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Abstract 
Buckling of vibrating cylindrical shells is an important aspect in aerospace and defense 
engineering. The proposed study is conducted to craving a method which is easier 
but still authentic for predicting the natural frequencies (Hz) of bi-layered cylindrical 
shells with ring support. The ring support is placed arbitrarily along the axis of the 
shell. It is assumed that the layers of the shell have a uniform thickness. Both layers 
are contrived independently by functionally graded technique having the constituents, 
stainless steel, and nickel. The material properties of the com- ponents of functionally 
graded layers are supervised by volume fraction power-law distribution and assumed 
to vary continuously and smoothly throughout the thickness of the layers. By 
interchanging the position of FGM constituents four kinds of cylindrical shells are 
formulated and its influence on frequency characteristics are analyzed. The expression 
for   strain and curvature–displacement relationships are obtained by utilizing Love’s first 
approximation of linear thin shell theory. Simply supported end conditions are imposed 
on edges. For numerical approximations, the Galerkin approach is employed to 
formulate the frequency equation in the form of the eigenvalue problem. The variation 
in frequency for various shell parameters as; length, height, radius, the width of layers 
material constituents and the position of the ring supports position are discussed. 
Effectiveness, validity, and accuracy of the present methodology has proven by 
comparing the evaluated numerical results with the results available in the open 
literature. 
 
Keywords: Cylindrical shells, functionally graded materials [FGM], Bi layered, Ring 
supported, Volume fraction power law, Galerkin approach. 
 

1 Introduction 

Cylindrical shells have their special historical importance for being a significant part of 

structural engineering. These shells give a robust resistance and support to heavy 

loads, so they are enormously popular than the other types of shells. During the 

designing of a functional structural shell, the main objective is to make it as thin, light, 

and low cost as possible with the required properties like a lightweight load barrier or 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online): 0493-2137 
E-Publication: Online Open Access 
Vol:54 Issue:06:2021 
doi: https://doicatalog.org/19.4102/jtus.v54i6.3479 
 

Page | 420   

heat resistor, etc. The detailed scientific studies of different mechanical and structural 

aspects of a shell such as geometrical parameters, material properties, vibration 

characteristics, and mathematical modeling are done by researchers numerically and 

experimentally for a successful practical application. The 1st remarkable shell theory 

was presented by Love [6], by customizing few physical terms in Love’s thin shell theory 

many other shells theories were built in. The performance of a shell depends on its 

frequency which noticeably influenced by the fabricating material and thickness of the 

shell or its layers. Simply supported edge conditions are employed in this purposed 

study by considering, Arnold and Warburton [1], and Bing et al. [4] precise discussion on 

boundary conditions of thin layered cylindrical shells for a better functional structured 

shell. In the open literature, a wide range of work is available on shells structured by 

isotropic or orthotropic materials as compared to the shells composed by functionally 

graded material. The predictable behavior of these pure materials (isotropic and 

orthotropic) creates constraints for advanced applications and sometimes becomes a 

cause of scientific problems, failures, or breakouts. An FG material is a mixture of two or 

more materials, having different chemical or physical properties, the resulting FG 

material has the best of both materials. They are used for the sake of high thermal 

gradient, heat resistance and embellish strength in structuring or designing space crafts, 

defense instruments, industrial and mechanical components to get better performance 

for prescribed specific purposes. Mahmood et al. [9] said like alloy FGMs have different 

properties as compared to their parental materials. These mate- rials have the 

characteristics of gradual variation in composition and material properties, as they are 

structure over volume as shown in the figure (1). 

The material characteristics of FG materials are functions of position and temperature. 

