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Abstract

The main goal of the present dissertation is to evaluate the asymptotic behaviour

of estimators for data from nonprobability samples. In this context some target

population units do not have positive inclusion probabilities, which means that es-

timation is affected by biases associated with under-coverage or self-selection errors.

For this purpose, we aim at developing a model for the mechanism which caused self-

selection in order to estimate the inclusion probabilities for each unit. In this way,

pseudo estimators which mimic classical ones can be constructed. More specifically,

pseudo Horvitz-Thompson and Hájek estimators are proposed, where propensity

score plays the role of inclusion probability. We show that weighting by the inverse

of nonparametric estimate of the propensity score leads to an efficient estimate of the

population mean. Resampling techniques are used to study the variance asymptotic

behaviour and to address the issue of its estimation. A simulation study is carried

out in order to assess the validity of the proposed methodology.
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Introduction

This study aims at investigating inferential potential of data from nonprobability

samples. It is well known how the traditional surveys are increasingly replaced

by web surveys, since they are less expensive, quicker and get easily access to a

large number of respondents. There are, however, two phenomena that can make

unreliable the results of web surveys: under-coverage and self-selection. The quality

of web surveys may be seriously affected by these problems, making it difficult, if

not impossible to make proper inference with respect to the target population of the

survey (Bethlehem, 2010).

Under-coverage means that some units of the target population are excluded from

the sample selection mechanism; therefore such units have no chance to be selected in

the survey. If data are collected by means of the Internet, only people with Internet

can access the questionnaire, while those without Internet are excluded from the

survey. Research shows that people who are covered by the Internet technology

differ, on the average, from those who are not. As a consequence, web survey results

cannot be used to say something about the entire population; web survey results

only apply to the sub-population of people having Internet. This is unavoidable,

unless a sample of non-Internet units is available.

Self-selection means that individuals are allowed to decide completely for them-

selves whether or not they want to participate in a survey. In case of web surveys,

the questionnaire is put on the web. Respondents are those individuals who visit

the website and decide to participate in the survey or, in addition, individuals are

invited via e-mail and asked them to complete the questionnaire.

Self-selection may also occur in CAWI (Computer Assisted Web Interviewing)

surveys, where sampled units are asked to complete the questionnaire by filling in a

form online. As a consequence, people with no internet connection or not familiar

with computers or mobile devices cannot be interviewed.

Both under-coverage and self-selection have serious impact on the quality of sur-

vey results. The theory of probability sampling cannot be applied and estimates
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are often biased. Horvitz and Thompson (1952) show that unbiased estimates of

population characteristics can be computed only if a real probability sample has

been drawn, every element in the population has a non-zero probability of selection,

and all these probabilities are known to the researcher. Furthermore, only under

these conditions, the accuracy of estimates can be computed.

Many web surveys are not based on probability sampling. The problem is that

the survey researcher is not in control of the selection process. Selection probabil-

ities are unknown and, moreover, they are considerably smaller than in traditional

probability surveys. Therefore, neither unbiased estimates can be computed nor the

accuracy of estimates can be determined (Bethlehem, 2010).

In this work we propose different estimation methods for data from nonprob-

ability samples. The main idea consists of finding a model for the process that

is supposed to have caused self-selection. Therefore, on the basis of the specified

self-selection model estimate inclusion probabilities. The work is organized as fol-

lows. We begin in Chapter 0 with some preliminaries on nonprobability sampling.

In Chapter 1 we introduce the theoretical framework and the methodology, includ-

ing the estimators. In Chapter 2 we investigate the large sample properties of the

proposed estimators. Then we present in Chapter 3 various bootstrap approaches

to estimate variance and confidence intervals. We conclude in Chapter 4 with a

simulation study aimed at evaluating the performance of the proposed estimators.

Finally, the last Section contains some final comments and conclusions.



Chapter 0

Preliminaries

0.1 Nonprobability samples

In the last decade, many statistical applications on samples that are not randomly

selected from a well-defined finite population have become common. These samples

often come from huge data sources, such as customers electronic data, but also

administrative data on persons and households, and those for business statistics.

Some vendors and survey organizations have also formed large panels of persons

who are willing to participate in surveys via the Internet. Many of these databases,

despite being large, are not probability samples, but analysts want to project them

to full finite populations (Valliant et al., 2018).

Because of declining response rates and ever increasing costs, pressures to find

alternatives to expensive probability sampling have been building. A nonprobability

sample may do very well on a criterion like timeliness, but evaluating its accuracy

may be difficult.

Nonprobability surveys capture participants through various methods. Not all

of these are equally dependable for making inferences. According to Baker et al.

(2013) these samples can be characterized into three broad categories:

(1) Convenience sampling

(2) Sample matching

(3) Network sampling.

Convenience sampling is a form of nonprobability sampling in which easily locating

and recruiting participants is the primary consideration. No formal sample design
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is used. Some types of convenience samples are shopping mall intercepts, volunteer

samples, river samples, observational studies and snowball samples.

In a mall intercept sample, interviewers try to recruit shoppers to take part in

some study. Usually, neither the malls nor the people are probability samples. A

more modern equivalent to a mall intercept is an online popup survey where visitors

to a set of websites are asked to participate in a survey. For example, Google

Surveys1 allow a questionnaire to be constructed and a target audience specified by

age group, gender, country, and language. Google then posts the survey across a

network of news, reference, and entertainment sites. Even though a target audience

can be specified, the set of persons who respond cannot be considered to be a

probability sample of that target population.

Volunteer samples are common in social science, medicine and market research.

Volunteers may participate in a single study or become part of a panel whose mem-

bers may be recruited for different studies over the course of time. A recent devel-

opment is the opt-in web panel in which volunteers are recruited when they visit

particular web sites. After becoming part of a panel, the members may participate

in many different surveys, often for some type of incentive. River samples are a

version of opt-in web sampling in which volunteers are recruited at a number of

websites.

In sample matching, the members of a nonprobability sample are selected to

match a set of important population characteristics. For example, a sample of

persons may be constructed so that its distribution by age, race/ethnicity and sex

closely matches the distribution of the inference population. Quota sampling is an

example of sample matching. The matching is intended to reduce selection biases as

long as the covariates that predict survey responses can be used in matching. Rubin

(1979) presents the theory for matching in observational studies.

A variation of matching in survey sampling is to match the units in a nonprob-

ability sample with those in a probability sample. Each unit in the nonprobability

sample is then assigned the weight of its match in the probability sample. River

(2007) describes this type of sample matching in the context of web survey panels.

Other techniques developed by Rosenbaum and Rubin (1983) and others for analyz-

ing observational data have also been applied when attempting to develop weights

for some volunteer samples.

In network sampling, members of some target population are asked to identify

other members of the population with whom they are somehow connected. Members

1https://www.google.com/analytics/surveys/
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of the population that are identified in this way are then asked to join the sample.

This method of recruitment may proceed for several rounds. Snowball sampling is

an example of network sampling in which existing study subjects recruit additional

subjects from among their acquaintances. These samples typically do not represent

any well-defined target population, although they are a way to potentially accumu-

late a sizeable collection of units from a rare population. The size of the collection

is heavily dependent on locating “seed” (starting points) and their willingness to

recruit others from the network.

0.2 Potential problems

According to several authors some different types of problems can arise during a

survey process (Baker et al., 2013; Valliant et al., 2018). We mention in particular

three major categories:

• Selection bias

• Nonresponse

• Measurement error.

For sake of simplicity we refer to volunteer Internet surveys (also called opt-in sur-

veys).

Selection bias occurs if the observed part of the population (the sample) differs

from the unobserved (the nonsample) in such a way that the sample cannot be

projected to the full population. Coverage error, for instance, will lead to selection

bias. For example, in a volunteer web panel only persons with access to the Internet

can join a panel.

To describe three components of coverage survey bias, Valliant and Dever (2011)

defined three populations, illustrated in Figure 1: (1) the target population of in-

terest for the study U ; (2) the potentially covered population given the way that

data are collected, Fpc; and (3) the actual covered population, Fc, the portion of

the target population that is recruited for the study through the essential survey

conditions. The inferential problem is to project the set of sample units s to the

universe U , accounting for the facts that part of the population is only potentially

covered and part is not covered at all.

In a volunteer web panel, Fpc might be the set of all persons who visit websites

where recruiting is done, Fc are the people who visit those websites and volunteer
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for the panel, and s is a sample of persons from the panel selected for a particular

survey. The set U−Fpc consists of all the people who have Internet access but never

visit the sites where recruiting is done plus all people who do not have Internet

access at all.

Figure 1: Universe and sample with coverage errors - Source Valliant et al. (2018)

Nonresponse of several kinds affects web surveys. Usually the vendor sends the

person an email with a link that must be clicked in order to access the questionnaire.

After that the questionnaire need to be filled in to participate the survey. People may

also click on a banner ad advertising the survey but never complete the questionnaire.

Measurement error is a common problem in nonprobability samples as it is in

probability samples. For a specific item it is often defined as a random error due to

the discrepancy between the observed value in the sample and the true value in the

population. It occurs when respondent’s answer to a question is inaccurate. In tra-

ditional surveys interviewers themselves can sometimes be a source of measurement

error. For example, if interviewers suggest by their nonverbal (or verbal) behaviour

that they want to get the interview over with as quickly as possible. In contrast, in

web surveys with self-administered questionnaire respondents themselves may be a

potential cause of measurement error.

In general, all surveys may be subject to these problems, but the degree of dif-

ficulties, like selection bias, can be worse for nonprobability samples. In order to

obtain good quality estimates, these problems have to be corrected.
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0.3 Approaches to inference

In finite population sampling more than one approach can be used to make inference

about unknown population parameters. It is convenient to distinguish two major

approaches: the design-based approach and the model-based approach.

The principal difference between the two philosophies lies in the element of ran-

domness they utilize in order to give stochastic structure to the inference (Särndal

et al., 1978). Classical survey sampling, following in the tradition of Neyman (1934)

extremely influential paper, relies on what we call a design base. This means that

the primary source of randomness is the probability ascribed by the sampling design

to the various subsets of the finite population 1, 2, . . . , N (Särndal et al., 1978).

In the model-based approach the values y1, y2, . . . , yN associated with the N

units of the population are views as the realized outcome of random variables

Y1, Y2, . . . , YN having an N -dimensional joint distribution ξ, where the superpop-

ulation ξ is modeled. In very broad terms, it is a model specified by assumptions

about the statistical properties of the study variable values y. In some cases the

model can correctly specified to describe the stochastic process that generates the

variable values. Generally, it will depend on one or more unknown parameters that

are named superpopulation parameters.

In the model-based approach the objective of the inference can be twofold:

1. we can either be interested in estimation of the descriptive population param-

eters, such as the total or the population mean of the study variable. The

attention is addressed to the specific model realization y = (y1, y2, . . . , yN) in

the population;

2. or we can be interested in estimation of the density or probability function

f(y; θ) of the random variable Y : in this case the attention is focused on the

model assumed to have generated the population, that is the process under-

lying finite population and the vector of parameters upon which it depends

on.

In case 2. it is reasonable to think that the interest is in the process that generates

y and in the complex of relationships between the variables Y and the auxiliary

variables X, that is the interest is in superpopulation parameters rather than in

descriptive population parameters.

In contrast to descriptive population parameters, which could be known exactly

in a census not affected by measurement errors and non-responses, superpopulation
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parameters are hypothetical constructs not directly observable, neither in a census.

However, census observations of realizations y will be hardly available. In real

applications, observed values of Y are available only for a sample that can also be

not random.

To summarize, in a design-based approach the randomness required to make

inference comes from the sampling design, and the values, Y1, Y2, . . . , YN , forming

the population are fixed. In a model-based approach, instead, y is considered to be

a realization of Y whose joint distribution is specified by the model ξ.



Chapter 1

Methodology proposed

This chapter provides a theoretical framework for estimating population mean in

nonprobability samples, such as opt-in sample surveys. After introducing basic

notations as well as concepts and exploring some effects of self-selection when the

inclusion probabilities are unknown, two estimators of population mean are proposed

under the model-based approach.

1.1 Basic setup

Let UN be a finite population of N units labeled by integers 1, 2, . . . , N . A variable

of interest, Y , associated with each unit of the population, is considered. We denote

the value of the variable of interest for unit i by yi, i = 1, 2, . . . , N . The values

y1, . . . , yN are not known and the parameter of interest is the population mean:

Y N =
1

N

N∑
i=1

yi.

