardinality of the compatible set of rules Rw for each dictionary-
word w in the dictionary.

3As easily predictable, the mangling rules that activate these macro classes of dictionary-words tend
to not overlap.
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In doing so, advanced attackers rely on domain knowledge and intuition to create
optimized configurations. But, thanks to the explicit form of the compatibility function,
it is possible to simulate their expertise. The intuition is that, given a dictionary-word w,
we can infer the compatible rules-set Rw (i.e., the set of rules that interact well with
w) according to the compatibility scores assigned by the neural approximation of π.
More formally, given π for the rules-set R and a dictionary-word w, we can determine
the compatible rules-set for w by thresholding the compatibility values assigned by the
neural network to the rules in R:

Rw ≈ Rβ
w = {r | r ∈ R ∧ π(w, r) > (1− β)}, (4.5)

where β ∈ (0, 1] is a threshold parameter whose effect will be discussed later.
At this point, we simulate high-quality configuration attacks by ensuring dictionary-

words does not interact with rules outside its compatible rules-set Rβ
w. Algorithm 4

implements this strategy by following a word-major order in the generation of guesses.
Every dictionary-word is limited to interact with the subset of compatible rules Rβ

w that is
decided by the neural net. Intuitively, this is equivalent to assigning and applying
a dedicated (and possibly unique) rules-set to each word in the dictionary.
Note that, the selection of the compatible rules-set is performed at runtime, during the
attack, and does not require any pre-computation. We call this novel guessing strategy
Adaptive Mangling Rules, since the rule-set is continuously adapted during the attack
to better assist the selected dictionary.

The efficacy of adaptive mangling rules over the standard attack is shown in Fig-
ure 4.3, where multiple examples are reported. The adaptive mangling rules reduce the
number of produced guesses while maintaining the hits count mostly unchanged. In our
experiments, the adaptive approach induces compatible rules-sets that, on average, are
an order of magnitude smaller than the complete rules-set. Typically, for β=0.5, only
∼ 10%/15% of the rules are conditionally applied to the dictionary-words. Considering
the percentage of guessed passwords for adaptive and non-adaptive attacks, this means
that approximately 90% of guesses are wasted during classic, unoptimized mangling rules
attacks. Figure 4.4 further reports the distribution of selected rules during the adap-
tive attack of Figure 4.3(a). It emphasizes how mangling rules heterogeneously interact
with the underlying dictionary. Although very few rules interact well with all the words
(e.g., selection frequency is > 70%), most of the mangling rules participate only in rare
events.

Further empirical validation for the adaptive mangling rules will be given later in
Section 4.4.

The Attack Budget Unlike standard dictionary attacks, whose effectiveness solely
depends on the initial configuration, adaptive mangling rules can be controlled by an

Algorithm 4: Adaptive mangling rules attack.
Data: dictonary D, rules-set R, budget β, neural net πR

1 forall w ∈ D do
2 Rβ

w = {r|πR(w)r > (1− β)};
3 forall r ∈ Rβ

w do
4 g = r(w);
5 issue g;
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Figure 4.4: Selection frequencies of adaptive mangling rules for the 3120 rules of Pass-
wordPro.
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Figure 4.5: Effect of the parameter β on the guessing performance for four different com-
binations of password sets and PasswordPro rules. Plots are normalized according to the
results of the standard mangling rules attack (i.e., β = 1). For instance, (x=0.1, y=0.95)
means that we guessed 95% of the password guessed with the standard mangling rules
attack by performing 10% of the guesses required from the latter.

additional scalar parameter that we refer to as the attack budget β. This parameter
defines the threshold of compatibility that a rule must exceed to be included in the rules-
set Rβ

w for a word w. Indirectly, this value determines the average size of compatible
rules-sets, and consequently, the total number of guesses performed during the attack.
More precisely, low values of β force compatible rule-sets to include only rules with high-
compatibility. Those will produce only a limited number of guesses, inducing very precise
attacks at the cost of missing possible hits (i.e., high precision, low recall). Higher values
of β translate in a more permissive selection, where also rules with low-compatibility
are included in the compatible set. Those will increase the number of produced guesses,
inducing more exhaustive, yet more imprecise, attacks (i.e., higher recall, lower precision).
When β reaches 1, the adaptive mangling rules attack becomes a standard mangling rules
attack, since all the rules are unconditionally included in the compatible rules-set. The
effect of the budget parameter is better captured by the examples reported in Figure 4.5.
Here, the performance of multiple values of β is visualized and compared with the total
hits and guesses performed by a standard mangling rules attack.

The budget parameter β can be used to model different types of adversaries. For
instance, rational attackers [32] change their configuration in consideration of the prac-
tical cost of performing the attack. This parameter permit to easily describe those at-
tackers and evaluate password security accordingly. For instance, using a low budget
(e.g., β=0.4), we can model a greedy attacker who selects an attack configuration that
maximizes guessing precision at the expense of the number of compromised accounts (a
rational behavior in case of an expensive hash function).

Seeking a more pragmatic interpretation, the budget parameter is implicitly equiv-
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Table 4.2: Number of compatible scores computed per second (c/s) for different networks.
Values computed on a single NVIDIA V100 GPU.

generated2
(large)

generated
(large)

PasswordPro
(large)

130.550.403 c/s 89.049.382 c/s 31.836.734 c/s

alent to early-stopping4 (i.e., Eq. 4.1), where single guesses are sorted in optimal order
i.e., guesses are exhaustively generated before the attack, and indirectly sorted by de-
creasing probability/compatibility.

The optimal value of β depends on the rules-set. In our tests, we found these optimal
values to be 0.6, 0.8 and 0.8 for PassowordPro, generated and generated2, respectively.
Hereafter, we use these setups, unless otherwise specified.

Computational cost One of the core advantages of dictionary attacks over more so-
phisticated approaches [85, 114, 89] is their speed. For mangling rules attacks, generating
guesses has almost a negligible impact. Despite being consistently more complex in their
mechanisms, adaptive mangling rules do not change this feature.

In Algorithm 4, the only additional operation over the standard mangling rules attack
is the selection of compatible rules for each dictionary-word via the trained neural net.
As discussed in Section 4.2.2, this operation requires just a single network inference to
be computed; that is, with a single inference, we obtain a compatibility score for each
element in {w}×R. Furthermore, inference for multiple consecutive words can be trivially
batched and computed in parallel, further reducing the computation’s impact.

Table 4.2 reports the number of compatibility values that different neural networks
can compute per second. In the table, we used our largest networks without any form
of optimization. Nevertheless, the overhead over the plain mangling rules attack is min-
imal (see Appendix B.5). Additionally, similar to standard dictionary attacks, adaptive
mangling rules attacks are inherently parallel and, therefore, distributed and scalable.

4.3 Dynamic Dictionary attacks
This section introduces the second and last component of our password model—a dy-
namic mechanism that systematically adapts the guessing configuration to the unknown
attacked-set. In Section 4.3.1, we introduce the Dynamic Dictionary Augmentation
technique. Next, in Section 4.3.2, we introduce the concept of a Dynamic Budgets.

Motivation: As widely documented [33, 46, 84], password composition habits slightly
change from sub-population to sub-population. Although passwords tend to follow the
same general distribution, credentials created under different environments exhibit unique
biases. Users within the same group usually choose passwords related to each other, influ-
enced mostly by environmental factors or the underlying applicative layer. Major factors,
for example, are users’ mother tongue [46], community interests [118] and, imposed pass-
word composition policies [73]. These have a significant impact on defining the final
password distribution, and, consequently, the guessability of the passwords [67].

4The attack stops before the guesses are terminated.
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The same factors that shape a password distribution are generally available to the at-
tackers who can collect and use them to drastically improve the configuration of their
guessing attacks.

Unfortunately, current automatic reactive/proactive guessing techniques fail to de-
scribe this natural adversarial behavior [115, 67, 84, 108, 76]. Those methods are based
on static configurations that apply the same guessing strategy to each attacked-set of
password, mostly ignoring trivial information that can be either a priori collected or
distilled from the running attack. In this Section, we discuss suitable modifications of
the mangling-rules framework to describe a more realistic guessing strategy. In particu-
lar, avoiding the necessity of any prior knowledge over the attacked-set, we rely on the
concept of dynamic attack previously introduced in Section 3.3. That is, a dynamic
adversary who changes his guessing strategy according to the attack’s success rate. Suc-
cessful guesses are used to select future attempts with the goal of exploiting the non-i.i.d.
of passwords originated from the same environment. Similarly, this general guessing
approach can be easily linked to the optimal guessing strategy harnessed from human ex-
perts in [108], where mangling rules were created at execution time based on the initially
guessed passwords.

4.3.1 Dynamic Dictionary Augmentation

In the GAN-based approach of Chapter 3, the dynamic adaptation of the guessing strat-
egy is obtained from password latent space manipulations of deep generative models. A
similar effect is reproduced within our mangling rules approach by relying on a consis-
tently simpler, yet powerful, solution based on hit-recycling. That is, every time we guess
a new password by applying a mangling rule over a dictionary word, we insert the guessed
password in the dictionary at runtime. In practice, we dynamically augment the dic-
tionary during the attack using the guessed passwords.5 In the process, every
new hit is directly reconsidered and semantically extended through mangling rules. This
recursive method brings about massive chains/trees of hits that can extend for thousands
of levels.6

Figure 4.6 depicts an extremely small subtree (“hits-tree”) obtained by attacking the
password leak phpBB. The tree starts when the word “steph′′ is mangled, incidentally
producing the word “phpphp′′. Since the latter lies in a dense zone of the attacked set
(i.e., it is a common users’ practice to insert the name of the website or related strings
in their password), it induces multiple hits and causes the attack to focus in that specific
zone of the key-space. The focus of the attack grows exponentially hit after hit and
automatically stops only when no more passwords are matched. Eventually, this process
makes it possible to guess passwords that would be missed with the static approach. For
instance, in Figure 4.6, all the nodes in bold are passwords matched by the dynamic
attack but missed by the static one (i.e., standard dictionary attack) under the same
configuration.

Figure 4.7 compares the guessing performance of the dynamic attack against the static
version on a few examples for the PasswordPro rules-set. The plots show that the dynamic
augmentation of the dictionary has a very heterogeneous effect on the guessing attacks.
In the case of Figure 4.7(a), the dynamic attack produces a substantial increment in the

5Although we have not found any direct reference to the hits-recycling technique in the literature, it
is likely well known and routinely deployed by professionals.

