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Transient subdiffusion via disordered quantum walks

Andrea Geraldi ,1,*,† Syamsundar De ,2,*,‡ Alessandro Laneve,1 Sonja Barkhofen,2 Jan Sperling,2

Paolo Mataloni,1 and Christine Silberhorn2

1Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Roma, Italy
2Integrated Quantum Optics Group, Applied Physics, Paderborn University, 33098 Paderborn, Germany

(Received 24 July 2020; accepted 23 March 2021; published 16 April 2021)

Transport phenomena play a crucial role in modern physics and applied sciences. Examples include the
dissipation of energy across a large system, the distribution of quantum information in optical networks, and
the timely modeling of spreading diseases. In this work we experimentally prove the feasibility of disordered
quantum walks to realize a quantum simulator that is able to model general transient subdiffusive phenomena,
exhibiting a sublinear spreading in space over time. Our experiment simulates such phenomena by means of
a finely controlled insertion of various levels of disorder during the evolution of the walker, enabled by the
unique flexibility of our setup. This allows us to explore the full range of subdiffusive behaviors, ranging from
anomalous Anderson-like localization to normal diffusion for all experimentally accessible step numbers.

DOI: 10.1103/PhysRevResearch.3.023052

I. INTRODUCTION

Transport phenomena are ubiquitous in physics, often in
connection with the prominent heat equation. Such phenom-
ena are prime examples for normal diffusion processes in
which the variance, quantifying the spatial spread of the sys-
tem’s distribution, increases linearly with time. Nevertheless,
it is actually quite common to find natural processes whose
short-term or long-term dynamics does not follow such a
simple relation. Rather, these systems are characterized by
a distribution that broadens according to a nonlinear power
law [1,2], a behavior referred to as anomalous diffusion. In
particular, a sublinear relation between variance and time,
i.e., subdiffusion, is frequently observed in nature, such as
in biological processes [3–6], wave propagation and scat-
tering [7,8], the movement of charge carriers in amorphous
semiconductors [9], disordered media [10], and many-body
localization transitions [11]. Subdiffusion even applies to cer-
tain economic models [12].

Because of this vast range of applications and its funda-
mental importance, many attempts have been made during
recent years to uncover the underlying physical mechanisms
that lead to anomalous diffusion. Such theoretical models rely
on a variety of physically motivated and more abstract ap-
proaches, such as fractal theory [13,14], fractional Brownian
motion [15], and continuous-time random walks [16,17]. Con-
sequently, the possibility to simulate all kinds of anomalous
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diffusive behaviors in one experimental platform—and in a
tunable manner—cannot only lead to significant insights into
complex mathematical models but also enables us to study a
plethora of processes in nature. Here we show that such a sim-
ulation task can, indeed, be realized by means of disordered
quantum walks (QWs).

QWs—the counterpart to classical random walks that
exploit coherent superpositions—serve as a promising frame-
work to implement simulation protocols since they provide
a general model for the propagation of quantum particles
[18–21]. For example, QWs have been used to study trans-
port phenomena in biomolecules [22], evolution in solid-state
systems [23], formation of molecular states [24], topological
invariants [25,26], and edge states [27,28]. However, basic
QWs are characterized by a spread which grows quadrati-
cally in time. This superdiffusive broadening is referred to
as ballistic diffusion. Moreover, by actively influencing the
walker’s evolution, the functional dependency of the broaden-
ing can be altered, e.g., for reproducing the classical normal
diffusion of incoherent processes, Anderson localization, or
even hypertransport [21,29,30]. For instance, static disorder
leads to Anderson localization, arising from the interac-
tion between the coherent quantum walker and a disordered
environment [31,32].

Recently, the continuous transition from ballistic behavior
to normal diffusion has been experimentally demonstrated in
a QW through the implementation of inhomogeneous evolu-
tion patterns, according to a so-called p-diluted model [33].
This approach proves that superdiffusion is achievable by
introducing inhomogeneities, but it is incapable of imple-
menting other anomalous diffusion regimes that result from
the presence of disorder. Therefore, the less accessible en-
tirety of the subdiffusive domain remains largely unexplored,
even when restricting to the transient subdiffusive regimes as
the true asymptotic behavior is experimentally inaccessible.
Among other reasons, a lack of a fitting experimental platform
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hindered such an investigation to date since it has to be
scalable, dynamically reconfigurable, and compatible to the
introduction of controlled disorder in the spatial and temporal
domain in order to realize advanced disorder models.