We assume that for each N , yi, i = 1, 2, . . . , N , are realizations of a superpopula-

tion YN = (Y1, . . . , YN), composed by independent and identically distributed (i.i.d.)

random variables, {Y1, Y2, . . . , YN}, with common distribution function, F . We also

suppose that a vector of covariates denoted by Xi, i = 1, . . . , N is available. The

values x1, x2, . . . , xN are known for each unit i in the population and can be used

in the estimators in order to improves their properties. Such a model enables us

to make inferences about population characteristics based on sample measurements

and other supplementary information for each unit of the population (auxiliary in-

formation). Essentially, a model-based approach (Section 0.3) is adopted.



1.1 Basic setup 10

The random variables, {Y1, Y2, . . . , YN}, are assumed to be marginally indepen-

dent and identically distributed. They are also assumed to be conditionally inde-

pendent given covariates, that is Yi|Xi are still independent, but not identically

distributed, i = 1, 2, . . . , N . In this way, any possible influence of the auxiliary

variables on the variable of interest is accounted for.

Suppose a sample s including n units is observed; they are viewed as a nonprob-

ability sample from a large population.

Let δi be the sample membership indicator, which indicates whether or not unit

i is included in the sample: δi = 1 if i ∈ s

δi = 0 otherwise.

For each unit in the sample the triple (δi, yi, xi) is observed, where yi is the value of

the variable of interest. Basically, the probability distribution of (δ, Y,X) refers to

the distribution induced by the random sampling from the superpopulation.

Since the variables Yi, i = 1, 2, . . . , N , may depend on the values of the auxiliary

variables, we denote by

µ(x) ≡ E[Y |X = x]

σ2(x) ≡ Var[Y |X = x]

the conditional expectation and the conditional variance of the variable of interest

with respect to the values of the auxiliary variables, respectively.

Finally, define the inclusion (or selection) probability of unit i ∈ UN , given the

covariates:

π(xi) ≡ Pr(δi = 1|Xi = xi)

= E(δi|Xi = xi), i ∈ s.

It is essentially the first-order inclusion probability of unit i, conditionally on Xi.

The first-order inclusion probability πi ≡ π(xi) refers to the probability that unit i

is included in the sample, given the values of the covariates.

The inclusion probability π(xi), i = 1, 2, . . . , N , can be interpreted in terms

of propensity score, a concept first introduced by Rosenbaum and Rubin (1983).

They developed a technique to compare two populations, treated units and control

units. They attempt to make the two populations comparable by simultaneously
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controlling for all variables that were thought to explain the differences. From this

point of view, the case of self-selected sample essentially parallels causality model

in Rosenbaum-Rubin approach, where sample units play the role of “treated units”

and the self-selection mechanism is similar to the random assignment of treatment

levels to units.

From a formal perspective this context can be associated to a Poisson design

where the propensity score is equivalent to the first-order inclusion probability of

unit i. In symbols:

P (s | X1, . . . , Xn) =
N∏
i=1

π(xi)
δi(1− π(xi))

1−δi .

This design was introduced by Hájek (1964): it consists of performing N inde-

pendent Bernoulli trials with probability πi that unit i is selected in the sample.

All the samples have a positive probability of being selected and there is a non-null

probability of selecting an empty sample. Since the units are selected independently,

the second-order inclusion probability, that is the probability that both units i and

j are included in the sample, is πi,j = πiπj, for all i 6= j.

Under this sampling design, the variance of the Horvitz and Thompson (1952)

estimator of the population mean reduces to

Var(T̂HT ) =
1

N2

∑
i∈U

1− πi
πi

y2
i ,

which can be unbiasedly estimated by means shrinkage techniques without involving

joint inclusion probabilities, thus providing a simple formula for variance estimation.

It is worth noting that the Poisson sampling design maximizes the entropy (Hájek,

1981) given by

I(p) = −
∑
s⊂U

p(s) log p(s),

subject to given inclusion probabilities πi, i ∈ U . Since the entropy is a measure of

spread of the sampling design p(·), the Poisson sampling design can be viewed as

the most random sampling design that satisfies given inclusion probabilities. This

means that there is a high amount of uncertainty or randomness in the samples

which will be selected, which in turns make the design more robust.

Despite the good properties, Poisson sampling is rarely applied in practice be-

cause its sample size n(s) is random implying a nonfixed cost of sampling. This

design is, however, often used to model nonresponse.
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1.2 The Horvitz-Thompson estimator

Under unequal probability sampling without replacement, the Horvitz-Thompson

estimator is an unbiased estimator of the population mean (Horvitz and Thompson,

1952). It is defined as

T̂HT =
1

N

∑
i∈s

yi
πi
, (1.1)

where πi = Pr(i ∈ s) is the first order inclusion probability of the ith unit.

The variance of T̂HT is

Var(T̂HT ) =
1

N2

N∑
i=1

N∑
j=1

(πij − πiπj)
yiyj
πiπj

,

with unbiased estimates

V̂ (T̂HT ) =
1

N2

∑
i∈s

∑
j∈s

(
πij − πiπj

πij

)
yiyj
πiπj

,

where πij is the joint inclusion probability of the ith and the jth units, with πii = πi.

For a sampling design of fixed size, n(s) = n, equivalent formulas can be deduced

for the variance and variance estimator of T̂HT , as obtained by Yates and Grundy

(1953) and Sen (1953):

VarY G(T̂HT ) =
1

2N2

N∑
i=1

N∑
j=1

(πij − πiπj)
(
yi
πi
− yj
πj

)2

,

V̂Y G(T̂HT ) =
1

2N2

∑
i∈s

∑
j∈s

(πij − πiπj)
(
yi
πi
− yj
πj

)2

.

Note that to calculate the Horvitz-Thompson and Sen-Yates-Grundy variance

estimator, knowledge of the second-order inclusion probabilities is required for all

possible pairs of the units sampled, that is the probability that any pair of units is

included in the sample. These probabilities are usually problematic to calculate for

complex sampling designs, such as unequal probability sampling.

To address this issue, Hájek (1964) explored the properties of joint inclusion

probabilities and derived a formula based on rejective sampling, a sampling proce-

dure in which a Poisson sample is rejected unless it contains exactly n sample units

as required by the sample design (Hájek, 1981). Rejective sampling is also called

conditional Poisson sampling.

The quality of the Horvitz-Thompson estimator, T̂HT , does not depend on any

modeling. Information can be incorporated in this estimator only by the first-
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and second-order sample inclusion probabilities in the design phase of the survey,

in which the sampling method is determined. Hence, T̂HT is a pure design-based

estimator, meaning that its accuracy depends solely on the applied sampling method,

the inclusion probabilities assigned by this method, and the sample size (Quatember,

2015).

1.3 The Hájek estimator

Assume that a sample is taken according to a randomization scheme having unknown

inclusion probabilities πi = Pr(i ∈ s) and a predetermined sample size n. Then

assume that values xi of a positive auxiliary variable are available for all units in

the population, i = 1, 2, . . . , N , which can be assumed approximately proportional

to the variable of interest Y :

yi
xi
≈ constant, i = 1, 2, . . . , N. (1.2)

If (1.2) holds it seems reasonable to calculate the first-order inclusion probabilities

as

πi =
nxi∑N
j=1 xj

=
nxi
Nµx

, (1.3)

where µx is the population mean of X.

When the first-order inclusion probability is defined according to the criteria (1.3)

the sampling design is said to be πpps (inclusion probabilities proportional to size).

Under this scheme, a well known and popular estimator attributed to Hájek

(1971) is defined by

T̂H =

∑
i∈s

1

π̂(xi)
Yi∑

i∈s

1

π̂(xi)

.

He suggested this estimator in response to an observation by Basu (1971) on

paradoxical behaviour of the πpps unbiased Horvitz and Thompson (1952) estimator.

Särndal et al. (1992) give several cases for regarding the Hájek as “usually the

better estimator” comparing to the Horvitz-Thompson estimator (1.1) when:

(a) the yi are relatively homogeneous (the difference yi − µy tend to be small);

(b) sample size is not fixed;
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(c) πi are weakly or negatively correlated with the yi.

By using Taylor expansion (Section 2.2) it is possible to show that

T̂H = Y +
∑
i∈s

1

πi
(yi − Y ) +Op(n

−1)

.

Hence, Hájek variance estimator can be approximated by

V̂H = Var

[∑
i∈s

1

πi
(yi − Y )

]
+Op(

1

n2
).

1.4 Effect of self-selection

In this section we show that the sample mean is not an unbiased estimator of the

population mean when inclusion probabilities are unknown.

Consider the sample mean:

ys =
1

n

∑
i∈s

yi =

∑N
i=1 yiδi∑N
i=1 δi

,

where the sample size n =
∑N

i=1 δi is a random variable.

By using a first Taylor expansion (Section 2.2) of the sample mean and taking

into account that

E[n | X1, X2, . . . , XN ] =
N∑
i=1

E[δi | Xi] =
N∑
i=1

π(xi),

we may write

1

n
=

1∑N
i=1 δi

' 1∑N
i=1 π(xi)

− 1[∑N
i=1 π(xi)

]2[ N∑
i=1

δi −
N∑
i=1

π(xi)

]
,

where the symbol ' means “approximately equal to”.

From the above inequality we get

N

n
' N∑N

i=1 π(xi)
−
[

N∑N
i=1 π(xi)

]2{
1

N

N∑
i=1

[δi − π(xi)]

}
.

From the Weak Law of large Numbers we have

1

N

N∑
i=1

π(xi)
P−→ E[π(x)] = π, as N →∞;

1

N

N∑
i=1

[δi − π(xi)]
P−→ E[δi − π(xi)] = 0, as N →∞,
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where

E[δi − π(xi)] = E[δi]− E[π(xi)]

= E[E(δi | Xi)]− π
= E[π(xi)]− π
= π − π
= 0.

As a consequence, a crude first-order approximation gives the following result:

E[ys] '
E[
∑N

i=1 yiδi]

E
[∑N

i=1 δi
] .

Since

E
[ N∑
i=1

δi
]

=
N∑
i=1

E[δi]

=
N∑
i=1

π

= Nπ

= NE[δi]

and

E
[ N∑
i=1

yiδi

]
=

N∑
i=1

E[yiδi]

= NE[yiδi],

we finally obtain

E[ys] '
NE[yiδi]

NE[δi]
=

E[yiδi]

E[δi]
6= E[yi].

This show that the expected value of the sample mean is not equal to the pop-

ulation mean. The only situation in which ys is approximately unbiased is that in

which yi and δi are independent.

1.5 Aim of the study

Given a sample s including n(s) units, that are selected according to the sampling

scheme described in Section 1.1, the estimation process consists of three different

steps.
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Step 1:

On the basis of the values of δi and xi finding an estimate of π(xi), i ∈ s.

We adopt two different approaches in order to achieve this aim:

• sieve estimator (Hirano et al., 2003);

• logit model estimator.

We describe these methods in more detail in the next section.

Step 2:

Construct an estimator for the population mean, Y N .

For this purpose, we define the pseudo Horvitz-Thompson estimator as

follows:

T̂pHT =
1

N

∑
i∈s

1

π̂(xi)
Yi

=
1

N

N∑
i=1

δi
π̂(xi)

Yi. (1.4)

Similarly, we define the pseudo Hájek estimator:

T̂pH =

∑
i∈s

1

π̂(xi)
Yi

∑
i∈s

1

π̂(xi)

=

1

N

N∑
i=1

δi
π̂(xi)

Yi

1

N

N∑
i=1

δi
π̂(xi)

, (1.5)

which is especially useful when the population size N is unknown. When N is

unkown we have to remark that the denominator
∑N

i=1
δi

π̂(xi)
can be viewed as the

Horvitz-Thompson estimator for N , which is consistent. The effect of this result

will be clearer in the next chapter.

Step 3:

Study the behaviour of the estimators chosen in step 2 by assessing their asymp-

totic properties. Our aim is to obtain consistent estimator for the population mean.
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1.6 Assumptions

The basic assumptions on which our work is based are listed below.

Assumption 1 (Unconfoundedness):

Y ⊥ δ|X (1.6)

This assumption was first introduced by Rosenbaum and Rubin (1983), who refer

to it as “ignorable treatment assignment”. In our context it seems to be logical to

refer to it as the conditional indipendence assumption, that is variables Y and δ are

independent conditionally on X.