6I.e., a forest, where the root of each tree is a word from the original dictionary.
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steph

steph69 phpphp

phpphp00 php123 phpman

php00 php1234 123php thephpman

thephpphp12345

php123456 p12345 s12345

p123456 s123456

php001 php007 phper

phper123

Figure 4.6: Example of small hits-tree induced by the dynamic attack performed on the
phpBB leak. In the tree, every vertex is a guessed password; an edge between two nodes
indicates that the child password has been guessed by applying a mangling rule to the
parent password.
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Figure 4.7: Performance comparison between dynamic and classic (static) attack for five
different setups of dictionary/attacked-set. The rules set PasswordPro in non-adaptive
mode is used in all the reported attacks. The 5 setups have been handpicked to fully
represent the possible effects of the dynamic dictionary augmentation.

number of guesses as well as in the number of hits i.e., from ∼ 15% to ∼ 80% recovered
passwords. Arguably, such a gap is due to the minimal size of the original dictionary
phpBB. In the attack of Figure 4.7(b), instead, a similar improvement is achieved by
requiring only a small number of guesses. On the other hand, in the attack depicted in
Figure 4.7(c), the dynamic augmentation has a limited effect on the final hits number.
However, it increases the attack precision in the initial phase. Conversely, attacks in
Figures 4.7(d) and 4.7(e) show a decreased precision in the initial phase of the attack,
but that is compensated later by the dynamic approach. The same results are reported
in Appendix B.4 for the rules-sets generated and generated2.

Another interesting property of the dynamic augmentation is that it makes the guess-
ing attack consistently less sensitive to the choice of the input dictionary. Indeed, in
contrast with the static approach, different choices of the initial dictionary tend to pro-
duce very homogeneous results in the dynamic approach. This behavior is captured in
Figure 4.8, where results, obtained by varying three input dictionaries, are compared
between static and dynamic attack. The standard attacks (Figure 4.8(a)) result in very
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(b) dynamic attack

Figure 4.8: Guessing attacks performed on the animoto leak using three different dictio-
naries. The panel on the left reports the guessing curves for the static setup. The panel
on the right reports those for the dynamic setup. The x-axis is logarithmic.

different outcomes; for instance, using phpBB we match 15% of the attacked-set, whereas
we match more than 80% with MyHeritage. These differences in performance are lev-
eled out by the dynamic augmentation of the dictionary (Figure 4.8(b)); all the dynamic
attacks recover ∼ 80% of the attacked-set. Intuitively, dynamic augmentation reme-
dies deficiencies in the initial configuration of the dictionary, promoting its completeness.
These claims will find further support in Section 4.4.

4.3.2 Dynamic budgets

Adaptive mangling rules (Section 4.2.3) demonstrated that it is possible to consistently
improve the precision of the guessing attack by promoting compatibility among rules-set
and dictionary (i.e., simulating high-quality configurations at runtime). This approach
assumes that the compatibility function modeled before the attack is sufficiently general
to simulate good configurations for each possible attacked-set. However, as motivated in
the introduction of Section 4.3, every attacked set of passwords present peculiar biases
and, therefore, different compatibility relations among rules and dictionary-words.
To reduce the effect of this dependence, we introduce an additional dynamic approach
supporting the adaptive mangling rules framework. Rather than modifying the neural
network at runtime (which is neither a practical nor a reliable solution), we alter the
selection process of compatible rules by acting on the budget parameter β.

Algorithm 5 details our solution. Here, rather than having a global parameter β

Algorithm 5: Adaptive rules with Dynamic budget
Data: dictonary D, rules-set R, attacked-set X, budget β

1 forall w ∈ D do
2 Rβ

w = {r|πR(w)r > (1−Bi)};
3 forall r ∈ Rβ

w do
4 g = r(w);
5 if g ∈ X then
6 X = X − {g};
7 Br = Br + ∆;

8 B = B ·
∑|B| β∑|B|B ;
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(f) zooks with generated
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(h) RockYou with generated

Figure 4.9: Each plot reports the number of guesses (in log scale) and the percentage of
matched passwords for different rule-sets and dictionaries against several attacked-sets.
Each row reports a rule-set, whereas each column identifies an attacked-set. We use four
dictionary, each identified by a colored line. Continuous lines show AdaMs attack whereas
dashed lines refer to standard mangling rules attacks.

for all the rules of the rules-set R, we have a budget vector B that assigns a dedicated
budget value to each rule in R (i.e., B ∈ (0, 1]|R|). Initially, all the budget values in
B are initialized to the same value β (i.e., ∀r∈R Br=β) given as an input parameter.
During the attack, the elements of B are individually increased and decreased to better
describe the attacked set of passwords. Within this context, increasing the budget Br of
a rule r means reducing the compatibility threshold needed to include r in the compatible
rules-set of a dictionary-word w, and, consequently, making r more popular during the
attack. On the other hand, by decreasing Br, we reduce the chances of selection for r; r
is selected only in case of high-compatibility words.
In the algorithm, we increase the budget Br when the rule r produces a hit . The added
increment is a small value ∆ that scales inversely with the number of guesses produced.

At the end of the internal loop, the vector B is then normalized; i.e., we scale the
values in B so that

∑R
r B =

∑|R|
i β. Normalizing B has two aims. (1) It reduces the

budgets for non-hitting rules (the mass we add to the budget of rule r is subtracted
from all other budgets.). (2) It maintains the total budget of the attack (i.e.,

∑|R|
i β)

unchanged so that dynamic and static budget leads to almost the same number of guesses
during the attack for a given β. Furthermore, we impose a maximum and a minimum
bound on the increments or decrements of B. This is to prevent values of zero (rule
always excluded) or equal/higher than one (rule always included).

As for the dynamic dictionary augmentation, the dynamic budget has always a posi-
tive, but, heterogeneous, effect on the guessing performance. Mostly, the number of hits
increases or remains unaffected. Among the proposed techniques, this is the one with the
mildest effect. Yet, this will be particularly useful when combined with dynamic dictio-
nary augmentation in the next Section. Appendix B.3 better explicates the improvement
induced from the dynamic budgets.
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4.4 Adaptive, Dynamic Mangling rules: AdaMs
The results of the previous section confirm the effectiveness of the dynamic guessing
mechanisms. We increased the number of hits compared to classic dictionary attacks by
using the produced guesses to improve the attack on the fly. However, in the process, we
also increased the number of guesses, possibly in a way that is hard to control and gauge.
Moreover, by changing the dictionary at runtime, we disrupt any form of optimization of
the initial configuration, such as any a priori ordering in the wordlist [76] and any joint
optimization with the rules-set7. Unavoidably, this leads to sub-optimal attacks that may
overestimate passwords strength.
To mitigate this phenomenon, we combine the dynamic augmentation technique with
the Adaptive Mangling Rules framework. The latter seeks an optimal configuration
at runtime on the dynamic dictionary, promoting compatibility with the rules-set and
limiting the impact of imperfect dictionary-words. This process is further supported
by the dynamic budgets that address possible covariate-shifts [102] of the compatibility
function induced by the augmented dictionary.

Hereafter, we refer to this final guessing strategy as AdaMs (Adaptive, Dynamic
Mangling rules). Details on the implementation of AdaMs are given in Appendix B.6,
whereas we benchmark it in Appendix B.5.

4.4.1 Evaluation

Figure 4.9 reports an extensive comparison of AdaMs against standard mangling-rules
attacks. In the figure, we test all pairs of dictionary/rule-set obtained from the com-
bination of the dictionaries: MyHeritage, RockYou, animoto, phpBB and the rules-sets:
PasswordPro and generated on four attacked-sets. Results for generated2 are reported in
Appendix B.4 instead. Hereafter, we switch to a logarithm scale given the heterogeneity
of the number of guesses produced by the various configurations.
For the reasons given in the previous sections, AdaMs outperforms standard mangling
rules within the same configurations, while requiring fewer guesses on average. More
interestingly, AdaMs attacks generally exceed the hits count of all the standard attacks
regardless of the selected dictionary. In particular, this is always true for the generated
rules-set.
Conversely, in cases where the dynamic dictionary augmentation offers only a small gain
in the number of hits (e.g., attacking RockYou), AdaMs equalizes the performance of
various dictionaries, typically, towards the optimal configuration for the standard attack.
In Figures 4.9(d) and 4.9(h), all the configurations of AdaMs reach a number of hits com-
parable to the best configuration for the standard attack, i.e., using MyHeritage, while
requiring up to an order of magnitude fewer guesses (e.g., Figure 4.9(d)), further confirm-
ing that the best standard attack is far from being optimal. In the reported experiments,
the only outlier is phpBB when used against zooks in Figure 4.9(b). Here, AdaMs did
not reach/exceed all the standard attacks in the number of hits despite consistently re-
dressing the initial configuration. However, this discrepancy is canceled out when more
mangling rules are considered i.e., in Figure 4.9(f).
Eventually, the AdaMs attack makes the initial selection of the dictionary systematically
less influential. For instance, in our experiments, a set such as phpBB reaches the same
performance of wordlists that are two orders of magnitude larger (e.g., RockYou). The

7I.e., new words may not interact well with the mangling rules in use.
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Figure 4.10: Comparison of AdaMs against optimal dictionary for two sets of passwords.

crucial factor remains the rules-set’s cardinality that ultimately determines the magnitude
of the attack, even though it does not appreciably affect the guessing performance.

The effectiveness of AdaMs is better captured by the results reported in Figure 4.10.
Here, we create a synthetic optimal dictionary for an attacked-set and evaluate the ca-
pability of AdaMs to converge to the performance of such an optimal configuration. To
this end, given a password leak X, we randomly divide it in two disjointed sets of equal
size, say Xdict and Xtarget. Then, we attack Xtarget by using both Xdict (i.e., optimal
dictionary) and an external dictionary (i.e., sub-optimal dictionary). Arguably, Xdict is
the a priori optimal dictionary to attack Xtarget since Xdict and Xtarget are samples of the
very same distribution.
We report the results for two sets: MyHeritage and youku. The attacks are carried out
by using the rules-set generated and RockYou as the external dictionary.
In the case of MyHeritage, the AdaMs attack is more precise than the optimal dictionary
and produces a comparable number of hits. Similarly, in the case of youku, the AdaMs at-
tack guesses faster than the optimal dictionary within the first 1011 guesses. However, in
this case, it does not reach an equivalent number of guessed passwords. We can attribute
this to the high discrepancy between the initial dictionary RockYou and the attacked-set
youku that cannot be bridged without prior knowledge.8 Nevertheless, the dictionary
augmentation technique can induce a dictionary that has a comparable utility to one of
the best optimal a priori setup, while requiring no information on the attacked-set. In
the process, the adaptive framework consistently accounts for the noise introduced by the
augmentation, allowing AdaMs to be even more precise than the optimal dictionary for
most of the attack (i.e., within the first 1011 guesses). Further comparison with other
password models follow.

Figure 4.11 reports a direct comparison against the RNN-based approach of Melicher
et al. [85] and PCFG [114]. The RNN-based password model is the state-of-the-art
for password strength estimation, although its computational cost in generating guesses
makes it impractical for real password guessing. We train the model using RockYou and
simulate password guessing attacks using [47]. In the process, we use default parameters
of the available software [17] and consider passwords with guess-number within 1012.
PCFG is the academic approach that better mirrors the guessing generation process
of dictionary attacks. We train the PCFG-based model on RockYou using the default
setting [19]. In this case, we limit to the first 1011.