In this paper we experimentally demonstrate that the
conceptual idea of p-diluted disorder can be critically ex-
tended to encompass the subdiffusive transient regime, i.e.,
diffusive behaviors for the maximally accessible number of
time steps. In contrast to earlier implementations of the su-
perdiffusive domain, our experiment uses a highly flexible
time-multiplexing scheme to resolve the open problem of
simulating subdiffusion processes. By controlling disorder in
the spatial degree of freedom (here, time bins) and in time
(here, number of steps), we show the possibility to realize
any transient sublinear propagation regime—ranging from
statically disordered QWs, giving birth to Anderson-like lo-
calization, to completely disordered QWs, corresponding to
normal diffusion—that is achieved by implementing differ-
ent disorder levels. Our experiment is supplemented by a
theoretical model and numerical simulations, as well as a
space-time-coin-resolved characterization of QWs.

II. THEORETICAL MODEL

A broadly applicable model for general transport processes
can be formulated in terms of the partial differential equation

0 = ∂t P(x, t ) + LP(x, t ), (1)

in which P(x, t ) represents a space-time dependent probability
distribution and L is a potentially time-dependent differential
operator in the spatial degree of freedom x. For example, L ∝
−∂2

x describes the heat equation with normal diffusion. For a
large family of randomized media, the asymptotic solution for
large times t reads

P(x, t ) ∝ exp

(
−

∣∣∣∣ ax

σ (t )

∣∣∣∣b)
, (2)

where b describes the type of the exponential decay and a is
a scaling factor. Furthermore, σ (t ) is the standard deviation
with the characteristic power-law behavior,

σ (t ) = ctd , (3)

where 2d determines the spread of the variance over time and
c is another scaling factor. See, e.g., Ref. [34] for a thorough
derivation of this model; here we apply this model as an
heuristic approach to interpreting our data. For example, for
b = 2 and 2d = 1 we get from the rigorous model a Gaussian
distribution in space with a linear increase of the variance,
while the parameters b = 1 and 2d = 0 result in Anderson-
like localization as a consequence of the static disorder. Here
we aim at exploring the theoretically predicted intermediate
regime 1 < b < 2, with a subdiffusive behavior 0 < d < 1/2.

As established before, discrete QWs have shown their
ability to simulate certain diffusion regimes, such as superdif-
fusive power laws [33], in the continuous limit of many
steps and positions. The walker on a line is described by
the coherent superposition state |ψ (t )〉 = ∑

x(ψ0(x, t )|x〉 ⊗
|0〉 + ψ1(x, t )|x〉 ⊗ |1〉), where {|0〉, |1〉} represents the quan-
tum coin. For the resulting probability distribution, we trace
over this internal degree of freedom P(x, t ) = |ψ0(x, t )|2 +

|ψ1(x, t )|2. The QW evolves through the action of two opera-
tors, the coin operator Ĉ(t ) and the step operator Ŝ. The coher-
ent coin toss is given by the unitary map Ĉ(t ) = ∑

x |x〉〈x| ⊗
Ĉ(x, t ), which can vary with positions and times. The step
operator Ŝ = ∑

x (|x − 1〉〈x| ⊗ |0〉〈0| + |x + 1〉〈x| ⊗ |1〉〈1|),
then coherently propagates the walker in the two directions,
depending on the coin state. Thus, the evolution of the full
quantum system reads |ψ (t + 1)〉 = ŜĈ(t )|ψ (t )〉.

It is convenient to model different anomalous diffusion
regimes with a corresponding degree of static and dynamic
disorder in the choice of the space-time dependent coin. The
degree of the dynamic variation is determined by a parameter
p, resulting in the notion of p-diluted disorder [33]. In general,
the coin operator is not homogeneous with respect to position
and step number and different constraints can be imposed
[35]. For instance, the coin operator can be inhomogeneous in
space, but static in time, Ĉ(x, t ) = Ĉ(x), leading to Anderson-
like localization (b = 1), which is a static effect (2d = 0).
Now this static disorder can be perturbed in the p-diluted
model to approximate different differential operators L in
Eq. (1) for different physical scenarios. This perturbation con-
sists of the independent and random choice of time-dependent
coin configurations according to the percentage of dynamic
disorder p,

Ĉ(x, t ) =
{

Ĉ(x, t ) with probability p,
Ĉ(x) with probability 1 − p,

(4)

which introduces an inhomogeneity in time. Specifically, p =
0 yields Anderson-like localization (b = 1 and 2d = 0), and
p = 1 results in a completely disordered QW (b = 2 and
2d = 1). Most importantly, the region 0 < p < 1 should the-
oretically enable us to control our QW in such a way that
it explores the full intermediate range of exponential spatial
decays, 1 < b < 2 in Eq. (2), with sublinear temporal spreads,
0 < 2d < 1 in Eq. (3). See Appendix A for technical de-
tails and the connection to transport processes. It is worth
mentioning that our p-diluted strategy applies to the transient
regime of a limited step number in experiments and not to the
rigorous asymptotic behavior, which often tends to saturate in
a diffusive long-term propagation.