The material property P for functionally graded material is ex- pressed by Yamanouchi 

[15] as: 

 
P = P0(P−1T−1 + 1 + P1T 1 + P2T 2 + P3T 3) 
Where P−1, P0, P1, P2andP3 are the coefficients of temperature T(K). T(K) is 
exclusive expression for material’s fabricators in terms of Kelvin. Loy et al. 
[7] examined the vibration aspects of a functionally graded circular cylindrical shell for 

the first time. Sometimes excessive vibration of functional cylindrical shells in aeronautic 

or defense engineering becomes a cause of failure. To control the vibration, avoid the 

unwanted composition of materials, stability and overall improve the performance ring 

support imply to support a shell. Loy et al. [8] also analyzed the role of ring support on 

an isotropic shell’s frequency. Later, Najafizadeh, et al. [10], Arshad et al. [2], [3], 

Rahimi [11], [5], [12], [14], [13], and [16] studied further aspects of such shells. In 

the 
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Pure form of   2nd material 

 

Gradual mixing of both materials 

 

Pure form of 1st material 

 
 
 
 
 

 

Figure 1: Functionally graded material 
 

 
current proposed study, the thickness of the shell comprised of two layers, both are 

assumed functionally graded, comprised of materials; stainless and nickel. Stainless 

steel is a model material due to attractive qualities of corrosion resistance, low 

maintenance, staining, and familiar luster. Layers are assumed thin, uniform, linearly 

elastic and independent. It is being assumed that the layers of shell precisely bounded in 

the transverse direction at the interface of between two layers with no slip. Thus, the 

deformation at layer’s interface in the shell remains continuous. Four sorts of cylindrical 

shells are created by exchanging the constituents of FGMs. The alteration of FGM 

constituents and its effects on natural frequency has been analyzed and discussed. 

The volume fraction law is utilized for the distribution and control of the material 

properties of FGM ingredients. Limited work on cylindrical shell having ring support has 

been observed in the literature review. While ring support has a significant impact on the 

performance of a functional structural component. To analyze the frequency and avoid 

excessive vibration, the position of the ring support is taken arbitrarily and its influence on 

the vibration characteristics is examined and discussed. The first approximation of linear 

thin shell theory of Love is imposed to get expressions for curvature and strain 

displacement relationship. By modifying material parameters of the shell as Poisson 

ratio, mass density, Young’s modulus and geometrical parameters the problem is framed 

into a system of differential equations. Several Finite element methods are used to get 

approximate solutions to mathematical problems that framed for physical realities such 

as Differential Quadrature Method (DQM), Rayleigh-Ritz method, Rung-Kutta method, 

Wave Propagation approach etc. In the current study, the Galerkin technique is adopted 

for numerical results evaluation. The adopted technique for the present evaluation is 

the Galerkin approach.  
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Figure 2: Bi-layered cylindrical shell’s configuration 

 

Usually, this technique is employed to determine the coefficients of the power series 
solution of ordi- nary or partial differential equations (ODE / PDE). In the current study, 
its adoption converts the system of the equation of motion into partial differential 
equations (PDEs). The frequency equations are then framed into an eigenvalue problem. 
By using MATLAB coding numeral values for the frequency parameter  

Ω =  𝜔 ℝ √(1 − 𝜐2)
𝜌

Ε
 

are o b t a i n e d and t h e n ,  compared with the results available in the reviewed 
literature. Correlations of estimated results with those accessible in literature are made 
to check the legitimacy and precision of the present methodology. 

 

1.1 Theoretical formulation 

Assume that the geometrical aspects of presented cylindrical shells are length L, mean 

radius R and thickness h. (u, v, w) be the deformations defined at the middle surface 

concerning the (x, θ, z) coordinate system as elaborate in the figure(2), where u(x, θ, t) 

is the axial deformation function, v(x, θ, t) is the function of circumferential deformation 

and w(x, θ, t) is transverse deformation function. Material parameters of the shell under 

discussion are defined by employing the volume fraction power Law as: 

𝐸 (Young’s modulus)  = 𝐸(𝑧) = (𝐸1 − 𝐸2) (
2𝑧 − ℎ

2ℎ
)
𝑁

+ 𝐸2 

𝜈 (Poisson ratio)  = (𝜈1 − 𝜈2) (
2𝑧 − ℎ

2ℎ
)

𝑁

+ 𝜈2 

𝜌 (Mass density) = (𝜌1 − 𝜌2) (
2𝑧 − ℎ

2ℎ
)
𝑁

+ 𝜌2 

ere the subscripts 1 and 2 are respectively material parameters of the composer 
materials (say M1 and M2). The fundamental connection among the stress and 

w (x, θ, z) 

