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Self-testing is a method of quantum state and measurement estimation that does not rely on assumptions
about the inner working of the devices used. Its experimental realization has been limited to sources
producing single quantum states so far. In this work, we experimentally implement two significant building
blocks of a quantum network involving two independent sources: namely, a parallel configuration, in
which two parties share two copies of a state, and a tripartite configuration, where a central node shares two
independent states with peripheral nodes. Then, by extending previous self-testing techniques, we provide
device-independent lower bounds on the fidelity between the generated states and an ideal target made by
the tensor product of two maximally entangled two-qubit states. Given its scalability and versatility, this
technique can find application in the certification of larger networks of different topologies for quantum
communication and cryptography tasks and randomness generation protocols.
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I. INTRODUCTION

In the last few years, a large number of quantum
resource-based protocols have been designed, with a wide
range of applications. However, it is crucial, and far from
trivial, to discriminate the devices that work correctly from
those that do not. Indeed, two difficulties can emerge:
on one hand, the task required by the user may be hard
to verify, a notorious example being the boson sampling
problem [1–5], and, on the other, the devices may be
affected by noise and imperfections that are unknown to
the user. The latter case is especially relevant for tasks
aimed at being secure against possible adversaries, who
could exploit such defects to obtain secret information or
sabotage the operation of the devices. For instance, this
is the case of private randomness generation or amplifica-
tion and quantum key distribution protocols [6–21]. Hence,
the ability to certify that the device is operating properly,
and possibly without relying on knowledge of its inter-
nal working, is crucial for a wider application of quantum
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technologies. The approach where conclusions about the
correctness operation of the device are drawn only from
input-output statistics, is known as the device-independent
(DI) approach [22] and typically relies on the quantum
violation of Bell-like inequalities [23].

A key protocol in the DI scenario is that of self-testing
[24]. There, a multipartite quantum state is subjected to
a number of local measurements, a procedure called a
“Bell test,” and the resulting statistics alone are enough
to certify the specific form of the state and measurements.
For instance, the maximum violation value of 2

√
2 in a

Clauser-Horne-Shimony-Holt (CHSH) Bell test [25] certi-
fies that the state is equivalent to a two-qubit maximally
entangled state. In recent years, several self-testing pro-
tocols have been proposed to certify different states and
measurements [26–41]. In this work, we present exper-
imental demonstrations of self-testing for two types of
quantum network, each featuring two independent sources:
(a) a network in which the sources are placed in a par-
allel configuration between two parties, see Fig. 1(a) and
(b) a network featuring three parties, where a central party
shares a source with two peripheral parties, see Fig. 1(b).
The design of our experimental setup follows the bipar-
tite self-testing strategies recently proposed in Ref. [42],
which we further adapt to the multipartite network (b). To
experimentally implement the network structures, we use
a flexible and versatile platform, introduced in Ref. [43],
which allows one to easily change the quantum network
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FIG. 1. Self-testing scenarios. The self-testing procedure con-
sists in performing an experiment and analyzing the data pro-
duced without assuming a particular implementation [as in
(a),(b)]; that is, by considering a black-box scenario in which
we have access to only the conditional probability distributions
of measurement results conditioned to measurement choices.
Nothing is assumed regarding the shared quantum state and mea-
surements in the two scenarios: (a) a scenario featuring two
parties, whose outputs are labeled by a and b and whose inputs
are indicated by x and y; (b) a scenario involving three par-
ties, whose outputs are a, b, and c and whose inputs are x, y,
and z. Self-testing techniques are used to obtain the minimum
fidelity between the real states produced in the experiment and
the ideal situation shown in (c),(d), where the sources produce
perfect maximally entangled two-qubit states (e.g., |ψ−〉) and
each party applies the local Pauli measurements to each qubit,
corresponding to a maximal violation of the CHSH inequality;
for example, A0 = σz , A1 = σx, B0 = C0 = −(σx + σz)/

√
2, and

B1 = C1 = (σx − σz)/
√

2. Here we perform self-testing analysis
of the state produced in two geometries: (c) a bipartite situation
and (d) a tripartite scenario in which a central party shares maxi-
mally entangled states with two peripheral parties. In both cases,
we aim at certifying the presence of two copies of a maximally
entangled state.

topology. Precise lower bounds on the self-testing fidelity
with the desired states are obtained from the experimen-
tal statistics via the SWAP method [31,41], a numerical tool
based on semidefinite programming. The main novelty of
our self-testing method, with respect to previous results,
lies in its robustness to noise, which allows its application
to real experimental data and not only to ideal statistics.
Indeed, we present a strategy to tailor the adopted numeri-
cal optimization problem to the specific observed statistics
and show that, under realistic experimental conditions,
we can obtain nontrivial DI lower bounds on the fidelity
between the actual state and ideal states. Moreover, we also
indicate how to combine such a protocol with Hoeffding
inequality and the Azuma-Hoeffding inequality [44–47] to
device-independently quantify the confidence level of our

protocols’ results. The present techniques can, in princi-
ple, be extended to an arbitrary number of nodes and to an
arbitrary target state, which makes them a promising tool
for the certification of larger networks and in the imple-
mentation of quantum communication and cryptography
tasks.

II. SELF-TESTING OF QUANTUM NETWORKS

In the DI scenario, the measurement devices and sources
are treated as black boxes, exchanging only classical com-
munication with external users. Suppose the users (labeled
as A, B, C, . . .) share some state ρABC··· that is unknown to
them, and that they can prepare and measure the state in
an independent identically distributed (IID) manner. After
the experiment has been repeated many times, the users
can estimate the probabilities p(a, b, c, . . . |x, y, z, . . .) of
obtaining measurement outcomes a, b, c, . . . if measure-
ments x, y, z, . . . are performed. According to quantum
mechanics, such probabilities are given, through the Born
rule, as

p(a, b, c, . . . |x, y, z, . . .) = Tr(ρABC···Ax
a ⊗ By

b ⊗ Cz
c ⊗ · · · ),

(1)

where Ax
a, By

b, Cz
c . . . denote the local measurement opera-

tors. We say that the probabilities p(a, b, c, . . . |x, y, z, . . .)
self-test the target state

∣
∣ψ ′〉

ABC··· if the observation
of p(a, b, c, . . . |x, y, z, . . .) necessarily implies the exis-
tence of a local quantum channel �[·] = �A[·] ⊗�B[·] ⊗
�C[·] · · · such that

�[ρABC···] = ∣
∣ψ ′〉 〈ψ ′∣∣

ABC··· . (2)

Self-testing therefore certifies that the parties share the
state

∣
∣ψ ′〉

ABC···, in the sense that there exist local operations
the parties could perform to extract the state from ρ. This
statement holds for any state ρ satisfying the condition in
Eq. (1) (for some local measurements) and is thus a DI
statement. As an example, it is known that for any bipartite
state ρAB producing correlations resulting in the maximal
quantum violation of the CHSH Bell inequality (with value
2
√

2), there exists a channel such that (�A ⊗�B)[ρAB] =
∣
∣ψ−〉 〈ψ−∣∣, with

∣
∣ψ−〉 = 1√

2
(|01〉 − |10〉) the maximally

entangled singlet state.
In realistic scenarios, however, it is impossible to

exactly meet the self-testing conditions in Eq. (1), not
only due to experimental noise but also because the finite
time of the experiment implies that one can only infer the
probabilities up to a given confidence interval. For this
reason, the self-testing statement has to be robust (i.e., pro-
vide information about the underlying state even when the
self-testing condition is only approximately met). To do
this, we focus on lower bounding the fidelity between the
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extracted state and the target state, defined as follows:

F(�[ρABC···],
∣
∣ψ ′〉 〈ψ ′∣∣

ABC···) = 〈

ψ ′∣∣�[ρABC···]
∣
∣ψ ′〉 , (3)

given the experimental statistics. That is, one proves that
for any state producing the experimental statistics there
exists a local channel � such that F ≥ f (for some f ≤
1), up to a given confidence level. Note f = 1 corre-
sponds to the case of perfect self-testing given in Eq.
(2). A useful method that we use for calculating such
lower bounds is the SWAP method, a numerical tool based
on semidefinite programming and the Navascués-Pironio-
Acín (NPA) hierarchy [48,49]. In particular, this technique
consists in numerically swapping part of the generated
state on a dummy register to find a proper expression
for the fidelity in Eq. (3) as a function of the correla-
tion terms p(a, b, c . . . |x, y, z . . .). Then, a lower bound
on this fidelity can be obtained through a semidefinite-
programming (SDP) optimization, over a superset of the
quantum correlation set mathematically defined by level l
of the NPA hierarchy. To get tighter bounds, further lin-
ear constraints can be added to the problem; for example,
the observed correlations p(a, b, c . . . |x, y, z . . .). Further
details about this method can be found in Appendix A.

In this work, we report on the self-testing of target
states that correspond to two independent sources produc-
ing maximally entangled singlet states

∣
∣ψ−〉. In detail, we

focus on two scenarios, depicted in Fig. 1, which can be
seen as two possible building blocks of a more complex
quantum network. The first scenario features two parties
(A and B) and the target state we self-test corresponds
to preparing the two maximally entangled states in par-
allel, see Fig. 1(c). That is, we self-test the state |�〉2 =
|ψ−〉A1B1 ⊗ |ψ−〉A2B2 , where Ai and Bj denote local qubit
Hilbert spaces of party A and party B, respectively. In
the following, we refer to this scenario as parallel self-
testing. The second structure is constituted by three parties
(A, B, and C), and the target state corresponds to prepar-
ing the sources in an entanglement swapping network,
see Fig. 1(d). This configuration, which is referred to as
three-party self-testing, although investigated both theo-
retically and experimentally in the last few years [50–54],
was implemented only very recently by use of truly inde-
pendent sources [43,55] and closing the locality loophole
[55]. Our target state in this scenario is therefore |�〉3 =
|ψ−〉A1,B ⊗ |ψ−〉A2,C.