III. EXPERIMENTAL IMPLEMENTATION

To implement this transient subdiffusion, our QW experi-
ment relies on the well-established time-multiplexing scheme
based on an unbalanced Mach-Zehnder interferometer with a
feedback loop [32,36,37]; see Fig. 1. Our scheme provides
high resource efficiency, long-lasting stability, and homo-
geneity, which we exploit for the realization of QWs over a
sufficiently large number of steps that is necessary for clearly
distinguishing the signatures of the subdiffusive behavior.
This is not possible with the experiment in Ref. [33] since it
relies on a spatial geometry that is comparably hard to scale.

In the scheme in Fig. 1, the positions are encoded in the
arrival time bin of a weak coherent laser pulse at the single-
photon level (central wavelength 1550 nm, pulse width 1 ps,
and repetition rate 4 kHz). This light acts as the walker while
the coin information is embedded in the polarization, |H〉 =
|0〉 and |V 〉 = |1〉. The walk starts when the pulse impinges
from the top port of PBS1 for the first time. The walk is then

023052-2



TRANSIENT SUBDIFFUSION VIA DISORDERED QUANTUM … PHYSICAL REVIEW RESEARCH 3, 023052 (2021)

FIG. 1. Schematics of our experimental layout, using polar-
ization controllers (PCs), polarizing beam splitters (PBSs), and
electro-optical modulators (EOMs). The PC allows us to precisely
compensate the polarization rotation caused by the propagation
through the fibers. A polarization-resolving detection is achieved by
splitting the output of the loop with PBSdet followed by one detector
for each polarization.

initialized at position x = 0 with horizontally polarized light
|ψ (0)〉 = |0〉 ⊗ |0〉.

An unbalanced interferometer with a well-defined delay
between the polarizations (105 ns) realizes the step operation
Ŝ. This includes polarization dependent splitting at PBS1,
propagation of horizontal and vertical polarization through
long (∼473 m) and short (∼453 m) fibers, respectively, and
the coherent recombination of the two paths at PBS2 to
introduce the delay between the two polarizations. The in-
terferometer is closed with a free-space feedback loop that
redirects the light back to PBS1 for the next step.

A position- and step-dependent coin operation is harnessed
for the implementation of p-diluted disorder that is central
for realizing subdiffusive dynamics. To this aim, an essential
step forward is the exploitation of a fast-switching EOM in
the feedback loop for a dynamical coin control via polariza-
tion rotations without introducing high additional losses. See
Appendix B for technical details of the coin operation.

The capability of dynamical polarization rotation by the
two fast-switching EOMs, EOMH and EOMV, enables us
routing the pulses either back to the feedback loop or to
the detection unit. This high-quality active polarization con-
trol facilitates deterministic in and out coupling, rendering it
possible to implement sufficiently large number of steps by
enhancing the round trip efficiency. The detection unit allows
for polarization-resolved photon counting at individual time
bins, using PBSdet and high-efficiency (>90%) superconduct-
ing nanowire single-photon detectors with a dead time of
∼100 ns, from which we deduce the evolution of walker’s
probability distributions.

The current setup is designed to have a step separation of
∼2.3 μs and position separation of ∼105 ns and has been uti-
lized to demonstrate walks up to 36 steps by allowing time-bin
interlacing for successive steps [37]. However, we here restrict
ourselves to 20 steps, which is sufficient to unambiguously

discern transient subdiffusive dynamics, while minimizing the
error from interlacing.

IV. RESULTS

Our goal is to explore transient subdiffusive dynamics by
studying the walker’s behavior as a function of the disorder
level.

For a given strength of disorder p, several coin configura-
tions can be obtained because of the randomness in the choice
of the coin [Eq. (4)]. We refer to each configuration as a coin
map. Relevant quantities can be extracted from the output
distribution P(x, t ) after averaging over many realizations for
a given p. We experimentally implemented 400 coin maps for
each disorder scenario under study,

p ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 1.0}, (5)

and the resulting average probability distribution has been
measured for step numbers

t ∈ {5, 8, 11, 14, 17, 20}. (6)

The 2400 coin maps are generated by randomly creating
initially statically disordered coin configurations; for that, it
suffices to pick one coin value from three possible ones in-
dependently for each site of the line. We then divide the coin
maps into six sets, each comprising 400 coin maps, and im-
pose on each subset a different disorder level. This is achieved
by altering the coin value at each position and time to another
one, with a probability equal to p. The new coin values are
chosen with uniform probability. This results in 400 different
coin maps with the same disorder p. By randomly setting the
initial static disorder for each coin map, it is assured that the
final results do not depend on a particular static configuration
but only on the disorder level p.