8The leak youku is mostly composed of Chinese passwords that are underrepresented in RockYou.
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Figure 4.11: Comparison of the AdaMs attacks against he RNN-based approach of
Melicher et al. [85] and PCFG [114] for three password leaks.

We compare the models on three leaks: MyHeritage, youku and zooks. For the
AdaMs attacks, we use RockYou as a dictionary, whereas we report results for three
rules-sets.
Surprisingly, the AdaMsreach performance very close to the one obtained from the RNN-
based model. It even outperforms the parametric attack in two of the three attack-sets.
Similarly, AdaMs tend to perform better than PCFG in the three cases, especially after
the initial guesses. Furthermore, Figure 4.12 compares AdaMs against the GAN-based dy-
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Figure 4.12: Performance comparison between AdaMs and the GAN-based dynamic at-
tack. Classic mangling rules attack and StaticGAN are reported as baseline.

namic attack described in Chapter 3. We base the comparison on the same leaks; namely,
the youku and zomato leak (details given in Table B.1). The GAN-based model is trained
on the RockYou leak and the attack is performed with the same hyper-parameters used
in the original setup: σ = 0.35 and hot-start α = 10%. Despite our simpler approach,
the AdaMs attack performs very similarly to the GAN-based attack, besides being sig-
nificantly faster in generating guesses.

4.5 Conclusion
The AdaMs attack autonomously pushes the attack strategy towards the optimal one,
producing password strength estimates that better model actual adversarial capabilities.
As shown in Figure 4.9, the approach also makes the guessing attack more resilient to

61



deficiencies in the initial configuration, reducing the bias induced by non-expert setups.
In this direction, the AdaMs attack further proves the intrinsic unsuitability of arbitrarily
chosen configurations and the overestimation of password security that those can induce.
Compared with other systems [85], our framework provides researchers and security prac-
titioners with a markedly more efficient and flexible solution. We advocate the pro-
posed technique as a necessary substitute for standard dictionary attacks in
the evaluation of password strength as this fundamentally better represents
real-world attackers’ capabilities and attack strategies.
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Part II

Proactive Mechanisms
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In the first part of the thesis, we showed how deep learning techniques can be used
to improve/enable guessing attacks. In this Chapter, we demonstrate how these same
techniques that threaten passwords can be used to improve their security and soundness.
Indeed, deep learning models can be used to obtain compact and precise descriptions
of password probabilities. Such estimates, in turn, can be used to cast accurate pass-
word meters capable of guiding users towards passwords that are resilient to guessing
attacks. Furthermore, these models permit novel kind of inference over the modeled dis-
tribution, allowing us to construct unprecedented interpretable mechanisms that support
users during the composition process.

In Chapter 5 we introduce a new estimation process for password distributions that
enables the creation of the first interpretable probabilistic password strength me-
ter.
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Chapter 5

Towards Interpretable Password
Strength Meters

Accurately measuring password strength is essential to guarantee the security of password-
based authentication systems. Even more critical, however, is training users to select
secure passwords in the first place. One common approach is to rely on password policies
that list a series of requirements for a strong password. This approach is limited or even
harmful [43]. Alternatively, Passwords Strength Meters (PSMs) have been shown to be
useful and are witnessing increasing adoption in commercial solutions [106, 56].
The first instantiations of PSMs were based on simple heuristic constructions. Password
strength was estimated via either handcrafted features such as LUDS (which counts lower
and uppercase letters, digits, and symbols) or heuristic entropy definitions. Unavoidably,
given their heuristic nature, this class of PSMs failed to accurately measure password
security [46, 113].
More recently, thanks to an active academic interest, PSMs based on more sound con-
structions and rigorous security definitions have been proposed. In the last decade, in-
deed, a considerable research effort gave rise to more precise meters capable of accurately
measuring password strength [85, 111, 40].
However, meters have also become proportionally more opaque and inherently hard to
interpret due to the increasing complexity of the employed approaches. State-of-the-
art solutions base their estimates on blackbox parametric probabilistic models [85, 40]
that leave no room for interpretation of the evaluated passwords; they do not provide
any feedback to users on what is wrong with their password or how to improve it. We
advocate for explainable approaches in password meters, where users receive additional
insights and become cognizant of which parts of their passwords could straightforwardly
improve. This makes the password selection process less painful since users can keep their
passwords of choice mostly unchanged while ensuring they are secure.
In this Chapter, we show that the same rigorous probabilistic framework capable of

accurately measuring password strength can also fundamentally describe the relation be-
tween password security and password structure. By rethinking the underlying mass
estimation process, we create the first interpretable probabilistic password strength meter.
Here, the password probability measured by our meter can be decomposed and used to
estimate further the strength of every single character of the password. This explainable
approach allows us to assign a security score to each atomic component of the password
and determine its contribution to the overall security strength. This evaluation is, in
turn, returned to the user who can tweak a few "weak" characters and consistently im-
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Change this

i a m s e c u r e ! Change this

i a M s e c u r e !

Change this

i a M s e c u r E ! Change this

i 0 M s e c u r E !

i 0 M s e c $ r E !

Figure 5.1: Example of the character-level feedback mechanism and password composition
process induced by our meter. In the figure, “iamsecure! ” is the password initially chosen
by the user. Colors indicate the estimated character security: red (insecure) → green
(secure).

prove the password strength against guessing attacks. Figure 5.1 illustrates the selection
process. In devising the proposed mass estimation process, we found it ideally suited
for being implemented via a deep learning architecture. In this chapter, we show how
that can be cast as an efficient client-side meter employing deep convolutional neural
networks. Our work’s major contributions are: (i) We formulate a novel password prob-
ability estimation framework based on non-autoregressive probabilistic models. (ii) We
show that such a framework can be used to build a precise and sound password feedback
mechanism. (iii) We implement the proposed meter via an efficient and lightweight deep
learning framework ideally suited for client-side operability.

5.1 Related Works
Here, we briefly review early approaches to the definition of PSMs. We focus on the most
influential works as well as to the ones most related to ours.

Probabilistic PSMs: Originally thought for guessing attacks [89], Markov model ap-
proaches have found natural application in the password strength estimation context.
Castelluccia et al. [40] use a stationary, finite-state Markov chain as a direct pass-
word mass estimator. Their model computes the joint probability by separately mea-
suring the conditional probability of each pair of n-grams in the observed passwords.
Melicher et al. [85] extended the Markov model approach by leveraging a character/token
level Recurrent Neural Network (RNN) for modeling the probability of passwords. As
discussed in the introduction, pure probabilistic approaches are not capable of any natu-
ral form of feedback. In order to partially cope with this shortcoming, a hybrid approach
has been investigated in [104]. Here, the model of Melicher et al. [85] is aggregated with
a series of 21 heuristic, hand-crafted feedback mechanisms such as detection of leeting
behaviors or common tokens (e.g., keyboard walks).
Even if harnessing a consistently different form of feedback, our framework merges these
solutions into a single and jointly learned model. Additionally, in contrast with [104], our
feedback has a concrete probabilistic interpretation as well as complete freedom from any
form of human bias. Interestingly enough, our model autonomously learns some of the
heuristics hardwired in [104]. For instance, our model learned that capitalizing characters
in the middle of the string could consistently improve password strength (see Figure 5.2).
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f y x 1 2 3 z v w

e q y j ! @ # $ %
(a) Common tokens.

q w e r t y !

q w e ! r t y

S e c u r e 1

s E c u r e 1
(b) Cap. first/inner.

l e t m e i n 2

l e t m e 2 i n
(c) Numeric last/inner

q w e r t y !

q w e ! r t y
(d) Special last/inner.

Figure 5.2: In Panel (a), the model automatically highlights the presence of weak sub-
strings by assigning high probabilities to the characters composing them. Panels (b),
(c), and (d) are examples of self-learned weak/strong password composition patterns. In
panel (b), the model assigns a high probability to the capitalization of the first letter
(a common practice), whereas it assigns low probability when the capitalization is per-
formed on inner characters. Panel (c) and (d) report similar results for numeric and
special characters.

Token look-up PSMs: Another relevant class of meters is that based on the token
look-up approach. Generally speaking, these are non-parametric solutions that base their
strength estimation on collections of sorted lists of tokens like leaked passwords and word
dictionaries. Here, a password is modeled as a combination of tokens, and the relative
security score is derived from the ranking of the tokens in the known dictionaries. Unlike
probabilistic solutions, token-based PSMs are able to return feedback to the user, such
as an explanation for the weakness of a password relying on the semantic attributed to
the tokens composing the password. A leading member of token look-up meters is zx-
cvbn [115], which assumes a password as a combination of tokens such as token, reversed,
sequence repeat, keyboard, and date. This meter scores passwords according to a heuris-
tic characterization of the guess-number [83]. Such score is described as the number of
combinations of tokens necessary to match the tested password by traversing the sorted
tokens lists.
zxcvbn is capable of feedback. For instance, if one of the password components is identi-
fied as “repeat", zxcvbn will recommend the user to avoid the use of repeated characters in
the password. Naturally, this kind of feedback mechanism inherently lacks generality and
addresses just a few human-chosen scenarios. As discussed by the authors themselves,
zxcvbn suffers from various limitations. By assumption, it is unable to model the rela-
tionships among different patterns occurring in the same passwords. Additionally, like
other token look-up based approaches, it fails to coherently model unobserved patterns
and tokens.

Another example of token look-up approach is the one proposed in [72]. Telepathwords
discourages a user from choosing weak passwords by predicting the next most probable
characters during the password typing. In particular, predicted characters are shown to
the user in order to dissuade him/her from choosing them as the next characters in the
password. These are reported together with an explanation of why those characters were
predicted. However, as for zxcvbn, such feedback solely relies on hardwired scenarios (for
instance, the use of profanity in the password). Telepathwords is server-side only.

5.2 Meter foundations
In this section, we introduce the theoretical foundations of the proposed estimation pro-
cess. First, in Section 5.2.1, we introduce and motivate the probabilistic character-level
feedback mechanism. Later, in Section 5.2.2, we describe how that mechanism can be
obtained using a non-autoregressive probabilistic models.
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5.2.1 Character-level strength estimation via probabilistic model

As introduced in Section 2.1.3, PPSMs employ probabilistic models to approximate the
probability mass function of an observed password distribution, say P (x). Estimating
P (x), however, could be particularly challenging, and suitable estimation techniques must
be adopted to make the process feasible. In this direction, a general solution is to factor-
ize the domain of the mass function (i.e., the key-space); that is, passwords are modeled
as a concatenation of smaller factors, typically, decomposed at the character level. Af-
terward, password distribution is estimated by modeling stochastic interactions among
these simpler components. More formally, every password is assumed as a realization
x = [x1, . . . , x`] of a random vector of the kind x = [x1, . . . ,x`], where each disjoint
random variable xi represents the character at position i in the string. Then, P (x) is
described through probabilistic models that formalize the relations among those random
variables, eventually defining a joint probability distribution. In the process, every ran-
dom variable is associated with a local conditional probability distribution (here,
referred to as Q) that describes the behavior of xi in consideration of the underlying
model i.e., Q(xi)=P (xi | par(xi)). Eventually, the joint measurement of probability is
derived from the aggregation of the marginalized local conditional probability distribu-
tions, typically under the form P (x)=

∏`
i=1 Q(xi=xi).

