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Abstract 

 

Prostate cancer, a leading cause of cancer-related deaths worldwide, principally occurs in over 50-

year-old men. Nowadays there is urgency to discover biomarkers alternative to prostate-specific 

antigen, as it cannot discriminate patients with benign prostatic hyperplasia from clinically significant 

forms of prostatic cancer. In the present paper, 32 benign prostatic hyperplasia and 41 prostatic cancer 

urine samples were collected and analyzed. Polar and positively charged metabolites were therein 

investigated using an analytical platform comprising an up to 40-fold analyte enrichment step by 

graphitized carbon black solid-phase extraction, HILIC separation, and untargeted high-resolution 

mass spectrometry analysis. These classes of compounds are often neglected in common 

metabolomics experiments even though previous studies reported their significance in cancer 

biomarker discovery. The complex metabolomics big datasets, generated by the UHPLC-HRMS, 

were analyzed with the ROIMCR procedure, based on the selection of the MS regions of interest data 

and their analysis by the Multivariate Curve-Resolution Alternating Least Squares chemometrics 

method. This approach allowed the resolution and tentative identification of the metabolites 

differentially expressed by the two data sets. Among these, amino acids and carnitine derivatives 

were tentatively identified highlighting the importance of the proposed methodology for cancer 

biomarker research. 

 

 

Keywords: untargeted metabolomics; positively charged compounds; chemometrics; polar 

compounds; ROI-MCR-ALS; LC-HRMS 
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Introduction 

 

Prostate cancer (PC), a leading cause of cancer-related deaths worldwide [1] and the second most 

diagnosed cancer in men, principally occurs in over 50-year-old men. Nowadays, early detection of 

PC is achieved by testing the prostate-specific antigen (PSA) level in blood and by digital rectal 

examination. Regrettably, PSA cannot discriminate benign prostatic hyperplasia (BPH) or 

prostatitis from clinically significant forms of PC due to its limited sensitivity and specificity; 

moreover, PSA levels may be affected by several other factors, such as age and urinary tract 

infections [2]. As such, there is an urgent need for validation of alternative biomarkers suitable for 

the early, non-invasive differential diagnosis of PC from other benign prostatic pathologies [3–5]. 

For these reasons, several PSA derivatives, in particular free forms, have been investigated; the 

circulating free PSA unbound to proteins had been initially reported as a promising biomarker but 

failed to show a significant predictive value [6]; precursor forms of PSA (pPSA) were also 

investigated, as they were detected at higher levels in PC tissues than in BPH tissues [7]. The 

truncated form of PSA precursor, [-2]pPSA, was estimated to be 25-95% of the free PSA in PC 

patients but only 6–19% in BPH cases [8]. However, data are too limited for implementation of 

these markers into routine programs for the early diagnosis of PC based on the European Urological 

Association (EAU) guidelines (https://uroweb.org/guideline/prostate-cancer). 

Metabolomics is a valuable tool to discover disease-associated markers [9] because changes in the 

concentration of metabolites in bio-fluids reflect alterations in the physiological status of an 

individual [10]. This approach can be used to understand tumor metabolic pathways and identify 

metabolites markers suitable for PC early detection, prognostic stratification, and therapy response 

monitoring. To date, targeted and untargeted metabolomics are the two most common approaches 

applied to prostate tissue and bio-fluids. Metabolomics studies indicated a correlation between 

tumor aggressiveness and low levels of spermine and citrate in prostate tissue [11]. Changes in the 

metabolism of polyamines, tricarboxylic acid cycle, and amino acids, have been reported in 
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different studies on biofluids from PC patients [10]. Metabolomics of urine further supported the 

altered amino acid metabolism to be a significant factor underlying the pathogenesis of PC [12,13]. 

Serum citrate, sarcosine, glycine, alanine, and its derivatives have been found as capable of 

discriminating PC from BPH [14,15], with sarcosine possibly having more predictive value than 

PSA in differentiating PC patients from negative controls [16]. Decreased urinary levels of glycine, 

threonine, and alanine were also observed in another study [17]. A multiplatform untargeted 

metabolomics study revealed the possible role of urea, purine, and tricarboxylic acid metabolisms in 

the pathogenesis of PC [13]. These previous studies proved much evidence of the high potential of 

polar compounds as PC biomarkers, also for screening improvement [18].  

Compared to tissues or serum, the advantages of urine include the possibility of a non-invasive 

sampling, large sample volumes, and a low protein content, which simplifies sample preparation 

procedures [19–21]. However, urine has drawbacks as well due to the high dilution and high 

complexity; several compound classes are found in urine, including amino acids, anionic conjugated 

metabolites, lipids, steroids, bile acids, and xenobiotics, and they can hinder the detection of low 

abundance metabolites [22]. Solid-phase extraction (SPE) is the technique of choice for sample 

clean-up and preconcentration [23,24], which are essential in targeted metabolomics [25–28] but 

quite uncommon in untargeted metabolomics. Nevertheless, some enrichment techniques were 

recently applied to polar, neutral, and ionic compounds also in sample preparations for untargeted 

metabolomics studies [24,29,30].  