Our measured data enables us to analyze both the spatial
characterization via P with a given exponential behavior 1 <

b < 2, and the temporal spread to certify anomalous diffusion
0 < 2d < 1. Eventually we discuss the coin-resolution capa-
bilities of our experiment.

A. Spatial characterization

For a fixed step number t , and for p = 0, an exponentially
localized distribution is expected, corresponding to Anderson-
like localization. With increasing disorder level p, we expect a
broadening of the distribution. Eventually, for p = 1, a Gaus-
sian shape should be obtained, being typical for the diffusive
behavior. In order to find the parameters that fit the measured
distribution best, it is convenient to work with a modified
expression of Eq. (2),

ln(P) =
(
−

∣∣∣ a

σ

∣∣∣b)
|x|b − ln

(∑
x

e−|ax/σ |b
)

, (7)

that can be fitted to our experimental data.
Experimental data corresponding to t = 20 steps for dif-

ferent amounts of disorder are reported in the left column of
Fig. 2. In the top-left plot, dots correspond to experimentally
obtained probability distributions. Dotted lines represent val-
ues of the theoretical distribution, obtained from a numerical
simulation. Similarities between experimental and theoretical
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(a)

(b)

(c)

(d)

FIG. 2. Top left: Probability distribution P for various values of the disorder p [Eq. (5)]. Experimental data (dots) agree within the
uncertainties with the theoretical results (dotted lines). Error bars take into account Poissonian statistics and experimental imperfections of
the setup [26,38]. Bottom left: Logarithm of the experimental probability distribution (dots) together with fit (dashed lines) according to
Eq. (7). For the sake of clarity, only selected p values are depicted. Top right: Logarithm of the variance as a function of the logarithm of the
step number t [Eq. (6)] for disorder levels p in Eq. (5). Dots correspond to experimental data; dashed lines show fits according to Eq. (8). The
linear behavior with slopes between zero and one in this doubly logarithmic graph for each value of p demonstrates an excellent agreement
with the predicted subdiffusive nature of the evolution. Bottom right: Depiction of values of the exponents for the spatial (b) and temporal (2d)
characteristics, obtained by fitting the theoretical predictions in Eqs. (7) and (8) to the measured data in bottom-left and top-right plots.

distributions for each step and p values are above 99%, indi-
cating a very good agreement even without considering many
unavoidable experimental imperfections in our simulation.

The bottom-left panel of Fig. 2 is even more conclusive
when it comes to determining the characteristic exponent b.
The plot shows data (dots) together with the fitted curves
(dashed lines) according to Eq. (7), covering the range from a
linear (b ≈ 1) to a parabolic (b ≈ 2) decay in this logarith-
mic depiction. It is clear from the graph that the presence
of higher disorder p diminishes the probability to find the
walker in the starting position x = 0 for t > 0. Consequently,
the probability for more distant positions increases, resulting
in a broadened distribution. The transient subdiffusivity of
the evolution is confirmed through 1 � b � 2 (the specific
numerical values are reported in the bottom-left plot of Fig. 2).
It is worth noting that other imperfections lead to a broader
range than one actually expects from an ideal model, cf. value
b > 2.

B. Temporal characterization

The second feature we focus on consists of the dependency
of the variance as a function of the step number t , again for
different values of disorder. To assess the transient subdiffu-
sive spread with our data, it is similarly convenient to recast
Eq. (3) into a logarithmic form,

ln(σ 2) = 2d ln(t ) + ln(c2). (8)

Results are reported in the top-right plot of Fig. 2 on a log-
arithmic scale for both axes. Dashed lines correspond to the
curve in Eq. (8) which is fitted to the data (dots) for different
p values. The nearly perfect linear behavior with slopes 0 �
2d � 1 (see bottom-right depiction in Fig. 2 for the values and
Appendix C for further details) confirms the actual transient
subdiffusive spread of the QW evolution. A discrepancy be-
tween the data and the fit can be observed for p = 0.0 because
of the extreme sensitivity of Anderson-like localization with

023052-4



TRANSIENT SUBDIFFUSION VIA DISORDERED QUANTUM … PHYSICAL REVIEW RESEARCH 3, 023052 (2021)

FIG. 3. Coin-resolved time evolution of the walkers position-dependent distribution for all disorder values p under investigation [Eq. (5)].
Left column corresponds to the overall space-time behavior after tracing over the coin degree of freedom while the central and right column
show the cases that correspond to the coin states |0〉 and |1〉, respectively. The depicted data include all measured time steps t [Eq. (6)] and all
positions x ∈ [−11, 11]. For an enhanced visualization, each row of the total distribution is normalized to its maximum. Each row of the H
and V plots are normalized to the maximum of the corresponding row of the plot labeled as “Total.”

respect to unavoidable experimental imperfections. Here one
would also expect a constant variance, which, however, is
only approached in the limit t → ∞, even in theory. As in
the previous spatial analysis, error bars on the experimental
data have been computed considering a Poissonian statistic of
counting as well as experimental imperfections.