θ 

h 
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strain expressions are portrayed by the summed-up Hook’s law: 

{σ} = [Q] {e}   (1) 

 

Where, {σ} = (σx, σθ, σxθ )t   and  {e} = (ex , eθ , exθ )t  , are the component form along the 

vectors x, θ and the plan- xθ. And Q, the reduced stiffness matrix is as follow 

[
𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] 

here Qij (i, j = 1, 2 and 6) are assumed as interpreted by Rahimi [11], [5] and [3]. 
Moreover,  

   

𝑒𝑥 = 𝑒1 + 𝑧 𝐾1 , 𝑒𝜃 = 𝑒2 + 𝑧𝐾2 , 𝑒𝑥𝜃 = 𝑒12 + 2𝑧 𝐾12 

are the strain and curvature displacements, details can be seen in [13] and Love’s 
approximation of linear thin shell theory [6]. The system of equation of motion are also 
determined by Love’s approximation to uniform thin cylindrical shells, which are: 

∂Nx 1 ∂Nxθ ∂2u 
+ 

∂x R ∂θ 
= ρt 

∂t2 
 (2) 

∂Nxθ 1 ∂Nθ 1 ∂Nxθ 1 ∂Mθ ∂2v 
+ 

∂x R 
 +  +  

∂θ R   ∂x R2 ∂θ   
= ρt 

∂t2
 (3) 

∂Mx 2 ∂2Mθ Nθ ∂2w 
 

 

 

Here 
 

+  
∂x R ∂θ2  

−
 R   

= ρt 
∂t2

 (4) 
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{𝑁𝑥, 𝑁𝜃, 𝑁𝑥𝜃} =  ∫ (𝜎𝑥, 𝜎𝜃, 𝜎𝑥𝜃 )
ℎ/2

−ℎ/2

 𝑑𝑧                                           (5) 

{𝑀𝑥, 𝑀𝜃, 𝑀𝑥𝜃} =  ∫ 𝑧 (𝜎𝑥, 𝜎𝜃, 𝜎𝑥𝜃 )
ℎ/2

−ℎ/2

 𝑑𝑧                                        (6) 

𝜌𝑡 = ∫ 𝜌

ℎ
2

−
ℎ
2

 𝑑𝑧                                                                                             (7) 

are internal combined resultant forces, moment resultants and the mass density per 

unit length. To frame the general problem, let us make successive substitutions of (5)-

(7) in (2)-(4), which on simplification gives, 

 

(

 
 
 

𝑁𝑥

𝑁𝜃

𝑁𝑥𝜃

𝑀𝑥

𝑀𝜃

𝑀𝑥𝜃)

 
 
 

= 

[
 
 
 
 
 
𝐴11 𝐴12 0 𝐵11 𝐵12 0
𝐴12 𝐴22 0 𝐵12 𝐵22 0
0 0 𝐴66 0 0 𝐵66

𝐵11 𝐵12 0 𝐷11 𝐷12 0
𝐵12 𝐵22 0 𝐷12 𝐷22 0
0 0 𝐵66 0 0 𝐷66]

 
 
 
 
 

 

(

  
 

𝑒1

𝑒2

𝜏
𝜅1

𝜅2

𝛾 )

  
 

 

 
 
  

Where Aij, Bij and Dij (i, j = 1, 2, 6) represent the extensional, coupling and bending 

stiffness respectively and are as defined by S. H. Arshad et al. in [3]. 

 
1.2 Problem formulation for bi-layered 

Since in the present scheme, cylindrical shells are assumed to comprise of two layers of 

uniform thickness and are fabricated by FG-materials. These layers are superbly 

fortified along the transverse vector at their interface with no-slip and their deformation is 

consistent over the layers’ interface. So the extensional, coupling and bending stiffness 

moduli for (i,j=1, 2, 6) are described as: 

𝐴𝑖𝑗 = 𝐴𝑖𝑗
𝑖𝑛𝑛 +  𝐴𝑖𝑗

𝑜𝑢𝑡,              𝐵𝑖𝑗 = 𝐵𝑖𝑗
𝑖𝑛𝑛 + 𝐵𝑖𝑗

𝑜𝑢𝑡,              𝐷𝑖𝑗 = 𝐷𝑖𝑗
𝑖𝑛𝑛 +  𝐷𝑖𝑗

𝑜𝑢𝑡            (10)  

where the superscripts [inn] and [out] stands for the stiffness moduli respectively of 

inner and outer layers. The entries of stiffness matrices are evaluated as: 