Given the above, in this study, a sample preparation method based on graphitized carbon black 

(GCB) SPE was applied to urine samples from PC patients and individuals diagnosed with BPH to 

purify low-abundance polar metabolites from ion suppressing salts and proteins. Samples were 

analyzed by untargeted ultra-high performance liquid chromatography-high resolution mass 

spectrometry (UHPLC-HRMS). Hydrophilic interaction liquid chromatography (HILIC) was used 

for the efficient retention and separation of polar metabolites, to improve compound identification. 

A chemometric strategy, based on the combination of the region of interest (ROI) concept [31] and 
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the multivariate curve resolution-alternating least squares (MCR-ALS) method [32], has been 

applied to filter, compress and resolve the complex metabolomics big data sets gathered by the 

UHPLC-HRMS. This platform was optimal to identify a set of polar metabolites that could 

contribute to a better understanding of the pathophysiological processes involved in the onset and 

progression of PC. 

 

2. Material and Methods 

 

2.1 Chemical Reagents  

 

Optima LC-MS grade water, acetonitrile (ACN), and methanol (MeOH) were purchased from 

Thermo Fisher Scientific (Waltham, Massachusetts, USA). Trifluoroacetic acid (TFA) was supplied 

by Romil Ltd. (Cambridge). Formic acid and ammonium formate were purchased from Sigma-

Aldrich (Germany). Dichloromethane (DCM) was provided by VWR International (Milan, Italy). 

Cartridges packed with 500 mg Carbograph 4 were supplied from Lara S.R.L (Lara S.r.l., Formello, 

RM, Italy). 

 

2.2 Population and Sample Collection  

 

This is an experimental observational research study in which patients have been managed and 

treated following the normal clinical practice and international guidelines. The protocol was carried 

out following the current International Conference for Good Clinical Practice and the principle of 

the Declaration of Helsinki. The study was approved by the University of Rome “La Sapienza” 

Ethics Committee (Protocol number 5742) and all the patients provided written informed consent. 

All patients were outpatients referred to the Department of Urology of the University of Rome “La 

Sapienza”. Patients were distinguished into two groups based on a histologically confirmed 
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diagnosis; Group 1 consisted of BPH cases; Group 2 consisted of PC cases. Patients were 

consecutively included in the study according to the following inclusion criteria. In Group 1 (BPH) 

inclusion criteria were: aged 45-80, histologically confirmed (prostatic biopsy) diagnosis of BPH, 

no clinical and pathological evidence of PC, prostate volume > 30 mL. In Group 2 (PC), the 

inclusion criteria were: aged 45-80, histologically confirmed (prostatic biopsy) diagnosis of PC, no 

clinical evidence of metastatic disease. For both groups, the following exclusion criteria were 

respected: no diagnosis of other malignancies, no previous prostate surgery or radiotherapy, no 

previous or concomitant medical therapies that potentially influenced prostatic metabolism and 

growth (i.e. androgen deprivation therapies, 5-alpha-reductase inhibitors, or chemotherapies), no 

concomitant inflammatory or metabolic diseases. In Group 1, the prostatic volume was measured by 

trans-rectal ultrasonography using the ellipsoid formula. In Group 2, the risk classes were assigned 

following the D’Amico and EAU classification.  

All urine samples were collected after at least 30 days from diagnosis (biopsy) and no patient had 

undergone surgery. Before urine sampling, all patients were fasting (solid and liquid) from 10:00 

p.m. of the previous day and no drugs were administrated. From each patient, a complete single-

voided urine sample (minimum 100 mL) was collected in the morning (7:30 – 8:00 a.m.) at the 

Department of Urology, labeled with an identification code to allow their anonymous manipulation 

in all the testing phases, and stored at -80 °C until metabolomic analysis.  

 

2.3 Sample Treatments  

 

2.3.1 Preparation of Urine Samples and GCB-SPE Enrichment 

 

Samples were analyzed altogether about three months after their collection and conservation at -80 

°C. Before analysis, the urine samples were thawed at room temperature, centrifuged for 10 minutes 

at 1000 × g. The creatinine concentration of each urine sample was measured by a colorimetric 
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method based on the Jaffe reaction using the commercial Invitrogen Creatinine Urinary Detection kit 

(Thermo Fisher Scientific, Waltham, Massachusetts, USA). To avoid artifacts due to overloading, the 

amount of urine loaded on the GCB cartridge was calculated by normalization on the creatinine 

content. SPE and clean-up were carried out on cartridges packed with 500 mg Carbograph 4 using a 

procedure optimized in our previous work [33]. Briefly, cartridges were prepared by manually 

packing 500 mg of Carbograph 4 bulk material (130 m2/g surface area, 20/400–120/200 mesh size) 

into 6 mL polypropylene tubes (Sigma-Aldrich); then, the cartridge was washed with 5 mL of 

DCM/MeOH, 80:20 (v/v) with 20 mmol L−1 TFA and 5 mL of MeOH with 20 mmol L−1 TFA. The 

material was activated by flushing 10 mL of 0.1 mol L−1 HCl and conditioned with 10 mL of 20 mmol 

L−1 TFA. Then, for every sample, the proper volume of urine was diluted with 20 mmol L−1 TFA, to 

reach the final volume of 10 mL, and loaded onto the cartridge, which was then sequentially washed 

with 2 mL of 20 mmol L−1 TFA and 0.5 mL MeOH. Finally, analytes were eluted in back-flushing 

with 10 mL of DCM/MeOH, 80:20 (v/v) with 20 mmol L−1 TFA. The eluate was evaporated at room 

temperature in a Speed-Vac SC250 Express (Thermo Savant, Holbrook, NY, USA), and the residue 

reconstituted in 200 μL of ACN/H2O, 75:25 (v/v) for HILIC separation. Equal aliquots, from each 

extracted urine sample, were pooled to create multiple quality control (QC) samples.  