As a consequence, if the inclusion indicator variable and the variable of interest

are independent conditionally on all covariates, they are also independent condition-

ally on the (conditional) probability of being included given covariates (i.e. propen-

sity score). Formally, as shown by Rosenbaum and Rubin (1983), this assumption

implies

Y ⊥ δ|π(X). (1.7)

Assumption 2 (Overlap):

ε < Pr(δi = 1|Xi) < 1− ε, for some positive ε. (1.8)

Given assumption 1, the following equalities hold:

µ(x) = E[Y |X = x]

= E[Y |δ,X = x],

and thus µ(x) is identified. To make this feasible, one needs to be able to estimate

the expectations E[Y |δ,X = x] for all values of δ and x in the support of these

variables. This is where the second assumption enters.

In addition to the uncounfoundedness assumption, the following assumptions are

used to derive the properties of the estimator. First, we restrict the distribution of

X and Y .

Assumption 3 (Distribution of X):

(i) the support X of the r-dimensional covariate X is a Cartesian product of

compact intervals, X =
∏r

j=1[xlj, xuj];

(ii) the density of X is bounded, and bounded away from 0, on X .
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Assumption 4 (Distribution of Y ):

(i) E[Y 2] <∞;

(ii) µ(x) is continuously differentiable for all x ∈ X .

The next assumption requires sufficient smoothness of the propensity score.

Assumption 5 (Selection Probability): The propensity score π(x) satisfies the

following conditions. For all x ∈ X :

(i) π(x) is continuously differentiable of order s ≥ 7 · r where r is the dimension

of X ;

(ii) π(x) is bounded away from zero and one: 0 < π(x) < 1.

Finally, we restrict the rate at which additional terms are added to the series ap-

proximation to π(x), depending on the dimension of X and the number of derivatives

of π(x).

Assumption 6 (Series Estimator): The series logit estimator of π(x) uses a

power series with L = N v for some 1/(4(s/r − 1)) < v < 1
9
.

The restriction on the derivatives (Assumption 5(i)) guarantees the existence of

a v that satisfies the conditions in Assumption 6.

1.7 Propensity score methods

1.7.1 Hirano-Imbens-Ridder estimator

This section is devoted to introduce the main features of the estimator suggested

by Hirano et al. (2003) in the context of estimation of propensity score for average

treatment effects.

Estimating the average effect of a binary treatment or policy on a scalar outcome

is a basic goal of many empirical studies in economics. If assignment to the treatment

is exogenous or unconfounded (i.e., independent of potential outcomes conditional

on covariates or pre-treatment variables, an assumption also known as selection

observables), the average treatment effect can be estimated by matching (Abadie

and Imbens, 2002) or by averaging within-subpopulation differences of treatment

and control averages. If there are many covariates, such strategies may not be
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desirable or even feasible. An alternative approach is based on the propensity score,

the conditional probability of receiving treatment given covariates.

Rosenbaum and Rubin (1983) show that, under the assumption of unconfound-

edness, adjusting solely for differences in the propensity score between treated and

control units removes all biases. Although adjusting for differences in the propen-

sity score removes all bias, it need not be as efficient as adjusting for differences in

all covariates, as shown by Hahn (1998). However, Rosenbaum (1987), Rubin and

Thomas (1992), and Robins et al. (1995) show that using parametric estimates of

the propensity score, rather than the true propensity score, can avoid some of these

efficiency losses.

Hirano et al. (2003) propose estimators that are based on adjusting for nonpara-

metric estimates of the propensity score, leading to an efficient estimate of the av-

erage treatment effect. The proposed estimators weight observations by the inverse

of nonparametric estimates of the propensity score, rather than the true propensity

score. They also show that for the case in which the propensity score is known,

the proposed estimators can be interpreted as empirical likelihood estimators that

efficiently incorporate the information about the propensity score.

The authors estimate the propensity score in a sieve approach (e.g., Geman and

Hwang, 1982) by the Series Logit Estimator. More precisely, they first specify a

sequence of functions of the covariates, such as power series hl(x), l = 1, . . . ,∞.

Next, they choose a number of terms, L(N), as a function of the sample size, and

then estimate the L-dimensional vector γL in

Pr(δ = 1 | X = x) =
exp[(h1(x), . . . , hL(x))γL]

1 + exp[((h1(x), . . . , hL(x))γL]
,

by maximizing the associated likelihood function. Let γ̂L be the maximum likelihood

estimate. In the third step, the estimated propensity score is calculated as

Pr(δ = 1 | X = x) =
exp[(h1(x), . . . , hL(x))γ̂L]

1 + exp[((h1(x), . . . , hL(x))γ̂L]
.

Under the Assumptions 1-6 (Section 1.6), where the role of δ is played here by

the treatment, the authors show that with a nonparametric estimator for π(x) the

estimator of the average treatment effect is efficient, whereas with the true propensity

score the estimator would not be fully efficient.

To provide some intuition for these results the authors consider the simpler prob-

lem of estimating the population average of a variable Y , µ0 = E[Y ], given a random

sample of size N of the triple (δi, Xi, δi · Yi). In other words, δi and Xi are observed

for all units in the sample, but Yi is only observed if δi = 1.
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The analog to the unconfoundedness assumption here is the assumption that the

Yi are Missing At Random (MAR; Rubin (1976)), or

δ ⊥ Y |X.

The role of the propensity score is played here by the selection probability π(x) =

E[δ|X = x] = Pr(δ = 1|X = x). First, the attention is restricted to the case with

a single binary covariate. Let Ntx denote the number of observations with δi = t

and Xi = x, for t, x ∈ {0, 1}. Furthermore, suppose the true selection probability is

constant, π(x) = 1/2 for all x ∈ {0, 1}. The normalized variance bound for µ0 is

Vbound = 2 · E[V (Y |X)] + V [E(Y |X)]. (1.9)

The first estimator, named the “true weights” estimator, weights the complete

observations by the inverse of the true selection probability:

µ̂tw =
1

N

N∑
i=1

Yiδi
π(Xi)

=
1

N

N∑
i=1

Yiδi
1/2

.

Its large sample normalized variance is

Vtw = 2 · E[V (Y |X)] + V [E(Y |X)] + E[E(Y |X)2]

= Vbound + E[E(Y |X)2]

strictly larger than the variance bound (1.9) unless E(Y |X) = 0.

The second estimator weights the complete observations by the inverse of a non-

parametric estimate of the selection probability. This estimator is the main focus

of the paper by Hirano et al. (2003). In the current setting the estimated selec-

tion probability is simply the proportion of observed outcomes for a given value

of the covariate. For units with Xi = 0 the proportion of observed outcomes is

N10/(N00 +N10), and for units with Xi = 1 the proportion of observed outcomes is

N11/(N01 +N11). Thus the estimated selection probability is

π̂(x) =

N10/(N00 +N10) if x = 0,

N11/(N01 +N11) if x = 1.

The proposed “estimated weights” estimator is then

µ̂ew =
1

N

N∑
i=1

Yiδi
π̂(Xi)

.

The normalized variance of this estimator is equal to the variance bound:

Vew = 2 · E[V (Y |X)] + V [E(Y |X)] = Vbound.
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Not only does the weighting estimator with nonparametrically estimated weights

have a lower variance than the estimator using the “true” weights in this simple

case, but it is in fact fully efficient. This will suggest why this efficiency property

may carry over to the case with continuous and vector-valued covariates, as well

as with general dependence of the selection probability or propensity score on the

covariates.

However, these estimators are relevant whether the propensity score is known

or not. In randomized experiments, for example, the propensity score is known

by design. In that case the proposed estimators can be used to improve efficiency

over simply differencing treatment and control averages. With the propensity score

known, an attractive choice for the nonparametric series estimator for the propensity

score is to use the true propensity score as the leading term in the series.

The estimators proposed by Hirano et al. (2003) require fewer functions to be

estimated nonparametrically than other efficient estimators previously proposed in

the literature, such as regression estimators. One difficulty with these estimators

that are based on the estimated propensity score is the problem of choosing the

smoothing parameter. Hirano et al. (2003) use series estimators, which requires

choosing the number of terms in the series; for regression method it is the bandwidth

of the kernel chosen.

1.7.2 Logit model estimator

When the propensity score must be estimated, typically, researchers assume a para-

metric propensity score model πβ(Xi),

Pr(δi = 1 | Xi) = πβ(Xi),

where β ∈ Θ is an L-dimensional column vector of unknown parameters. For exam-

ple, a popular choice is the logistic model:

πβ(Xi) =
exp(XT

i β)

1 + exp(XT
i β)

in which case we have L = K. Then the empirical fit of the model is maximized so

that the estimated propensity score predicts the selection probability of unit i given

covariates as well. This can be done by maximizing the log-likelihood function:

β̂MLE = arg max
β∈Θ

N∑
i=1

δi log{πβ(Xi)}.
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Assuming that πβ(·) is twice continuously differentiable with respect to β, this

implies the first-order condition:

1

N

N∑
i=1

Sβ(δi, Xi) = 0, Sβ(δi, Xi) =
δiπ
′
β(Xi)

πβ(Xi)
(1.10)

and π′β(Xi) = ∂π(Xi)/∂β
T .

As several authors noticed, the major difficulty of this standard approach is that

the propensity score model may be misspecified, yielding biased estimates of target

parameter (e.g., Kang and Schafer, 2007).



Chapter 2

Estimators of the population mean

and their large sample properties

In this chapter we aim at deriving the large sample properties for both pseudo

Horvitz-Thompson estimator and pseudo Hájek estimator. At first we assume that

the true value of propensity score is known. Then the propensity score is assumed

to be estimated according to Hirano-Imbens-Ridder method. It is worth noting that

similar properties to Hirano-Imbens-Ridder method can be expected for parametric

propensity score model using logistic regression model, provided that the model is

correctly specified.

2.1 Pseudo Horvitz-Thompson estimator

2.1.1 Properties when the propensity score is known

Theorem 1. The pseudo Horvitz-Thompson estimator, T̂pHT , is an unbiased esti-

mator of the expectation of the population mean, E[Y N ], when the propensity score

is known.

Proof. We have to prove that

E
[
T̂pHT

]
= E

[
1

N

N∑
i=1

δi
π∗(xi)

Yi

]
= E[Y N ]

where π∗(xi) is the “true” propensity score and E denotes the expected value under

the superpopulation model ξ as specified in Chapter 1.
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Given the Assumptions (Section 1.6) the following chain of equalities holds:

E
[
T̂pHT

]
= E

[
1

N

N∑
i=1

δi
π∗(xi)

Yi

]

=
1

N
· E
[
E
( N∑
i=1

δi
π∗(xi)

Yi

∣∣∣∣Xi

)]

=
1

N
· E
[ N∑
i=1

E
(

δi
π∗(xi)

Yi

∣∣∣∣Xi

)]

=
1

N
· E
[ N∑
i=1

E(δi|Xi)E(Yi|Xi)

π∗(xi)

]

=
1

N
· E
[ N∑
i=1

π∗(xi)µ(xi)

π∗(xi)

]

=
1

N

N∑
i=1

E
[
µ(xi)

]
=

1

N
Nµy.

Hence

E
[
T̂pHT

]
= µy

= E[Y N ]

which means that the pseudo Horvitz-Thompson estimator is an unbiased estimator

of the expectation of the population mean when the true value of the propensity

score is known.

Theorem 2. The variance of the pseudo Horvitz-Thompson estimator, T̂pHT , when

π(xi) is known, is given by the sum of two components as follows

V(T̂pHT ) = V1 + V2

where

V1 =
1

N2
Var

( N∑
i=1

δi
π∗(xi)

Yi

)

=
1

N2

N∑
i=1

E
(
σ2(xi)

)
π∗(xi)

V2 = Cov

[ N∑
i=1

N∑
j 6=i

(
δi

π∗(xi)
Yi

)(
δj

π∗(xj)
Yj

)]
= 0

and π∗(xi) is the true propensity score.
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Proof.