(𝐴𝑖𝑗
𝑖𝑛𝑛 ,  𝐵𝑖𝑗

𝑖𝑛𝑛 ,  𝐷𝑖𝑗
𝑖𝑛𝑛) =  ∫      𝑄𝑖𝑗

𝑖𝑛𝑛(1, 𝑧, 𝑧2) 
0

−
ℎ
2

𝑑𝑧                                                          (11) 

(𝐴𝑖𝑗
𝑜𝑢𝑡  ,  𝐵𝑖𝑗

𝑜𝑢𝑡 ,  𝐷𝑖𝑗
𝑜𝑢𝑡) =  ∫  𝑄𝑖𝑗

𝑜𝑢𝑡(1, 𝑧, 𝑧2)
ℎ/2

0

 𝑑𝑧                                                       (12) 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online): 0493-2137 
E-Publication: Online Open Access 
Vol:54 Issue:06:2021 
doi: https://doicatalog.org/19.4102/jtus.v54i6.3479 
 

Page | 425   

By taking, 

𝑄11
𝑖𝑛𝑛/𝑜𝑢𝑡

= 
𝐸(𝑧)𝑖𝑛𝑛/𝑜𝑢𝑡

1 − 𝜈(𝑧)2
 =  𝑄22

𝑖𝑛𝑛/𝑜𝑢𝑡
 ,                                        (13) 

 

                                   𝑄12
𝑖𝑛𝑛/𝑜𝑢𝑡

= 
𝜈(𝑧)𝐸(𝑧)𝑖𝑛𝑛/𝑜𝑢𝑡

1 − 𝜈(𝑧)2
  ,                                                    (14) 

 

𝑄66
𝑖𝑛𝑛/𝑜𝑢𝑡

= 
𝐸(𝑧)𝑖𝑛𝑛/𝑜𝑢𝑡

2(1+𝜈(𝑧))
    .                                                                  (15)  

Different configurations of shells are formulated by altering the constituents of 

functionally graded material; stainless steel (SS) and nickel(N) as enlisted in table 1. 

Simply supported (S-S) boundary conditions, v = w = Nx = Mx = 0 and the 

 
Types Type I Type II Type III Type IV 

Inner Layer 

Outer Layer 

SS-N 

N-SS 

SS-N 

SS-N 

N-SS 

N-SS 

N-SS 

SS-N 

Table 1: Types of shells by altering constituents 

 
following displacement fields are used for further evaluation of the problem. 

u (x, θ, t) = Am U (x) cos nθ cos ωt, (16) 

v (x, θ, t) = Bm V (x) sin nθ cos ωt, (17) 

w (x, θ, t) = Cm (x – a) W (x) cos nθ cos ωt, (18) 

where Am, Bm, Cm are the constants, denoting the amplitudes of vibration in x, θ and 

z directions, whereas a is the arbitrary ring support’s position, m is the axial wave 

number, n shows the circumferential wave numbers and ω (rad 
s−1) is the natural angular frequency for the bi-layered cylindrical shell. The 
functions U(x), V(x) and W(x) are chosen as: 
 

 
U (x) = cos 

mπx 

L 

 

, V (x) = W (x) = sin 
mπx 

L 

 

(19) 
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By considering, (16), evaluate the expressions (13) and (10), (11), (12), step by step. 

Then by substituting the obtained values in (9), we get a system of ODE’s (ordinary 

differential equations). By doing some mathematical computation and simplifications, 

we retrieved the following system in three unknowns. 