 

 

2.3.2 Ultra-High Performance Liquid Chromatography-HRMS Analysis  

 

A Vanquish binary pump H (Thermo Fisher Scientific, Bremen, Germany), equipped with a 

thermostated autosampler and column compartment, was used for the chromatographic separation. 

An iHILIC-Fusion UHPLC Column, SS (100 × 2.1 mm, 1.8 μm particle size, Hilicon, Umea, 

Sweden) was employed for HILIC separation. Flow rate, column temperature, and gradient 

parameters were used as reported in our previous work without any modification [34]. 
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The chromatographic system was coupled to a hybrid quadrupole-Orbitrap mass spectrometer Q 

Exactive (Thermo Fisher Scientific) using heated electrospray ionization (HESI) source. The HESI 

source was operated in the positive ionization mode and set up as previously reported [33]. Ions 

were monitored in the range m/z 150-750 with a resolution (full width at half maximum, FWHM, 

m/z 200) of 70,000. Top 5 data-dependent acquisition (DDA) higher-energy collisional dissociation 

(HCD) fragmentation was performed at 40% normalized collision energy at a resolution of 35,000 

(FWHM, m/z 200).  

Samples were run according to the following worklist, which included QC samples to account for 

the analytical variability. Moreover, solvent blank samples were run before and after each analytical 

section to check the UHPLC-HRMS system performance and stability, and evaluate the presence of 

carryover before analysis. The system was then conditioned by running 10 QCs samples, followed 

by a blank sample. This latter blank was used for background subtraction to remove contaminants 

from the mobile phases, from the UHPLC-HRMS system, and the compounds suffering from 

considerable carry-over (more than 25%), which are not suitable for statistical analysis. Then, 10 

more QC samples were run for system conditioning. After this stage, randomized samples and 

controls were run in groups of five followed by a QC injection. All samples were acquired in full 

scan acquisition mode with exception of three QC samples run at the end of the sequence and 

acquired in top 5 DDA mode for structure elucidation and identification of biomarkers. The 

identification-only QCs were preprocessed together with the other samples. The .raw data files were 

acquired and converted in .cdf format using Xcalibur (version 3.1, Thermo Fisher Scientific). 

 

2.4 Data Processing  

 

Data files in .cdf format were imported into the MATLAB computational environment (release 

R2018a, The Mathworks Inc.), using the mzcdfread and mzcdf2peaks functions from the MATLAB 
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Bioinformatics Toolbox. The different data preprocessing and processing steps are summarized in 

Figure 1.   

Each one of the UHPLC-HRMS data files had an approximate size of 1.2 GB. The simultaneous 

analysis of the 88 samples (32 BPH + 41 PC + 15 QC) would have required ca. 100 GB of 

computer storage. Therefore, the raw data were conveniently reduced by decreasing the number of 

retention times used in each file and dividing the selected time range into three regions (i.e. time 

windows, later referred to as A, B, and C), which were selected considering the density of peaks 

observed in the total ion current chromatogram (TIC) and allowing a slight overlap between 

windows to avoid the loss of information on the borders. The mass spectra (m/z and intensity dyadic 

values), collected between minutes 4-14, were retained at every 5 elution times, resulting in a 

reduction from 2265 to 453 retention times (mass spectra) for each sample. The application of the 

three time windows provided three different time-compressed files containing 100, 115, and 252 

retention times, respectively.  These individual reduced sizes and time-windowed compressed files 

were concatenated column-wisely to build three augmented data files, containing the information of 

the 88 samples in each of the three pre-selected time windows (Figure 1). Therefore, the column-

wise augmented data files A, B, and C had in total 9000, 10350, and 22680 retention times, 

respectively.  

As shown in Figure 1, these files were then independently analyzed using the ROIMCR procedure. 

