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Abstract: In the Hamiltonian formulation of general relativity, Einstein’s equation is

replaced by a set of four constraints. Classically, the constraints can be identified with

the generators of the hypersurface-deformation Lie algebroid (HDA) that belongs to the

groupoid of finite evolutions in space-time. Taken over to deformed general relativity,

this connection allows one to study possible Drinfeld twists of space-time diffeomorphisms

with Hopf-algebra techniques. After a review of noncommutative differential structures,

two cases — twisted diffeomorphisms with standard action and deformed (or ⋆-) diffeo-

morphisms with deformed action — are considered in this paper. The HDA of twisted

diffeomorphisms agrees with the classical one, while the HDA obtained from deformed

diffeomorphisms is modified due to the explicit presence of ⋆-products in the brackets.

The results allow one to distinguish between twisted and deformed symmetries, and they

indicate that the latter should be regarded as the relevant symmetry transformations for

noncommutative manifolds. The algebroid brackets maintain the same general structure

regardless of space-time noncommutativity, but they still show important consequences of

non-locality.
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1 Introduction

Thanks to general relativity (GR), gravitational interactions are understood as purely ge-

ometric phenomena which can be described in terms of a metric, an affine connection,

and a curvature defined on a (pseudo-)Riemannian manifold. The symmetry of general

covariance is an important governing principle which determines possible dynamical the-

ories. Accordingly, one may attempt to quantize gravity by analyzing possible quantum

space-time symmetries which determine the structure of the geometry of the system. As

shown in Refs. [1–14], the concept of absolutely sharp points, one of the cornerstones of

Riemannian geometry, should then be expected to break down. A general mathematical

structure that can make sense of such a space-time is provided by noncommutative geom-

etry [15–22] which involves a notion of deformed symmetries often referred to as quantum
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groups [23, 24]. For more than twenty years now, the study of possible quantum defor-

mations of relativistic symmetries has been intensely pursued [25–33], and supersymmetric

extensions have been considered as well [34–36]. The present understanding is that, even

with noncommutativity, it is still possible to have a ten-dimensional local symmetry group

(replacing classical Poincaré transformations) by means of what is known as a ‘Drinfeld

twist’ [37–39].

In the case of flat space-time, twists allow one to interpret noncommutative versions of

Minkowski spacetime as objects which are, in a certain sense, dual to suitable deformations

of the Poincaré algebra. Identifying the dimensionful deformation parameter λ (or κ ∼ 1/λ)

with the Planck length ℓPl =
√

~G/c3 (Planck massmPl =
√

c~/G), these models provide a

mathematical realization of the proposal of doubly (or deformed) special relativity [40, 41],

which argues that Planck-scale effects should necessitate a description of space-time physics

in terms of two relativistic invariants: λ or κ in addition to the speed of light c. In spite of

this success, the extension of noncommutativity to curved manifolds remains an open issue,

which is of particular importance because one of the main applications of quantum groups

and the associated space-time noncommutativity is the characterization of Planck-scale

physics. They should therefore have the potential to be a candidate theory of quantum

gravity (QG), which has to include curved space-time solutions.

Attempts to quantize 3-dimensional gravity have met with more success [42–51], but

much work remains to be done to generalize these results to the 4-dimensional theory of

physical interest. Understanding how to quantize GR or, even more generally, the class

of all possible covariant theories remains center stage in the research program of noncom-

mutative geometry and the associated deformation of gauge groups. Another important

stimulus to study the deformation of diffeomorphisms groups, which can be regarded as

the gauge symmetries of GR, comes from string theory. In this context, it has been shown

that coordinates obey canonical noncommutativity if a background tensor field (or B-field

in short) is present [52–56].

In the last two decades, the study of Hopf algebras from a physical perspective has

given rise to a rather sizable literature on quantum Minkowski spacetimes [57–60]. These

zero-curvature models are often considered toy models for the flat limit of a (still to be

found) QG theory. In some very rare cases, they have even proved useful for phenomeno-

logical proposals [61]. The main idea is to promote coordinates xµ to noncommuting oper-

ators X̂µ with non-trivial commutators of the form [X̂µ, X̂ν ] = iθµν(X̂) = iθµν + iΘµν
ρ X̂ρ.