Beyond earlier studies, we analyzed both the spatial and
temporal impact of the amount of disorder p. According to
our results, we can confirm that our approach enables us to
simulate almost any subdiffusive behaviors, within the natural
restrictions of a finite number of steps in experiments. Thus,
the transient sublinear spread over time and the characteristic
shapes of the measured spatial distributions indicate that the
interplay between a static disorder and completely random
disorder, freely controlled and interpolated via p, is a viable
way to reproduce complex subdiffusion phenomena in dis-
crete QWs.

C. Full space-time-coin analysis

In addition to the study of the walker’s spread over the
spatial sites of the discretized line, our actual setup allows one
to study the polarization-resolved evolution of the walker. In
this way, one can follow the average behavior of the particle
by decoupling the two coin states.

Measurements corresponding to the evolution of the |0〉 =
|H〉 (center) and |1〉 = |V 〉 (right) coin states are reported in
Fig. 3. The left plot shows the total space-time-dependent

characterization of the QW after tracing over the coin degree
of freedom. Each column represents the time behavior of the
probability distribution as a function of the site (from site −11
to +11) for different values p of the disorder.

At step t = 0, the coin state has 0 probability to be in
the |1〉c state as the walker is initially furnished with a coin
in the state |0〉c. Note that the distribution for |0〉 is centered
in site −1 while the one for |1〉 is centered in site +1. This is
due to the effect of the step operator Ŝ, which shifts the walker
with coin |0〉 and |1〉 to the left and right, respectively, thus
steering the coin distribution towards different signs of sites.
This effect is compensated when tracing over the polarization
degree of freedom. Despite this, an under diffusive spread
for both coin states is observed, which is very similar to the
one obtained when tracing over the coin degree of freedom.
Indeed, Anderson-like localization is obtained in the case of
p = 0.0, while a diffusive (i.e., a Gaussian distribution) spread
is retrieved in the case of complete disorder. For all values
of p < 1.0, a more narrowly confined spread with respect to
p = 1.0 is obtained.

Therefore, and in addition to the vital characterization of
spatial and temporal features of various QWs, we can also
investigate the coin-dependent transient behavior with our
setup. Here, such a fine-grained analysis resembles the overall
properties of the system. However, in other scenarios, this ad-
ditional degree of resolution can be a helpful asset to separate
the distinct characteristics of the system when conditioned to
a given coin state.
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V. CONCLUSION

In pursuing the ultimate goal of implementing a universal
quantum simulator, we experimentally demonstrated the abil-
ity to simulate transient subdiffusive transport phenomena,
having a wide range of applications, via disordered QWs.
By analyzing our data regarding their spatial and temporal
features, we mapped the landscape of characteristic properties
of subdiffusion. First, we controlled our system in a way
that leads to position distributions of the walker ranging from
Anderson-like localization to a normal Gaussian distribution.
Second, anomalous diffusion in the sublinear regime was ex-
plored to characterize the walker’s spread over a finite time.
This complements earlier findings that have been restricted to
superdiffusion by starting from an already completely ordered
evolution.

Because of our unique control over the coin at each po-
sition (time bin) and step, the demanding goal of realizing
subdiffusion was successfully accomplished. By perturbing
initial static disorder, we realized a p-diluted QW by adding
dynamic noise in a controlled manner to steer our system
towards the subdiffusive regime.

The agreement between the measured data and the theo-
retical predictions for the key quantities under study, namely
shape of the position distribution and the change of the vari-
ance with time, clearly demonstrates that the coherent walker
evolves subdiffusively.

Earlier works that implied the possibility of subdiffusive
dynamics in QWs invoked the presence of nonlinearities in
the coin operator [39,40]. Such approaches generally involves
setups with high complexity and low efficiency [41], in addi-
tion to the more challenging theoretical treatment. In contrast,
we were able to realize subdiffusive QWs in a significantly
more accessible manner, providing an efficient tool for the
investigation of anomalous diffusion in the transient regime.
This has been done by implementing a crossover between two
disorder models: a static one, leading to Anderson-like local-
ization, and the dynamical one, inducing diffusion. Through
a continuous transition from one model to the other, straight-
forwardly encoded in the increment of a single parameter (p),
the entirety of the subdiffusive regime can be explored.