V1 =
1

N2
Var

( N∑
i=1

δi
π∗(xi)

Yi

)

=
1

N2

N∑
i=1

{
E
(

δiYi
π∗(xi)

)2

−
[
E
(

δiYi
π∗(xi)

)]2}

=
1

N2

N∑
i=1

{
E
[
E
(

δ2
i Y

2
i

(π∗(xi))2

∣∣∣∣Xi

)]
−
[
E
(
E
(

δiYi
π∗(xi)

∣∣∣∣Xi

))]2}

=
1

N2

N∑
i=1

{
E
[
E(δ2

i |Xi)E(Y 2
i |Xi)

(π∗(xi))2

]
−
[
E
(
E(δi|Xi)E(Yi|Xi)

π∗(xi)

)]2}

=
1

N2

N∑
i=1

{
E
(
π∗(xi)(σ

2(xi) + µ2
y)

(π∗(xi))2

)
−
[
π∗(xi)E

(
µ(xi)

)
π∗(xi)

]2}

=
1

N2

N∑
i=1

{
E
(
σ2(xi)

)
π∗(xi)

+ µ2
y − µ2

y

}

=
1

N2

N∑
i=1

E
(
σ2(xi)

)
π∗(xi)

As far as V2 is concerned, we could observe that δi and Yi are independent and

identically distributed conditionally on Xi and therefore the covariance between

them is zero. However, a proof of this result is provided.
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V2 = Cov

[ N∑
i=1

N∑
j 6=i

(
δi

π∗(xi)
Yi

)(
δj

π∗(xj)
Yj

)]

= E
[ N∑
i=1

N∑
j 6=i

(
δi

π∗(xi)
Yi

)(
δj

π∗(xj)
Yj

)]
− E

[ N∑
i=1

(
δi

π∗(xi)
Yi

)]
E
[ N∑
j 6=i

(
δj

π∗(xj)
Yj

)]

= E
{
E

N∑
i=1

N∑
j 6=i

[(
δi

π∗(xi)
Yi

)(
δj

π∗(xj)
Yj

)∣∣∣∣Xi, Xj

]}

− E
[
E

N∑
i=1

(
δi

π∗(xi)
Yi

∣∣∣∣Xi

)]
E
[
E

N∑
j 6=i

(
δj

π∗(xj)
Yj

∣∣∣∣Xj

)]

= E
[
E

N∑
i=1

N∑
j 6=i

(
δi

π∗(xi)
Yi

∣∣∣∣Xi

)(
δj

π∗(xj)
Yj

∣∣∣∣Xj

)]

− E
[ N∑
i=1

E
(

δi
π∗(xi)

Yi

∣∣∣∣Xi

)]
E
[ N∑
j 6=i

E
(

δj
π∗(xj)

Yj

∣∣∣∣Xj

)]

= E
[ N∑
i=1

E
(

δi
π∗(xi)

Yi

∣∣∣∣Xi

)]
E
[ N∑
j 6=i

E
(

δj
π∗(xj)

Yj

∣∣∣∣Xj

)]

− E
[ N∑
i=1

E
(

δi
π∗(xi)

Yi

∣∣∣∣Xi

)]
E
[ N∑
j 6=i

E
(

δj
π∗(xj)

Yj

∣∣∣∣Xj

)]
= 0

2.1.2 Estimating the propensity score

When the propensity score is unknown the pseudo Horvitz-Thompson estimator can

be represented as asymptotically linear (Hirano et al., 2003):

T̂pHT = µy +
1

N

N∑
i=1

{
ψ
(
Yi, δi, Xi, µy, π

∗(xi)
)

+ α
(
δi, Xi

)}
+ op(1/

√
N)

where

ψ
(
Yi, δi, Xi, µy, π

∗(xi)
)

=
δi

π∗(xi)
Yi − µy

and

α
(
δi, Xi

)
= −E(Yi|Xi)

π∗(xi)

(
δi − π∗(xi)

)
,
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being π∗(xi) the true propensity score.

By computing the expectation for ψ(·) and α(·) we have:

E
[
ψ
(
Yi, δi, Xi, µy, π

∗(xi)
)]

= E
[

δi
π∗(xi)

Yi

]
− µy

= E
[
E
(

δi
π∗(xi)

Yi

∣∣∣∣Xi

)]
− µy

= E
[
E(δi|Xi) · E

(
Yi

π∗(xi)

∣∣∣∣Xi

)]
− µy

= E
[
E(δi|Xi) ·

µ(xi)

π∗(xi)

]
− µy

= E
[
π∗(xi) ·

µ(xi)

π∗(xi)

]
− µy

= E[µ(xi)]− µy = µy − µy = 0,

E
[
α
(
δi, Xi

)]
= −E

[
E(Yi|Xi)

π∗(xi)

(
δi − π∗(xi)

)]
= −E

[
δi ·

µ(xi)

π∗(xi)

]
+ E[µ(xi)]

= −E
[
E
(
δi ·

µ(xi)

π∗(xi)

∣∣∣∣Xi

)]
+ µy

= −E
[
µ(xi)

π∗(xi)
· E(δi|Xi)

]
+ µy

= −E
[
µ(xi)

π∗(xi)
· π∗(xi)

]
+ µy

= −E[µ(xi)] + µy = −µy + µy = 0,

where it is easy to understand the role of the assumptions (Section 1.6).

Hence

E(T̂pHT ) = µy + op(1/
√
N),

which means that the pseudo Horvitz-Thompson estimator is asymptotically un-

biased when the propensity score is estimated according to Hirano-Imbens-Ridder

method.

The asymptotically linear representation of T̂pHT implies that its asymptotic vari-

ance equals

1

N2

N∑
i=1

E
[(
ψ
(
Yi, δi, Xi, µy, π

∗(xi)
)

+ α
(
δi, Xi

))2]
+ op(1/N).
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The three components of this variance are reported below:

V1 = E
[
ψ
(
Yi, δi, Xi, µy, π

∗(xi)
)2]

= E
[(

δi
π∗(xi)

Yi − µy
)2]

= E
[
σ2(xi)

π∗(xi)
+
µ2(xi)

π∗(xi)

]
− µ2

y

V2 = E
[
α
(
δi, Xi

)2]
= E

[(
E(Yi|Xi)

π∗(xi)
·
(
δi − π∗(xi)

))2]
= E

[
µ2(xi)

π∗(xi)

]
− E

[
µ(xi)

]2
V3 = −2E

[
ψ
(
Yi, δi, Xi, µy, π

∗(xi)
)
· α
(
δi, Xi

)]
= −2E

[(
δi

π∗(xi)
Yi − µy

)
· E(Yi|Xi)

π∗(xi)

(
δi − π∗(xi)

)]

= −2E
[
µ2(xi)

π∗(xi)

]
+ 2E

[
µ2(xi)

]
,

so that

Var(T̂pHT ) =
1

N2

N∑
i=1

(
V1 + V2 + V3

)

=
1

N2

N∑
i=1

E
[(
ψ
(
Yi, δi, Xi, µy, π

∗(xi)
)

+ α
(
δi, Xi

))2]

=
1

N2

N∑
i=1

{
E
[
σ2(xi)

π∗(xi)

]
+ E

[
µ(xi)

]2 − (µy)
2

}
+ op(1/N)
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Proof. :

V1 = E
[
ψ
(
Yi, δi, Xi, µy, π

∗(xi)
)2]

= E
[(

δi
π∗(xi)

Yi − µy
)2]

= E
[(

δi
π∗(xi)

Yi

)2

+ µ2
y − 2µy

δi
π∗(xi)

Yi

]

= µ2
y + E

[
E
(

δi
π∗(xi)

Yi

)2∣∣∣∣Xi

]
− 2µyE

[
E
(

δi
π∗(xi)

Yi

∣∣∣∣Xi

)]

= µ2
y + E

[
E(δ2

i |Xi)E
(

Y 2
i

(π∗(xi))2

∣∣∣∣Xi

)]
− 2µyE

[
E(δi|Xi)E

(
Yi

π∗(xi)

∣∣∣∣Xi

)]

= µ2
y + E

[
π∗(xi)

σ2(xi) + µ2(xi)

(π∗(xi))2

]
− 2µyE

[
π∗(xi)

µ(xi)

π∗(xi)

]

= µ2
y + E

[
σ2(xi)

π∗(xi)
+
µ2(xi)

π∗(xi)

]
− 2µ2

y = E
[
σ2(xi)

π∗(xi)
+
µ2(xi)

π∗(xi)

]
− µ2

y (2.1)

V2 = E
[
α
(
δi, Xi

)2]
= E

[(
E(Yi|Xi)

π∗(xi)

(
δi − π∗(xi)

))2]

= E
[(

µ(xi)

π∗(xi)

)2

δ2
i + µ2(xi)− 2

δi
π∗(xi)

µ2(xi)

]

= E
[(

µ(xi)

π∗(xi)

)2

E
(
δ2
i |Xi

)]
− 2E

[
µ2(xi)

π∗(xi)
E
(
δi|Xi

)]
+ E

[
µ(xi)

]2

= E
[(

µ(xi)

π∗(xi)

)2

π∗(xi)

]
− 2E

[
µ2(xi)

π∗(xi)
π∗(xi)

]
+ E

[
µ(xi)

]2

= E
[
µ2(xi)

π∗(xi)

]
− E

[
µ(xi)

]2
(2.2)
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V3 = −2E
[
ψ
(
Yi, δi, Xi, µy, π

∗(xi)
)
· α
(
δi, Xi

)]
=

= −2E
[(

δi
π∗(xi)

Yi − µy
)
· E(Yi|Xi)

π∗(xi)

(
δi − π∗(xi)

)]

= −2E
[
µ(xi)Yi

(
δi

π∗(xi)

)2

− µ(xi)Yi
δi

π∗(xi)
− µ(xi)µy

δi
π∗(xi)

+ µ(xi)µy

]

= −2E
[
E
(
µ(xi)Yi

(
δi

π∗(xi)

)2)∣∣∣∣Xi

]
+ 2E

[
E
(
µ(xi)Yi

δi
π∗(xi)

)∣∣∣∣Xi

]

+ 2E
[
E
(
µ(xi)µy

δi
π∗(xi)

)∣∣∣∣Xi

]
− 2E

[(
µ(xi)µy

)
|Xi

]

= −2E
[

µ(xi)

(π∗(xi))2
E
(
Yi|Xi

)
E
(
δ2
i |Xi

)]
+ 2E

[
µ(xi)

π∗(xi)
E
(
Yi|Xi

)
E
(
δi|Xi

)]

+ 2E
[
µ(xi)

π∗(xi)
µyE

(
δi|Xi

)]
− 2µ2

y

= −2E
[

µ(xi)

(π∗(xi))2
µ(xi)π

∗(xi)

]
+ 2E

[
µ(xi)

π∗(xi)
µ(xi)π

∗(xi)

]

+ 2E
[
µ(xi)

π∗(xi)
µyπ

∗(xi)

]
− 2µ2

y

= −2E
[
µ2(xi)

π∗(xi)

]
+ 2E

[
µ2(xi)

]
+ 2µyE

[
µ(xi)

]
− 2µ2

y

= 2E
[
µ2(xi)

π∗(xi)

]
+ 2E

[
µ2(xi)

]
(2.3)
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2.2 Pseudo Hájek estimator

In this section we study the large sample properties of the pseudo Hájek estimator

when the propensity score is estimated by Hirano-Imbens-Ridder method.

Theorem 3. Let us assume that propensity score is estimated by Hirano-Imbens-

Ridder method, then the pseudo Hájek estimator is asymptotically unbiased and its

variance is

V(T̂pH) =
1

N2

N∑
i=1

[
E
(
σ2(xi)

π∗(xi)
+
µ2(xi)

π∗(xi)

)
−

µ2
y

π∗(xi)

]
+ E[Op(1/N

2)].

Proof. We use the first order Taylor expansion to get a linear approximation of the

estimator under study. This method makes it possible to approximate a general

differentiable function to a linear function by which expectation and variance of

estimators can be computed. In this regard, consider a regular function of two

variables

f(x, y) = f(x0, y0) + f ′x(x0, y0)(x− x0) + f ′y(x0, y0)(y − y0) + ε

where f ′x(x0, y0) and f ′y(x0, y0) are the first order partial derivatives of the func-

tion f(x, y) at the point (x0, y0) and ε is the rest of the expansion including the

higher order partial derivatives that converges to zero faster than the other terms

as (x, y) → (x0, y0). Therefore as (x, y) gets closer and closer to (x0, y0) the rest ε

can be considered negligible and the original function can be approximated with the

remaining terms, that is

f(x, y) = f(x0, y0) + f ′x(x0, y0)(x− x0) + f ′y(x0, y0)(y − y0). (2.4)

The second term of (2.4) is named linear approximation of the function f(x, y)

at the point (x0, y0). According to this method the pseudo Hájek estimator can be

approximated as follows:

T̂pH = µy +
1

N

N∑
i=1

1

π∗(xi)
δi(Yi − µy) +Op(1/N), (2.5)

where Op(1/N) means that the remainder term is bounded in probability.
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By computing the expectation of the expression (2.5) we get

E(T̂pH) = µy +
1

N

N∑
i=1

E
(

1

π∗(xi)
δiYi

)
− 1

N

N∑
i=1

E
(

1

π∗(xi)
δiµy

)

+ E[Op(1/N)]

= µy +
1

N

N∑
i=1

E
[
E
(

1

π∗(xi)
δiYi

∣∣∣∣Xi

)]
− 1

N

N∑
i=1

E
[
E
(

1

π∗(xi)
δiµy

∣∣∣∣Xi

)]

+ E[Op(1/N)]

= µy +
1

N

N∑
i=1

E
[

1

π∗(xi)
E
(
δi
∣∣Xi

)
E
(
Yi
∣∣Xi

)]
− 1

N

N∑
i=1

E
[

1

π∗(xi)
µyE

(
δi
∣∣Xi

)]

+ E[Op(1/N)]

= µy +
1

N

N∑
i=1

1

π∗(xi)
π∗(xi)E

[
µ(xi)

]
− 1

N

N∑
i=1

1

π∗(xi)
µyπ

∗(xi) + E[Op(1/N)]

= µy +
1

N

N∑
i=1

µy −
1

N

N∑
i=1

µy + E[Op(1/N)]

= µy + E[Op(1/N)],

which means that the estimator T̂pH is asymptotically unbiased.