The ROIMCR strategy [31] consisted of two parts. The first one was the searching of the ROI in the 

mass spectra, a procedure that looks for the more significant features in the measured mass spectra 

using a set of specific parameters (see below). As a result of the application of the ROI procedure, a 

compressed squared data table or data matrix is obtained containing the m/z aligned mass spectra 

having the selected significant signal features in the set of samples analyzed simultaneously. The 

second part of the ROIMCR procedure performs the bilinear decomposition of the resulting ROI 

MS compressed data matrix by MCR-ALS [35], to resolve the set of elution profiles and mass 

spectra of the constituents present the simultaneously analyzed samples.    
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As mentioned above and shown in Figure 1, the ROI procedure looks for those m/z values whose 

MS signals have significant intensities, in this work set higher than 0.5% of the maximum signal 

intensity. The choice of this value was based on a compromise between the number of resulting 

ROIs and the absence/presence of noisy peaks after visual inspection for tests at threshold values 

between 1 and 0.1% [31]. Lower signals were considered instrumental noise or signals belonging to 

sample constituents at very low concentrations. Every ROI was defined by two additional 

parameters. The first one was the m/z deviation (or error) within which the measured signal is 

considered to be from the same ion. This error depends on the MS instrument mass accuracy, and in 

this study, it was set at 0.005 mass units. The other parameter, needed to define every ROI, is the 

minimum number of consecutive signals that define a chromatographic peak in the UHPLC system 

used for analysis. Due to the high compression used in this work, this was set to 2 (for each sample, 

i.e., the signal had to appear 176 times along the augmented data matrices). The ROI procedure 

used in this work has been previously described in detail by Gorrochategui et al. [31]. The 

application of these three parameters and the visual inspection of the obtained ROIs, to detect 

possible signal artifacts, resulted in 135, 164, and 82 ROI values, for the A, B, and C time window 

files, respectively. This represented an important data size reduction. It converted the raw data files, 

having an irregular number of measured values (m/z - intensity dyad values) at each retention time, 

to new square data matrices, containing the ROI mass spectra at all selected retention times and 

samples. In the second part of the ROIMCR procedure [35], each of these three ROI data matrices 

was analyzed by the MCR-ALS method (Figure 1). Briefly, this method performs the bilinear 

decomposition of a data matrix into the product of two-factor matrices, one related to the elution 

profiles of the constituents in the analyzed samples and the other related to the spectra of these 

sample constituents. In the present work, the MATLAB MCR-ALS Toolbox [32] was used for this 

purpose. The constraints used during the ALS optimization of the elution and spectral profiles were 

the non-negativity for both, and the normalization of the spectra of the different sample constituents 

to have their maximum height equal to one. The ALS optimization needs the postulation of several 
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components and a set of initial estimates of the elution or spectra profiles of these components. The 

number of components should be large enough to include the number of sample constituents 

avoiding noisy ones and matrix rank deficiency problems. The initial estimates of the profiles were 

taken in this work from the ‘purest’ MS spectra (not noise) among the measured ones, following a 

procedure similar to that proposed in the literature [36]. 

As said above, the application of MCR-ALS to the three ROI data matrices resolve the elution 

profiles and spectra of the different sample constituents (an example of the resolved peaks in one 

sample for the different components is provided in Supplementary Fig S1). The relative amounts of 

these components in every sample can be estimated from the relative peak areas of the MCR-ALS 

resolved elution profiles of the same constituent in the different analyzed samples. From the results 

of the MCR-ALS analysis of the three A, B, and C matrices, the peak areas of those sample 

constituents giving significant differences (p<0.05 in Welch’s t-test [37]) between BPH and PC 

samples were arranged in a new peak areas data matrix for further analysis by Principal Component 

Analysis (PCA) [38], and Partial Least-Squares Discriminant Analysis (PLS-DA) [39], (Figure 1) 

using the PLS-Toolbox (Eigenvector Inc.). PCA was applied directly to the newly arranged peak 

areas data matrix and used for the unsupervised pattern recognition and clustering of the analyzed 

samples. Projection of the sample scores in the two principal components (PC1 and PC2) displays 

graphically the similarities and differences of the analyzed samples in 2D plots. To further 

discriminate between samples and build the different PLS-DA models, two sample classes were 

considered, BPH vs PC samples. The model was validated using 12 randomly selected samples 

from the dataset and using them to test the predictive power of the model (see supplementary Figure 

S2). The Matthews Correlation Coefficient (MCC) [41] was calculated as a figure of merit of the 

discrimination model.  

The elucidation of the urine metabolites, responsible for the differences between BPH and PC 

samples, was especially important in this study. Variable Importance in Projection (VIP) scores [42] 

of the PLS-DA models helped to identify the most influential variables (ROI m/z values) and were 
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set to > 1 for relevant metabolites able to discriminate between BPH from PC samples. To illustrate 

the diagnostic ability of the selected metabolites as potential biomarkers, the receiver operating 

characteristic (ROC) curves were calculated. For every selected metabolite, the ROC curves display 

the true-positive rate against the false-positive rate at different threshold settings. The area under the 

ROC curves (AUCROC) was estimated for all the selected metabolites and used for metabolite 

classification; AUCROC values equal to 1 indicated 100% sensitivity and specificity in the class 

assignation, whereas values equal to 0.5 indicated a random classification ability. ROC analysis was 

performed using the Metaboanalyst online platform (https://www.metaboanalyst.ca).  

 

2.5 Metabolite Identification  

Metabolites associated with the significant ROI m/z values were identified using their MS/MS data 

by searching existing databases of human metabolites, such as HMDB (https://hmdb.ca/) and 

KEGG (https://www.genome.jp/kegg/), and databases of structurally related classes of compounds, 

such as Lipid Maps (https://www.lipidmaps.org/). Manual MS/MS spectra interpretation was aided 

by mzCloud (https://www.mzcloud.org/), the largest database of Orbitrap-MS, and MS/MS HCD 

spectra.  