As introduced in Section 2.1.3, the joint probability can be employed as a good
representative for password strength. However, such a global assessment unavoidably
hides much fine-grained information that can be extremely valuable to a password meter.
In particular, the joint probability offers us an atomic interpretation of the password
strength, but it fails at disentangling the relation between password strength and pass-
word structure. That is, it does not clarify which factors of an evaluated password are
making that password insecure. However, as widely demonstrated by non-probabilistic
approaches [115, 104, 72], users benefit from the awareness of which part of the chosen
password is easily predictable and which is not. In this direction, we argue that the
local conditional probabilities that naturally appear in the estimation of the joint
one, if correctly shaped, can offer detailed insights into the strength or the weakness of
each factor of a password. Such character-level probability assignments are an
explicit interpretation of the relation between the structure of a password
and its security. The main intuition here is that: high values of Q(xi) tell us that xi
(i.e., the character at position i in the string) has a high impact on increasing the pass-
word probability and must be changed to make the password stronger. Instead, characters
with low conditional probability are pushing the password to have low probability and
must be maintained unchanged. Figure 5.2 reports some visual representations of such
probabilistic reasoning. Each segment’s background color renders the value of the local
conditional probability of the character. Red describes high probability values, whereas
green describes low probability assignments. Such a mechanism can naturally discover
weak passwords components and explicitly guide the user to explore alternatives. For
instance, local conditional probabilities can spot the presence of predictable tokens in the
password without the explicit use of dictionaries (Figure 5.2(a)). These measurements are
able to automatically describe common password patterns like those manually modeled
from other approaches [104], see Figures 5.2(b), 5.2(c) and 5.2(d). More importantly,
they can potentially describe latent composition patterns that have never been observed
and modeled by human beings. In doing this, neither supervision nor human-reasoning
is required.
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Figure 5.3: Estimated local conditional probabilities for two pairs of passwords. The
numbers depicted above the strings report the Q(xi) value for each character (rounding
applied).

5.2.2 Our Probabilistic model

In order to build a suitable probabilistic model to cast the feedback mechanism previ-
ously described, we resort to a non-autoregressive language model similar to Word2Vec
(Continuous Bag of Words) [86] and BERT [48], but defined at character-level. Accord-
ing to that description, the probability of the character xi directly depends on any other
character in the string, i.e., the full context. In other words, we model each variable
xi as a stochastic function of all the others. This intuition is better captured from the
evaluation of local conditional probability (Figure 5.1).

Q(xi) =


P (xi | xi+1, . . .x`) i = 1

P (xi | x1, . . .xi−1) i = `

P (xi | x1, . . . ,xi−1,xi+1, . . .x`) 1 < i < ` .

(5.1)

Henceforth, we use the notation Q(xi) to refer to the local conditional distribution of
the i’th character within the password x. When x is not clear from the context, we
write Q(xi | x) to make it explicit. The notation Q(xi=s) or Q(s), instead, refers to the
marginalization of the distribution according to the symbol s.

Eventually, such undirected formalization allows us to produce a versatile feedback
mechanism that ignore the limitations of autoregressive model. Now, every local proba-
bility is computed within the context offered by any other symbol in the string. In the
example, y=“aaaaaaa′′ / z=“a######′′, the local conditional probability of the first
character can be backward-influenced from the context offered from the subsequent part
of the string. This is clearly observable from the output of an instance of our meter
reported in Figure 5.3(a), where the value of Q(x1 =‘a’) drastically varies between the
two cases, i.e., y and z. As expected, we have Q(x1 =‘a’|y) � Q(x1 =‘a’|z) verified in
the example. A similar intuitive result is reported in Figure 5.3(b), where the example
x=“(password)′′ is considered. Here, the meter first scores the string x′=“(password ′′,
then it scores the complete password x=“(password)′′. In this case, we expect that the
presence of the last character ‘)’ would consistently influence the conditional measure-
ment of the first bracket in the string. Such expectation is perfectly captured from the
reported output, where appending at the end of the string the symbol ‘)’ increases the
probability of the first bracket of a factor ∼ 15.

However, obtaining these improvements does not come for free. Indeed, under this
construction, the productory over the local conditional probabilities does not provide the
exact joint probability distribution of x. Instead, such product results in a unnormalized
version of it: P (x) ∝

∏`
i=1Q(xi)=P̃ (x) with P (x) = P̃ (x)

Z
. In the equation, Z is the

partition function. This result follows from the Hammersley–Clifford theorem [71]. Nev-
ertheless, the unnormalized joint distribution preserves the core properties needed to the

69



meter functionality. Most importantly, we have that:

∀x, x′ : P (x) ≥ P (x′)⇔ P̃ (x) ≥ P̃ (x′) . (5.2)

That is, if we sort a list of passwords according to the true joint P (x) or according to
the unnormalized version P̃ (x), we obtain the same identical ordering. Consequently,
no deviation from the adversarial interpretation of PPSMs described in Section 2.1.3 is
implied. Indeed, we have XP (x) = XP̃ (x) for every password distribution, key-space, and
suitable sorting function.

Details on the password feedback mechanism and further applications

Joint probability can be understood as a compatibility score assigned to a specific con-
figuration of the probabilistic model; it tells us the likelihood of observing a sequence
of characters during the interaction with the password generative process. On a smaller
scale, a local conditional probability measures the impact that a single character has in the
final security score. Namely, it indicates how much the character contributes to the prob-
ability of observing a certain password x. Within this interpretation, low-probabilities
characters push the joint probability of x to be closer to zero (secure), whereas high-
probability characters (i.e., Q(x1) . 1) make no significant contribution to lowering the
password probability (insecure). Therefore, users can strengthen their candidate pass-
words by substituting high-probability characters with suitable lower-probability ones
(e.g., Figure 5.1).
Unfortunately, users’ perception of password security has been shown to be generally
erroneous [105], and, without explicit guidelines, it would be difficult for them to select
suitable lower-probability substitutes. To address this limitation, one could adopt our
approach based on local conditional distributions as an effective mechanism to help users
select secure substitute symbols. Indeed, ∀iQ(xi) are able to clarify which symbol is a
secure substitute and which is not for each character xi of x. In particular, a distribution
Q(xi), defined on the whole alphabet Σ, assigns a probability to every symbol s that
the character xi can potentially assume. For a symbol s ∈ Σ, the probability Q(xi=s)
measures how much the event xi=s is probable given all the observable characters in x.
Under this interpretation, a candidate, secure substitution of xi is a symbol with very
low Q(xi=s) (as this will lower the joint probability of x). In particular, every symbol
s s.t. Q(xi=s) < Q(xi=xi) given x is a secure substitution for xi. Table 5.1 better
depicts this intuition. The Table reports the alphabet sorted by Q(xi) for each xi in
the example password x=“PaSsW0rD!′′. The bold symbols between parenthesis indi-
cate xi. Within this representation, all the symbols below the respective xi for each xi
are suitable substitutions that improve password strength. This intuition is empirically
proven in Section 5.4.2. It is important to note that the suggestion mechanism must
be randomized to avoid any bias in the final password distribution.1 To this end, one
can provide the user with k random symbols among the pool of secure substitutions,
i.e., {s | Q(xi=s) < Q(xi=xi)}.

It is important to highlight that, although we present our approach under the character-
level description, our method can be directly applied to n-grams, words and sub-words
without any modification.

In summary, in this section, we presented and motivated an estimation process able to
unravel the feedback mechanism described in Section 5.2.1. Here, no information about

1That is, if weak passwords are always perturbed in the same way, they will be easily guessed.
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Table 5.1: First seven entries of the ordering imposed on Σ from the local conditional
distribution for each character of the password x=“PaSsW0rD!′′

the implementation of such methodology has been offered to the reader. Next, in Section
5.3, we describe how such a meter can be shaped via an efficient deep learning framework.

5.3 Meter implementation
In this section, we present a deep-learning-based implementation of the estimation process
introduced in Section 5.2.2. Here, we describe the model and its training process. Then,
we explain how the trained network can be used as a building block for the proposed
password meter.

Model training. From the discussion in Section 5.2.2, our procedure requires the
parametrization of an exponentially large number of interactions among random vari-
ables. Thus, any tabular approach, such as the one used from Markov Chains or PCFG
[114], is a priori excluded for any real-world case. To make such a meter feasible, we re-
formulate the underlying estimation process so that it can be approximated with a neural
network. In our approach, we simulate the Markov Random Field described in Section
5.2.2 using a deep convolutional neural network trained to compute Q(xi) (Eq. 5.1) for
each possible configuration of the structured model. In doing so, we train our network
to solve an masked-language modeling task defined at character level. Broadly speaking,
masked-language modeling is the task of reconstructing missing words from sentences that
have been intentionally mangled. Under the probabilistic perspective, the model
is asked to return a probability distribution over all the unobserved elements
of x, explicitly measuring the conditional probability of those concerning the
observable context. Therefore, the network has to disentangle and model the semantic
relation among all the factors describing the data (e.g., characters in a string) to recon-
struct input instances correctly.
Generally, the architecture and the training process used for this task resemble an auto-
encoding structure. In the general case, these models are trained to revert self-induced
damage carried out on instances of a train-set X. At each training step, an instance
x ∈ X is artificially mangled with an information-destructive transformation to create a
mangled variation x̃. Then, the network, receiving x̃ as input, is optimized to produce
an output that most resembles the original x; that is, the network is trained to recon-
struct x from x̃.
In our approach, we train a network to infer missing characters in a mangled password.
In particular, we iterate over a password leak (i.e., our train-set) by creating mangled
passwords and train the network to recover them. The mangling operation is performed
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x = “love1′′

f(“•ove1′′)

P (x1 | “•ove1′′)

f(“l•ve1′′)

P (x2 | “l•ve1′′)

f(“lo•e1′′)

P (x3 | “lo•e1′′)

f(“lov•1′′)

P (x4 | “lov•1′′)

f(“love•′′)

P (x5 | “love•′′)

Figure 5.4: Graphical depiction of the complete inference process for the password
x=“love1′′. The function f refers to the trained autoencoder and the symbol ’•’ refers
to the deleted character.

by removing a randomly selected character from the string. For example, the train-set
entry x=“iloveyou′′ is transformed in x̃=“ilov•you" if the 5’th character is selected for
deletion, where the symbol ‘•’ represents the “empty character". A compatible proxy-
task has been previously used in Chapter 3 to learn a suitable password representation
for guessing attacks.

We chose to model our network with a deep residual structure arranged to create an
autoencoder. The network follows the same general Context Encoder [96] architecture
defined in Chapter 3 with some modifications. To create an information bottleneck, the
encoder connects with the decoder through a latent space junction obtained through two
fully connected layers. We observed that enforcing a latent space, and a prior on that,
consistently increases the meter effectiveness. For that reason, we maintained the same
regularization proposed in Chapter 3; a maximum mean discrepancy regularization that
forces a standard normal distributed latent space. The final loss function of our model is
reported in Figure 5.3. In the equation, Enc and Dec refer to the encoder and decoder
network respectively, s is the softmax function applied row-wise2, the distance function
d is the cross-entropy, and mmd refers to the maximum mean discrepancy.