L11Am + L12Bm + L13Cm = −ω2ρtU (x)Am, (20) 

L21Am + L22Bm + L23Cm = −ω2ρtV (x)Bm, (21) 

L31Am + L32Bm + L33Cm = −ω2ρt (x − a) W (x)Cm, (22) 

where the expressions for Lij (i, j=1,2,3) are coefficients of Am, Bm and Cm in terms of U 

(x), V (x) and W (x) and their ordinary derivatives. To determine the natural frequencies, 

the Galerkin method is employed. For which, a new system of differential equations is 

retrieved by multiplying the system of Differential Equations (20), (21) and (22) by U(x), 

V(x) and (x-a) W(x) respectively. Simplify the definite integral from 0 to L with respect to 

x, the differential equations turned up to a simultaneous system of homogeneous 

equations on considered Fourier coefficients. Thus, we obtained the following 

generalized eigenvalue problem, 

[

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

] [
𝐴𝑚

𝐵𝑚

𝐶𝑚

]  = − 𝜔2 𝜌𝑡  [
𝐼2 0 0
0 𝐼2 0
0 0 𝐼12

] [
𝐴𝑚

𝐵𝑚

𝐶𝑚

] 

Where the expressions for cij (i, j = 1, 2, 3) and Ik (k = 1, 2, 3...14) are precisely 
described in appendix section. The numerical results of the frequency parameter are 
obtained by MATLAB coding and verified by comparing with results accessible in  
literature. 
 

3 Results and Discussion 

The current audit gives readers an analytical view of almost all aspects of a shell that 

has impact on frequency. In this section we discussed the convergence of the Galerkin 

approach, the impact of ring support and its position on the frequencies of cylindrical 

shells. Moreover, the influence of variation in physical parameters; L, R, h, the 

circumferential wave number m, and the power-law exponents “p, q” on vibration 

characteristics of the shells are analyzed. By employing all the said assumptions, edge 

conditions, and Galerkin approach, numerical results are evaluated and discussed to 

check the efficiency, accuracy, and validity of the proposed technique. Material 

properties are briefly enlisted in the table 2 for the volume fraction power law of FGM 

distribution. 
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Coefficients Stainless Steel Nickel 

E(Nm−2) ν ρ(Kgm−3) E(Nm−2) ν ρ(Kgm−3) 

P0 201.04x109 0.3262 8166 223.95x109 
0 
−2.794x10−4 
−3.998x10−9 0 

2.05098x1011 

0.31 8900 
P−1 P1 
P−2 

P2 

0 

3.079x10−4 

−6.534x10−7 
0 

0 
−2.002x10−4 
3.797x10−7 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

P3 2.07788x1011 0.31776 8166 0.31 8900 

 
Table 2: Mechanical properties of FG constituents 
 
 

3.1 Convergence of Glarkin approach 

The precision and convergence of the applied strategy with Warburton (1953), Loy and 

Lam (1997) and G.H. Rahimi (2011) are shown in table 3. 

 
 
m 

n=2 
Warburton Loy and Lam Rahimi Present 

1 2046.8 2050.7 2043.8 2046.401 
2 5637.6 5643.3 5635.4 5637.189 
3 8935.3 8941.3 8932.5 8933.449 
4 11405 11416.9 11407.5 11407.794 
5 13245 13262 13253.2 13253.019 

 n=3 
1 2199.3 2195.1 2,195.10 2199.049 
2 4041.9 4035.5 4,035.50 4041.29 
3 6620 6614.6 6,614.60 6619.232 
4 9124 9121 9,121.00 9124.109 
5 11357 11359 11,359.00 11360.774 

 
Table 3: Convergence of Galerkin approach 
 
The shell configurations are considered as; L = 8in, R = 2in, h = 0.1in, E = 
30 X 106lbfin−2, ν = 0.3, ρ = 7.35 X10−4lbfs2in−4. It can easily observe that the obtained 
results are accurate and valid. Well-agreement is seen with the 

compared ones. So, the proposed approach is a convergent approach see figure 3. 