 

2.6. Software and Computer Specifications 

The calculations performed in the present work were carried out using MATLAB R2018a (The 

Mathworks Inc.), and PLSToolbox (Eigenvector Inc) running on a Fujitsu Celsius R940n 

workstation equipped with two Intel Xeon CPU E5-2620v3 processors and 128 Gb RAM using 

Microsoft Windows 7. MCR-ALS analysis was performed using the MCR-ALS toolbox freely 

available at http://www.mcrals.info/ 

 

3. Results and Discussions  
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3.1. Clinical Characteristics of the Subjects Enrolled in the Study 

 

A total of 32 BPH cases and 41 PC cases were enrolled in Group 1 and Group 2, respectively. Table 

1 shows the clinical and pathological characteristics of the population in the two groups. As 

expected, the mean age was similar between the two groups (Group 1: 65.2 ± 7.3; range 52-79 

years; Group 2: 65.9 ± 6.5; range 49-79 years). In Group 1, the mean prostatic volume was 62.4 ± 

24.1 mL, range 33-124 mL. In Group 2, the cases were well distributed based on the risk classes 

(Low risk: 8 cases; Intermediate risk: 27 cases; High risk: 6 cases) and Gleason Score (GS). 

 

3.2 Metabolomics Workflow 

Although the collection of data without pre-existing knowledge is one major advantage of 

untargeted metabolomics, it is also accompanied by the caveat that sample preparation and 

analytical methods do have a direct impact on the qualitative results. Sample purification steps, 

separation methods, instrument platforms, and parameters influence the subset of detected 

metabolites depending upon the compound polarity, which can vary significantly due to the diverse 

composition of the metabolome [43]. For instance, metabolite extraction is complicated by the 

extreme concentration range and great physical diversity of metabolites often present in the 

metabolome; abundant metabolites may saturate the mass spectrometer detector, potentially 

masking important changes, or suppress the ionization of other molecules [44]. In this context, the 

clean-up of sample extracts and the development of extractions specific for polar metabolites could 

increase the metabolome coverage, although very little data on metabolite coverage is currently 

available on sample preparation in metabolomics, especially for untargeted metabolomics.  

For the above reasons, in this work, the typical metabolomics workflow was modified with the 

introduction of a selective step for the enrichment and purification of polar positively charged 

compounds, which are of great importance in the discrimination of PC [45]. Sample preparation 

was considered the optimal strategy for obtaining a representative profile and comprehensive 
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coverage of a specific subset of compounds, which in turn would allow improving the detection of 

low abundance potential biomarkers [46]. GCB-SPE enrichment and purification were chosen based 

on our previous study [33], because of the strong interaction that the GCB sorbent can establish 

with positively charged and aromatic amino acids, due to the right combination of van der Waals 

contribution, and π−π interaction with the aromatic moieties. To date, only anion and cation 

exchange mixed-mode polymeric SPE cartridges were employed for global urine metabolomics 

[29]; this method allowed to identify of a wide range of compounds such as bile acids, lipids, 

organic acids, but also molecules connected with pharmaceutical treatment, diet, or lifestyle. Our 

methodology was more specifically dedicated to zwitterionic and positively charge compounds such 

as amino acids and carnitines. More recently, an advanced chemoselective metabolite enrichment 

by tagging and proteolytic release of highly polar metabolites (quaternary amines and carnitines) in 

breast cancer cells was developed [30].   

The iHILIC column was selected for obtaining a more efficient separation for polar urinary 

compounds. The iHILIC-Fusion is a charge-modulated hydroxyethyl amide HILIC, in which the 

cationic ammonium site is at the terminal position separated from mixed sulfate and phosphate 

anionic sites by a linker with hydroxyethyl amide side chains. HILIC has grown in popularity due to 

its orthogonality to reversed-phase chromatography and the good compatibility with MS [47–50]. 

The use of the iHILIC Fusion column is still limited in the literature, although it has been recently 

demonstrated to provide better coverage of metabolite classes like amino acids than conventional 

HILIC columns [51].  

When Q Exactive instrumentations are employed for untargeted analysis, DDA methods are usually 

preferred over data-independent acquisition (DIA) approaches, as the latter are highly time-

consuming and showed poor performance on slow orbitrap-based instruments [52,53]. Since the 

numbers of points per peak drastically decrease when HCD fragmentation is performed, in this study 

samples and QCs were acquired in full-scan mode, which guaranteed high-quality peak shapes for 

both high- and low-abundance substances [54].  
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3.3 Urinary Metabolic Profile of PC vs BPH  

 

The ROIMCR data processing methodology [55–57] including the application of the MCR-ALS 

method [58–60], has been described and successfully applied in previous investigations of a variety 

of metabolomics systems using different LC-MS platforms. 