Ex,x̃[d(x, s(Dec(Enc(x̃)))] + αEz∼N(0,I)[mmd(z, Enc(x̃))] (5.3)

Henceforth, we refer to the composition of the encoder and the decoder as f(x) =
s(Dec(Enc(x))). We train the model on the widely adopted RockYou leak [21] con-
sidering an 80/20 train-test split. From it, we filter passwords presenting fewer than 5
characters. We train different networks considering different maximum password lengths,
namely, 16, 20, and 30. In our experiments, we report results obtained with the model
trained on a maximum length equal to 16, as no substantial performance variation has
been observed among the different networks. Eventually, we produce three neural nets
with different architectures; a large network requiring 36MB of disk space, a medium-
size model requiring 18MB, and a smaller version of the second that requires 6.6MB.
These models can be potentially further compressed using the same quantization and
compression techniques harnessed in [85].3

Model inference process. Once the model is trained, we can use it to compute the
conditional probability Q(xi) (Eq. 5.1) for each i and each possible configuration of the
probabilistic model. This is done by querying the network f using the same mangling
trick performed during the training. The procedure used to compute Q(xi) for x is
summarized in the following steps:

2The Decoder outputs ` estimations; one for each input character. Therefore, we apply the softmax
function separately on each of those to create ` probability distributions.

3The code, pre-trained models, and other materials related to our work are publicly available at:
https://github.com/pasquini-dario/InterpretablePPSM.
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1. We substitute the i’th character of x with the empty character ‘•’, obtaining a
mangled password x̃.

2. Then, we feed x̃ to a network that outputs a probability distribution over Σ of the
unobserved random variable xi i.e., Q(xi).

3. Given Q(xi), we marginalize out xi, obtaining the probability:
Q(xi) = P (xi=xi | x̃).

For instance, if we want to compute the local conditional probability of the character ‘e’
in the password x = “iloveyou′′, we first create x̃ =“ilov•you" and use it as input for the
net, obtaining Q(x5), then we marginalize that (i.e., Q(x5 =‘e’)) getting the probability
P (x5 =‘e’ | x̃). From the probabilistic point of view, this process is equivalent to fixing
the observable variables in the MRF and querying the model for an estimation of the
single unobserved character.

At this point, to cast both the feedback mechanism defined in Section 5.2.1 and
the unnormalized joint probability of the string, we have to measure Q(xi) for each
character xi of the tested password. This is easily achieved by repeating the inference
operation described above for each character comprising the input string. A graphical
representation of this process is depicted in Figure 5.4. It is important to highlight
that the ` required inferences are independent, and their evaluation can be performed
in parallel (i.e., batch level parallelism), introducing almost negligible overhead over the
single inference. Additionally, with the use of a feed-forward network, we avoid the
sequential computation that is intrinsic in recurrent networks (e.g., the issue afflicting
[85]), and that can be excessive for a reactive client-side implementation. Furthermore,
the convolutional structure enables the construction of very deep neural nets with a
limited memory footprint.

5.4 Evaluation
In this section, we empirically validate the proposed estimation process as well as its
deep learning implementation. First, in Section 5.4.1, we evaluate the capability of the
meter of accurately assessing password strength at string-level. Next, in Section 5.4.2,
we demonstrate the intrinsic ability of the local conditional probabilities of being sound
descriptors of password strength at character-level.

5.4.1 Measuring meter accuracy
In this section, we evaluate the accuracy of the proposed meter at estimating password
probabilities. To that purpose, following the adversarial reasoning introduced in Section
2.1.3, we compare the password ordering derived from the meter with the one from the
ground-truth password distribution. In doing so, we rely on the guidelines defined in
[56] for our evaluation. In particular, given a test-set (i.e., a password leak), we consider
a weighted rank correlation coefficient between ground-truth ordering and that derived
from the meter. The ground-truth ordering is obtained by sorting the unique entries of the
test-set according to the frequency of the password observed in the leak. In the process,
we compare our solution with other fully probabilistic meters. A detailed description of
the evaluation process follows.
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Test-set. For modeling the ground-truth password distribution, we rely on the pass-
word leak discovered by 4iQ in the Dark Web[1] on 5th December 2017. It consists of the
aggregation of ∼ 250 leaks, consisting of 1.4 billion passwords in total. In the cleaning
process, we collect passwords with length in the interval 5−16, obtaining a set of ∼ 4 ·108

unique passwords that we sort in decreasing frequency order. Following the approach of
[56], we filter out all the passwords with a frequency lower than 10 from the test-set.
Finally, we obtain a test-set composed of 107 unique passwords that we refer to as XBC.
Given both the large number of entries and the heterogeneity of sources composing it, we
consider XBC an accurate description of real-world passwords distribution.

Tested Meters. In the evaluation process, we compare our approach with other prob-
abilistic meters. In particular:

• The Markov model [53] implemented in [16] (the same used in [56]). We investigate
different n-grams configurations, namely, 2-grams, 3-grams and 4-grams that we
refer to as MM2, MM3 and MM4, respectively. For their training, we employ the
same train-set used for our meter.

• The neural approach of Melicher et al. [85]. We use the implementation available
at [17] to train the main architecture advocated in [85], i.e., an RNN composed of
three LSTM layers of 1000 cells each, and two fully connected layers. The training
is carried out on the same train-set used for our meter. We refer to the model as
FLA.

Metrics. We follow the guidelines defined by Golla and Dürmuth [56] for evaluating
the meters. We use the weighted Spearman correlation coefficient (ws) to measure the
accuracy of the orderings produced by the tested meters, as this has been demonstrated
to be the most reliable correlation metric within this context [56]. This metric is defined
as

ws(t,m) =

∑n
i [wi(ti − t̄)(mi − m̄)]√∑n

i [wi(t− t̄i)2]
∑n

i [wi(m− m̄i)2]
,

where t and m are the sequence of rank assigned to the test-set from the ground-truth
distribution and the tested meter, respectively, and where the bar notation (e.g., t̄) ex-
presses the weighted mean in consideration of the sequence of weights w. The weights
are computed as the normalized inverse of the ground-truth ranks (Eq. 5.4).

w =
q∑n
i qi

with q =
1

t+ 1
. (5.4)

In this metric, the weighting increases the relevance of weak passwords (i.e., the ones with
small ranks) in the score computation; that is, the erroneous placing of weak passwords
(i.e., asserting a weak password as strong) is highly penalized. Unlike [56], given the
large cardinality and diversity of this leak, we directly use the ranking derived from the
password frequencies in XBC as ground-truth. Here, passwords with the same frequency
value have received the same rank in the computation of the correlation metric.

Results. Table 5.2 reports the measured correlation coefficient for each tested meter.
In the table, we also report the required storage as auxiliary metric.
Our meters, even the smallest, achieve higher or comparable score than the most perfor-
mant Markov Model, i.e., MM4. On the other hand, our largest model cannot directly

74



Table 5.2: Rank correlation coefficient computed between XBC and the tested meters.

MM2 MM3 MM4 FLA ours
(large)

ours
(middle)

ours
(small)

Weighted
Spearman ↑ 0.154 0.170 0.193 0.217 0.207 0.203 0.199

Required
Disk Space ↓ 1.1MB 94MB 8.8GB 60MB 36MB 18MB 6.6MB

exceed the accuracy of the state-of-the-art estimator FLA, obtaining only comparable
results. However, FLA requires more disk space than ours. Indeed, interestingly, our
convolutional implementation permits the creation of remarkably lightweight meters. As
a matter of fact, our smallest network shows a comparable result with MM4 requiring
more than a magnitude less disk space.
In conclusion, the results confirm that the probability estimation process defined in Sec-
tion 5.2.2 is indeed sound and capable of accurately assessing password mass at string-
level. The proposed meter shows comparable effectiveness with the state-of-the-art [85],
whereas, in the large setup, it outperforms standard approaches such as Markov Chains.
Nevertheless, we believe that even more accurate estimation can be achieved by inves-
tigating deeper architectures and/or by performing hyper-parameters tuning over the
model.

5.4.2 Analysis of the relation between local conditional probabil-
ities and password strength

In this section, we test the capability of the proposed meter to correctly model the re-
lation between password structure and password strength. In particular, we investigate
the ability of the measured local conditional probabilities of determining the tested pass-
words’ insecure components.
Our evaluation procedure follows three main steps. Starting from a set of weak pass-
words X:

1. We perform a guessing attack on X in order to estimate the guess-number of each
entry of the set.

2. For each password x ∈ X, we substitute n characters of x according to the estimated
local conditional probabilities (i.e., we substitute the characters with highestQ(xi)),
producing a perturbed password x̃.

3. We repeat the guessing attack on the set of perturbed passwords and measure the
variation in the attributed guess-numbers.

Hereafter, we provide a detailed description of the evaluation procedure.

Passwords sets. The evaluation is carried out considering a set of weak passwords. In
particular, we consider the first 104 most frequent passwords of the XBC set.

Password perturbations. In the evaluation, we consider three types of password per-
turbation:
(1) The first acts as a baseline and consists of the substitution of random positioned char-
acters in the passwords with randomly selected symbols. Such a general strategy is used
in [104] and [55] to improve the user’s password at composition time. The perturbation
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Table 5.3: Strength improvement induced by different perturbations. The last two rows of
the table report the AGI ratio between the two meter-based approaches and the baseline.

n = 1 n = 2 n = 3

Baseline (PNP) 0.022 0.351 0.549
Semi-Meter (PNP) 0.036 0.501 0.674
Fully-Meter (PNP) 0.066 0.755 0.884

Baseline (AGI) 3.0 · 1010 3.6 · 1011 5.6 · 1011

Semi-Meter (AGI) 4.6 · 1010 5.1 · 1011 6.8 · 1011

Fully-Meter (AGI) 8.2 · 1010 7.7 · 1011 8.9 · 1011

Semi-Meter / Baseline (AGI) 1.530 1.413 1.222
Fully-Meter / Baseline (AGI) 2.768 2.110 1.588

is applied by randomly selecting n characters from x and substituting them with symbols
sampled from a predefined character pool. In our simulations, the pool consists of the
25 most frequent symbols in XBC (i.e., mainly lowercase letters and digits). Forcing this
character-pool aims at preventing the tested perturbation procedures to create artificially
complex passwords such as strings containing extremely uncommon unicode symbols. We
refer to this perturbation procedure as Baseline.
(2) The second perturbation partially leverages the local conditional probabilities induced
by our meter. Given a password x, we compute the conditional probability Q(xi) for each
character in the string. Then, we select and substitute the character with maximum prob-
ability, i.e., arg maxxi Q(xi). The symbol we use in the substitution is randomly selected
from the same pool used for the baseline perturbation (i.e., top-25 frequent symbols).
When n is greater than one, the procedure is repeated sequentially using the perturbed
password obtained from the previous iteration as input for the next step. We refer to
this procedure as Semi-Meter.
(3) The third perturbation extends the second one by exploiting the local conditional
distributions. Here, as in the Semi-Meter-based, we substitute the character in x with
the highest probability. However, rather than choosing a substitute symbol in the pool
at random, we select that according to the distribution Q(xi), where i is the position
of the character to be substituted. In particular, we choose the symbol the minimize
Q(xi), i.e., arg mins∈Σ′ Q(xi=s), where Σ′ is the allowed pool of symbols. We refer to
this method as Fully-Meter.