Differently from the aforementioned studies, here we not
only aim to certify the presence of nonclassical correlations
through the violation of a suitable mathematical constraint,
but our purpose is also to obtain information about the
form of the state generated in the quantum network pro-
totypes considered. Furthermore, we stress that the inde-
pendence of the two sources is taken into account only to
properly choose the target state, which, accordingly, dis-
plays a tensor product of two maximally entangled states,

but no assumption on this aspect is required by our pro-
tocol, which is fully DI. Therefore, the parties can, in
principle, share any multipartite state, but the self-testing
statements ensure they have the desired product form. It
is also noteworthy that scenario (b) constitutes a particular
instance of scenario (a), given that one could retrieve the
parallel structure simply by allowing quantum communi-
cation between parties B and C. Therefore, the difference
between the two cases investigated lies in the causal rela-
tionship between nodes B and C, which, in scenario (a)
merge into a single party and in scenario (b) constitute
separate parties. In mathematical terms, this reflects the
requirement that in the three-party case the measurement
operators performed by B and C commute.

Our self-testing protocol is inspired by Ref. [42], which
presents a method for self-testing tensor products of copies
of a state, while keeping the number of inputs constant.
Such a method is desirable for self-testing quantum net-
works, since standard methods feature a number of inputs
that grows exponentially with the number of copies, which
becomes a relevant practical issue for larger networks. In
particular, we consider scenarios in which all parties have
two inputs; x, y = 0, 1 for scenario (a) and x, y, z = 0, 1 for
scenario (b). The number of outputs is then given by the
local Hilbert space dimension of the target state: in sce-
nario (a) both parties have four outputs, which we write as
a = (a1, a2) and b = (b1, b2), where ai, bi take values ±1;
in scenario (b) we have a = (a1, a2) as before and b = ±1
and c = ±1. The measurements are chosen so that in the
ideal experiment the marginal distributions provide a max-
imal quantum violation B of the CHSH Bell inequality.
More precisely one has B(p(ai, bi|x, y)) = 2

√
2, i = 1, 2

for scenario (a) and B(p(a1, b|x, y)) = B(p(a2, c|x, z)) =
2
√

2 for scenario (b). Following results in Ref. [42], such
distributions are known to self-test the desired target states.
The measurement strategy corresponds to performing the
standard CHSH measurements in parallel, which we elab-
orate on in the following section. More details about
merging the SWAP method with the techniques from Ref.
[42] can be found in Appendix A.

III. EXPERIMENTAL APPARATUS

In the experimental implementation of the two scenarios
of interest, we use the versatile photonic platform intro-
duced in Ref. [43]. In detail, our three-party case can be
seen as a subsystem of the five-node network implemented
in such work, while we slightly change the topology of
the network links to implement the parallel self-testing
scenario, where both parties send and receive a system.
In particular, for this latter case, in Fig. 1(c), we use
two separate laboratories equipped with independent quan-
tum state sources (�1 and �2, respectively, in Fig. 2)
and two measurement stations. Each measurement sta-
tion is composed of a half-wave plate and a polarizing
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FIG. 2. Experimental apparatus and detection of fourfold coincidences. (a) Parallel self-testing scenario implementation. In this
scenario, there are two laboratories, both equipped with a quantum state source and two measurement stations. The measurement
stations in laboratory 1 represent Alice, while those in laboratory 2 represent Bob. Both sources generate an entangled pair of pho-
tons, and the noise model for the states of �1 and �2, taking into account the presence of both white noise and colored noise, is as
follows: ρ = v|ψ〉〈ψ | + (1 − v) [(λ/2) (|01〉〈01| + |10〉〈10|)+ (1 − λ)(I/4)], where |ψ〉 is the singlet state [56]. The noise param-
eters characterizing our sources are as follows: v1 = 0.9716 and λ1 = 0.5004 for �1, and v2 = 0.9852 and λ2 = 0.5117 for �2 (for
further details, see Appendix D). Each laboratory sends a subsystem to the other through an approximately-30-m long single-mode
fiber, and keeps the other one to measure it. These fiber links reduce the overall rate of the sources by approximately 45%, due to
coupling in single-mode fibers and, to a smaller extent, due to the attenuation caused by the fiber itself. Furthermore, polarization
rotation occurring within the fiber, although compensated, causes residual noise of 2% or less on the visibility. The overall target state
to be shared between the two parties involved in this network is the tensor product of two maximally entangled two-qubit states. (b)
Tripartite scenario implementation. In this scenario, there are three laboratories, two (laboratories 1 and 3) equipped with a quantum
state source and a measurement station (representing Bob and Charlie, respectively) and one with just two measurement stations,
constituting Alice. The source in laboratory 1, �1, sends one photon to Bob, while �2 sends one to Charlie, and both sources send
the other one to Alice through an approximately-30-m-long single-mode fiber. (c) To detect the couples of two-qubit states generated
by sources �1 and �2, we set a coincidence window within which two twofold coincidence events must occur, to be recognized as
a fourfold coincidence. The curves indicate the CHSH value of the states generated by the two sources (�1, blue curve: �2, orange
curve), with the statistical uncertainty obtained considering the Poissonian distribution of the events (one standard deviation) in terms
of such a fourfold coincidences window, w2. On one hand, w2 should be as small as possible to approximate simultaneity between the
generations of the entangled photon pairs. On the other, however, as w2 approaches 0, the relative uncertainty on the CHSH values,
and analogously on the experimental frequencies, increases. Furthermore, when the number of coincidence events is not sufficient to
properly estimate the underlying statistics (i.e., for w2 → 0), the two CHSH values drop to zero and they are not relatable. Hence, as
an optimal time interval, we choose the smallest one giving the highest weighted average mean of the two CHSH values, which is also
characterized by a fair percentage error, to avoid a too small confidence level on the lower bounds of the fidelities (i.e., 1.033 μs).
BBO, β-barium borate; HWP, half-wave plate; PBS, polarizing beam splitter; PPKTP, periodically poled potassium titanyl phosphate;
QWP, quarter-wave plate.

beam splitter, which allows us to perform polarization pro-
jective measurements of the form cos(4θ)σz + sin(4θ)σx,
where σx and σz are Pauli operators, by simply rotat-
ing the half-wave plate by the angle θ with respect to
its optical axis. In the end, all the registered counts are
sent to a central time tagger, which recognizes as coin-
cidence events of distant detectors the counts occurring
within a given time window. In our notation, the measure-
ment stations in laboratory 1 represent Alice, while those
in laboratory 2 represent Bob. The two laboratories are

connected through two approximately-30-m-long single-
mode fibers, as shown in Fig. 2(a). The source in labo-
ratory 1 uses a spontaneous parametric down-conversion
(SPDC) of type II to generate a pair of polarization-
entangled photons of wavelength λ = 785 nm through a
β-barium borate crystal, which is pumped in a pulsed
manner by a λ = 392.5 nm UV laser beam. In labora-
tory 2, we have a periodically poled potassium titanyl
phosphate crystal pumped in a continuous-wave man-
ner, which generates polarization-entangled photon pairs
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at λ = 808 nm. Both sources generate a two-qubit maxi-
mally entangled state; for example, the singlet state |ψ−〉,
where the computational basis (|0〉 and |1〉) is encoded
in the horizontal and vertical photon polarization states
(|H 〉 and |V〉), and hence

∣
∣ψ−〉 = (|HV〉 − |VH 〉)/√2.

At this point, both laboratories send a photon to the
other one and use their measurement stations to per-
form projective measurements on the photon they kept
and on the one they received. In detail, Alice’s and
Bob’s operators will be those maximizing the CHSH
inequality violation; that is, up to unitary transforma-
tions, A0 = A1

0 ⊗ A2
0 = σz ⊗ σz and A1 = A1

1 ⊗ A2
1 = σx ⊗

σx and B0 = B1
0 ⊗ B2

0 = (σx + σz)/
√

2 ⊗ (σx + σz)/
√

2,
and B1 = B1

1 ⊗ B2
1 = (σx − σz)/

√
2 ⊗ (σx − σz)/

√
2, with

superscripts indicating the source generating the subsys-
tem.

To detect coincidence events between distant detectors,
we design a software to coordinate the counters located
in the different laboratories. In particular, we consider two
coincidence time windows: one to detect the twofold coin-
cidences generated by each source (set to 1.05 ns), w1, and
the other to reveal fourfold coincidences (i.e., simultane-
ous twofold events occurring for both sources), indicated
by w2. In other words, if a twofold event is registered for
both sources, within w2, they are labeled as simultane-
ous and are considered as a fourfold event. The optimal
value of window w2 represents a trade-off among several
requirements. Indeed, on one hand, the entangled pairs
generated by the two sources should be as close as possi-
ble in time to approximate their simultaneity, even if there
is no spacelike separation among the parties. On the other
hand, excessively narrowing it implies that fewer coinci-
dence events are taken into account in the analysis, since
for both sources only twofold coincidences occurring close
in time to another event by the other source are considered.
This increases the relative uncertainty on the experimental
frequencies, and analogously on the corresponding CHSH
values given by the marginal probabilities, as shown in
Fig. 2(c). Therefore, in our analysis, we chose the small-
est w2 value giving the highest weighted average mean of
the two CHSH values, which is also characterized by a fair
percentage error. In this way, we can avoid too small confi-
dence levels on the fidelities estimated by our protocol and
insufficient statistics. In particular, we take w2 = 1.033 μs.
Because of the detection efficiencies, our implementation
uses the fair sampling assumption.