Now we consider the variance of T̂pH . Because of (2.5), an approximate variance

of the pseudo Hájek estimator is given by:

V(T̂pH) =
1

N2

N∑
i=1

E
[

1

π∗(xi)
δi(Yi − µy)

]2

+ E[Op(1/N
2)].
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Proof. By developing the first term we have:

E
[

1

π∗(xi)
δi(Yi − µy)

]2

= E
[

δ2
i

(π∗(xi))2
(Yi − µy)2

]

= E
[

δ2
i

(π∗(xi))2
(Y 2

i + µ2
y − 2µyYi)

]

= E
[

δ2
i

(π∗(xi))2
Y 2
i + µ2

y

δ2
i

(π∗(xi))2
− 2µy

δ2
i

(π∗(xi))2
Yi

]

= E
[
E
(

δ2
i

(π∗(xi))2
Y 2
i

∣∣∣∣Xi

)]
+ µ2

yE
[
E
(

δ2
i

(π∗(xi))2

∣∣∣∣Xi

)]

− 2µyE
[
E
(

δ2
i

(π∗(xi))2
Yi

∣∣∣∣Xi

)]

= E
[
E(δ2

i |Xi)
E(Y 2

i |Xi)

(π∗(xi))2

]
+

µ2
y

π∗(xi)

− 2µyE
[
E(δ2

i |Xi)
E(Yi|Xi)

(π∗(xi))2

]

= E
(
σ2(xi)

π∗(xi)
+
µ2(xi)

π∗(xi)

)
+

µ2
y

π∗(xi)
− 2µy

E(µ(xi))

π∗(xi)

= E
(
σ2(xi)

π∗(xi)
+
µ2(xi)

π∗(xi)

)
+

µ2
y

π∗(xi)
−

2µ2
y

π∗(xi)

= E
(
σ2(xi)

π∗(xi)
+
µ2(xi)

π∗(xi)

)
−

µ2
y

π∗(xi)
.

Therefore

V(T̂pH) =
1

N2

N∑
i=1

[
E
(
σ2(xi)

π∗(xi)
+
µ2(xi)

π∗(xi)

)
−

µ2
y

π∗(xi)

]
+ E[Op(1/N

2)].

Finally, we provide another way to prove that the pseudo Hájek estimator is

asymptotically unbiased as follows.

Proof. At first let us consider the distance between the average of the estimated

weights and the average of the true weights:
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D =

∣∣∣∣ 1

N

N∑
i=1

δi
π̂(xi)

− 1

N

N∑
i=1

δi
π∗(xi)

∣∣∣∣ =
1

N

N∑
i=1

δi

∣∣∣∣ 1

π̂(xi)
− 1

π∗(xi)

∣∣∣∣
≤ 1

N

N∑
i=1

δi · sup
x∈X

∣∣∣∣ 1

π̂(xi)
− 1

π∗(xi)

∣∣∣∣. (2.6)

Since δ1, δ2, . . . , δN are independent and have the same distribution we can apply

the Law of Large Numbers:

1

N

N∑
i=1

δi
P−→ E(δi) = Ex[π∗(x)] = π∗ ∈ (0, 1), as N →∞ (2.7)

and

1

N

N∑
i=1

δi
π∗(xi)

P−→ E
[

δi
π∗(xi)

]
= Ex

[
1

π∗(x)
E(δ|X)

]
= Ex

[
π∗(x)

π∗(x)

]
= 1. (2.8)

We may also write

sup
x∈X

∣∣∣∣ 1

π̂(xi)
− 1

π∗(xi)

∣∣∣∣ = sup
x∈X

∣∣∣∣π∗(xi)− π̂(xi)

π̂(xi)π∗(xi)

∣∣∣∣ ≤
sup
x∈X

∣∣∣∣π∗(xi)− π̂(xi)

∣∣∣∣ P−→ 0, as N →∞ (2.9)

where (2.8) holds if the propensity score is estimated by Hirano-Imbens-Ridder

method.
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By combining the previous results we obtain:

√
n

( 1

N

N∑
i=1

δi
π̂(xi)

Yi

1

N

N∑
i=1

δi
π̂(xi)

− µy
)

=
√
n

( 1

N

N∑
i=1

δi
π̂(xi)

(Yi − µy)

1

N

N∑
i=1

δi
π̂(xi)

)

=
√
n

( 1

N

N∑
i=1

δi
π̂(xi)

(Yi − µy)

1

N

N∑
i=1

δi
π̂(xi)

+
1

N

N∑
i=1

δi
π∗(xi)

− 1

N

N∑
i=1

δi
π∗(xi)

)

=
√
n

( 1

N

N∑
i=1

δi
π̂(xi)

(Yi − µy)

1

N

N∑
i=1

δi
π̂(xi)

)

where the denominator converges to 1 in probability, while the numerator follows the

same distribution of the pseudo Horvitz-Thompson estimator with estimated weights

(Section 2.1.2). Hence the pseudo Hájek estimator is asymptotically unbiased when

the propensity score is estimated by means Hirano-Imbens-Ridder method.





Chapter 3

Estimating variance and

confidence intervals

In this chapter we describe the principles to estimate variance and confidence inter-

vals of the proposed estimators. We focus on the bootstrap approach for finite popu-

lation surveys based on the idea of generating pseudo-populations. Then we concen-

trate on the bootstrap method by Holmberg (1998) for probability proportional-to-

size designs without replacement that is the starting point to develop the simulation

study. Some of the discussion is abridged from Quatember (2015).

3.1 The bootstrap method

When no explicit variance formula is available and the calculations for Taylor lin-

earization are too cumbersome, computer-intensive methods that use computer

power instead of heavy calculations can be applied. One technique of estimating

the theoretical variance of an estimator is the bootstrap method. This strategy falls

under the family of resampling methods. The basic bootstrap procedure generates

resamples of the same size as the original sample, while another strategy, the jack-

knife method, generates resamples from the original sample, which consist all but

one or a certain number of elements of the original sample drawn.

Boostrap was originally developed by Efron (1979) for the estimation of the

sampling distribution of an estimator θ̂ for the parameter θ on the basis of a random

sample and an unknown probability distribution φ of a variable Y under study.

For this purpose, a sample of i.i.d. variables is observed. This procedure can be

described as follows:
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1. Construct the empirical distribution of the study variable, φ̂ (e.g. for a random

sample of size n putting mass 1/n at each sample point). The empirical

distribution of a random variable Y as observed in the i.i.d. sample can be

interpreted as the non-parametric Maximum-Likelihood (ML) estimator of the

true probability distribution φ of Y .

2. Draw i.i.d. bootstrap samples of the same size as the original sample from

this empirical distribution. Call each of them bootstrap sample.

3. Approximate the true sample distribution of θ̂ by the theoretical bootstrap

distribution of the estimator calculated in all possible resamples. Call this the

bootstrap distribution.

This bootstrap distribution equals the sampling distribution of the estimator if

the empirical distribution of the variable under study equals its probability distri-

bution. In symbols if φ̂ = φ.

As Efron (1979) stated: “the difficult part of the bootstrap procedure is the

actual calculation of the bootstrap distribution”. Three methods are possible:

Method 1. The direct theoretical calculation.

Method 2. An approximation by Taylor expansion.

Method 3. A Monte Carlo approximation.

The latter has turned out to be most common. In this case, B bootstrap samples

of the same size as that of the original sample are drawn with replacement from the

empirical distribution of Y , which can be seen as (non-parametric) the Maximum-

Likelihood estimator of the underlying probability distribution φ of Y . Within each

of the B bootstrap samples, s∗1, . . . , s
∗
B, the estimator θ̂∗b is calculated in the same

way that the estimator θ̂ was calculated in the original i.i.d. sample s (b = 1, . . . , B).

For a large B, the distribution of θ̂∗b is interpreted as an estimation of the sample

distribution of θ̂. Hence, the theoretical variance V(θ̂) is estimated by the Monte

Carlo variance estimator given by

V̂b(θ̂) =
1

B − 1

B∑
b=1

(
θ̂∗b −

¯̂
θ∗
)2

(3.1)

with
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¯̂
θ∗ =

1

B

B∑
b=1

θ̂∗b ,

being the mean value of estimators θ̂∗b from the B bootstrap samples. For approx-

imately normally distributed θ̂∗b values, this variance estimator can be used for the

calculation of an approximate confidence interval. For a large B, also for nonnor-

mally distributed bootstrap estimators, a confidence interval can be calculated by

applying the percentile method (Efron, 1981). This method directly uses the α/2

and (1−α/2) quantile of the observed distribution of the estimators θ̂∗b as the lower

and the upper bound of the confidence interval, respectively.

With increasing computer power, this technique has also become attractive for

finite population surveys. However, the classical bootstrap method, developed by

Efron (1979), cannot be directly applied to cases of sampling from a finite population

because the identical and independent distribution assumption fails under sampling

without replacement. Consequently, in complex designs, classical bootstrap methods

result in a biased variance estimator when the sampling design is not taken into

account. Suitable adaptations are needed in order to consider complex sampling

designs consisting of complex estimators and sampling schemes drawing the sample

units without replacement. For this purpose, two main approaches are available in

the literature: ad hoc approach and plug-in approach (Ranalli and Mecatti, 2012).

Several methods can be included in the first approach. One of them rescales the

observations in the resamples drawn with replacement from the original without-

replacement sample in a way that the bootstrap variance (3.1) approximates the

actual variance for a given sampling design (Rao and Wu, 1988). Another ad hoc

method is to use the with-replacement bootstrap technique and adjust its boot-

strap variance estimator to the parameter by choosing an appropriate size for the

bootstrap samples (McCarthy and Snowden, 1985). Sitter (1992) presented the

Mirror-Match Method, in which subsamples of the original sample are drawn re-

peatedly according to the original sampling plan with a subsample size chosen to

appropriately match the original variance of the estimator. Antal and Tillé (2011)

discuss another method, in which different with and without replacement resam-

pling designs are combined in such a way that the bootstrap estimators reproduce

unbiased estimators of the variance in the linear case, in a time-efficient manner,

and eliminate the need for classical adjustment methods such as rescaling, correction

factors, or artificial populations.

The second major approach (called plug-in), to deal with non-i.i.d. data, is to

generate an artificial population, the “pseudo-population” from the observed sample
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data. A pseudo-population is built up by using sample data, and assumed to esti-

mate the unknown actual population. According to the mimicking principle (Hall,

1992), bootstrap samples (i.e. the resampling result) are selected from this estimated

population with the same sample size as the original sample and by mimicking the

original sampling design to the largest extent (Ranalli and Mecatti, 2012).

3.2 Pseudo-population bootstrap methods

For a direct extension of the i.i.d. bootstrap to finite population sampling, the

population U of N elements plays the role of the unknown probability distribution in

the i.i.d. bootstrap. The population elements are characterized by their values yk of

the variable Y under study and Xk of possible auxiliary variables X (k = 1, . . . , N).

Gross (1980) was the first to adapt the original bootstrap method to the specific

case of a simple random sample without replacement (SI), but only with the restric-

tion of integer design weights N
n

(Figure 3.1). For this purpose, from a SI sample s,

a set-valued finite population estimator U∗G of size N∗G = N of the true population

U of size N is generated by replicating each sample value yk exactly N
n

providing a

variable Y ∗ denoting these “clones” of the sample values. Hence, the bootstrap pop-

ulation U∗G can be interpreted as the finite population with the Maximum Likelihood

regarding the sample drawn (Chao and Lo, 1994).