The 88 urine samples (including 32 BPH, 41 PC, and 15 QC samples) investigated in this work 

were simultaneously processed by the ROIMCR method described in section 2.4 for untargeted 

analysis. A total number of 100, 85, and 30 MCR-ALS components were resolved in the analysis of 

the three augmented time window data matrices A, B, and C (see section 2.4), respectively, 

explaining more than 99.5% of their data variance in the three cases. From these resolved 

components, 60 showed statistically significant differences (p<0.05 in Welch’s t-test) between BPH 

and PC, and they were selected to build the data table summarizing the changes in the peak areas of 

these 60 components in the 88 samples (size of the corresponding data matrix is 88x60).  

PCA was applied to this peak areas data matrix to perform its unsupervised pattern recognition 

analysis (Figure 2). The PCA scores plot (PC1 vs PC2, Figure 2A) showed that BPH samples were 

clustered together and differentiated from the rest of the PC samples along the PC1 x-axis (30.1% 

of explained variance). The QC samples were tightly clustered in the small region of the PC1-PC2 

vector space close to the axis origin, a position that confirmed the adequacy of both the 

experimental and data analysis procedures. PCA was then performed without the QC samples and 

the same distribution was obtained for PC and BPH samples, with only slight changes in the PC1 

and PC2 explained variance (Figure 2B). As shown in Figure 2C and 2D, PC3 and PC4 did not 

offer any better separation of the samples. Interestingly, the distribution of PC samples in the scores 

plot was rather dispersed, which was an indication that the molecular profile of the urine of PC 

patients appreciably differed among them. However, PC samples still had features that enabled 

differentiating them from the molecular profile of BPH samples, which seemed to be much more 
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consistent. To investigate if PC samples (and patients) could be discriminated from BPH samples 

(and patients), these two types of samples were identified using a class vector which was then 

regressed against the peak areas of the 60 selected MCR-ALS components using the PLS-DA 

method [39]. BPH and PC samples were projected in the first two latent variables (LV1 vs LV2) 

scores plot of the PLS-DA model and displayed in Figure 2E. The PLS-DA model using the three 

first latent variables explained 90% of the Y-variance (class membership) and 42% of the X- 

variance (peak areas) (Figure 2D).  

The reliability of the PLS-DA model was checked by calculating the MCC (see section 4.2) from 

the cross-validated model. The MCC was 0.945, which indicated that the molecular profile of the 

analyzed samples enabled good discrimination between BPH and PC samples. The sensitivities or 

true positive rates were 0.96 and 0.97 for BPH and PC, respectively, and the specificities or true 

negative rates (TNR) were 0.97 and 0.96 for BPH and PC, respectively. PLS-DA VIP scores 

revealed the most influential metabolites that enabled the discrimination between the two classes of 

samples. Only the MCR-ALS components, whose peak areas (variables) gave VIP > 1, were finally 

retained for metabolite identification and biochemical interpretation (Figure 2F).  

The most intense signals (12 retained signals) of the MS spectra of these selected ROIMCR 

components were analyzed for their possible metabolite assignation: 7 compounds were tentatively 

identified, 3 were unknown carnitine derivatives and 2 could not be annotated (Table 2, which 

summarizes the details about compound m/z value, retention time, and variance explained in the 

MCR-ALS models). The identified molecules were adenosine, hydroxyvaleroyl carnitine, mandelyl 

carnitine, methyl inosine, N-acetyl arginine, N-acetyl N-methyl arginine, and tryptophan. For each 

compound, the mean areas were calculated in the PC and BPH sample groups, and their ratio was 

used for relative quantitation. 

To test the performance of the most effective identified biomarkers for BPH and PC class 

prediction, a new PLS-DA model was built considering the area values obtained for adenosine, 

hydroxyvaleroyl carnitine, mandelyl carnitine, methyl inosine, N-acetyl arginine, N-acetyl N-
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methyl arginine, and tryptophan in all the samples. As a result, a very good discriminant model was 

obtained using only one latent variable that explained 70.4% of the Y-variance and 49% of the X-

variance (Figure 3A). The MCC values, the sensitivity, and the specificity values were the same as 

in the model using 60 variables. In this reduced model, the highest VIP value was attributed to N-

acetyl arginine, followed by hydroxyvaleroyl carnitine and tryptophan (see Figure 3B). 

The AUCROC values were also reported as a measure of the potential of these molecules to be 

biomarkers of PC. All these molecules were significantly more abundant in the PC samples (up to a 

102-fold increase) and they were almost absent in BPH samples, as observed for hydroxyvaleroyl 

carnitine, mandelyl carnitine, and N-acetyl arginine. The AUCROC values of these metabolites 

were between 0.78 and 0.925; the values indicated a good biomarker classification ability, with N-

acetyl arginine as the best classifier (AUCROC=0.925), followed by tryptophan (AUCROC=0.892), 

and hydroxyvaleroyl carnitine (AUCROC=0.870). These results were coincident with those 

obtained in the PLS-DA model, reinforcing the idea that these three molecules were the best-found 

biomarkers that discriminate PC from BPH. The ROC curve plots for these 7 biomarkers are given 

in Figure 3C (plots for the unidentified molecules can be consulted in Supplementary Figure S3). 