Exceeding our proof-of-concept realization reported here,
our results provide a promising starting point for future stud-
ies. For instance, we also showed that our setup actually
enables us to measure coin-resolved distributions that can
be relevant for assessing quantum properties between the
coin and time-bin degrees of freedom, such as entanglement.
Furthermore, the experiment could be extended to two single-
photon walkers [33] by means of the very same setup [42].
This could foster other simulations of sophisticated correlated
diffusion phenomena. For instance, it is known that Anderson
localization holds true in the case of entangled photons [31].
However, the general impact of correlated (p1, p2)-diluted
dynamical noise for the walkers 1 and 2 is entirely unknown
but could potentially be studied with our platform. In addition
to this, our p-diluted disorder approach achieves the funda-
mental goal of reproducing different spreading behaviors in
a single, stable, and reconfigurable setup. As such, it can
serve to understand propagation properties of quantum par-
ticles in more complicated networks subjected, for instance,

to space-, time-, and coin-dependent environmental noise
contributions.

ACKNOWLEDGMENTS

The Integrated Quantum Optics group acknowledges fi-
nancial support through the Gottfried Wilhelm Leibniz-Preis
(Grant No. SI1115/3-1) and the European Commission
through the ERC project QuPoPCoRN (Grant No. 725366).
A.G., A.L., and P.M. acknowledge support from the Euro-
pean Commission Grants FP7-ICT-2011-9-600838 (QWAD
- Quantum Waveguides Application and Development) and
from the project PRIN 2017 ‘Taming complexity via QUan-
tum Strategies a Hybrid Integrated Photonic approach’
(QUSHIP), Id. 2017SRNBRK

APPENDIX A: SUPPLEMENTAL DETAILS
ON THE THEORY

For a self-consistent reading of this work and for a co-
herent treatment, we recapitulate and reformulate the theory
on diffusion in randomized media as reported in Ref. [34].
Therein, the approach was based on the Laplace transform in
the temporal domain. For our purposes, it is more convenient
to discuss that method in terms of the Fourier transform in
the spatial domain. Eventually we relate this approach to p-
diluted models.

A general model of diffusion in a one-dimensional system
can be described by the equation

0 = ∂t P(x, t ) + L
( − ∂2

x , t
)
P(x, t ), (A1)

where L is a potentially time-dependent differential operator.
In the continuous limit, this equation also models the asymp-
totic behavior of a discrete system, such as ours. Furthermore,
the differential operator depends on −∂2

x for a positive (i.e.,
dispersive) behavior because of −∂2

x eixk = k2eixk and k2 � 0.
Using the characteristic function, i.e., the Fourier transform

�(k, t ) = ∫ +∞
−∞ dx e−ikxP(x, t ), we can rewrite Eq. (A1) as

0 = ∂t�(k, t ) + L(k2, t )�(k, t ). (A2)

Then the solution in form of the Green’s function can be
formally expressed as

G̃(k, t ) = exp

(
−

∫ t

0
dt ′ L(k2, t ′)

)
. (A3)

This solves Eq. (A2) as �(k, t ) = G̃(k, t )�(k, 0), where
�(k, 0) represents the initial distribution. In our case, this
is modeled by a singular input at the center position, thus
�(k, 0) = 1 in the Fourier domain.

It was also shown in Ref. [34] that, for large times (t � 1),
solutions follow the functional form:

P(x, t ) = ab

2σ (t )�(1/b)
exp

(
−

∣∣∣∣ ax

σ (t )

∣∣∣∣b)
, (A4)

with � being the Gamma function and σ (t ) denoting a time-
dependent standard deviation. In addition, we define a =√

�(3/b)/�(1/b) and b relates to the type of exponential
decay; e.g., b = 1 and b = 2 define a linear and quadratic
behavior, respectively.
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The moments of this distribution can be evaluated as well;
odd moments vanish and even moments read

E (x2n) = �
(

2n+1
b

)
�

(
1
b

) [
σ (t )

a

]2n

. (A5)

These moments enable us to expand the characteristic func-
tion in a Taylor series as

�(k, t ) =
∞∑

n=0

E (xn)
[ik]n

n!

= 1 + σ (t )2 −k2

2
+ �

(
5
b

)
�

(
1
b

)
�

(
3
b

)2 σ (t )4 k4

24
+ · · · . (A6)

Similarly, we can expand the generator of the evolution
L(k2, t ) = ∑∞

n=0 λ2n(t ) k2n

(2n)! . This further allows us to expand
the Green’s function from Eq. (A3),

G̃(k, t )

= G̃(0, t ) +
[
−

∫ t

0
dt ′ λ2(t ′)

]
G̃(0, t )

k2

2

+
{

−
∫ t

0
dt ′ λ4(t ′) + 3

[∫ t

0
dt ′ λ2(t ′)

]2
}

G̃(0, t )
k4

24
,

+ · · · , (A7)

where G̃(0, t ) = exp (
∫ t

0 dt ′ λ0(t ′)). Because of our initial
conditions, resulting in �(k, t ) = G̃(k, t ), we can now equate
the coefficients for G̃ in Eq. (A7) and � in Eq. (A6). Since this
identification has to be satisfied for all times t > 0, we find

λ0(t ) = 0,

∫ t

0
dt ′ λ2(t ′) = σ (t )2, and

−
∫ t

0
dt ′ λ4(t ′) =

[
�

(
5
b

)
�

(
1
b

)
�

(
3
b

)2 − 3

]
︸ ︷︷ ︸

def.=ϕ= f (b)

σ (t )4. (A8)

Importantly, b = f −1(ϕ) determines the exponent in Eq. (A4).
See Fig. 4 for the graph of f .