The idea behind pseudo-populations is simple: as the sample and population sizes

increase, the pseudo-population tends to be “similar” to the real finite population.

Hence, it would be intuitive to use a pseudo-population that is as similar as possible

to the actual population. In a sense, the pseudo-population should be somehow

calibrated with respect to the population (Conti et al., 2017).

In practical applications, i.e. for finite n, a crucial aspect that would potentially

affect the performance of resampling, is how the pseudo-population is constructed.

Recently Conti et al. (2017) raised the question of how different choices for con-

structing the pseudo-population U∗ (where resampling is actually performed) may

affect the accuracy of the resulting inference in practical applications. They showed

that the construction process of the pseudo-population is a crucial choice for small

to moderate population and sample sizes, under general sampling designs.

In the next subsections more proposals based on different approaches are illus-

trated, which lead to different pseudo-populations. In particular, a detailed de-

scription of the Holmberg’s bootstrap algorithm for complex sampling design with

inclusion probability proportional to an auxiliary variable X is provided.
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Figure 3.1: Estimating the sampling distribution of an estimator θ̂ applying the boot-

strap method in SI sampling with integer design weights according to Gross (1980) - Source

Quatember (2015)
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3.2.1 Horvitz-Thompson pseudo-population

The rationale behind the Horvitz-Thompson estimation process expressed by

ŶHT =
∑
i∈s

1

πi
yi

can be described by the idea of generating an artificial population estimating ap-

propriately the original population with respect to the parameter under study, i.e.

the total YT =
∑N

i=1 yi of a variable Y .

The generation process starts at population U . Each element i of U is assigned a

certain value yi of variable Y , but the parameter YT is unknown. In the next step,

one of all possible samples, which can be drawn according to a given probability

sampling scheme, is selected. In this sample s of n elements, variable Y is observed.

In the next step, the original population U of size N is estimated with respect to

the parameter YT of variable Y by a pseudo-population U∗HT . In the final step,

the Horvitz-Thompson estimator of YT , i.e. Ŷ ∗HT , is calculated as the total of the

replications of y in U∗HT .

For the generation of the pseudo-population U∗HT , the variable value yi of the

unit i in the sample is replicated 1
πi

times, for each i ∈ s. Hence, the design weights

can be seen as the replication factors of this process. Pseudo-population U∗HT has

N∗HT =
∑

s
1
πi

elements that is in general not equal to N , while the expectation is

E(N∗HT ) =
∑
U

1
πk
Ik = N . However, the ratio

N∗HT

N
tends in probability to 1 as N

and n increase (Conti et al., 2017).

Note that the design weights 1
πi

are not integers as a rule. Hence, the Horvitz-

Thompson pseudo-population U∗HT is special in the sense that it may not only contain

b 1
πi
c whole units with the same value yi of variable Y (where b·c denotes the integer

part of a real number), but also 1
πi
− b 1

πi
c piece of unit with that value when 1

πi
−

b 1
πi
c > 0, i ∈ s.

Consequently, the efficiency of the unbiased Horvitz-Thompson estimator Ŷ ∗HT
for YT depends on the quality of the estimation of U by U∗HT with respect to Y or,

to be even more precise, with respect to parameter YT .
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3.2.2 Multinomial pseudo-population

For k = 1, . . . , N perform independent trials consisting in choosing a unit from the

original sample, where each unit i is selected with probability

1

πi∑
j∈s

1

πj

=

1

xi∑
j∈s

1

xj

. (3.2)

If at trial k unit i is selected, unit k of the pseudo-population will take values

y∗k = yi and x∗k = xi. If N∗i , i ∈ s, is the number of replications for unit i in the

pseudo-population, then N∗i has a multinomial distribution with expectation

E[N∗i |δN , YN , XN ] = N

δi
πi

N∑
j=1

δj
πj

, (3.3)

variance

V[N∗i |δN , YN , XN ] = N

( δi
πi

N∑
j=1

δj
πj

)(
1−

δi
πi

N∑
j=1

δj
πj

)
(3.4)

and covariance

Cov[N∗i , N
∗
h |δN , YN , XN ] = −N

δiδh
πiπh(
N∑
j=1

δj
πj

)2 h 6= i. (3.5)

This approach goes essentially back to Pfeffermann and Sverchkov (2004) and

guarantees by construction a pseudo-population calibrated with respect to the pop-

ulation size (Conti et al., 2017). This means that pseudo-population replications

satisfy constraint on population size: they are as close as possible to the initial N .

3.2.3 The Holmberg’s bootstrap algorithm

As we have seen in Section 3.1 several proposals to adapt the original Efron’s boot-

strap to handle with non-i.i.d. situations have been introduced, particularly for the

without replacement selection. Among the methods based on pseudo-population,

Holmberg (1998) proposed a generalization of this approach for a general sam-

pling design without replacement and with inclusion probability proportional to
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an auxiliary variable X (usually referred as IPPS sampling or πPS sampling), i.e.

πi ∝ xi/XT , where XT =
∑N

i=1 xi is the population auxiliary total.

A sampling design without replacement and with inclusion probability propor-

tional to an auxiliary variable X paired with the well-known unbiased Horvitz-

Thompson estimator ŶHT =
∑n

i=1 yi/πi devises a strategy methodologically appeal-

ing, since the estimator variance V (ŶHT ) tends to zero as the relationship between

X and Y approaches proportionality (Barbiero and Mecatti, 2009).

Let π(xi) = nxi/XT be the first-order inclusion probability under the πPS sam-

pling design, let s ⊂ UN be a sample of size n selected according to the design p(·),
and let

ri =
1

π(xi)
−
⌊

1

π(xi)

⌋
, 0 ≤ ri < 1, i ∈ s,

where b·c denotes the greatest integer equal to or smaller than.

Finally, for i ∈ s, let εi be independent Bernoulli random variables with param-

eters ri, i.e.

ri = Pr(εi = 1)

1− ri = Pr(εi = 0).

The bootstrap approach suggested by Holmberg (1998) can be described as fol-

lows:

1. For i ∈ s, let εi be independent realizations of the Bernoulli random variables,

and define

N∗i =

⌊
1

π(xi)

⌋
+ εi.

2. Create a resampling population U∗ by copying each element i ∈ s in such a

way that element i is copied N∗i times, i.e.

U∗ = {N∗i , i ∈ s},

with N∗ =
∑

i∈sN
∗
i . All N∗i elements that are copies of element i ∈ s are

assigned the value {yi, xi}.

3. Draw a sample s∗1 of size n∗ = n from U∗ by applying the same sample selection

scheme as for selecting s, which means that pseudo unit i is included in the

sample with probability π(·) and not included with probability 1 − π(·). We

refer to it as the bootstrap sample.



45 Estimating variance and confidence intervals

4. Compute a bootstrap replicate θ̂∗1 = θ̂(s∗1).

5. Repeat steps 3 and 4 B times. The Monte Carlo bootstrap variance estimator

for θ̂ is then given by

V̂b(θ̂) =
1

B − 1

B∑
b=1

(
θ̂∗b −

¯̂
θ∗
)2
,

where
¯̂
θ∗ = B−1

∑B
b=1 θ̂

∗
b .

Note that in the Holmberg’s method a further step in the bootstrap algorithm

is needed for constructing the bootstrap population U∗. Particularly, in step 1 n

random variables have to be simulated in order to compute the weights N i
∗. Then,

if εi does not equal zero for some i, an entire class U∗ = {U∗h , h = 1, 2, . . . , 2n}
of 2n possible bootstrap populations remains defined. The further step is actually

performed to select a unique bootstrap population by randomization into U∗. As

a consequence, the Holmberg’s πPS-bootstrap results computationally heavy and

resource consuming (Barbiero and Mecatti, 2009).





Chapter 4

Simulation and empirical studies

This chapter is devoted to the main results of the simulation study carried out to

evaluate the methodology proposed. We tested and compared the validity of the

proposed estimators by measuring their accuracy in terms of bias, variance and

confidence intervals. For this purpose, a specific bootstrap method for complex

sampling design was applied that is based on the concept of pseudo-population. We

refer to it as the pseudo-population bootstrap method of Chauvet (Chauvet, 2007).

As seen in the previous chapter (Chapter 3), the unknown quantity in the classi-

cal i.i.d. model of classical statistics is the distribution φ of the variable of interest

Y . To perform the bootstrap procedure for this model, φ is first estimated by the

empirical distribution function φ̂n, and then i.i.d. observations from φ̂n are gener-

ated. In survey sampling, the unknown is the population U from which the sample

is drawn. Therefore, under the pseudo-population bootstrap (PPB) approach, U is

estimated by creating a pseudo-population via repeating the original sample using

principles from the original sampling design. Then, the bootstrap sample is drawn

from the resulting pseudo-population using the original sampling design. By obey-

ing the original scheme to draw the bootstrap sample from the pseudo-population,

the finite population correction factors, e.g. the 1− f in the case of simple random

sample without replacement, are naturally captured by the bootstrap variance es-

timator. This important property has persuaded many researchers to widely study

this approach (Mashreghi et al., 2016).
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4.1 The bootstrap algorithm for unequal proba-

bility sampling

In survey sampling, the unknown is the population U from which the sample is

drawn. Therefore, under the pseudo-population bootstrap approach, U is estimated

by creating a pseudo-population via repeating the original sample using principles

from the original sampling design. Then, the bootstrap sample is drawn from the

resulting pseudo-population using the original sampling design.

In this section, we focus on bootstrap method for unequal probability sampling

design based on the concept of pseudo-population. More specifically, we present the

bootstrap algorithm to evaluate the performances of the estimators proposed. This

method is inspired by the bootstrap method of Chauvet (2007) for Poisson Sampling

and also reported by Mashreghi et al. (2016).

As we have seen in Section 1.1, in Poisson sampling each element of the population

is selected independently in the sample with probability πi and therefore the sample

size is random.

The general algorithm for unequal probability sampling can be described as fol-

lows:

1. Repeat the pair (yi, πi), b 1
πi
c times for all i in s to create, Uf , the fixed part

of the pseudo-population.

2. To complete the pseudo-population, U∗, draw U c∗ from {(yi, πi)}i∈s using Pois-

son sampling with inclusion probability ri = 1
πi
−b 1

πi
c for the ith pair. Denote

the pseudo-population by U∗ = Uf∪U c∗ = {(y̌i, π̌i)}i∈U∗ where (y̌i, π̌i) is the ith

pair of the pseudo-population and corresponds to one of the values of the vari-

able obtained from the sample and its corresponding probability of selection

according to the sample design.

3. Take the bootstrap sample s∗ from U∗ using the same sampling design that

led to s, but with inclusion probability π
′
i for the ith unit in U∗, as defined in

the sequel.

4. Compute the bootstrap statistic, θ̂∗, on the bootstrap sample s∗.

5. Repeat Steps 3 and 4 a large number of times, B, to get θ̂∗1, . . . , θ̂
∗
B. Let

V̂ ∗B =
1

B − 1

B∑
b=1

(
θ̂∗b −

¯̂
θ∗
)2
,
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where
¯̂
θ∗ = B−1

∑B
b=1 θ̂

∗
b .

6. Repeat Steps 2 to 5 a large number of times, D, to get V̂ ∗1B, . . . , V̂
∗
DB.

It is worth noting the main similarities and differences between this algorithm and

the Holmberg (1998) algorithm as described by Mashreghi et al. (2016). Both are

designed for unequal (single-stage) probability sampling design and aim to emulate

the original sampling design as was the case with simple random sample without

replacement: the method of Chauvet (2007) for Poisson sampling and the method

of Holmberg (1998) for probability proportional to size sampling.

We observe that the pseudo-population is constructed the same way as Holmberg

method (Section 3.2.3). However, to draw the bootstrap sample, the original sam-

pling mechanism used to draw s from U is applied, but with inclusion probability

π
′
i. Note that π

′
i may be different from the original inclusion probability, that is the

inclusion probability of unit i in the original sample.

Holmberg (1998) proposed his bootstrap method for inclusion probability propor-

tional to size sampling designs; since the size distribution for the pseudo-population

is not the same as the original, the first order inclusion probability used in Step

3 of the algorithm is modified to π
′
i = nπ̌i/

∑
j∈U∗ π̌i. However, to compute the

Monte Carlo variance estimator, he ignores the variability induced by creating the

pseudo-population.