 
1*The Mechanical properties of functionally graded constituents are evaluated for Tc=300K 
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≥ 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Convergence of Galerkin approach 
 

3.2 Impact of ring support 

For the analysis shell’s parameters under SS end conditions are considered as L 

= 20m, h = 0.02m, and R = 1m. The power law exponents p, q =0.5. The axial and 

circumferential wave number m, n is considered to have value 1. It is observed from 

evaluated data in table 4 that shell attains its maximum frequency (Hz) when ring 

support is placed at mid of the shell(longitudinally) and mini- mum values are obtained 

when the ring support is placed at the ends. It is also observed that frequencies are 

symmetric to the center. All four types of shell’s frequencies follow each other perhaps 

the shell of type two has comparatively a bit higher frequency than the others. Figure 4 

shows that frequencies (Hz) moves upward speedily when the ring supports position 

vary from x=0 to 0.3 and for x= 0.4, 0.5, 0.6, gradual increase is observed, the frequency 

curve bend downward with respect to the ring support’s movement towards end of the 

shell. Thus, the behavior of frequencies for a two layered functionally graded ring sup- 

ported shell follow the same as of Rahimi and Loy’s analysis. Figure 5 describes the 

natural frequency’s behavior of FGM bi-layered shells under the conditions: having no 

ring support, ring support at one end and ring support placed at the middle of the shell. 

The dominant effect of ring support is observed. The shell with ring support has stable 

frequency behavior. 

 
3.3 Variation versus shell’s configurations 

The figure 6 gives a quick view that shell attains higher frequencies (Hz) as number of 

circumferential waves increased. A jump is seen for n=1 to n=2. It also seen that the 

curves of all four types of shell behave similarly. Figure 7 depicts that shell’s frequency 

has inverse relation with L, means increase of length produce low frequencies. Also, 

Warburton (n=2) Loy and Lam (n=2) Rahimi (n=2) 

Warburton (n=3) Loy and Lam (n=3) Rahimi (n=3) 

Present(n=2) 

Present(n=3) 
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minor or no variation is observed for L    5.   Another view of this data demonstrates 

that for L= 1, 2 frequency curves initially bent down from its maximum frequency, attain 

minimum value 

 
 

Figure 4: Variation of frequencies versus ring support’s position of 4-types of shells 

 

Figure 5: Frequency variation of shell-I in three special cases 

 
x Shell-I Shell-II Shell-III Shell-IV 
0 297.7104534 300.5695264 294.9194262 297.7247264 
0.1 352.0505412 355.4010821 348.7790047 352.0669892 
0.2 421.2633477 425.1007184 417.5109368 421.2803876 
0.3 476.006765 479.5057239 472.5789522 476.0114977 
0.4 487.1311515 490.4878878 483.8469864 487.1315289 
0.5 488.844461 492.1947535 485.5666817 488.8444135 
0.6 487.1311515 490.4878878 483.8469864 487.1315289 
0.7 476.006765 479.5057239 472.5789522 476.0114977 
0.8 421.2633477 425.1007184 417.5109368 421.2803876 
0.9 352.0505412 355.4010821 348.7790047 352.0669892 
1 297.7247264 300.5695264 294.9194262 297.7247264 

Table 4: Natural frequencies versus ring support’s position 
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at n=5 and head towards maximum frequency of the shell. While the curves of shell 

having length equal to 5,10 or 20, frequency curves have successively gradual increase 

after a small jump at initial circumferential waves. The trend of natural frequencies 

verses thickness of the shell is illustrated in figure 8. It is examined that as the thickness 

h increases frequencies get higher. Thickness has very minor or no influence for initial 

circumferential wave numbers. But for n¿2 variation becomes more prominent. 

Consequently, for h=0.1 frequency of shell- I gives its maximum value among the 

present data. The behavior of natural frequency (Hz) of shells for different radii is shown 

in figure 9. As the radius of the proposed bi-layered FGM cylindrical shell with ring 

supports at x=0, is increased less variation in natural frequencies is seen. Also, 

frequency decreases for higher radius means highest frequency is attain for the pair 

R=1, n=9 and least for R=10, n=9. From figure 10, it is analyzed those natural 

frequencies becomes higher according to the higher axial wave number. In figure 11 

and 12, influence of power law exponents has been examined. Three cases p < q, p > q, 

p = q, for p the power law exponent of inner layer and q the power law exponent of the 

outer layer, are considered. And the evaluated results show that power law exponents 

do not have a specific impact on frequencies of bi-layered ring supported shells and the 

values in all considered cases chases each other. 