For the tripartite scenario implementation, depicted in
Fig. 1(d) we have three laboratories. Laboratories 1 and
3 (the peripheral nodes) are constituted by a quantum
state source and one measurement station each, while
laboratory 2 (the central node) has two measurement sta-
tions, as shown in Fig. 2(b). The source in laboratory 1
sends one photon to Bob’s measurement station and the
other to Alice’s, while the source in laboratory 3 sends

one photon to Alice the other one to Charlie. In this
case, analogously to before, the measurement operators are
as follows: A0 = A1

0 ⊗ A2
0 = σz ⊗ σz and A1 = A1

1 ⊗ A2
1 =

σx ⊗ σx; B0 = −(σx + σz)/
√

2 and B1 = (σx − σz)/
√

2;
and C0 = −(σx + σz)/

√
2 and C1 = (σx − σz)/

√
2. From

an experimental point of view, the tripartite and paral-
lel scenarios differ in how the laboratories involved are
defined. In other words, one could pass from the parallel
self-testing case, represented in Fig. 2(a), to the three-party
one, represented in Fig. 2(b), by considering the two mea-
surement stations belonging to laboratory 2 as referring to
separate parties with no causal relations with each other.
However, in the actual implementation of the three-party
scenario, such a causal requirement is enforced by putting
a physical distance between the two measurement stations
toward the condition of spacelike separation.

IV. RESULTS

Our main goal is to experimentally obtain lower bounds
on the fidelities between the states produced and the refer-
ence states on the basis of the statistics observed through
the two apparatuses shown in Figs. 2(a) and 2(b). How-
ever, we cannot simply apply the SWAP method using the
raw data because, due to finite statistics, the experimental
frequencies do not correspond to physically allowed corre-
lations (e.g., they violate the no-signaling conditions) and
the optimization constraints imposed by the NPA hierarchy
would make the problem infeasible. Therefore, to over-
come this problem, we proceed in the following way (see
Appendix C for more details):

1. We use a regularization method in which we approx-
imate the experimental frequencies fj by probability
distributions belonging to the NPA set Q4 [57],
where j = (a, b, x, y) or j = (a, b, c, x, y, z) depend-
ing on the scenario. The solution of this method
provides a no-signaling set of distributions Preg

j that
are guaranteed to be close to the set of quantum
distributions. See Appendix C for further details.

2. We then run the SWAP SDP using Preg
j as inputs.

3. The solution of this SDP provides a linear functional
d(P) = ∑

j c∗
j Pj (through its dual formulation), for

which the value gives a lower bound on the self-
testing fidelity.

4. We run another SWAP SDP, in which we do not
assume the actual value of the distributions, but we
impose as a constraint the experimentally obtained
value of the dual functional.

Using this method and a Monte Carlo simulation (assum-
ing Poissonian statistics for the experiment) to calculate
the uncertainties, we find that F(ρAB, |�〉2) = 0.587 ±
0.053 for the parallel configuration and F(ρABC, |�〉3) =
0.863 ± 0.032 for the tripartite case. In detail, in Fig. 3, we
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FIG. 3. Certifiable fidelities in parallel self-testing and tripartite scenarios (dual method). In the histograms shown , the upper bars
correspond to the experimental frequencies of each measurement output, while the lower ones correspond to the probabilities given as a
solution by the SDP optimization, with the experimental dual inequality imposed as a constraint. On the x axis, frequencies/probabilities
are ordered in blocks that correspond to the possible choices of operators. (a) Parallel self-testing scenario. Indigo columns represent
the experimental probabilities, divided in blocks that correspond to eight different sets of operators x and y, respectively, for Alice and
Bob. Every block contains 16 columns, each corresponding to a different set of outcomes: (a, b) = (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), . . .,
with a = 0, 1, 2, 3 and b = 0, 1, 2, 3. Purple columns represent the probabilities found by the SDP, with the experimental dual inequality
imposed as a constraint, and corresponding to the computed bound for the fidelity F = 0.5867 ± 0.053 (the uncertainty is evaluated
through Monte Carlo simulations). This result is obtained by optimization over the NPA set Q3 (for further details see Appendix A).
(b) Three-party case. Turquoise columns represent the experimental probabilities obtained by gathering all our data sockets, divided
in blocks that correspond to eight different sets of operators x, y, and z, respectively, for Alice, Bob, and Charlie. Every block contains
16 columns, each corresponding to a different set of outcomes: (a, b, c) = (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), . . ., with a =
0, 1, 2, 3 and b, c = 0, 1. Blue columns represent the probabilities found by the SDP, with the experimental dual inequality imposed
as a constraint, and corresponding to the computed bound for the fidelity F = 0.8628 ± 0.032 (analogously, uncertainty is estimated
through Monte Carlo simulations). In this case, the optimization is done over the NPA set Q3 plus extramonomials of higher order (for
further details see Appendix A. Both reported fidelity lower bounds are compatible, within statistical uncertainty, with those predicted
considering the noise parameters that best model the states generated by our sources (for details about the noise model see Appendix
D), amounting to F = 0.631 for the parallel case and F = 0.830 for the three-party case.

show the observable terms of the probability distribution
given as solution obtained by the SDP run in the third step,
in comparison with the experimental frequencies. Both the
reported fidelity lower bounds are compatible with the val-
ues predicted considering the noise parameters that best
model the states generated by our sources (for details about
the noise model, see Appendix D).

A. Device-independent estimation of the uncertainty

The previous method for calculating experimental
uncertainties, however, is not fully DI as it assumes a Pois-
sonian distribution for the measurement results. We now
move a step forward in removing assumptions and quan-
tify the confidence level on the fidelity bounds by using
Hoeffding inequality [44], which holds for IID variables
that are in the range (0, 1).

For this second method, we relax the constraint that
we obtain a given value for the SDP functional d(P)

and impose only d(P) ≤ dexpt. + τ(ε) and d(P) ≥ dexpt. −
τ(ε). In this notation, 1 − ε constitutes the confidence
level for which the observed frequencies fj are within a
range hj (ε) from the real probability Pj [44]. More specifi-
cally, such intervals hj (ε) amount to

√− ln ε/2(nj ), where
nj is the number of registered counts for configuration j . At
this point, by the central limit theorem [58], the linear com-
bination of frequencies dexpt. is characterized by Gaussian
statistics, whose variance amounts to σ 2 = ∑

j c∗2
j var y.

Furthermore, given that var y = 1/(2nj ), τ(ε) is chosen as
follows (see Appendix E for the full derivation):

τ(ε)2 =
∑

j

c∗2
j t(ε)2j = − ln(ε)σ 2. (4)

In the end, the confidence level for which the true value
of d(P) is within a range of τ(ε) from dexpt. can be easily
recovered from a standard normal table, considering that
this interval amounts to

√− ln ε standard deviations. In
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(a)

(b) Three-party scenario

FIG. 4. Certifiable fidelities and device-independent confi-
dence levels. We show the lower bounds on the certifiable
fidelities in both of the scenarios studied as a function of
the probability ε that for all configurations j , fj /∈ {Pj −
tj (ε), Pj + tj (ε)}, where fj are the observed frequencies, Pj
are the probabilities characterizing the probability distribution
underlying the experiment, and nj are the registered counts
corresponding to configuration j . To obtain such confidence
levels, we firstly use Hoeffding inequality [44], which can be
applied to IID variables and by which tj (ε) = √− ln ε/(2nj )

(see Appendix E for the full derivation). Then we take a step
further and consider the possible presence of memory effects,
and use the Azuma-Hoeffding inequality [45–47,59], by which
tj (ε) =

√

−2 ln ε/(n × min q2), where q is the probability dis-
tribution of the inputs and n is the total number of runs (see
Appendix F for the full derivation). From those statistical uncer-
tainties on the probabilities, we recover the confidence level on
the obtained lower bounds, which amounts to

√− ln ε standard
deviations of a Gaussian distribution. In (a), we report the case
of parallel self-testing, for which nontrivial fidelity bounds can
be found only in an IID setting (i.e., through Hoeffding inequal-
ity). In (b) we report the confidence levels of the three-party
case, both in an IID setting and taking into account the possi-
ble presence of interdependencies among the experimental runs
through the Azuma-Hoeffding inequality. The numbers on the
bars indicate the number of standard deviations corresponding
to the confidence level of such fidelities. Such confidence levels
can be found in a standard normal table. The dashed lines indicate
the fidelities that certify, respectively, that the state has a Schmidt
number higher than or equal to 2 (blue line), 3 (red line), and 4
(green line).

Fig. 4, we show the certifiable fidelities in the two scenar-
ios studied versus ε and indicate the corresponding number
of standard deviations adding up to τ(ε) at the bottom of
the bars.