Chauvet (2007) estimates the variance of the population total for Poisson sam-

pling design. To obtain the bootstrap variance estimator of Chauvet, Poisson sam-

pling with the original inclusion probabilities π
′
i = π̌i in Step 3 of the algorithm is

used. Recall that π̌i is the probability of selection of the value y̌i, one of the pairs

making the pseudo-population and therefore one of the pairs (yj, πj) of the original

sample. Under this method, the bootstrap variance estimator is Eu∗
[
Vp∗(θ̂

∗|U∗)
]

which is approximated by

V̂ ∗ =
1

D

D∑
d=1

V ∗dB.

Furthermore, note that the resulting pseudo-population may not have the same

size as the original population size, N . But, letting Mi be the number of times unit

i appears in U∗, we have EpEu∗(
∑

i∈sMi)

While Holmberg (1998) did not address the problem of constructing confidence

intervals, Chauvet (2007) computed bootstrap percentile intervals, more specifically

percentile intervals constructed from the DB values of θ̂∗i . Given that the bootstrap

parameter θ∗ changes with each pseudo-population, the bootstrap percentile inter-
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vals should be computed from the quantiles of θ̂∗i − θ∗i , where the pseudo-population

changes with each bootstrap sample.

The basic scheme of the simulation process is shown in Figure 4.1.

Figure 4.1: Simulation scheme under pseudo-population approach

4.2 Simulation design

Given the population size, N , the variable of interest Y and two auxiliary variables,

X1 and X2, were generated according to a multinormal distribution with given

mean vector µ and covariance matrix Σ. The values of σy,x1 and σy,x2 were chosen

to guarantee high correlation between Y and X (not less than 0.7), since high

correlation is desirable to obtain more efficient estimates given the assumptions. At

the same time, the auxiliary variables had low correlation among themselves in order

to achieve considerable gain in efficiency. In fact, when the auxiliary variables are

highly correlated, there is practically no gain in efficiency by use of an additional

variable, and a use of a single auxiliary variable is recommended.

The true inclusion probabilities (propensity scores) were modeled by logistic re-
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gression model where coefficients of x1 and x2 were assumed to be known. More

specifically, for each unit i of the population (i = 1, 2, . . . , N), a value was gener-

ated from the logit model g(x) = β0 + β1x1 + β2x2 where β0 = −0.8, β1 = 0.2

and β2 = 0.3. Therefore the true inclusion probability, π∗(x), was obtained by the

inverse of the logit function, i.e. π∗(x) = exp [g(x)]/1 + exp [g(x)].

Given the values of the true inclusion probabilities, π∗1, π
∗
2, . . . , π

∗
N , for all units

of the population, N i.i.d. Bernoulli random variables δi, i = 1, 2, . . . , N , were

generated, each of them with probability equals to the true propensity score assigned

to the corresponding unit of the population. Those units with δi = 1 represents the

units included in a sample.

After generating original data of the population, the propensity score was es-

timated for each unit i (i = 1, 2, . . . , N) by using logistic regression model, now

representing Hirano-Imbens-Ridder estimator with a finite number of terms, where

the response variable was given by the Bernoulli random variable, δ, as above gen-

erated and independent variables were the auxiliary variables, X1 and X2, whose

values are known for all units in the population.

On the basis of the estimated propensity scores one sample was drawn following

the original sampling scheme and one pseudo-population was generated from it as

described in the previous Section (4.1). Then, B bootstrap samples were drawn from

the pseudo-population following the original sampling scheme, and in each bootstrap

sample the pseudo Horvitz-Thompson (1.4) and the pseudo Hájek estimators were

calculated (1.5). This gives a bootstrap estimation of the sample distribution of

the estimators, T̂pHT and T̂pH , of the unknown population mean in the original

population UN . This process has been replicated a large number of times, D, in

order to take into account the variability of the pseudo-population.

Two simulation trials were carried out: in the first one the size of the original

population was set to N = 500, while in the second one N was set to 1000. The

number of bootstrap samples was set at four times the size of the original population,

thus 2000 and 4000, respectively, while the number of iterations was set at twice the

size of the original population. For example, if the size of the population is set equal

to 500, the number of samples, D, from which pseudo-populations are generated

is equal to 1000, while the number of bootstrap samples, B, which are drawn from

each generated pseudo-population, is equal to 2000. D Monte Carlo runs, simulating

the sample space, have been combined with B resampling runs from each generated

sample.

Simulation has been performed in the R environment. The full script for this

simulation can be found in Appendix.
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4.3 Simulation results

In order to evaluate the performance of the proposed estimators the following Monte

Carlo (MC) indicators have been computed:

• Percentage Relative Bias (PRB), concerning the ability of the resampled distri-

bution of an estimator of the population mean to match the (original) sample

mean as its empirical first moment

PRB = EMC

[
E∗(θ̂∗)− θ̂

θ̂

]
× 100

where E∗ indicates the empirical average over the B resampling runs and by

taking θ̂ = Y N (Conti et al., 2017);

• 95% Confidence Interval based on the bootstrap percentile method (bootstrap

distribution).

The percentile method for the construction of a reasonable (1− α)100% con-

fidence interval for a parameter θ directly uses the α/2 and 1 − α/2 quantile

of the observed bootstrap distribution of the estimator θ̂ as the lower and the

upper bound of the confidence interval, respectively (Efron, 1981). Given that

the bootstrap parameter θ̂∗ changes with each pseudo-population, the boot-

strap percentile intervals should be computed from the quantiles of θ̂∗i − θ∗i
where the pseudo-population changes with each bootstrap sample.

• 95% Confidence Interval Coverage (or Coverage Probability), i.e. the propor-

tion of intervals which contain the parameter of interest, based on two meth-

ods: (i) the bootstrap percentile method; (ii) the boostrap-normal confidence

interval method given by

[θ̂∗ − z1−α/2

√
V̂ ∗, θ̂∗ − zα/2

√
V̂ ∗],

where zβ is the β-quantile of the standard normal distribution. This interval is

based on the approximation of (θ̂∗−θ)/
√
V̂ ∗ by a standard normal distribution.

The intervals were constructed from the D ×B values of θ∗i .

The PRB gives a measure of the bias of the proposed estimators. The confidence

intervals and the coverage probability allows us to evaluate the capacity of the

proposed estimators to provide a valid inference.

The simulated scenarios, parameters and estimators are summarized in Table 4.1.
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Table 4.1: Simulated scenarios, population parameters, and estimators

Scenarios 1 N=500 Cor(Y,X1) = 0.73 Cor(Y,X2) = 0.78

Scenarios 2 N=1 000 Cor(Y,X1) = 0.75 Cor(Y,X2) = 0.78

Parameters Y N =
N∑
i=1

yi/N

π(x) estimator π̂(x) =
exp(β̂0 + β̂1x1 + β̂2x2)

1 + exp(β̂0 + β̂1x1 + β̂2x2)

Estimators T̂pHT =
1

N

N∑
i=1

δi
π̂(xi)

Yi T̂pH =

1

N

N∑
i=1

δi
π̂(xi)

Yi

1

N

N∑
i=1

δi
π̂(xi)

Tables 4.2 and 4.3 present the numerical performance of the proposed estimators.

Table 4.2 summarizes the simulation results with respect to both pseudo Horvitz-

Thompson and pseudo Hájek estimation of population mean for N = 500. Similarly,

the results for N = 1 000 are presented in Table 4.3.

The results in Tables 4.2 show a slightly better performance of the pseudo Hájek

estimator than the pseudo Horvitz-Thompson estimator. PRB is quite small for

both of them, meaning that they are slightly biased with respect to the true popu-

lation parameter. However, the bias of the pseudo Hájek estimator is smaller than

that of the pseudo Horvitz-Thompson estimator (1.22 vs 2.77). In terms of variance

and confidence intervals, there is no appreciable difference between the two estima-

tors. The variance is approximately zero for both of them, while the length of the

estimated confidence intervals is smaller for the pseudo Hájek estimator, indicating

more precise estimates. Concerning the coverage probability, it exceeds the nominal

level for the pseudo Hájek estimator (0.97), whereas it is lower than the nominal

level for the pseudo Horvitz-Thompson estimator (0.86). This occurs when con-

fidence intervals are calculated using the normal approximation. If the percentile

method is used, the coverage probability equals 1 for both estimators (as shown in

brackets).

The results in Table 4.3 confirm the properties of the proposed estimators. We

are now considering a larger population size (N = 1 000), therefore larger samples

size. PRB is slightly higher for both the estimators with respect to the previous

trial (2.95 and 1.34 for T̂HT and T̂H , respectively). However, also in this case bias is

lower for the pseudo Hájek estimator (1.34 vs 2.95). Coverage probability seems to
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get worse for the pseudo Horvitz-Thompson estimator when normal approximation

is used (0.84), whereas it is quite high for the pseudo Hájek estimator (0.97). It still

equals 1 for both estimators when percentile method is used. Variance estimation

can be considered equals zero for both the pseudo estimators and the confidence

intervals are more precise than the previous ones.

Table 4.2: Boostrap results: N=500, B=2 000, D=1 000

Pseudo Horvitz-Thompson Pseudo Hájek

Population mean −0.084 470 −0.084 470

Population mean −0.086 813 −0.085 499

estimate

Variance 0.001 975 0.001 839

Confidence intervals 95%:

Lower bound −0.116 648 −0.113 464

Upper bound 0.000 326 0.001 052

Percentage Relative Bias 2.77 1.22

Coverage probability 0.8625(1) 0.9825(1)

Table 4.3: Boostrap results: N=1 000, B=4 000, D=2 000

Pseudo Horvitz-Thompson Pseudo Hájek

Population mean −0.044 075 −0.044 075

Population mean −0.045 376 −0.044 667

estimate

Variance 0.000 973 0.000 939

Confidence intervals 95%:

Lower bound −0.068 277 −0.067 030

Upper bound 0.019 392 0.020 492

Percentage Relative Bias 2.95 1.34

Coverage probability 0.839(1) 0.974(1)



Conclusions

Nonprobability samples, such as those from opt-in web surveys, are getting more and

more attention, since they are less expensive, quicker and get easily access to a large

number of respondents. Nevertheless, they are affected by under-coverage and self-

selection, which may lead to unreliable estimates. In addition, inclusion probabilities

are unknown, which means that the sample mean is not an unbiased estimator of the

population mean. For this reason, our main interest was in overcoming the problem

of self-selection. It is worth noting that self-selection also occurs in traditional web

surveys.

The first major result of this study was to obtain a model for the process that is

supposed to have caused the self-selection. Therefore, on the basis of the specified

model obtain an estimator of inclusion probabilities. For this purpose, the estima-

tor of the propensity score by Hirano et al. (2003) was chosen. This choice was

made based on the good properties of this estimator. Once defined the theoretical

framework and the inclusion probability estimator, two estimators of the popula-

tion mean were proposed: the pseudo Horvitz-Thompson estimator and the pseudo

Hájek estimator, both with estimated inclusion probabilities.

The second major result was to study the large sample properties of the proposed

estimators (T̂pHT and T̂pH). It was shown that both of them are asymptotically

unbiased and the asymptotic variance was derived.

In order to verify the validity of the proposed methodology a simulation study was

carried out. The simulation results revealed that both of the proposed estimators

can be considered efficient. They also have reasonable bias, but the PRB is lower for

the pseudo Hájek estimator. The coverage probability is quite high for T̂pH when the

normal approximation is used, whereas it decreases as N increases for the pseudo

Horvitz-Thompson estimator. The 95% confidence intervals improve as N and n

increase in size, but they are more precise for the pseudo Hájek estimator. As a

result, we conclude that the pseudo Hájek estimator is preferable over the pseudo

Horvitz-Thompson estimator.
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We conclude by discussing further areas of research. There are a few interesting

issues that should be addressed. The first concerns the method used to estimate

inclusion probabilities. It was stated that Hirano et al. (2003) use series estimators,

which requires choosing the number of terms in the series (smoothing parameter).

So the question is: How to choose this number in order to achieve the efficiency

bound? This is especially true in real situations. The second is to determine the

number of simulation runs which are needed to ensure that the properties of the

proposed estimator are stable over different sets of simulations. This would enable

to arrive at a firm conclusion about the behaviour of the proposed estimators over

all possible samples in a population. Given that simulations are the main approach

to study the performance of estimators, it is important that a sufficient number of

simulations are used to ensure the analysis is reliable. It would also be interesting

to investigate the effect of different pseudo-population bootstrap method on the

proposed estimators as well as the effect of different resampling designs. Antal and

Tillé (2011) argued that if the aim is variance estimation, the resampling design

must be radically different from that which generates the original data. Moreover,

an application to real data would be needed in order to evaluate the validity of the

proposed methodology also in real situations.
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R code used for simulation

This annex contains the complete R code for performing the simulation.