A first consequence of the aforementioned relations is that
the spread σ (t ) is given by the time dependency of the first
nonzero Taylor coefficient λ2(t ), resulting the the correspond-
ing power law, such as σ (t ) = ctd with constants c, d > 0
[34]. Thus, the introduction dynamic disorder, changing the
time-dependence generator L, generally results in an incre-
ment of the power. As a second observation, we have a look
at the relation that includes λ4(t ). This coefficient is typi-
cally negative which allows one to substitute it by −λ4(t ) =
ρ(t )λ2(t )2. With this, we can rewrite the above relation as

ϕ =
∫ t

0 dt ′ ρ(t ′)λ2(t ′)2 − (∫ t
0 dt ′ ρ(t ′)λ2(t ′)

)2

(∫ t
0 dt ′ λ2(t ′)

)2

+
(∫ t

0 dt ′ ρ(t ′)λ2(t ′)∫ t
0 dt ′ λ2(t ′)

)2

. (A9)
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FIG. 4. Function ϕ = f (b) = �( 5
b )�( 1

b )/�( 3
b )

2 − 3 is shown
in the relevant interval 1 � b � 2. In this region, f is strictly
monotonously decreasing, allowing for defining its inverse for de-
termining b from ϕ.

Herein the numerator of the first term plays a role a vari-
ance, quantifying the fluctuation in λ2(t ), that influences
b = f −1(ϕ).

With these considerations, we can conclude that our
p-diluted model dynamically changes the generator L by al-
tering the coin operations. As discussed above, this broadens
the spread in time (increasing d via λ2). Second, it changes
the spatial exponential decay. That is, if only a few coins are
changed per time step (low p), those are unlikely the same
coins, leading to a high fluctuation in λ4, thus high ϕ, thus
low b (Fig. 4). The other way around, a high p results in low
ϕ and a high b.

APPENDIX B: EXPERIMENTAL COIN CONTROL

Here we present details of the operation of our time-
multiplexing QW setup based on a fiber loop as shown in
Fig. 1. See also Refs. [32,36,37]. This scheme is beneficial
in terms of resource efficiency, high stability, and high homo-
geneity, which we exploit to realize coherent evolution over
sufficiently large number of steps.

Our investigation of subdiffusive behavior mainly relies
on the implementation of position and step dependent coin
operation Ĉ(x, t ). This dynamical coin operation is achieved
by extending the capability of the previous setup via the intro-
duction of another fast-switching EOM (EOMcoin) followed
by a quarter-wave plate (QWP) in the feedback path. The
action of a QWP aligned at an angle 45◦ with respect to the
polarization basis {|H〉, |V 〉} reads as

ĈQWP = 1√
2

(
1 −i
−i 1

)
. (B1)

The EOM operation can be written as

ĈEOM =
(

cos φ −i sin φ

−i sin φ cos φ

)
, (B2)
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TABLE I. Characteristic parameters for the implemented disorder levels p. The values have been estimated by means of a least square fit to
theoretical predictions. Quantities with the subscript “num” have been extracted from our numerical model, considering 10 000 coin maps. The
subscript “exp” indicates quantities obtained from our data, realizing 400 coin maps. The parameters b and δ relate to the theoretical prediction
ln(P) = −δ|x|b + const. (where δ = |a/σ |b when compared to main text) for the 20th step. Values for 2d and c2 are a result of the fit to the
theoretical prediction ln(σ 2) = 2d ln(t ) + ln(c2).

p bnum bexp δnum δexp 2dnum 2dexp c2
num c2

exp

0.0 0.800 0.953 ± 0.044 1.027 0.719 ± 0.084 0.097 0.346 ± 0.040 3.56 2.08 ± 0.19
0.1 1.126 1.199 ± 0.048 0.367 0.300 ± 0.034 0.504 0.551 ± 0.030 1.88 1.87 ± 0.14
0.2 1.378 1.489 ± 0.046 0.171 0.130 ± 0.015 0.686 0.723 ± 0.032 1.44 1.41 ± 0.11
0.3 1.568 1.639 ± 0.066 0.095 0.081 ± 0.013 0.776 0.812 ± 0.028 1.376 1.293 ± 0.087
0.5 1.863 2.071 ± 0.077 0.038 0.022 ± 0.004 0.894 0.947 ± 0.027 1.232 1.183 ± 0.073
1.0 2.138 2.422 ± 0.083 0.016 0.008 ± 0.002 1.043 1.070 ± 0.032 0.967 0.937 ± 0.070

where the phase φ can be tuned by varying the voltage applied
to the EOM. Their combination leads to the transformation