Although Hoeffding inequality allows us to drop the
assumptions concerning the probability distribution under-
lying the experimental data, it can be applied only if
the variables involved are independent and drawn from
the same probability distribution (i.e., it requires the IID
assumption). To go a step further and consider possi-
ble interdependencies among the experimental runs, we
need to use a more sophisticated tool, that is, the Azuma-
Hoeffding inequality [44–47,59], which can be applied
to sequences of random variables constituting a martin-
gale [45] and whose increment is upper bounded. It can
be shown that this is the case of the frequencies regis-
tered throughout the sequence of experimental runs (see
Appendix F for the full derivation) and, therefore, it is
possible to bound the confidence 1 − ε that the observed
frequencies fj are within a range aj (ε) from the probability
Pj , accounting for possible memory effects. Analogously
to before, aj (ε) =

√

−2 ln ε/(n × min q2), where n is the
number of registered counts, and var y = 2/(n × min q2),
where q is the probability distribution of the inputs. Also in
this case, we obtain the lower bound on the fidelity, corre-
sponding to the values of ε, imposing as an optimization
constraint d(P) ≤ dexpt. + τ(ε) and d(P) ≥ dexpt. − τ(ε),
with τ(ε) being defined in analogy to Eq. (4). Also in
this case, the considered interval τ(ε) amounts to

√− ln ε
standard deviations. In Fig. 4(b), the lighter bars indi-
cate the fidelities that can be certified in the three-party
case, in terms of ε, taking into account possible memory
effects through the Azuma-Hoeffding inequality. For the
parallel case it is not possible to certify nontrivial fidelity
bounds (i.e., higher than 0.25) when the IID assumption is
dropped.

From all the reported fidelity lower bonds, we can
extrapolate a corresponding lower bound on the Schmidt
number of the state [60,61]. In particular, in the cases stud-
ied, a fidelity higher than k/4 implies a Schmidt number
higher than or equal to k + 1. In Fig. 4, we indicate the
thresholds for a Schmidt number of 2 (blue line), 3 (red
line), and 4 (green line).

V. DISCUSSION

In this work, we experimentally implement self-testing
protocols in two scenarios representing two basic build-
ing blocks for quantum networks. In particular, we study
a parallel self-testing scenario, in which two parties share
two copies of a bipartite state, and a tripartite one, in
which two bipartite states are shared among two periph-
eral nodes and a central one [50–55]. In these two cases,
we are able to obtain lower bounds on the fidelity of
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the generated states with the desired target states that
demonstrate that both sources indeed produce entangled
states, constituted by the tensor product of two two-qubit
maximally entangled states. In detail, we find lower
bounds on the Schmidt number of the states generated, cer-
tifying a Schmidt number of 2 or greater for the first case
and a 3 or greater for the second case. It is noteworthy that
although in the experimental implementation we use two
separate and independent sources, no assumption on this
aspect is required in the protocol, nor is one required on
the product form of the state shared by the parties. Then
we estimate the confidence level of our results in case
no interdependencies are present among the experimental
runs by use of Hoeffding inequality [44], and finally, for
the three-party case, we take a step forward and account
also for possible memory effects by using the Azuma-
Hoeffding inequality [45–47,59]. We stress that the number
of local measurement choices is kept constant indepen-
dently of the number of quantum state copies that one
aims at certifying in the parallel case [42] and is kept con-
stant independently of the number of parties involved in
extensions of the three-party case. Furthermore, from an
experimental perspective, this method provides an extra
significant advantage, represented by the fact that this
technique requires only separable measurements. These
techniques can, in principle, be extended to more com-
plex topologies and larger networks, as well as to the case
of two parties sharing more than two copies of entan-
gled states. However, in this context, the main limitation
is represented by the computational cost of semidefinite
programming optimizations, which require a space mem-
ory that grows exponentially with the size of the system
under consideration. This difficulty, however, can be cir-
cumvented through several approaches intended to make
the calculation less demanding. In detail, from a mathe-
matical point of view, the number of variables involved
in the optimization can be reduced by finding symmetries
in the objective function (see Appendix B) [62,63]. Other-
wise, machine learning techniques can be used to design
much faster solvers than the traditional ones, at the price
of reducing the accuracy of the optimization [64]. Further-
more, the computation could be made easier by minimal
assumptions on the apparatus (i.e., partially trusting spe-
cific nodes within a large network). This would allow one
to make some assumptions on the form of the generated
state, in particular on the presence of some tensor products,
which would break the optimization problem into smaller
problems that are efficiently solvable. We believe that the
present tool will find applications in quantum communi-
cation, in particular in cryptographic scenarios such as
quantum key distribution and blind quantum computation.
In particular, quantifying how close the generated state is
to a maximally entangled one can be used to bound the
information that an eavesdropper could obtain by correlat-
ing a system to the one shared by the parties. Furthermore,

in the three-party scenario, if we consider the case in
which the central node performs entangled measurement,
correlating the systems shared by the peripheral parties,
our protocol could be used to verify the quality of the
entanglement swapping [34,35] by self-testing the proper
target state. This can prove particularly useful in large
networks to allow secure communication between distant
parties. Our protocol also provides useful tools for ran-
domness generation in quantum networks or, analogously,
using qudit states. Furthermore, the fact that the number of
inputs is constant, regardless of the dimension of the sys-
tem, or analogously of the number of parties involved , can
prove an interesting feature in randomness amplification.

VI. METHODS

A. Experimental details

For the experimental setups in Fig. 2, the pump laser
beam for source 1, with λ = 392.5 nm, is produced by
a second harmonic generation process from a Ti:sapphire
mode-locked laser with a repetition rate of 76 MHz. Pho-
ton pairs entangled in the polarization degree of freedom
are generated by type-II SPDC in 2-mm-thick β-barium
borate crystals. Source 2 uses a continuous-wave diode
laser with wavelength λ = 404 nm, which pumps a 20-
mm-thick periodically poled potassium titanyl phosphate
crystal inside a Sagnac interferometer to generate photon
pairs using a type-II degenerate SPDC process. The pho-
tons generated in both the sources are filtered with regard
to wavelength and spatial mode by use of narrowband
interference filters and single-mode fibers, respectively.

B. Coincidence counting

The photon detection events are collected and timed by
a different time-tagger device for each party, located in the
corresponding laboratory [43]. For each 1 s of data acqui-
sition, the events are sent to a central server, along with a
random clock signal shared between all the time taggers,
which is used to synchronize the timestamps of events rel-
ative to different devices. To filter out part of the noise,
the raw data are first preprocessed by our keeping only
double-coincidence events for each photon source, using a
narrow coincidence window of 1.05 ns. Then the fourfold
coincidence events between the two sources are counted
every time one such double coincidence event is recorded
for each source in a window of approximately 1.033 μs.
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APPENDIX A: BOUND ON THE FIDELITY
BETWEEN THE STATE GENERATED BY A

QUANTUM NETWORK AND A TARGET

In this section, we describe in further detail the self-
testing approach we use in this work, which was firstly
introduced in Ref,. [31], and which can be applied when
experimental imperfections do not allow one to reach the
maximal quantum violation of a causal constraint, such as
the CHSH inequality. In this case, the violation reveals the
presence of nonclassical correlations, but it does not single
out the system producing it. However, through the tech-
niques introduced in Ref. [31], it is possible to establish
a lower bound on the fidelity between the target state and
the unknown generated quantum state with use of the NPA
hierarchy [48,49].

We consider the simplest quantum scenario, with one
source of a bipartite entangled system and two parties
(Alice and Bob) performing two-output local measure-
ments on a given subsystem, according to an input (x, y) ∈
(0, 1). The figure of merit for self-testing of a two-qubit
maximally entangled state is the CHSH inequality, but, if
the maximal violation extent is not achieved, for instance,
due to experimental imperfections, the test is inconclusive.

Hence, we can use the following protocol: First, we use,
as a figure of merit, the fidelity with a target state

∣
∣ψtarget

〉

,
defined as follows:

F(ρAB,
∣
∣ψtarget

〉

) = 〈

ψtarget
∣
∣ ρAB

∣
∣ψtarget

〉

. (A1)

However, without making assumptions on the dimension
of the generated state, this fidelity is not properly defined;
therefore, to have a fully device-independent protocol, we
can use the SWAP operator [31]. As a first step, we con-
sider an ancillary register, defined on a Hilbert space of the
same dimension as that of the target, and we trust that each
system is prepared in the dummy state (i.e., |0〉). In our
case we take dim(Htarget) = 2. Then we define the local
operator S = SAA′ ⊗ SBB′ , where SAA′ = UAA′VAA′ , where

UAA′ = I ⊗ |0〉A′ 〈0|A′ + OA
1 ⊗ |1〉A′ 〈1|A′ , (A2)

and

VAA′ = I + OA
0

2
⊗ I

A′ + I − OA
0

2
⊗ σ A′

x , (A3)

and analogously for Bob (B). These operations are unitary
if both O0 and O1 are unitary and Hermitian. Through this
operator, we aim to swap part of the state ρAB, which is
seen as a black box, onto the ancillary register, and ρSWAP
has the following form:

ρSWAP = TrAB[S(ρAB ⊗ |00〉 〈00|)S†]. (A4)

Once we have S explicitly in terms of OA,B
0 and OA,B

1 , the
entries of ρSWAP, from the partial trace in Eq. (A4), are
given by linear combinations of correlation terms from the
set c = [cI = Tr(ρABI), cOA

0
= Tr(ρABOA

0 ),. . . , cOA
0 OA

1 OB
0

=
Tr(ρABOA

0 OA
1 OB

0 )].
Hence, we can solve the following SDP:

f = min
〈

ψtarget
∣
∣ ρSWAP

∣
∣ψtarget

〉

subject to c ∈ Ql,

cOA
0 OB

0
+ cOA

0 OB
1

+ cOA
1 OB

0
− cOA

1 OB
1

= ICHSH,

(A5)

where Ql is a set that includes the set of quantum corre-
lations and that corresponds to the lth level of the NPA
hierarchy. In this way, by simply evaluating the CHSH
inequality on the generated state, and setting it as a con-
straint in the problem in Eq. (A5), we can lower-bound
the fidelity with the target state. To obtain higher bounds,
we can add further constraints; for instance, if the statis-
tics correspond to isotropic black boxes, we could add
constraints of the following kind:

cOA
0 OB

0
= cOA

1 OB
0

= cOA
0 OB

1
= −cOA

1 OB
1
.

A better lower bound can be obtained giving the full
statistics to the SDP, solving

given p(a, b|x, y),

f = min
〈

ψtarget
∣
∣ ρSWAP

∣
∣ψtarget

〉

subject to c ∈ Qn.