1

2 library(MASS)

3 set.seed (12345)

4

5 # set N=500

6 N<-500

7 ###################################################

8 # Generating population values: Y, X1, X2

9 ###############################################

10

11 # define the mean vector

12 mu = c(0,1,3)

13

14 # define the variance -covariance matrix

15 Sigma = matrix(c(1, 0.74, 0.9, 0.74, 1, 0.2, 0.9, 0.2, 1.3), nrow =

3, ncol = 3)

16

17 # generate Y, X1 and X2 from a multivariate normal distribution

with

18 # mean vector ’mu ’ and variance -covariance matrix ’sigma ’

19

20 df = data.frame(mvrnorm(N, mu , Sigma))

21

22 # rename the variables

23 names(df)<-c("Y", "X1", "X2")

24 str(df)

25

26 # scatterplot of Y, X1 and X2

27 plot(df, pch = 20, cex = 0.5)

28

29 # correlation between variables

30 mycorr.data=cor(df)

31 mycorr.data
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32

33 #####################################################

34 # Population parameters

35 ##################################################

36

37 # compute the population mean

38 mean.y<- mean(df$Y)

39 mean.y

40

41 # Create a function for variance

42 var_pop <- function(x) {

43 mean((x - mean(x))^2)

44 }

45

46 #####################################################

47 # Generating the inclusion probabilities by

48 # logistic model

49 ##################################################

50

51 # set the coefficients of the logit model

52 z <- -0.8 + 0.2* df$X1 + 0.3* df$X2

53

54 # initialize the variable ’pr’

55 df$pr <-c(1:N)

56

57 # compute the inclusion probabilities

58 df$pr <- exp(z)/(1+ exp(z))

59

60 # generate N i.i.d. Bernoulli random variables on the basis of ’pr’

61 df$Be <-rbinom(N, size=1, p=df$pr)

62

63 ####################################################

64 # Fitting logistic regression on data produced

65 ##############################################

66 fit <- glm(Be ~ X1+X2 , data = df , family = binomial(logit))

67 summary(fit) # results

68 coef(fit) # estimated coefficients

69

70 # initialize a new variable ’prob ’

71 df$prob <-c(1:N)

72

73 # compute the estimate of inclusion probabilities

74 df$prob <-predict(fit , type=" response ")

75

76 # expected sample size

77 ns <- sum(df$prob)
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78

79 ####################################

80 # Setup of bootstrap parameters

81 ###############################

82

83 npop <-2*N # number of pseudo -populations

84 nboot <-4*N #number of bootstrap samples

85

86 boot.ht<-matrix(data = NA , nrow = nboot , ncol = npop , byrow = FALSE

,

87 dimnames = NULL)

88 boot.hj<-matrix(data = NA , nrow = nboot , ncol = npop , byrow = FALSE

,

89 dimnames = NULL)

90 boot.theta.star.ht <-NULL

91 boot.theta.star.hj <-NULL

92 boot.var.ht<-NULL

93 boot.var.hj<-NULL

94

95 mean.ht.camp <-NULL

96 mean.hj.camp <-NULL

97

98 # create a function for pseudo Horvitz -Thompson estimator

99 mean.ht<- function (x, p) {

100 sum(x/p)/N

101 }

102 # create a function for pseudo Hajek pseudo estimator

103 mean.hj<- function (x, p) {

104 sum(x/p)/sum(1/p)

105 }

106

107 ###############################################################

108 # Draw a sample and from it generate one pseudo population

109 # Take B bootstrap samples

110 # Repeat this process D times

111 ##########################################################

112

113 for(j in 1:npop){

114 # generate N i.i.d. Bernoulli random variables

115 df$ber <-rbinom(N,size=1,df$prob)

116

117 # selects units with ’ber=1’, i.e. select the sample s

118 camp <-subset(df , ber == 1)

119

120 ######################################################

121 # Generating the pseudo population from the sample
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122 ###################################################

123

124 #####################################################

125 # Construct the fix part of the pseudo population

126 ##################################################

127 ncamp <-data.frame(camp$Y , camp$prob)

128 ncamp$int <-floor (1/ camp$prob)

129 ncamp$rest <-(1/ camp$prob)-ncamp$int

130

131 nfixpop <-ncamp[rep(rownames(ncamp), ncamp$int),]

132

133 # renumber the rows

134 rownames(nfixpop) <-1:NROW(nfixpop)

135

136 # draw and rename the first two variables

137 fixpop <- nfixpop[c(1:2)]

138 names(fixpop)<-c("ps.Y", "ps.prob")

139

140 #############################################################

141 # Completing the remaining part of the pseudo population

142 # adopting Poisson sampling with probabilities included

143 # in ’ncamp$rest ’

144 ########################################################

145

146 ncamp$b <-rbinom(sb ,size=1, ncamp$rest)

147 # select units with bernoulli variable = 1

148 nrestpop <-subset(ncamp , ncamp$b ==1)

149

150 # renumber the rows

151 rownames(nrestpop) <-1:NROW(nrestpop)

152

153 # draw and rename the first two variables

154 restpop <- nrestpop[c(1:2)]

155 names(restpop)<-c("ps.Y", "ps.prob")

156

157 # obtain the pseudo -population

158 pspop <-rbind(fixpop , restpop)

159 # number of units

160 NR<-nrow(pspop)

161 NR

162

163 #######################################################

164 # Take B bootstrap samples s* from U* (’pspop ’) by

165 # using the same sampling design that led to s and

166 # for each of them computing the estimates

167 ##################################################
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168

169 for(i in 1: nboot){

170 pspop$ber <-rbinom(NR ,size=1,pspop$ps.prob)

171 bcamp <-subset(pspop , pspop$ber ==1)

172 boot.ht[i,j]<-mean.ht(bcamp$ps.Y, bcamp$ps.prob)

173 boot.hj[i,j]<-mean.hj(bcamp$ps.Y, bcamp$ps.prob)

174 } # close loop for i

175 } # close loop for j

176

177 install.packages (" matrixStats ")

178 library(matrixStats)

179

180 # compute theta(s) star

181 boot.theta.star.ht<-colMeans2(boot.ht)

182 boot.theta.star.hj<-colMeans2(boot.hj)

183

184 # compute theta star estimation

185 theta.star.est.ht<-mean(boot.theta.star.ht)

186 theta.star.est.hj<-mean(boot.theta.star.hj)

187

188 # compute variances (V*)

189 boot.var.ht<-colVars(boot.ht)

190 boot.var.hj<-colVars(boot.hj)

191

192 # standard deviations

193 boot.sd.ht<-sqrt(boot.var.ht)

194 boot.sd.hj<-sqrt(boot.var.hj)

195

196 ####################################################

197 # Variance estimation for pseudo HT estimator

198 ###############################################

199 boot.var.est.ht<-mean(boot.var.ht)

200 boot.var.est.ht

201

202 boot.sd.est.ht<-sqrt(boot.var.est.ht)

203 boot.sd.est.ht

204

205 ####################################################

206 # Variance estimation for pseudo Hajek estimator

207 ###############################################

208 boot.var.est.hj<-mean(boot.var.hj)

209 boot.var.est.hj

210

211 boot.sd.est.hj<-sqrt(boot.var.est.hj)

212 boot.sd.est.hj

213
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214 ###################################

215 # BIAS pseudo HT

216 #############################

217

218 diff.ht <-NULL

219 diff.ht1 <-NULL

220

221 diff.ht1 <-(boot.theta.star.ht -mean.y)/mean.y

222 bias.ht1 < -100*( sum(diff.ht1))/npop

223 bias.ht1

224

225 ###################################

226 # BIAS pseudo Hajek

227 #############################

228

229 diff.hj <-NULL

230 diff.hj1 <-NULL

231

232 diff.hj1 <-(boot.theta.star.hj -mean.y)/mean.y

233 bias.hj1 < -100*( sum(diff.hj1))/npop

234 bias.hj1

235

236 #####################################

237 # Confidence Intervals

238 #################################

239

240 # normal intervals

241 cnor.ht <-c(mean(boot.theta.star.ht) -1.96*sd(boot.theta.star.ht)/

sqrt(npop),

242 mean(boot.theta.star.ht)+1.96* sd(boot.theta.star.ht)/

sqrt(npop))

243 cnor.hj <-c(mean(boot.theta.star.hj) -1.96*sd(boot.theta.star.hj)/

sqrt(npop),

244 mean(boot.theta.star.hj)+1.96* sd(boot.theta.star.hj)/

qrt(npop))

245

246 # student intervals

247 cin.ht <-c(mean(boot.theta.star.ht)-qt(0.975 ,df=npop -1)*sd(boot.

theta.star.ht)/sqrt(npop),

248 +mean(boot.theta.star.ht)-qt(0.025 ,df=npop -1)*sd(boot.

theta.star.ht)/sqrt(npop))

249 cin.hj <-c(mean(boot.theta.star.hj)-qt(0.975 ,df=npop -1)*sd(boot.

theta.star.hj)/sqrt(npop),

250 +mean(boot.theta.star.hj)-qt(0.025 ,df=npop -1)*sd(boot.

theta.star.hj)/sqrt(npop))

251
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252 library(stats)

253

254 # CI - quantile method

255 c.star.ht=sort(boot.theta.star.ht)

256 c.star.hj=sort(boot.theta.star.hj)

257

258 cq.ht.star = c(quantile(c.star.ht , probs =0.025) , quantile(c.star.ht

, probs =0.975))

259 cq.hj.star = c(quantile(c.star.hj , probs =0.025) , quantile(c.star.hj

, probs =0.975))

260

261 ########################################

262 # COVERAGE PROBABILITY

263 ###################################

264 nch <-0

265 ncj <-0

266

267 nch.t<-0

268 ncj.t<-0

269

270 nch.n<-0

271 ncj.n<-0

272

273 for (k in 1: nboot){

274

275 # quantile method

276 sort(boot.ht[k,])

277 cq.ht <-c(quantile(boot.ht[k,], probs =0.025) , quantile(boot.ht[k

,], probs =0.975))

278 if (cq.ht[1]<= mean.y & cq.ht[2]>= mean.y) {nch=nch +1}

279

280 sort(boot.hj[k,])

281 cq.hj <-c(quantile(boot.hj[k,], probs =0.025) , quantile(boot.hj[k

,], probs =0.975))

282 if (cq.hj[1]<= mean.y & cq.hj[2]>= mean.y) {ncj=ncj +1}

283

284 # student intervals

285 cin.ht.t<-c(mean(boot.ht[k,])-qt(0.975 ,df=npop -1)*sd(boot.ht[k,])

/sqrt(npop),

286 + mean(boot.ht[k,])-qt(0.025 ,df=npop -1)*sd(boot.ht[k,])

/sqrt(npop))

287 cin.hj.t<-c(mean(boot.hj[k,])-qt(0.975 ,df=npop -1)*sd(boot.hj[k,])

/sqrt(npop),

288 + mean(boot.hj[k,])-qt(0.025 ,df=npop -1)*sd(boot.hj[k,])

/sqrt(npop))

289
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290 if (cin.ht.t[1]<= mean.y & cin.ht.t[2]>= mean.y) {nch.t=nch.t+1}

291 if (cin.hj.t[1]<= mean.y & cin.hj.t[2]>= mean.y) {ncj.t=ncj.t+1}

292

293 # normal intervals

294 cnor.ht.n<-c(mean(boot.ht[k,]) -1.96*sd(boot.ht[k,])/ sqrt(npop),

295 mean(boot.ht[k,]) +1.96* sd(boot.ht[k,])/ sqrt(npop))

296 cnor.hj.n<-c(mean(boot.hj[k,]) -1.96*sd(boot.hj[k,])/ sqrt(npop),

297 mean(boot.hj[k,]) +1.96* sd(boot.hj[k,])/ sqrt(npop))

298

299 if (cnor.ht.n[1]<= mean.y & cnor.ht.n[2]>= mean.y) {nch.n=nch.n+1}

300 if (cnor.hj.n[1]<= mean.y & cnor.hj.n[2]>= mean.y) {ncj.n=ncj.n+1}

301

302 }

303

304 # Calculate the proportion of intervals that cover the parameter

305

306 # quantile method

307 CP.HT.n<-100* nch/nboot

308 CP.HJ.n<-100* ncj/nboot

309

310 # student intervals

311 CP.HT.nt <-100* nch.t/nboot

312 CP.HJ.nt <-100* ncj.t/nboot

313

314 # normal intervals

315 CP.HT.nn <-100* nch.n/nboot

316 CP.HJ.nn <-100* ncj.n/nboot