Guessing Attack. We evaluate password strength using the min-auto strategy ad-
vocated in [108]. Here, guessing attacks are simultaneously performed with different
guessing tools, and the guess-number of a password is considered the minimum among
the attributed guess-numbers. In performing such attacks, we rely on the combination
of three widely adopted solutions, namely, HashCat [7], PCFG [114, 19] and the Markov
chain approach proposed in [53, 18]. For tools requiring a training phase, i.e., OMEN and
PCFG, we use the same train-set used for our model (i.e., 80% of RockYou). Similarly,
for HashCat, we use the same data set as input dictionary4 and generated2 as rules set.
During the guesses generation, we maintain the default settings of each implementation.
We limit each tool to produce 1010 guesses. The total size of the generated guesses is
∼ 3TB.

4In this case, passwords are unique and sorted in decreasing frequency.

76



Metrics. In the evaluation, we are interested in measuring the increment of password
strength caused by an applied perturbation. We estimate that value by considering the
Average Guess-number Increment (henceforth, referred to as AGI); that is, the average
delta between the guess-number of the original password and the guess-number of the
perturbed password:

AGI(X) =
1

|X|

|X|∑
i=0

[g(x̃i) − g(xi)]

where g is the guess-number, and x̃i refers to the perturbed version of the i’th password
in the test set. During the computation of the guess-numbers, it is possible that we
fail to guess a password. In such a case, we attribute an artificial guess-number equals
to 1012 to the un-guessed passwords. Additionally, we consider the average number of
un-guessed passwords as an ancillary metrics; we refer to it with the name of Percentage
Non-Guessed Passwords (PNP) and compute it as:

PNP(X) =
1

|X|
|{xi | g(xi) 6= ⊥ ∧ g(x̃i) = ⊥}|,

where g(x) = ⊥ when x is not guessed during the guessing attack.

Results. We perform the tests over three values of n (i.e., the number of perturbed
characters), namely, 1, 2, and 3. Results are summarized in Table 5.3. The AGI caused
by the two meter-based solutions is always greater than that produced by random pertur-
bations. On average, that is twice more effective with respect to the Fully-Meter baseline
and about 35% greater for the Semi-Meter. The largest relative benefit is observable when
n = 1, i.e., a single character is modified. Focusing on the Fully-Meter approach, indeed,
the guidance of the local conditional probabilities permits a guess-number increment 2.7
times bigger than the one caused by a random substitution in the string. This advantage
drops to ∼ 1.5 when n = 3, since, after two perturbations, passwords tend to be already
out of the dense zone of the distribution. Indeed, at n = 3 about 88% of the passwords
perturbed with the Fully-Meter approach cannot be guessed during the guessing attack
(i.e., PNP). This value is only ∼ 55% for the baseline. More interestingly, the results tell
us that substituting two (n = 2) characters following the guide of the local conditional
probabilities causes a guess-number increment greater than the one obtained from three
(n = 3) random perturbations. As a matter of fact, the AGI for the Fully-Meter pertur-
bation is ∼ 7.6 · 1011 for n = 2 whereas is ∼ 5.7 · 1011 for the baseline when n = 3.
In the end, these results confirm that the local conditional distributions are indeed sound
descriptors of password security at the structural level.

Limitations. Since the goal of our evaluation was mainly to validate the soundness
of the proposed estimation process, we did not perform user studies and we did not
evaluate human-related factors such as password memorability although we recognize
their importance.

5.5 Conclusion
In this Chapter, we showed that it is possible to construct interpretable probabilistic
password meters by fundamentally rethinking the underlying password mass estimation.
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We presented an non-autoregressive probabilistic interpretation of the password genera-
tive process that can be used to build precise and sound password feedback mechanisms.
Moreover, we demonstrated that such an estimation process could be instantiated via a
lightweight deep learning implementation.
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Part III

Final Remarks and Future Directions
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Chapter 6

Conclusions and future perspectives

In our thesis work, we harnessed deep learning techniques to cast novel directions in
the extensively studied, and yet presently active, field of password security. As a result,
we improved the core techniques that are pivotal in ensuring password security and,
ultimately, users’ security and privacy:

Sounder strength estimates via Dynamic Attackers: By abstracting the under-
lying password model (e.g., generative models or dictionary attacks), the proposed dy-
namic techniques and supporting mechanisms vastly demonstrated their effectiveness.
Even without additional information on the attacked-set, those techniques are able to
guess more passwords within the same/smaller number of guesses, making explicit the
sub-optimal nature of guessing attacks that model static adversaries. Furthermore, those
techniques demonstrated their value in increasing the reliability and robustness of sensi-
tive attacks such as dictionary attacks that are pivotal in accurately describing real-world
attackers.

More importantly, dynamic attacks have demonstrated capable of guessing those pass-
words that are unique to the attacked password set (e.g., Table 3.5). Given their arbitrary
distance from the general password distribution, such passwords can be soundly guessed
only by leveraging additional sources of information over the attacked password space.
The proposed dynamic attacks distill this necessary knowledge directly from an unsu-
pervised interaction with the attacked-set, allowing the guessing attack to automatically
focus on unique modalities of the target password distribution that would either be ig-
nored or heavily under-represented otherwise.

The dynamic techniques demonstrate the existence of passwords that are considered
secure by state-of-the-art approaches but are inherently weak once the attacker leverages
a more realistic guessing strategy. This further result suggests that the security of a
password is not an intrinsic property of the string, but it is strongly dependent on other
environmental factors that cannot be a priori stated. In particular, this insight adds an
additional dimension over the definition of password strength: the security of a password
is also a function of the passwords that occur in the same environment, even if those
are completely unknown to the adversary before the attack. In turn, this brings
us to question the soundness of existing estimation techniques that model only static
attackers as well as the validity of their strength estimates.

In conclusion, given our results, we argue that it is critical to account for advanced
as well as realistic attackers, that employ a dynamic approach, in accurately measuring
password strength. In this thesis, we introduced novel techniques that permit to shape
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such adversaries and enable more robust and sound password strength estimates.

Interpretability in Password Strength Meters: Enabling interpretable mecha-
nisms in password strength meters is a major challenge in password security. Preventing
users from choosing weak passwords and soundly guiding them in employing secure ones
is critical to ensure users’ security. However, existing approaches seek interpretability in
heuristic constructions that are inherently limited [104, 115].

In the thesis, we demonstrated that it is possible to learn a general and unsupervised
feedback mechanism from raw data by relying on deep learning techniques. The meter
we described in Chapter 5 is the first one enabling a rigorous feedback signal that has
a clear probabilistic interpretation and it is free from human bias. We validated the
proposed approach by showing that it achieves comparable accuracy with autoregressive
solutions, while introducing its unique feedback mechanism that generalizes any heuristic
construction.

More broadly, we empirically demonstrated that the local conditional distributions
of a structured probabilistic model can be used to cast interpretable mechanisms, but
under the condition of abandoning the autoregressive paradigm that dominated state-
of-the-art meters until now [85, 104]. This general intuition may open new directions
in the password strength meters research, enabling the creation of further interpretable
approaches.

6.1 Future directions
Given the final remarks, in this Section we sketch future directions and extensions of the
works reported in the thesis.

6.1.1 Modeling dynamic attackers with Normalizing Flows

To implement the dynamic password guessing framework introduced in Chapter 3, we
used a GAN [58] generator. This implicit probabilistic model [49] cannot assign probabil-
ity to the generated passwords, preventing us to sort guesses in optimal order and using
the generator as a probabilistic password meter (see Section 2.1.3).

These shortcomings of the current implementation can be overcome by relaying on a
different class of deep generative models i.e., normalizing flows [50, 70]. These models
enable density estimation in implicit probabilistic models and come with exact inference,
allowing the exact inversion of data points into latent points.

Relying on this class of generative models, we can enhance the proposed solutions and
cast additional tools aimed at improving the security of passwords. More prominently,
with these, we can produce a probabilistic password meter that accounts and
models dynamic attackers.

6.1.2 Graph theory meets Password Security

In Chapter 4, we introduced the dynamic dictionary augmentation procedure. As dis-
cussed in Section 4.3.1, this simple technique enables the construction of massive knowl-
edge graphs that describe the relationship among passwords guessed during a dynamic
attack e.g., Figure 6.1. These graphs may be used as tools to grasp novel insights on
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Figure 6.1: Example of graph created with the dynamic dictionary attack.

passwords strength and to explain causality properties among guessed passwords in a
dynamic context. Eventually, we may be able to derive proactive mechanisms aimed
at reducing the threat of dynamic attackers (i.e., real-world attackers) by studying the
properties of these graphs.

6.1.3 Transformers and Interpretable Password Meters

In Chapter 5, we constructed interpretable password meters over a convolutional autoen-
coder. In that model, kernels are convoluted over the password to model the relation
properties among characters. However, given the inductive bias of convolutional layers,
those give particular importance to local properties rather than long-range relationship
through the password. While local properties are important in human-chosen passwords,
one can perform a less biased estimation by constructing the meter over a different neural
architecture.

In this direction, transformers [109] are naturally suited for this task and offer
additional compelling features. The self-attention mechanism employed from trans-
formers networks provides an explicit way to model the relationship among characters.
Furthermore, the attention weights assigned by the attention mechanisms enable further
interpretation on the conditional relation properties of characters. These can explicate
the dependence properties between every pair of characters and help to systematically
determine the a priori influence of a character over the whole password. In addition, a
recent breakthrough in the field [42] can drastically improve transformers’ computational
efficiency and make them suited for client-side operability.

Furthermore, while we implemented our meter at the character level, more powerful
and explanatory models may be achieved by a token-based approach, where words or
sub-words are used to segment passwords. Within this approach, the user is given a more
coarse-grained feedback that may be easier to understand and get insight from.
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Possible additional applications We highlight how the validity of our approach has
been demonstrated in this thesis work only within the context of password security.
However, it is apparent that guessing passwords is just an instance of a more general
class of problems that can be defined as reconstruction of finite sequences of symbols
belonging to a predefined set. We believe that our novel approach may be applied, with
suitable adjustments, to other instances of that class of problems (e.g., genomic data).
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Appendix A

A.1 Inducing peculiar password latent organizations
via inductive bias

Given the absence of precise external bias, the generative models used to learn the latent
password representation is free to choose arbitrary spatial arrangements among pass-
words. In the general case, our generators learn the latent representation that best
supports the extremely general generative task imposed during the training. However,
this may not be optimal. For instance, the latent spaces learned by our technique tend
to keep passwords with similar length very close to each other. The reason is that the
length of a password is modeled as one of the core explanatory factors [29] by the latent
representation. As a result, passwords with different lengths are distributed far from each
other, which is good for DPG but undesirable in other cases. For instance, it may be bet-
ter to generate passwords that share specific substrings, but that do not have comparable
length.