(A6)

The bound on the certifiable fidelity, considering a gener-
ated state ρAB = v|ψ〉〈ψ | + (1 − v)I/2, is plotted in Fig. 5
as a function of the visibility v (dotted curve). This method
is general and can be extended to more parties and differ-
ent network topologies by choosing the operators O0 and
O1 according to the target state, although general methods
have been introduced for the case in which one simply has
some distributions p(a, b|x, y) and wishes to guess what
involved state and measurements are [41].
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FIG. 5. Certifiable fidelities in the three-party and parallel
self-testing scenarios. The minimum fidelity certifiable with our
protocol, in the simple CHSH scenario (dotted curve) [31], in
the three-party scenario (blue curve) and in the scenario of two
parties sharing two singlets; that is, the parallel self-testing sce-
nario (red curve) [42]. The dashed curve represents the fidelity
bound that would be obtained through the assumption that the
state generated by the network is made of a tensor product of two
quantum states, each shared between two parties (i.e., in a semi-
device-independent setting). In the Bell case, the target state is
a two-qubit maximally entangled state, |ψ〉, while in the other
cases, the target is a product of two two-qubit maximally entan-
gled states |ψ〉A1B ⊗ |ψ〉A2C (three-party scenario) and |ψ〉A1B1 ⊗
|ψ〉A2B2 (parallel self-testing scenario). The fidelities are plotted
in terms of the visibilities of the generated states. In partic-
ular, we consider that in the CHSH case, the generated state
would have the following form: ρAB = υ|ψ〉〈ψ | + (1 − υ)I/4.
In the three-party case, ρABC = ρA1B ⊗ ρA2C, with ρA1B = ρA2C =
υ|ψ〉〈ψ | + (1 − υ)I/4. In the parallel self-testing case, analo-
gously, ρAB = ρA1B1 ⊗ ρA2B2 , with ρA1B1 = ρA2B2 = υ|ψ〉〈ψ | +
(1 − υ)I/4. The horizontal dotted gray lines correspond to k/4,
with k ∈ (1, 2, 3), and indicate the thresholds over which the
fidelity guarantees a Schmidt number (and therefore an entangle-
ment dimension) higher than k + 1 (i.e., 2, 3, and 4, respectively).

1. The SWAP method for parallel self-testing

In the first part of our experiment, we use this proto-
col for a scenario involving two independent sources �1
and �2 generating singlets and two parties performing
four-output local measurements on the subsystem they get
according to an input (x, y) ∈ (0, 1). Both observers own
dummy states with total dimension equal to the one of
the target Hilbert spaces, whose dimension (dim(Htarget)
amounts to 4, so Alice will have |00〉A′

1A′
2
, similarly to Bob.

The fidelity to be bounded takes the form

F(ρA1B1B2A2 ,
∣
∣ψtarget

〉

) = 〈

ψtarget
∣
∣ ρA1B1B2A2

∣
∣ψtarget

〉

, (A7)

where the target state is
∣
∣ψtarget

〉 = ∣
∣ψ̄
〉⊗ ∣

∣ψ̄
〉

and
∣
∣ψ̄
〉

is
defined as

∣
∣ψ̄
〉 = cos

π

8

∣
∣φ−〉+ sin

π

8

∣
∣ψ+〉 , (A8)

which is maximally entangled and therefore equivalent
to
∣
∣ψ−〉 up to local unitaries. The state in Eq. (A8) is

chosen for simplicity of notation since this state reaches
IB = 2

√
2 for the operators

OA
0 = A0 = B0 = σz, OA

1 = A1 = B1 = σx. (A9)

Such operators are then inserted in the expression for the
operators U and V defined in Eqs. (A2) and Eq. (A3), where
σx and σz are Pauli operators. Then Alice and Bob perform
a swap between the dummy states on their ancillary regis-
ter and the subsystem they receive, and the ρSWAP density
matrix takes the following form:

ρSWAP = TrA1B1A2B2 [S(ρA1B1A2B2 ⊗ |0000〉 〈0000|)S†],
(A10)

where the SWAP operator is defined as S = SA1A′
1
⊗ SB1B′

1
⊗

SA2A′
2
⊗ SB2B′

2
. We write the complete expression for the

SWAP operator performed by Alice SAA′ = SA1A′
1
⊗ SA2A′

2
,

which is analogous to that performed by Bob:

SAA′ = SA1A′
1
⊗ SA2A′

2
= UA1A′

1A2A′
2
VA1A′

1A2A′
2
. (A11)

Since the operators U and V act on subsystems of
dimension 2, Alice and Bob can get four possible out-
comes from their measurements, and this can be described
by defining AAB

1 = ∑

{x,y}∈{0,1}×{0,1}(−1)Ax+By�
2x+y
A1

, where
{A, B} ∈ {0, 1} and �a

Ax
is the projector on the eigenspace

corresponding to the eigenvalue (a = 0, 1, 2, 3) of operator
Ax.

With these definitions, the expressions for the operators
U and V have the following forms:

UA1,2,A′
1,2

= A00
1 ⊗ |00〉〈00| + A01

1 ⊗ |01〉〈01|
+ A10

1 ⊗ |10〉〈10| + A11
1 ⊗ |11〉〈11|, (A12)

VA1,2,A′
1,2

= �0
A0

⊗ I +�1
A0

⊗ (I ⊗ σx)

+�2
A0

⊗ (σx ⊗ I)+�3
A0

⊗ (σx ⊗ σx). (A13)

After finding the complete expression for ρSWAP, the next
step is to solve the semidefinite program defined in Eq.
(A6), where probabilities p(a1, b1|x, y) and p(a2, b2|x, y)
are given as optimization constraints. We need to use
the full p(a, b|x, y) statistics as an optimization con-
straint instead of using the CHSH violations given by
the marginal statistics p(a1, b1|x, y) and p(a2, b2|x, y), not
only to obtain higher fidelity bounds but also because the
sole extension of the two quantum violations would not
be sufficient to guarantee that the two parties are actu-
ally sharing the tensor product of two two-qubit quantum
states. For instance, the simultaneous maximum violation
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of the two CHSH inequalities could occur in a scenario
where Alice and Bob share only a single copy of a two-
qubit maximally entangled state and get, as the outcome,
a single bit repeated (i.e., a1 = a2 and b1 = b2). In this
situation, the marginal CHSH violations would make our
fidelity optimization output trivial fidelity bounds. Con-
cerning the choice of the NPA hierarchy level to be used
in the optimization, we need to take into account that
all of the correlation terms adding up to the objective
function must be contained within the � matrix, which
is imposed to be positive semidefinite in our optimiza-
tion. In detail, for level k of the NPA, �ij = Tr(S†

j Sj ρ),
where S is the set of all of the operator products featur-
ing k terms (for further details, see Appendix B) [48,49].
Hence, the correlation terms of highest degree that will
appear within � at level k will be of order 2k; for exam-
ple, if k = 2 and two parties are involved, cAxAx∗By By∗ =
Tr(ρA1B1A2B2AxAx∗ByBy∗). Therefore, for the parallel sce-
nario, it is sufficient to choose Qn with n = 3 (i.e., the
NPA hierarchy [48,49] at level 3) since the correlation term
with the highest degree appearing in the fidelity is of order
6; that is, cA0A1A0B0B1B0 = Tr(ρA1B1A2B2A0A1A0B0B1B0). It
would also be desirable, in order to get higher fidelity
bounds, to reach even higher levels of the hierarchy, but
the optimization would become more demanding on a
computational level. The bound on the certifiable fidelity,
considering a generated state ρA1,2B1,2 = ρA1B1 ⊗ ρA2B2 ,
where ρA1B1 = ρA2B2 = v|ψ〉〈ψ | + (1 − v)I/d, is plotted
in Fig. 5 as a function of the visibility v (blue curve). The
bound on the certifiable fidelity can be translated into a
bound on the entanglement dimension of the state, and in
our case, a fidelity higher than k/4 certifies a Schmidt num-
ber higher than or equal to k + 1 [60,61]. These fidelity
thresholds are indicated in Fig. 5 by the horizontal dotted
lines.