ĈEOM ĈQWP =
(

cos θ −i sin θ

−i sin θ cos θ

)
, (B3)

using

θ = φ + π

4
(B4)

and the identities (cos φ − sin φ)/
√

2 = cos θ and (cos φ +
sin φ)/

√
2 = sin θ .

It is worth emphasizing that the present scheme utilizes
free-space EOMs, which introduce very low losses (<1%).
The combination of active in and out coupling and free-
space EOMs lead to a significantly improved round trip
efficiency (>80%) in comparison to the previous disordered
time-multiplexing QW setup that employed integrated EOMs
[32]. However, relatively high-voltage requirements for free-
space EOMs comes with the hardware limitations that allow
only three different voltage settings, v ∈ {−v1, 0,+v1}, dur-
ing a single experimental run. In particular, v = 0 corresponds
to φ = 0, leading to a coin operation that equally mixes |H〉
and |V 〉. We chose v = ±v1 such that φ = ∓π/4. This yields
an identity coin that leaves the polarization states unchanged
and a reflection coin that switches the polarizations. Notably,
we find that these three accessible coin operations are suf-
ficient for the exploration of the complete subdiffusive QW
regime, thanks to the p-diluted disorder scheme. We design
appropriate voltage-switching patterns for the EOMs that put
into effect various disorder strengths p ranging from p = 0
(Anderson-like localization) to p = 1 (normal diffusion).

APPENDIX C: ADDITIONAL RESULTS FROM DATA
ANALYSIS AND COMPARISON

WITH NUMERICAL MODEL

In order to compare our experimental results with the
expected ones, we implemented a numerical simulation that
produces 10 000 different coin maps for a given level of disor-
der. Let us recall that a coin map is a set of coin configurations
which are obtained by starting from static disorder Ĉ(x) and
randomly changing a percentage p of coins to Ĉ(x, t ). The
distribution that is obtained by averaging over all numeri-
cally implemented coin maps then models our experiment.
However, these theoretical values have been computed in the

completely ideal case, i.e., without considering unavoidable
setup imperfections. Still, this simple model was already suf-
ficient to match the results of the experiment sufficiently well.

The comparison to theory of both our data and numerical
model are given in Table I for various cases of p-diluted dis-
order. These values follow the expected trend: the higher the
disorder, the higher the exponential decay in space and tempo-
ral dispersion, quantified by b and d , respectively. Specifically,
the reported values confirm that we mostly operate in the
subdiffusive regime of the QW, 1 � b � 2 and 0 � 2d � 1. In
addition to the logarithmic plot of the time-dependent variance
in the main text, a linearly scaled version is provided in Fig. 5.

As one might expect, small discrepancies can be observed
between experimental and numerical values as well as the
theoretical predictions in Table I. For instance, deviations
from numerical and experimental parameters can be caused by
imperfect randomization since these parameters have been ex-
tracted by averaging the probability distributions over 10 000
coin maps in the ideal simulation while only 400 have been
implemented experimentally. Nevertheless, estimates for pa-
rameters from the numerics and data mostly agree with each
other within the confidence interval, and deviations can be
generally explained by considering experimental imperfec-
tions, such as a nonideal operation of the EOMs as well as

FIG. 5. Experimental data (dots) and the fitted relation σ 2 =
c2t2d (dashed lines) on a linear scale for both axes.
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the QWP, i.e., a less than 100% visibility of interference, and
slight setup misalignment, all of which contribute to increas-
ing the spread of the walker.

The highest discrepancies to the theory can be observed
for the extremal cases of disorder, p = 0 and p = 1, affecting
both numerics and experiment. First, the discrepancy for p →
0 can be understood by considering that Anderson localization
typically arises from a strict periodicity in the disorder pattern.
For this reason, it is much more sensitive to small imperfec-

tions compared to other disorder values, resulting in an higher
deviation from the theory. Moreover, a nonspreading regime is
only feasible for t → ∞. Second, the discrepancy for p → 1
is amplified by some of the effects previously mentioned even
further. For instance, p-diluted models describe a convolution
of the initial (Anderson-like) behavior with another distribu-
tion for dynamic disorder, causing that imperfections of all
initial realizations add up. Besides, imperfections propagate
along with the spreading of the walker over time.
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