Luckily, this type of specialization is possible within our frameworks. Our deep learn-
ing approach is highly versatile, and password organizations that present a peculiar fea-
ture can be obtained through the injection of inductive bias during the learning process.

Focusing on the AE (Section 3.1.2), we can indeed induce structure preferences in
the latent space organization through regularizations during training. For instance, we
can easily reduce the length-based clustering phenomenon described above by acting on
the character deletion process used in Section 3.1.2. In the normal case, we learn a
latent representation by training the auto-encoder at reconstructing artificially mangled
passwords, where each character in the input string is removed with a certain probability.
Differently, we can delete a group of k continuous characters given a randomly chosen
starting position i. For instance, with k = 5, a password “jimmy1991” can become
“jimm*****” with i = 4; otherwise “*****991” with i = 0. Intuitively, the generator
collects in the same location passwords that share common substrings, regardless of their
length. For instance, given the mangled password “jimmy*****”, the generator should be
able to recover the passwords “jimmy”, “jimmyjimmy” and “jimmy123”, eventually forcing
their latent representations to be close to each other.

As an example, we compare passwords sampled from CWAE trained with different
approaches, namely, using the character deletion approach discussed in Section 3.1.2
(here, referred to as Simple) and using the group deletion approach discussed above
(referred to as Mask). Table A.1 reports password sampled around the pivot “iloveyou1”
for the two CWAEs. Compared to Simple, passwords sampled from the Mask model tend
to have heterogeneous lengths which are arbitrarily different from the one of the pivot.
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Simple Mask

iloveyou13 iloveyou1234
iloveyou12 iloveyou14
iloveYou1 iloveyou12ao
iLoveyou1 iloveyou1222
iloveyou* iloveyou17a
Iloveyou1 iloveyou12arham
iloheyou1 iloveyou14om
ilOveyou1 iloveyou123o
iloveyou11a iloveyou1444
iloveyou1a iloveyou12a4mom1

Table A.1: Passwords sampled around the pivot “iloveyou1” for two CWAEs trained with
different regularization. The same value of σ is used for both models.

A.2 Learning the inverse mapping for the GAN model
To fully exploit the properties offered by the learned latent representation of passwords,
we need a way to explore the latent space efficiently. Therefore, our primary interest is to
understand the relation between the observed data (i.e., passwords) and their respective
latent representations; in particular, their position within the latent space. A direct way
to model this relation is to learn the inverse of the generator function G−1 : X → Z.
GANs, by default, do not need to learn those functions because that requirement is
bypassed by the adversarial training approach. To do so, framework variations [51, 52]
or additional training phases [77] are required.

To avoid any source of instability in the original training procedure, we opt to learn the
inverse mapping only after the training of the generator is complete. This is accomplished
by training a third encoder network E that has an identical architecture as the critic,
except for the size of the output layer. The network is trained to simultaneously map
both the real (i.e., data coming from the train-set) and generated (i.e., data coming from
G) data to the latent space. Specifically, the loss function of E is mainly defined as
the sum of the two cyclic reconstruction errors over the data space. This is presented
in the following:

L0 = Ez[d(G(z), G(E(Gt(z))))],

L1 = Ex[d(x,G(E(x)))].
(A.1)

In Eq. (A.1), the function d is the cross-entropy whereas x and z are sampled from the
train-set and the prior latent distribution, respectively. The variable t in L0 refers to the
temperature of the final softmax layer of the generator. In Eq. (A.1), we do not specify
temperature on a generator notation when it is assumed that it does not change during
the training. The combination of these two reconstruction errors aims at forcing the
encoder to learn a general function capable of inverting both the true and generated data
correctly. As discussed in Section 3.1.1, the discrepancy between the representation of
the true and generated data (i.e., discrete and continuous data) is potentially harmful to
the training process. To deal with this issue, we anneal the temperature t in loss term L0

during the training. We do that to collapse slowly the continuous representations of the
generated data (i.e., the output of the generator) towards the same discrete representation
of the real data (i.e., coming from the dataset). Next, an additional loss term, shown in
Eq. A.2, is added forcing the encoder to map the data space in a dense zone of the latent
space (dense with respect to the prior latent distribution).

L2 = Ez[d(z, E(G(z)))]. (A.2)
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Our final loss function for E is reported in Eq. A.3. During the encoder training, we use
the same train-set that we used to train the generator, but we consider only the unique
passwords in this case.

LE = αL0 + βL1 + γL2. (A.3)

The information about the hyper-parameters we used is listed in Table A.2.

Hyper-parameter Value

α 0.2
β 0.2
γ 0.6
Batch size 64
Learning rate 0.001
Optimizer Adam
Temperature decay step 250000
Temperature limit 0.1
Temperature scheduler polynomial
Train iteration 3 · 105

Table A.2: Hyper-parameters used to train our encoder network

A.3 On the impact of hyper-parameters on DPG
In this section, we briefly consider the impact of the two hyper-parameters of DPG over
the quality of the attack.

Figure A.1 depicts a comparison among the static attack, a DPG with α = 15%,
and a DPG with α = 0% (i.e., no hot-start). These results confirm that the absence of
hot-start indeed affects and eventually degrades the performance of DPG.

Figure A.1: The impact of α on the performance of DPG for phpbb test-set

Figure A.2 depicts the effect of different values of σ on the performance of DPG.
Smaller values of α yields better overall results. This outcome suggests that it is not
necessary to sample too far from the dense zones imposed by Zi, and rather a focused
exploration of those zones is beneficial. This observation is perfectly coherent with the
discussed locality property, giving further support to the speculated ability of the latent
space of capturing and translating general features of an entire password distribution in
geometric relations.

A.4 Supplementary tables & figures for DPG and CPG
Here, we present supplementary data related to our work. Table A.3 lists the samples of
password templates and their respective matching passwords. Table A.4 extends
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Figure A.2: The impact of σ on the performance of DPG for phpbb test-set

Table 3.5 for the attack on the LinkedIn set. We report the guess-numbers for John
the Ripper, Hashcat, Markov Model, and PCFG. These value have been obtained via the
CMU-PGS [23, 108]. Note that PGS sets up its models with a different ground-truth;
our train-set is just a subset of the one used from PGS.

In the table, the underscore symbol ‘_’ indicates that the password model failed to
match the password. The column ‘DPG G.’ reports the guess-number of the dynamic
attack. The passwords are sorted using the same criteria used in Table 3.5. We report
the top 100 entries.

Tcommon Tuncommon Trare Tsuper-rare

*a*e*on** ri***19** *ol*nd*** Bi**o**1* **n1**0*0 ***dy*78* a*6*4*0** **j99*9** *n****0!! k*****kbn **sb*9*8* *YR**R*U*

Cameron4$ rizal1982 Colinda23 BigCorp11 Mon171050 sandy@786 a06142001 sbj991980 Qny1960!! ktyzhekbn mosby9382 PYR@GR@UP
cameron64 rissi1909 yolanda#1 BigFoot13 Len112080 sandy6789 a26042004 tej991991 ando140!! kgn5*5kbn elsb1968! MYRATROUT
CabeZone1 rimpy1984 Noland405 Bishon111 ben101010 goody1785 ab6643014 Lwj990922 vny@@00!! ktrnhjkbn lksbs9080
madelon13 riana1976 noland339 Bigfoot1# chn102030 cindy2785 a76645090 nhj990920 lnb7280!! kbnkbnkbn ldsbc9886
Camerone3 rinni1970 rolando13 Bingo2011 Jan172010 maddy2789 a1644104a naj999999 anaid60!!
cameronq2 richu1989 roland589 Biddoma12 van102030 buddy8780 a26547054 Slj999999 @ngel20!!
makedon24 rinks1978 Rolando85 Bigboy117 jan152000 brady1785 a06042007 jjj999999 QnA2010!!
Kameron76 rinat1978 roland006 Biofoto10 ten142000 maddy@786 a8674600Z msj991987 Annie20!!
cameron46 risco1969 RolandD50 Biologo12 jan142000 sandy7780 a76042074 99j99a99k Annie10!!
Nakedone1 riken1970 Jolanda48 BioComp10 l4n1n402 Toodys781 am68400en dej991976 inusa20!!

Table A.3: Samples of password templates and respective matching passwords.
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Guessed P. DPG G. JTR G. Hashcat G. Markov G. PCFG G.

o2linkedln 3.4 · 109 _ _ _ _
w2linkedln 3.1 · 109 _ _ _ _
ydlinkedln 3.6 · 109 _ _ _ _
linked6in6 4.3 · 109 _ _ _ _
j*linkedln 4.3 · 109 _ _ _ _
linked!in. 4.8 · 109 _ _ _ 2.1 · 1014

wslinked1n 4.4 · 109 _ _ _ _
linkedgcin 2.1 · 109 _ _ _ _
linked6in2 5.6 · 109 _ _ _ 1.7 · 1014

lslinkedln 4.5 · 109 _ _ _ _
wtlinkedln 4.5 · 109 _ _ _ _
9auiirji 5.5 · 109 _ _ _ 7.6 · 1013

g2linkedln 3.4 · 109 _ _ _ _
cslinkedln 4.4 · 109 _ _ _ _
ymlinkedln 5.2 · 109 _ _ _ _
linked4in6 4.4 · 109 _ _ _ 2.2 · 1014

fvlinkedln 4.7 · 109 _ _ _ _
jslinkedln 3.7 · 109 _ _ _ _
jzlinkedln 5.1 · 109 _ _ _ _
sslinkedln 4.4 · 109 _ _ _ _
grlinkedln 4.7 · 109 _ _ _ _
linkedm1x1 2.5 · 109 _ _ _ _
svlinked1n 5.1 · 109 _ _ _ _
m1linkedln 3.8 · 109 _ _ _ _
linkedi9in 2.7 · 109 _ 6.7 · 1011 _ _
mnlinkedln 3.7 · 109 _ _ _ _
etlinkedln 4.9 · 109 _ _ _ _
forc3link 2.1 · 109 8.6 · 1011 1.0 · 109 _ 4.3 · 1011