2. The SWAP method for the three-party scenario

We now consider the case in which the states gen-
erated by sources �1 and �2 are sent to three parties
(Alice, Bob, and Charlie) that perform local measurements
according to an input (x, y, z) ∈ (0, 1). In detail, Bob and
Charlie perform two-output local measurements on their
subsystem, generated by sources �1 and �2, respectively,
while Alice performs four-output local measurements on
the subsystem generated by both sources. In such a sce-
nario, self-testing can be achieved for a state product of
two-qubit maximally entangled states by performing either
two separate CHSH tests or a bilocality test [52–54] when
observing the maximum violation. However, if we violate
the classical bound but we do not observe the maximum
violation extent or we want to self-test another state, these
tests are not conclusive. Therefore, we wish to bound the
fidelity between the generated state and the target state;

that is,

F(ρA1BA2C,
∣
∣ψtarget

〉

) = 〈

ψtarget
∣
∣ ρA1BA2C

∣
∣ψtarget

〉

, (A14)

where the target is a state product of
∣
∣ψ̄
〉

, defined in Eq.
(A8). To test the state, the participants each own an ancil-
lary register with a dummy state of dimension 2 for Alice
and 1 for Bob and Charlie. As in the previous case, the
parties perform the swap, and the resulting ρSWAP density
matrix takes the form

ρSWAP = TrA1BA2C[S(ρA1BA2C ⊗ |0000〉 〈0000|)S†].
(A15)

The SWAP operator is defined as S = SA1A′
1
⊗ SBB′ ⊗

SA2A′
2
⊗ SCC′ , Alice’s one having dimension 2 and thus

defined as in Eqs. (A12) and (A13), and Bob and Char-
lie’s having dimension 1 and thus defined as in Eqs. (A2)
and (A3).

In this case, the choice of the NPA hierarchy level
should work analogously to what we saw in the previous
paragraph; that is, we should take the highest-order terms
within the objective (l), and the minimum level k required
for the optimization would be k = l/2 (or k = [l/2] + 1
if l/2 is not an integer). Therefore, for the three-party
case, the correlation terms of highest order display the
product of nine operators—that is, cA0A1A0B0B1B0C0C1C0 =
Tr(ρA1B1A2B2A0A1A0B0B1B0C0C1C0)—so level 5 would be
necessary. Unfortunately, this results in a too demanding
optimization problem, so our choice is to stop at level 3,
as in the parallel case, and add only the necessary extra-
monomials of higher order. Indeed, not all of the operator
products combinations appear in the fidelity expression
constituting the objective.

The bound on the certifiable fidelity, considering a gen-
erated state ρA1,2BC = ρA1B ⊗ ρA2C, where ρA1B = ρA2C =
v|ψ〉〈ψ | + (1 − v)I/d, is plotted in Fig. 5 as a function of
the visibility v (red curve). The bound on the certifiable
fidelity can be translated into a bound on the entanglement
dimension of the state, and in our case, a fidelity higher
than k/4 certifies a Schmidt number higher than or equal
to k + 1 [60,61]. These fidelity thresholds are indicated in
Fig. 5 by the horizontal dotted lines.

APPENDIX B: NPA HIERARCHY

In this section we discuss the Navascués-Pironio-Acín
hierarchy, first introduced in Ref. [48], which is an efficient
tool to solve optimization problems over the set Q of all
quantum states and measurements of arbitrary dimension.

We consider the case of two parties, Alice and Bob,
sharing a state ρ and performing local measurements that,
without loss of generality, we consider to be projectors,
indicated with Eα and Eβ , respectively, for Alice and
Bob. The properties of the projection operation are as fol-
lows: (i)

∑

μ Eμ = I and (ii) EμEν = δμ,ν for Eμ and Eν
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belonging to the same measurement, and (iii) [Eα , Eβ] = 0,
namely, projectors belonging respectively to Alice and
Bob commute with each other. We assume that for a given
probability distribution Pαβ there exist a quantum state ρ
and a set {Eμ} of projection operations such that

Pαβ = Tr(ρEαEβ). (B1)

The implications from this assumption give necessary
conditions that must hold for the set {Eμ}.

We consider the matrix � defined as follows:

�ij =
∑

ij

Tr(S†
i Sj ρ), (B2)

where S = {S1, S2, . . . , Sn} is the set made by all the oper-
ators of the form EαEβEα′ or

∑

α cαEα . It can be shown
[48] that for �, together with Hermitianity, the following
linearity conditions hold:

∑

ij

cij�ij = 0

if
∑

ij

cij S†
i Sj = 0,

(B3)

∑

ij

cij�ij =
∑

αβ

dαβPαβ

if
∑

ij

cij S†
i Sj =

∑

αβ

dαβEαEβ .
(B4)

In addition, � is positive semidefinite:

� � 0. (B5)

It follows that if for some set S it is not possible to find a
� matrix with the aforesaid properties, we must conclude
that the probability distribution Pαβ cannot be reproduced
through local measurements on a quantum state. Addition-
ally, if a set S can be written as linear combinations of
operators in another set S ′, the conditions imposed by S ′
are at least as constraining as the ones imposed by S , and
the set Sm of all possible products of m projectors gener-
ates by linear combinations all the operators that are linear
combinations of products of m′ projectors, with m′ ≤ m
[48].

Hence, given a set of projectors {Eμ}, the NPA method
allows us to build in a hierarchical way all the conditions
(i.e., the sets S) to be satisfied to certify the quantumness
of a given probability distribution. The hierarchy is based
on constructing sets Sn made up of products of the given
operators until degree n: for instance, we can first consider
the set containing just the projectors of the two parties,
Alice and Bob, which we indicate by S1 = {Eα , Eβ}. If the

conditions stated in Eqs. (B3)–(B5) hold, we can go on
and verify the constraints imposed by the set S2 = {EμEν},
made up of all the products of the operators {Eα , Eβ}, and
then iterate the process until some condition fails, or until
the set Sn is sufficiently large to represent all the conditions
we need to check.

For a concrete example, we consider Alice perform-
ing measurements X = 1, 2 and Bob performing measure-
ments Y = 3, 4, where each measurement yields one of the
two possible outcomes {a, b} ∈ {+1, −1}. We also define
the correlation functions CXY = ∑

ab abP(a, b|X , Y) and
the marginal quantities CX = ∑

a aP(a, b|X , Y) and CY =
∑

b bP(a, b|X , Y). The test of the NPA hierarchy corre-
sponding to the first level (i.e., n = 1) is built on the set
S1 = {X1, X2, Y1, Y2}, and the � matrix has the following
form:

� =

⎛

⎜
⎜
⎜
⎝

1 C1 C2 C3 C4
1 u C13 C14

1 C23 C24
1 w

1

⎞

⎟
⎟
⎟
⎠

, (B6)

where the lower symmetric part has been elided (remem-
ber that � is Hermitian), and the entries u and w correspond
to the correlation terms involving noncommuting measure-
ments (both belonging to Alice or Bob). These entries
are thus indeterminate and can be adjusted by use of a
semidefinite program to get a SDP � matrix if the other
correlations {CX , CY, CXY} are quantum [48].

1. Application to SDP characterization in parallel
self-testing

In the parallel self-testing scenario the function to be
minimized—that is, the fidelity defined in Eq. (A7)—is a
linear combination of correlation terms containing prod-
ucts of two (one for Alice and one for Bob) to six (three
each) operators. To minimize such a function on a quantum
set, we need to impose these terms to be the entries of one
positive semidefinite � matrix, and given that, as shown
in the previous example, level 1 of the hierarchy consid-
ers constraints on correlation terms up to degree 2, in our
case it is necessary to build the hierarchy up to level 3, at
least. To do so, we use the PYTHON library first introduced
in Ref. [65], which allows one to set both the objective
function to be optimized and the level of the relaxation,
and then to solve the SDP problem with the optimization
program MOSEK [66].

Considering that Alice and Bob each own eight pro-
jector operators, indicated by �a

A/Bx
, where a = {0, 1, 2, 3}

are the possible eigenvalues, and x ∈ (0, 1), and given also
property (i) of the projection operation, yielding �3

A/Bx
=

I − (�0
A/Bx

+�1
A/Bx

+�2
A/Bx

), at level 1 the S1 set con-
tains the following 12 elements: �0

A0
, �1

A0
, �2

A0
, �0

A1
,
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�1
A1

, �2
A1

, �0
B0

, �1
B0

, �2
B0

, �0
B1

, �1
B1

, and �2
B1

. Given also
that the number of the � entries grows with the level of
the relaxation and with the number of operators involved,
and decreases with the number of allowed substitutions,
namely, if entry �ij = �0

A0
×�0

A0
×�0

B1
and entry �i′j ′ =

�0
A0

×�0
B1

, then the two are the same variable, due to
property (ii) of the projection operation, the total number of
variables concerned in this optimization problem is 22 602.

However, it is possible to further reduce this quantity
by noticing that our objective function is symmetric under
exchange of parties A ↔ B, and that this transformation
keeps also the � matrix unchanged. In particular, we add
to the aforementioned substitutions those of the kind

�a
A0

: �a
B0

,

�a
A1

: �a
B1

,

�a
A0

×�a′
A1

: �a
B0

×�a′
B1

,

�a
A0

×�a′
B1

: �a′
A1

×�a
B0

,

�a
A0

×�a′
A1

×�a′′
B0

: �a′′
A0

×�a
B0

×�a′
B1

,

· · · ,

(B7)

where we take care to respect the commutation rules of
Alice and Bob’s operators when defining the left-hand side
and the right-hand side of each substitution.