 

3.4 Biological Interpretation  

 

The urinary metabolomics profiles in the PC samples of this study were rather dispersed; the result 

reflected the clinical heterogeneity of PC which is usually observed in clinical practice, as PC is a 

highly heterogeneous neoplasm with some men presenting indolent disease and others whose 

disease is rapidly progressive. A low GS (≤ 7 (3+4)) can be associated with a PC's low 

aggressiveness. On the contrary, clinically significant PC cases, and in particular those with a 

higher GS, show rapid growth and progression, probably sustained by a different metabolic profile. 

However, the present study did not confirm that the metabolic profile of PC cases was influenced 

by the disease aggressiveness or that the profile of low GS PC cases (6 (3+3) and 7 (3+4)) could be 
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closer to that of benign hyperplastic cases. No significant differences in the metabolic profiles were 

found by stratifying the PC cases based on the pathologic aggressiveness (GS); moreover, the same 

differences were found independently from the GS distribution when comparing PC to BPH cases 

(Supplementary Figure S4).  

To our knowledge, there are no data in the literature on a defined role of the individual compounds 

characterizing the PC samples inside the metabolic mechanisms related to the prostate gland and 

PC, although previous studies linked some of these compounds to pro-inflammatory or hypoxia-

related processes. Metabolic syndrome is considered a consistent risk factor for PC development, 

including chronic prostatic inflammation and high concentrations of inflammation-related markers 

able to enhance tumor growth [62]. However inflammatory processes have been similarly 

associated with BPH progression: BPH cases displaying prostate chronic inflammation have a 

higher risk of BPH progression and complications [63]. As in several neoplasms, hypoxia-induced 

angiogenesis is a crucial mechanism to induce PC progression and invasion through specific key-

regulators of response [64]. In a recent meta-analysis, L-carnitine has been shown to significantly 

reduce inflammatory mediators possibly related to neoplastic transformation processes in different 

systems, such as tumor necrosis factor alpha (TNF) and interleukin-6 (IL-6) [65]. Coras et al. 

showed that hydroxivaleric carnitine is a pro-inflammatory metabolite related to rheumatoid 

arthritis pathogenesis [66]. The carnitine metabolic system has also been described as a gridlock to 

finely trigger the metabolic flexibility of cancer cells. The carnitine system has an enzymatic role as 

a crucial factor in cancer metabolic plasticity, so to survive in the face of adverse environmental 

conditions [67]. Sasso et al. showed that N-acelylarginine can reduce the activity of antioxidant 

enzymes such as catalase, increasing the oxidative stress possibly related to neoplastic induction in 

different systems [68]. An abundant supply of amino acids is important to sustain cancer 

proliferative drive and arginine can be an auxotrophy nutrient for different neoplastic cells [69]. 

Some evidence suggests that arginine derivatives can promote PC cell proliferation, migration, and 

invasion, by increasing nitric oxide expression, as well as pro-angiogenic growth factors [70]. 
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Moreover, experimental data on PC suggest a protective role of acetylcarnitine derivatives due to an 

anti-oxidant and anti-inflammatory activity in the prostate gland, which in turn hinders the 

production of pro-inflammatory cytokines and chemokines [71]. Despite this experimental 

evidence, no clinical research has been carried out so far and no data are present in the literature to 

clarify the metabolic role of the specific compounds extracted in our analysis from PC cases. 

 

4. Conclusions 

PC diagnosis, especially at early stages, is a critical issue for clinical research. Nowadays, untargeted 

metabolomics followed by statistical analysis and putative biomarker identification is one of the most 

promising techniques to reach this aim. In the present paper, an analytical workflow dedicated to 

polar and charged metabolite analysis was described for the first time, since such classes of 

metabolites are often neglected in common metabolomics workflows. In comparison to the common 

“dilute-and-shoot” strategy, this approach can afford a 10-40-fold pre-concentration of sample 

extracts. A chemometric approach based on ROIMCR chemometric method was applied to the raw 

datasets generated by the UHPLC-HRMS analysis. PCA and PLS-DA analysis of the relative 

concentrations of these metabolites confirmed the differences and discrimination between PC and 

BPH samples and allowed the identification of possible biomarkers of prostatic malignancy. Among 

these metabolites, adenosine, hydroxyvaleroyl carnitine, mandelyl carnitine, methyl inosine, N-acetyl 

arginine, N-acetyl N-methyl arginine, and tryptophan were identified. These metabolites belonged to 

the classes of carnitine and amino acid derivatives, which were significantly increased in the PC 

samples and almost absent in most BPH samples. This effect was particularly evident for 

hydroxyvaleroyl carnitine, mandelyl carnitine, and N-acetyl arginine. 

This study confirmed the importance of polar and charged metabolites in cancer studies, even 

though dedicated methodologies for their analysis are rarely reported in metabolomics studies; the 

approach can be extended to study other malignancies, to improve diagnosis and patient prognosis. 
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Figure 1. Schematic representation of the data pre-processing and processing steps in the untargeted LC-MS 

analysis of the urine samples. First, the size of the raw LC-MS data from every sample was reduced taking one 

of every five retention times and divided into three-time windows (A, B, and C). Every one of these data 

windows for all 88 samples was then vertically concatenated before their simultaneous analysis by ROIMCR. 