5.linkedin 4.7 · 109 _ _ _ 8.8 · 1011

link4rfxa 4.8 · 109 _ _ _ 4.2 · 1011

g0linked1n 2.5 · 109 _ _ _ 1.3 · 1014

linkedm1m1 2.9 · 109 _ 6.7 · 1011 _ _
56linkedln 4.6 · 109 _ _ _ _
Rbnoi076 2.0 · 109 _ _ _ 4.2 · 1013

linkedtgin 1.9 · 109 _ _ _ _
linked8in4 5.6 · 109 _ _ _ 2.0 · 1014

linked!in1 4.4 · 109 _ _ _ 4.1 · 1013

imlindedin 4.9 · 109 _ _ _ _
linkedkbin 2.9 · 109 _ _ _ _
linked9in6 4.2 · 109 _ _ _ _
htlinkedln 4.8 · 109 _ _ _ _
golinkedln 5.2 · 109 _ _ _ _
ozlinkedln 5.1 · 109 _ _ _ _
o.linkedin 4.3 · 109 _ 6.7 · 1011 _ 6.3 · 1011

linkedwcz 2.9 · 109 _ _ _ 2.9 · 1013

linked_iin 5.0 · 109 _ _ _ 4.6 · 1013

linkedrcin 1.6 · 109 _ _ _ _
42linkedln 4.5 · 109 _ _ _ _
linkedcmw4 3.1 · 109 _ _ _ _
mmlinkedln 3.7 · 109 _ _ _ _

2xrilidi 5.1 · 109 _ _ _ 1.8 · 1013

dslinkedln 4.3 · 109 _ _ _ _
linkedtdin 2.1 · 109 _ _ _ _
linked1.in 3.2 · 109 _ _ _ 2.0 · 1014

linked4in2 4.4 · 109 _ _ _ 8.6 · 1013

linked4in4 4.1 · 109 _ 6.7 · 1011 _ 1.0 · 1014

linked.4in 3.2 · 109 _ _ _ 2.2 · 1014

pdlinkedln 4.2 · 109 _ _ _ _

oklinkedln 5.2 · 109 _ _ _ _
Or2nge47 1.7 · 109 _ 1.1 · 1011 _ _
z1linkedin 4.3 · 109 _ 6.7 · 1011 _ 8.8 · 1010

linkednxin 1.4 · 109 _ _ _ _
53linkedln 4.9 · 109 _ _ _ _
linkedctq 2.8 · 109 _ _ _ 2.7 · 1013

odlinkedln 3.5 · 109 _ _ _ _
omlinkedln 3.9 · 109 _ _ _ _
eu293634r 2.3 · 109 _ _ _ 5.4 · 1013

hklinked1n 5.0 · 109 _ _ _ _
linkedfsin 2.0 · 109 _ 6.7 · 1011 _ _
lf00garl 4.3 · 109 _ 8.8 · 1011 _ 2.6 · 1012

y9linkedin 5.3 · 109 _ _ _ 9.2 · 1011

linked87ln 2.5 · 109 _ _ _ 1.1 · 1014

linked544y 2.8 · 109 _ _ _ 8.9 · 1013

xbCA0N 1.9 · 109 _ _ _ _
linktebow 9.1 · 108 _ _ _ 2.8 · 1013

y2linkedin 4.5 · 109 _ _ _ 4.1 · 1011

linkedmiam 3.7 · 109 _ _ _ _
73linkedln 4.1 · 109 _ _ _ _
alasEN00 4.4 · 108 _ _ _ 9.3 · 1011

h9linkedin 4.5 · 109 _ _ _ 7.9 · 1011

linkedkbl 1.9 · 109 _ 6.7 · 1011 _ 2.6 · 1013

T8wtas00 5.7 · 108 _ _ _ 5.3 · 1013

linkedw3s 4.0 · 109 _ _ _ _
44linkedln 4.7 · 109 _ _ _ _
unpceddi 5.1 · 109 _ _ _ 2.4 · 1011

linkedwge 1.1 · 109 _ 6.7 · 1011 _ 2.5 · 1013

linked39in 2.3 · 109 _ _ _ 1.1 · 1014

linked99ln 2.3 · 109 _ _ _ 8.7 · 1013

linke14din 3.1 · 109 _ _ _ 1.8 · 1013

gxlinkedln 3.3 · 109 _ _ _ _
linkedkpin 1.2 · 109 _ _ _ _
gonulelif 2.5 · 109 _ _ _ 2.5 · 1013

linkedcsun 2.1 · 109 _ _ _ _
lclinkedln 4.4 · 109 _ _ _ _
9.linkedin 4.7 · 109 _ _ _ 1.1 · 1012

grswbon3 2.5 · 109 _ _ _ 2.7 · 1012

snlinkedln 4.8 · 109 _ _ _ _

Table A.4: Guess-numbers of the top peculiar password guessed from DPG for LinkedIn
leak.
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Appendix B

B.1 Password leaks
In our study, we made use of different password leaks both for training and testing
purposes. They are listed in Table B.1 along with additional information.

Name Unique
Passwords Brief Description

LinkedIn[14] ∼ 6 · 107 An employment-oriented
online service.

youku [5] ∼ 4 · 107 Chinese video hosting ser-
vice.

MyHeritage[24] ∼ 3 · 107 Online genealogy platform.

zooks [3] ∼ 2 · 107 Online dating service avail-
able in 80 countries.

RockYou[21] ∼ 107 Gaming platform.

animoto[22] ∼ 8 · 106 A cloud-based video cre-
ation service.

zomato[25] ∼ 5 · 106 Indian, food delivery appli-
cation. About 40% of the
password are random tokens
of six alphanumeric charac-
ters.

phpBB ∼ 105 Software website.

Table B.1: Used Password leaks sorted by size.

B.2 Details on the deep learning framework of the com-
patibly function

Algorithm 6: Residual Block: residualBlock(·):
Data: input tensor: xin

1 x = batchNormalization(xin);
2 x = ReLU(x);
3 x = 1D-Convolution(x, f, k);
4 x = batchNormalization(x);
5 x = ReLU(x);
6 x = 1D-Convolution(x, f, k);
7 return xin + 0.3 · x
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Algorithm 7: Architecture:
Data: input tensor: xin, rules-set R

1 x = charactersEmbedding(xin, 128);
2 x = 1D-Convolution(x, f, k);
3 for 0 to d do
4 x = residualBlock(x)
5 bneck = d fb e;
6 x = 1D-Convolution(x, bneck, k);
7 x = flattern(x);
8 logits = dense(x, |R|);
9 return logits
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(c) MyHeritage on animoto
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(d) animoto on RockYou

0 1 2 3 4 5
Number of Guesses ×1011

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Gu
es

se
d 

pa
ss

wo
rd

s

(e) animoto on MyHeritage
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(j) animoto on MyHeritage

Figure B.1: Performance comparison between static and dynamic attack for five different
setups of dictionary/attacked-set. The results are reported for the rules-sets generated
(first row) and generated2 (second row) in non-adaptive mode.

This Appendix details the architecture used to implement the neural approximations
of the compatibility functions presented in Section 4.2.2. It can be defined using five
parameters, namely:

• Depth (d): The number of residual blocks composing the network. Each residual
block includes two 1D-convolutional layers, supported by normalization layers and
activation i.e., Algorithm 6.

• Number of filters (f): The number of filters for each convolutional layer in the
network.

• Kernel size (k): Size of the kernel used in every convolutional layer in the network.

• Final Bottleneck (b): Reduction of the number of filters before the final dense
layer.

The final architecture is described in Algorithm 7. Our biggest models are realizations of
the parameters: d=15, f=512, k=5. We use b=2 for PasswordPro and generated, b=3
for generated2 instead.

B.3 Impact of the Dynamic budget on AdaMs
We briefly illustrate the impact of the dynamic budget (i.e., Section 4.3.2) on the perfor-
mance of AdaMs. As previously discussed, the dynamic budget has always a positive or
neutral effect. Figure B.3 reports an example for the attacked-set youku. In the figure,
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(b) zooks with generated2
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(c) youku with generated2
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(d) RockYou with generated2

Figure B.2: Each plot reports the number of guesses and the percentage of matched
passwords for different dictionaries against four attacked-sets. We use four dictionaries,
each identified by a color line. Continuous lines show AdaMs attack, whereas dashed
lines refer to standard mangling rules attacks.
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Figure B.3: Effectiveness of the dynamic-budget within AdaMs for different value of
β. Continuous lines present AdaMs, whereas dashed lines are AdaMs ablated of the
dynamic-budget

continuous lines refer to the complete AdaMs attack, whereas dashed lines report the
results for AdaMs without dynamic budget for the same configuration. We report the
results for three values of β.
As shown in the example, the dynamic budget is particularly effective when low β is used.
In these cases, the dynamic logic helps better organize the small total budget of the at-
tack, resulting in better global performance. The gain decreases when bigger budgets are
adopted.

B.4 Additional results for AdaMsand dynamic dictio-
nary

This appendix collects additional results.
Figure B.1 compare dynamic and static mangling rules attack for the rules-sets gen-

erated and generated2.
Figure B.2, instead, compares AdaMs and standard mangling rules attack for various

dictionaries and attacked-sets using generated2 as rules-set.

B.5 Benchmarks of the AdaMs attack
In this Appendix, we analyze the computational cost of generating guesses with AdaMs.
Primarily, we test the overhead with respect to standard mangling rules (i.e., Hashcat
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Table B.2: Number of guesses per second compute single core/GPU on a NVIDIA DGX-2
machine.

AdaMs
generated2

AdaMs
generated

AdaMs
PasswordPro

Hashcat
CPU legacy

726182 g/s 709439 g/s 644444 g/s 928647 g/s

CPU legacy).
For the comparison, we produce 109 strings and compute the number of guesses gen-

erated per second (i.e., g/s). In the process, we include the time of checking for
the guesses in the set of the attacked passwords (the same methodology is used for
each tool and may not be computationally optimal). Note that we do not perform any
hash function computation in the process. We repeat the test 5 times using RockYou as
dictionary and animoto as attacked-set, whereas we repeat for the rules-sets: Password-
Pro, generated and generated2. Table B.2 averages the time for each tool. The result for
the standard mangling rules is reported as average over the three rules-sets.
On average, AdaMs are just 25% slower than standard mangling rules. Considering that
the Adaptive mangling rules can reduce the number of guesses up to an order of mag-
nitude, this overhead becomes negligible in practice. Moreover, this discrepancy easily
fades out when slow hash functions, such as [66, 98, 97], are considered.

B.6 Implementation of AdaMs
We rely on the CPU legacy version of Hashcat1 to implement AdaMs attacks. Our
prototype uses the CPU version as it is easier to modify its workflow, although the
Hashcat GPU engine can trivially support our approach.2
In the code, we modify the main loop of Hashcat, where it scans over dictionary words
and then iterates on all rules. We read a batch of words from the dictionary, we give them
as input to the neural network, and then, for each word w in the batch, we apply only the
rules whose values of αR are greater than (1− β). We check all these guesses and, those
who match are added on top of the remaining words in the dictionary, i.e., they will be
part of the next batch of words. The same batching approach is used for the dynamic
budget. Here, budget increments and normalization per rule are performed conjointly
after every batch to further reduce computational overhead. In the implementation, we
use batch-size equals to 4096 dictionary words.

1https://github.com/hashcat/hashcat-legacy
2The GPU engine is also more suited as it would naturally support the computation of the neural

network on GPU, removing the CPU/GPU communication overhead
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