2. Application to SDP characterization in the tripartite
scenario

We now consider the scenario in which Alice shares
one singlet with Bob and another with Charlie. Here the
fidelity to be bounded is the one in Eq. (A14), which
contains correlation terms of at least three (one for each
party) and at most nine (three for each party) operators.
In this case, level 1 of the hierarchy is built over the
following set containing ten projection operators: Sbilo =
{�0

A0
,�1

A0
,�2

A0
,�0

A1
,�1

A1
,�2

A1
,�0

B0
,�0

B1
,�0

C0
,�0

C1
}. At

the minimum required level (i.e., level 5) the problem
would be too computationally requiring for a normal com-
puter. To simplify the problem, it is possible to stop at
level 3 of the hierarchy by considering all the monomi-
als with degree higher than 6 appearing in the objective
function as extramonomials. In this way, not all the pos-
sible product combinations of the operators are taken into
account as variables for correlation terms of degree greater
than 6, and only those given as extramonomials are taken
into account. The number of variables for the optimization
is, considering also the standard substitutions due to the
projection properties, 10 115. Besides this, it is possible to
further reduce the number of the � entries by using, again,
the symmetries of the objective function. This time, the
symmetry holds for the exchange of the peripheral parties
(i.e., Bob and Charlie, B ↔ C) and swapping the second

and third outputs of the central party (i.e., 01 ↔ 10). By
considering this symmetry when setting the list of the sub-
stitutions, the number of SDP variables decreases to 7670,
while the time for the optimization decreases from 136.28
to 78.16 s.

APPENDIX C: FREQUENCY REGULARIZATION
AND DEFINITION OF THE DUAL EQUALITY

CONSTRAINT

The NPA hierarchy is just one of several examples of
theoretical tools taking into account the full quantum dis-
tribution for device-independent characterization, which
all share the common assumption of no signaling. How-
ever, because of finite statistics, raw distributions obtained
by the experimental frequencies generally do not satisfy
this condition, to the extent that it is almost always impos-
sible to use raw data with these methods. In Ref. [57], a
general tool called the “device-independent least-squares
method” is introduced, which can be used to estimate the
no-signaling probability distribution belonging to a super-
set of the quantum correlation set, Ql, which is the closest
to the experimental frequencies in terms of a norm-2 dis-
tance (||�f − �P||2). In particular, we indicate with �f the
experimental frequencies and P is the probability distribu-
tion satisfying the no-signaling condition. We briefly state
the no-signaling condition: a distribution of probability
P(a, b|x, y) is nonsignaling if the following two relations
are simultaneously satisfied:

P(a|x, y) ≡
∑

b

P(a, b|x, y) = P(a|x, y ′) for all a, x, y, y ′,

P(b|x, y) ≡
∑

a

P(a, b|x, y) = P(b|x′, y) for all b, y, x, x′.

(C1)

In detail, this technique is shown in Ref. [57] to be equiv-
alent to performing a projection P�(�f ) of �f onto an
affine subspace N of R

16 (16 is the dimension of the
frequency vector in a simple CHSH two-party scenario),
which contains only �Ps satisfying the no-signaling condi-
tion, followed by the minimization of the norm-2 distance
between P� and Q.

Formally, the method amounts to finding the unique
minimizer of the least-squares problem

�PLS(�f ) = argmin�P∈Q||�f − �P||2, (C2)

where when the quantum set Q is approximated by a super-
set relaxation Ql that admits a semidefinite programming
characterization through the NPA hierarchy. The problem
in Eq. (C2) can be cast as a SDP, although the norm-2 dis-
tance is not a linear function in the following formulation,
using the characterization of positive semidefinite matrices
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via their Shur complement:

argmin�P∈Ql
s

subject to
(

sI �f − �P
�f T − �PT s

)

� 0

and � � 0,

(C3)

where I is the identity matrix having the same dimension
of the column vector �f , and � is defined as in Eq. (B6),
depending on the NPA hierarchy level chosen. Indeed, by
Theorem 7.7.7 in Ref. [67],

s − ( �f T − �PT)
I

s
( �f − �P) � 0. (C4)

Given that (�f T − �PT)(�f − �P) = ||�f − �P||22, Eq. (C4) is
equivalent to

s2 � ||�f − �P||22, (C5)

and hence s � ||�f − �P||2.
This problem involves only an objective function and

matrix constraints that are linear in the SDP variables s
and �P and in the variables of the � matrix, and is shown
[57] to be unique and totally equivalent to the one defined
in Eq. (C2).

At this point, the probability distribution �P obtained is
input into the SDP as linear constraints on the moments of
the � matrix, as described in Eq. (A6), where the p are the
regularized probabilities.

Now consider that given C ∈ Mn, Ai ∈ Mn, i =
1, 2, . . . , m, and b ∈ Rm, the semidefinite programming
problem is to find a matrix X ∈ Mn for the following
optimization problem:

inf C · X

subject to Ai · X = bi|i = 1, . . . , m|X � 0,
(C6)

which individuates the primal solution to the problem
(i.e., searches for the minimum solution from above). The
corresponding dual problem can be written as

sup bTy

subject to
∑

i

yiAi + S = C|S � 0. (C7)

Here y ∈ Rm and S ∈ Mn constitute the solution of the
dual problem; namely, the best approximation of the result
from below that coincides with the primal due to strong
duality. The objective function of the dual problem, bTy,
is in our case a linear combination of the regularized fre-
quencies

∑m
i ciPi. At this point, we take the dual solution

of the SDP (namely, the vector of coefficients y) and eval-
uate the linear combination Dexpt. = bT

expt.y by putting as
bexpt. the observed frequencies. In the end, this new linear
combination of the matrix moment is given as the equality
constraint to a new SDP, which finally gives our device-
independent estimation of the minimal certifiable fidelity,
as follows:

f = min
〈

ψtarget
∣
∣ ρSWAP

∣
∣ψtarget

〉

subject to c ∈ Ql,

cTy = bT
expt.y.

(C8)

This method allows one to extract an experimental lower
bound on the fidelity directly from the experimental data
and not from the regularized data, avoiding a possible over-
estimation of it. For the NPA level of the hierarchy used in
the data regularization, we choose to consider level 4 to
avoid to selecting a probability distribution not belonging
to the level used in the fidelity lower bound optimizations
(i.e., 3 for the parallel case and 3 plus extramonomials for
the three-party case), which would result in an infeasible
optimization problem.

APPENDIX D: NOISE MODEL

In Appendix A, we report the theoretical fidelity lower
bounds corresponding to different state visibilities accord-
ing to the following noise model, taking into account only
white noise (i.e., isotropic depolarization):

ρv = v|ψ〉〈ψ | + (1 − v)
I

4
, (D1)

where ρv is the state generated by one of the two sources.
Furthermore, both sources are assumed to be character-
ized by the same noise parameter v. Hence, the model of
the overall generated state is the following: ρAB

v = ρ
A1B1
v ⊗

ρ
A2B2
v (for the parallel case) and ρABC

v = ρAB
v ⊗ ρAC

v (for the
three-party case). This model is used to have an overview
of the robustness of the proposed self-testing protocol, but
despite its usefulness, it is not appropriate as a model of
our experimental conditions.

Hence, to design a noise model that better represents
the states generated by our sources, we need to take into
account also the presence of colored noise (i.e., depolariza-
tion along a preferred direction), which is typical of SDPC
sources of type II [56]:

ρλ = λ|ψ〉〈ψ | + 1 − λ

2
(|01〉〈01| + |10〉〈10|). (D2)

Moreover, we consider that there could be errors in
the rotation of the wave plates belonging to the par-
ties’ measurement stations—that is, O′

A = U(φ)†OAU(φ),
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etc.—and the fact that the two sources can have different
visibilities.

Therefore, overall, our noise model is as follows:

ρλv = v|ψ〉〈ψ | + (1 − v)

×
(
λ

2
(|01〉〈01| + |10〉〈10|)+ (1 − λ)

I

4

)

, (D3)

and the total states generated by the networks have the
following form:

ρAB
λ1,2v1,2

= ρ
A1B1
λ1v1

⊗ ρ
A2B2
λ2v2

, (D4)

ρABC
λ1,2v1,2

= ρ
A1B
λ1v1

⊗ ρ
A2C
λ2v2

. (D5)

The noise parameters that best explain our experi-
mental observations are estimated by minimizing the
distance between the theoretical probability distribu-
tion predicted by the noise model, pmod(a, b|x, y) or
pmod(a, b, c|x, y, z), and the experimental frequencies,
f (a, b|x, y) or f (a, b, c|x, y, z). In detail, we define the total
distance as

d(p , f ) = 1
8

∑

a,b,x,y

|p(a, b|x, y)− f (a, b|x, y)|, (D6)

d(p , f ) = 1
16

∑

a,b,x,y

|p(a, b, c|x, y, z)− f (a, b, c|x, y, z)|,

(D7)

where Eq. (D6) refers to the parallel case and Eq.
(D7) refers to the three-party one. The noise param-
eters corresponding to our experimental conditions are
v1 = 0.9716, λ1 = 0.5004, v2 = 0.9852, and λ2 = 0.5117,
giving dparallel = 0.100 and dthree-party = 0.103. A compar-
ison between the experimental frequencies and the noise-
predicted ones is shown in Fig. 6. With such parameters,
the predicted fidelities for the parallel scenario and for
the three-party scenario are, 0.631 and 0.830, respec-
tively, both of which are compatible, within approximately
one standard deviation, with the experimental values (i.e.,
0.587 ± 0.053 and 0.863 ± 0.032).

APPENDIX E: BOUNDING THE CONFIDENCE
LEVEL ON THE FIDELITY BY USE OF

HOEFFDING INEQUALITY

Hoeffding inequality [44] is a very useful tool when
there is a need to estimate uncertainties on experimental
probabilities, taking into account finite statistics. It asserts
that given n independent random variables X1, . . . , Xn,
defined in [0, 1], with the following mean, expected value,
and variance:

S = (X1 + X2 + · · · + Xn),

X = S/n,

(a)

(b)

(c)

Expt.

Expt.