In the first ROI compression step, three regular square data matrices (one for every time window, A, B, and 

C) were obtained. In the second step, the three ROI-compressed column-wise augmented data matrices were 

analyzed by the MCR-ALS method, associating the elution profiles and mass spectra of the metabolites present 

in the different urine and control samples. The data table of the peak areas of the elution profiles of the MCR-

ALS resolved components with the most relevant changes was analyzed by PCA and PLS-DA. The most 

influential metabolites discriminated by PLS-DA were then identified by their MS/MS analysis and further 

used for the interpretation of their biological role. 
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Figure 2. Unsupervised PCA and supervised PLS-DA of the peak areas of the elution profiles of 

the components resolved by MCR-ALS in the simultaneous analysis of all samples. A) PCA scores 

plot of BPH, PC, and QC samples projected in the PC1-PC2 vector space. B) PCA scores without 

QC samples in the PC1-PC2; C) PCA scores in the PC1-PC3 vector space; D) PCA scores in the 

PC1-PC4 vector space; E) PLS-DA scores plot of BPH vs PC samples, projected in the latent 

variables LV1 LV2 vector space; F) PLS-DA VIPS scores representation of the 60 variables used in 

this model.  
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Figure 3. PLS-DA model using the 7 identified biomarkers and ROC curves. A) PLS-DA model 

scores plot of the LV1, B) PLS-DA VIPS scores representation of the 7 variables used in the model, 

C) ROC curves of the 7 identified biomarkers that discriminate PC from BPH.   
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Tables 

Table 1. Clinical and pathological characteristics of the population in the two groups (Group 1: 

BPH; Group 2: PC) in terms of the number of cases, age, prostatic volume, total PSA value, risk, 

GS, pathologic stage.  

Parameter Group 1 (BPH) Group 2 (PC) 

Number of cases 32 41  

Age (years) 

mean ± SD 

median (range) 

 

65.2 ± 7.3 

64 (52-79) 

 

65.9 ± 6.5 

65 (49-79) 

Prostatic volume (mL) 

mean ± SD 

median (range) 

 

62.4 ± 24.1 

50 (33-124) 

 

49.6 ± 15.3 

47 (30-85) 

Total PSA (ng mL
-1

) 

mean ± SD 

median (range) 

 

2.8 ± 2.1 

2.4 (0.4-8.3) 

 

7.2 ± 3.6 

6.7 (2.5-18) 

Risk classes, n (%) 

Low 

Intermediate 

High 

_  

8 (19.5) 

27 (65.9) 

6 (14.6) 

GS, n (%) 

6 (3+3) 

7 (3+4) 

7 (4+3) 

8 – 10 

_  

10 (24.4) 

11 (26.8) 

14 (34.2) 

6 (14.6) 

Pathologic stage, n (%) 

T2 N0 M0 

T3 N0 M0 

_  

26 (63.4) 

15 (36.6) 
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Table 2. List of 12 compounds with VIP > 1 relevant to differentiate PC from BPH patient samples. For each compound, the list gives its tentative 

identification, R2 (variance explained) in the MCR-ALS model, m/z value, retention time, molecular weight, mean area calculated for BPH and PC 

samples, the PC vs BPH area ratio, the AUCROC, and its t-test p-value. 

Identification R2 m/z Rt (min) MW Mean Area BPH Mean Area PC Ratio PC/BPH AUC ROC curve t-Test 

Adenosine 0.00016 268.1046 3.3 267.0973 5.26E+06 3.94E+08 7.48E+01 0.853 1.8E-06 

Hydroxyvaleroyl carnitine 3.84E-03 262.1653 6.5 261.1580 1.69E+06 2.64E+09 1.57E+03 0.861 5.3E-09 

Mandelyl carnitine 0.01639 296.1500 5.9 295.1427 9.49E+05 5.35E+09 5.64E+03 0.853 4.6E-07 

Methyl-inosine 0.00026 283.1042 3.6 282.0969 2.09E+07 3.97E+08 1.90E+01 0.827 5.5E-06 

N-acetyl arginine 0.04105 217.1299 7.1 216.1227 1.00E+06 1.06E+10 1.06E+04 0.925 2.2E-14 

N-acetyl N-methyl arginine 0.0012 231.1455 6.9 230.1382 2.20E+06 1.49E+09 6.77E+02 0.780 7.1E-06 

Tryptophan 0.07636 205.0975 5.5 204.0902 2.74E+09 1.26E+10 4.60E+00 0.892 8.7E-10 

Carnitine derivative 0.00172 346.2231 5.4 345.2158 3.73E+06 1.64E+09 4.40E+02 0.902 2.31E-06 

Carnitine derivative 8.47E-05 348.2386 6.0 347.2313 5.28E+06 2.81E+08 5.32E+01 0.841 6.12E-06 

Carnitine derivative 0.00026 368.1556 6.5 367.1483 8.23E+06 6.27E+08 7.62E+01 0.918 3.53E-05 

unknown compound 0.00013 170.0609 5.5 169.0536 1.37E+07 2.68E+08 1.96E+01 0.866 1.88E-06 

unknown compound 0.26998 202.1189 5.6 201.1117 3.09E+06 3.50E+10 1.13E+04 0.905 7.82E-18 

 

 