 

4 Conclusion 

The current study is about the analysis of natural frequency (Hz) of cylindrical shells 

having ring support along the longitudinal axis. Structurally shells are comprised of two 

perfectly bonded functionally graded layers and functionally graded material is 

composed of stainless steel and nickel. To inquire about the vibration behavior, the 

current problem framed into an eigenvalue problem by utilizing the thin shell theory of 

Love and numerically evaluated by Galerkin technique under the simply supported 

edge conditions.  
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Figure 6: Frequency variation versus circumferential wave number; m=1, a=0, p=q=0.5, 

L=20m, R=1m, h=0.02m 

 
 
 
 
 
 
 
 

 

Figure 7: Frequency characteristics vs length of the shell; m=1, a=0, p=q=0.5, R=1m, 

h=0.02 
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Figure 8: Variation of frequencies versus shell’s thickness; m=1, a=0, p=q=0.5, R=1m, 

L=20m 

 
 
 
 
 
 
 
 
 
 
 

Figure 9: Variation of frequencies versus radius of the shell; m=1, a=0, p=q=0.5, 

h=0.02m, L=20m 

 
 
 
 
 
 
 
 
 

 

Figure 10: Variation of frequencies versus axial wave number; a=0, p=q=0.5, h=0.02m, 

L=20m, R=1m 
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Figure 11: Variation of frequencies for unequal power law exponents p,q; a=0, h=0.02m, 

L=20m, R=1m, m=1 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 12: Variation of frequencies for equal power law exponents p, q; a=0, h=0.02m, 

L=20m, R=1m, m=1 

The adopted methodology is verified by doing a comparative study of the present 

approach with those available in the literature. Ring support has dominant effectiveness 

on vibration characteristics of the shells. The frequency curve for the ring supports 

position is symmetric about the center of the shell. By altering the FGM constituents 

used for layer, 4-types of double layered cylindrical shells are designed. Among these 

four types, shell-III, whose inner and outer layers are constructed as N - SS and SS – 

N respectively, gives comparatively minimum values of natural frequency (Hz). In all 

comparisons for shell parameters, it is examined that frequency curves of shells chase 

each other. Length, radius, and width of the shell have a clear impact on the shell’s 

natural frequencies. This work could be extended for more layered shells with different 

FGM constituents or with a different methodology. One could also consider the problem 

for multi-ring supported shells. 
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APPENDIX II 
 
 

𝑐11 = 𝐴11𝐼1 −
𝑛2𝐴66

𝑅2 𝐼2  

 

𝑐12 = 𝑛 (
(𝐴12+𝐴66)

𝑅
+

(𝐵12+2𝐵66)

𝑅2 ) 𝐼3  

 

𝑐13 = (
𝐴12

𝑅
+

𝑛2(𝐵12 + 2𝐵66)

𝑅2 ) (𝐼4 + 𝐼5) − 𝐵11(3𝐼4 + 𝐼6)  

 
 

𝑐21 = −𝑛 (
(𝐴12+𝐴66)

𝑅
+

(𝐵12+𝐵66)

𝑅2 ) 𝐼7  

 

𝑐22 = (𝐴66 +
3𝐵66

𝑅
+

2𝐷66

𝑅2 ) 𝐼1 −
𝑛2

𝑅2  (𝐴22 +
2𝐵22

𝑅
+

𝐷22

𝑅2 ) 𝐼2  

 

𝑐23 = −(
𝑛

𝑅2 (𝐴22 +
𝐵22

𝑅
) +

𝑛3

𝑅3 (𝐵22 +
𝐷22

𝑅
)) 𝐼8 +

𝑛

𝑅
(𝐵12 + 2𝐵66 +

𝐷12+2𝐷66

𝑅
) (2𝐼4 + 𝐼9)  

 
 

𝑐31 = 𝐵11𝐼10 − (
𝐴12

𝑅
+

𝑛2(𝐵12+2𝐵66)

𝑅2 ) 𝐼11  

 

𝑐32 =
𝑛

𝑅
(𝐵12 + 2𝐵66 +

𝐷12+4𝐷66

𝑅
) 𝐼9 − (

𝑛

𝑅2 (𝐴22 +
𝐵22

𝑅
) +

𝑛3

𝑅3 (𝐵22 +
𝐷22

𝑅
)) 𝐼8  

 