Model

FIG. 6. Noise theoretical model. The histograms show a com-
parison between the experimentally observed frequencies and the
probability distributions that are expected by the noise model
of the state generated by the sources involved. In particular,
we consider each source to generate the state ρλv = v|ψ〉〈ψ | +
(1 − v) [(λ/2)(|01〉〈01| + |10〉〈10|)+ (1 − λ)(I/4)], which is
affected both by an isotropic depolarization (white noise) and
by a specific direction (colored noise). The fraction of the latter
is given by the parameter λ, while v is the overall state visibil-
ity. Hence, the state generated in the network will be ρAB

λ1,2v1,2
=

ρ
A1B1
λ1v1

⊗ ρ
A2B2
λ2v2

in the parallel case and ρABC
λ1,2v1,2

= ρ
A1B
λ1v1

⊗ ρ
A2C
λ2v2

in the three-party case. The noise parameters characterizing our
state are as follows: v1 = 0.9716, λ1 = 0.5004, v2 = 0.9852,
and λ2 = 0.5117, and according to such a model, the predicted
fidelity lower bounds for the parallel and three-party scenar-
ios are 0.631 and 0.830, respectively, both compatible within
1.5 standard deviations with the experimental values; that is,
0.587 ± 0.053 (a) and 0.863 ± 0.032 (b).

μ = E
[

X
] = E [S/n] ,

σ 2 = var y/n.
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Then the following inequality holds for 0 ≤ t ≤ 1 − μ:

ε = Pr(X − μ ≥ t) ≤ e−2nt2 , (E1)

where t depends on the arbitrary confidence interval ε
assigned to the variable y = X − μ according to t(ε) =√− ln ε/(2n).

From this bound, it is possible to extract information
about the effects of finite statistics on the estimation of
the dual constraint, described in Appendix C. We con-
sider the worst-case scenario of Hoeffding inequality (E1);
that is, ε = e−2nt2 . The right-hand side of this equality
corresponds to 1 minus the cumulative distribution of the
variable y; namely:

P{y ≥ t} =
∫ ∞

t
P(y)dy = e−2nt2 , t > 0. (E2)

For the fundamental theorem of calculus, the probability
distribution function P(y) for y > 0 can be obtained by
differentiating 1 minus Eq. (E2), thus yielding

P(y) = d(1 − e−2ny2
)

dy
= 4nye−2ny2

, (E3)

which is a well-defined, positive and normalized distribu-
tion of probability for y > 0. For the case y < 0, Hoeffding
inequality still holds symmetrically [44], leading to the
following upper bound for t > 0:

Pr(−X + μ ≥ t) = e−2nt2 . (E4)

This means that we can consider the two-sided variant
of Hoeffding bound relative to the absolute value of the
variable y,

Pr(|X − μ| ≥ t) = 2e−2nt2 , (E5)

by defining the normalized probability distribution over
all real values of y, which is P(y) = 2n|y|e−2ny2

and
whose variance is defined as var y = 1/(2n). For the cen-
tral limit theorem, a linear combination

∑N
k=1 akyk of N

such independent, finite variance variables has a Gaussian
distribution characterized by the following variance:

σ 2
Gauss =

N
∑

k=1

a2
k(var yk) =

N
∑

k=1

a2
k/(2n).

Since the experimental value of the dual dexp is actually
a linear combination of the experimental frequencies, its
probability distribution can be approximated by a Gaus-
sian, and we can estimate that the experimental dual lies

FIG. 7. Hoeffding distribution function. The black curve rep-
resents the normalized probability distribution of the variable
y = X − μ > 0, P(y) = 2n|y|e−2ny2

, while the red curve repre-
sents 1 minus the cumulative probability of such a distribution;
that is, the probability that y lies outside the range [0, t], given
by Hoeffding inequality [44]. Since for the case y < 0 Hoeffd-
ing inequality holds simmetrically and hence P(y) = P(−y), the
probability that y lies outside the range [−t, t] amounts to P(|y| ≥
t, t > 0) = ∫ −t

−∞ −2nye−2ny2
dy + ∫∞

t 2nye−2ny2
dy = e−2nt2 . The

variance of the black function is var y = 1/(2n). We use the vari-
ance of this distribution to compute the statistical uncertainty on
the constraint cT(y) of the problem given by Eq. (C8) by asserting
that it lies inside the interval dexpt. − τ(ε) ≤ cTy ≤ dexpt. + τ(ε)

with a probability that can be recovered from a standardized nor-
mal table, considering that such an interval amounts to

√− ln ε
standard deviations.

within the following interval:

dexpt.(f )− τ(ε) ≤ d(p) ≤ dexpt.(f )+ τ(ε), (E6)

where

τ 2(ε) =
N
∑

k=1

a2
kt2k(ε) = − ln(ε)σ 2, (E7)

having defined σ 2 = ∑N
k=1 a2

kvar yk, with a confidence
level that can be computed from a standardized normal
table considering that such an interval amounts to

√− ln ε
standard deviations.

APPENDIX F: ACCOUNTING FOR POSSIBLE
MEMORY EFFECTS THROUGH THE
AZUMA-HOEFFDING INEQUALITY

Hoeffding inequality [44], as explained in Appendix
E, allows us to find a confidence level for our fidelity
results without making assumptions on the statistics under-
lying the experiment. However, this method still requires
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the assumption that the variables involved are indepen-
dent of each other and drawn from the same probability
distribution; namely, the so-called IID assumption.

To drop such an assumption and take into account possi-
ble memory effects throughout the experiment, which may
cause interdependencies among the runs, we can use a
different approach: the Azuma-Hoeffding inequality [45–
47,59]. The application of such an inequality requires that
the random variables involved in our process constitute a
martingale [45]; namely, a stochastic process in which the
expected value of an observation at some time k, condi-
tioned on all the previous observations up to a earlier time
k′, is equal to the observation at that earlier time. This fea-
ture implies that martingales, under some circumstances,
behave like the sum of independent variables.

Here we describe how this approach works for the three-
party case (the parallel one is analogous).

In our case, the random variables we consider are as
follows:

Ci(a, b, c|x, y, c)

= χ(ai = a, bi = b, ci = c, xi = x, yi = y, zi = z)
q(x, y, z)

,

(F1)

where q(x, y, z) is the input probability distribution and
χ(e) is the indicator function for event e; that is,
if event e occurs, χ(e) = 1, otherwise χ(e) = 0. The
relation between Ci(a, b, c|x, y, c) and our frequencies
f (a, b, c|x, y, c) is as follows:

f (a, b, c|x, y, z) = 1
n

n
∑

i=1

Ci(a, b, c|x, y, z), (F2)

where n is the total number of runs. Then the probabilities
after n runs of the experiment and considering the eventual
presence of memory effects amount to

pn(a, b, c|x, y, z) = 1
n

n
∑

i=1

Ci(a, b, c|x, y, z, Wi), (F3)

where Wi = (ai−1, bi−1, ci−1, xi−1, yi−1, zi−1), implying that
in Eq. (F3), we are taking into account all of the runs
before the nth rub. If we take variable Zk(a, b, c|x, y, z) =
∑k

i=1 |Ci(a, b, c|x, y, z)− C(Wi)|, where C(Wi) = E
[Ci|Wi], the sequence of Zk is a martingale with respect
to the sequence of Wi. In detail, it constitutes a Doob
martingale [68] because E[Zk] < ∞ and Wi ⊂ Wj if i < j .

At this point, since the range of variation of our
martingale is bounded by |Ci(a, b, c|x, y, z)− C(Wi)| ≤
1/min (q(x, y, z)), we can apply the Azuma-Hoeffding

inequality [45–47,59] as follows:

ε = P

(
n
∑

i=1

|Ci(a, b, c|x, y, z)− C(Wi)| ≥ t∗
)

≤ e−p ,

(F4)

where

p = min (q(x, y, z))2 t∗2

2n
. (F5)

By our taking t∗ = nt, Eq. (F4) becomes

ε = P

(

1
n

n
∑

i=1

|Ci(a, b, c|x, y, z)− C(Wi)| ≥ t

)

≤ e−p∗
,

(F6)

where

p∗ = n × min (q(x, y, z))2t2

2
. (F7)

Given that, as previously mentioned, our experimental
frequencies are given by f (a, b, c|x, y, z) = ∑n

i=1(1/n)
Ci(a, b, c|x, y, z), we can use an approach analogous
to the one we followed in the case of Hoeffding
inequality to conclude that such variables are dis-
tributed according to the following probability distri-
bution: P(y) ∼ (n/2)|y|e−[n×min (q(x,y,z))2y2/2], with vari-
ance var y = 2/[n × min (q(x, y, z))2]. For the central limit
theorem, a linear combination

∑n
k=1 akyk of n variables

characterized by such a distribution follows a Gaussian
distribution with the following variance:

σGauss =
n
∑

k=1

a2
k var yk =

n
∑

k=1

a2
k

2
n × min (q(x, y, z))2 .

(F8)

Since the experimental value of the dual dexp is actually
a linear combination of the experimental frequencies, its
probability distribution can be approximated by a Gaus-
sian, and we can estimate that the experimental dual lies
within the following interval:

dexpt.(f )− τ(ε) ≤ d(p) ≤ dexpt.(f )+ τ(ε), (F9)

with a confidence level that can be computed from a stan-
dardized normal table considering that such an interval

020346-17
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amounts to
√− ln ε standard deviations, with

τ 2(ε) =
N
∑

k=1

a2
kt2k(ε) = − ln(ε)σ 2. (F10)
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