𝑐33 = (
2𝐵12

𝑅
+

𝑛2(2𝐷12+4𝐷66)

𝑅2 ) (2𝐼4 + 𝐼13) −
1

𝑅2 (𝐴22 +
2𝑛2𝐵22

𝑅
+

𝑛4𝐷22

𝑅2 ) 𝐼12 − 𝐷11(4𝐼4 + 𝐼14)  

  



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online): 0493-2137 
E-Publication: Online Open Access 
Vol:54 Issue:06:2021 
doi: https://doicatalog.org/19.4102/jtus.v54i6.3479 
 

Page | 438   

APPENDIX III 
 
 

𝐼1 = ∫ 𝑈(𝑥)
𝑑2𝑈

𝑑𝑥2

𝐿

0
 𝑑𝑥 =  ∫ 𝑉(𝑥)

𝑑2𝑉

𝑑𝑥2

𝐿

0
 𝑑𝑥  

 

𝐼2 = ∫ 𝑈2(𝑥) 
𝐿

0
 𝑑𝑥 =  ∫ 𝑉2(𝑥) 

𝐿

0
 𝑑𝑥  

 

𝐼3 = ∫ 𝑈(𝑥)
𝑑𝑉

𝑑𝑥

𝐿

0
 𝑑𝑥  

 

𝐼4 = ∫ 𝑈(𝑥) 𝑊(𝑥)
𝐿

0
 𝑑𝑥 =  ∫ 𝑈(𝑥) 

𝑑2𝑊

𝑑𝑥2

𝐿

0
 𝑑𝑥  

 =  ∫ (𝑥 − 𝑎) 𝑊(𝑥)
𝑑𝑊

𝑑𝑥

𝐿

0
 𝑑𝑥 =  ∫ (𝑥 − 𝑎) 𝑊(𝑥) 

𝑑3𝑊

𝑑𝑥3

𝐿

0
  𝑑𝑥  

 

𝐼5 = ∫ (𝑥 − 𝑎) 𝑈(𝑥)
𝑑𝑊

𝑑𝑥

𝐿

0
 𝑑𝑥  

 

𝐼6 = ∫ (𝑥 − 𝑎) 𝑈(𝑥)
𝑑𝑊

𝑑𝑥

𝐿

0
 𝑑𝑥 =  ∫ (𝑥 − 𝑎) 𝑈(𝑥) 

𝑑3𝑊

𝑑𝑥3

𝐿

0
 𝑑𝑥  

 

𝐼7 = ∫ 𝑉(𝑥)
𝑑𝑈

𝑑𝑥

𝐿

0
 𝑑𝑥  

 

𝐼8 = ∫ (𝑥 − 𝑎) 𝑉(𝑥) 𝑊(𝑥)
𝐿

0
 𝑑𝑥  

𝐼9 = ∫ (𝑥 − 𝑎) 𝑉(𝑥) 
𝑑2𝑊

𝑑𝑥2  
𝐿

0
𝑑𝑥 =  ∫ (𝑥 − 𝑎) 𝑊(𝑥) 

𝑑2𝑉

𝑑𝑥2

𝐿

0
 𝑑𝑥  

 

𝐼10 = ∫ (𝑥 − 𝑎) 𝑊(𝑥) 
𝑑3𝑈

𝑑𝑥3

𝐿

0
 𝑑𝑥  

 

𝐼11 = ∫ (𝑥 − 𝑎) 𝑊(𝑥)
𝑑𝑈

𝑑𝑥

𝐿

0
 𝑑𝑥  

 

𝐼12 = ∫ (𝑥 − 𝑎)2 𝑊2(𝑥)
𝐿

0
 𝑑𝑥  

 

𝐼13 = ∫ (𝑥 − 𝑎)2 𝑊(𝑥) 
𝑑2𝑊

𝑑𝑥2

𝐿

0
 𝑑𝑥  

 

𝐼14 = ∫ (𝑥 − 𝑎)2 𝑊(𝑥) 
𝑑4𝑊

𝑑𝑥4
 

𝐿

0

𝑑𝑥 

 

 