Thanks to Weyl-Moyal maps, which had been first introduced to study the phase space of

quantum mechanics, one can trade operator-valued coordinates for functions living on a

classical manifold but equipped with a non-standard multiplication rule. This procedure

introduces a noncommutative ⋆-product, whose main feature is non-locality. Such quan-

tum deformations of coordinate spaces based on algebraic relations have been extensively

studied since the seminal paper by Snyder [62]. The best known examples are given by

θ (or Moyal) canonical space [63], κ-Minkowski spacetime invariant under the κ-Poincaré

algebra [64, 65], q-deformations of Lie groups [66–68], and the fuzzy sphere [20, 69].

All this literature mainly focused on the construction of noncommutative Minkowski

space-times but did not contemplate extensions to curved versions. Some progress has
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been made in the quantization of symmetry-reduced GR solutions such as DeSitter [70],

anti-DeSitter [71], and FRW [72] backgrounds. Nevertheless, the situation for the quanti-

zation of the full group of diffeomorphisms remains unclear and the relevant literature is

fragmented. The main obstacle seems to be the proper definition of coordinate transforma-

tions and a self-consistent calculus once coordinates have been promoted to noncommuting

objects. It is not difficult to realize that noncommutativity introduces a preferred frame

(or coordinate choice) and thus is not compatible with the standard symmetries. For in-

stance, if we assume that [X̂ρ, X̂σ] = iθρσ, as it is the case for the canonical or Moyal-Weyl

noncommutative spacetime, then the transformed coordinates X̂ ′µ = X̂µ + ξ̂µ, with a vec-

tor field ξ̂µ depending linearly on X̂µ (as required for rotations and boosts), do not obey

the original commutation relation [X̂ ′ρ, X̂ ′σ] 6= iθρσ. To avoid this, as we briefly hinted

above, one needs to quantize (or deform) the symmetry group in a specific way. Such a

deformation theory in complete form is not available for diffeomorphism groups. For this

reason, we do not yet have a widely accepted noncommutative theory of gravity.

A possible way out, proposed in Ref. [73], lies in restricting the group of diffeomor-

phisms to those transformations that preserve coordinate noncommutativity. It has been

recognized [73] that, in the case of canonical space, this proposal corresponds to a re-

striction to volume-preserving diffeomorphisms. One therefore obtains a connection with

unimodular gravity [74, 75]. Another possibility, explored in Ref. [76], is a generalization

of the Seiberg-Witten map [52] to GR by gauging the Lorentz group. A drawback of such

an approach is that it forces one to use a complex metric structure [76]. An alternative

perspective on the interplay between gravity and noncommutative geometry is offered for

instance by Refs. [77, 78].

Perhaps one of the most promising paths proposed so far is that of twisted diffeomor-

phisms [79, 80]. The main idea is to replace the diffeomorphism invariance of GR by its

twisted version. This is done by deforming the Hopf algebra structure of the universal

enveloping algebra of the Lie algebra of vector fields by twisting the coproduct by means of

Drinfeld twists [79, 80]. The action of diffeomorphisms on single fields then stays unmodi-

fied while the Leibniz rule (which provides the action on two or more fields) is changed. As

a result, the ⋆-product of two (or more) fields is covariant under twisted diffeomorphisms.

Finally, one can write down a modification of the Einstein-Hilbert action which is invariant

under twisted diffeomorphisms thanks to an appropriate ⋆-product. Given the potential

of such an approach, Ref. [81] explored whether such a (twisted) noncommutative gravity

can be obtained from closed strings with an external B-field in the Seiberg-Witten limit.

Unfortunately, there has been no way of matching this limit of string theory with the grav-

ity model of Ref. [79]. Moreover, as already pointed out in Refs. [81, 82], we stress that

twisted symmetries are not genuine deformations of classical symmetries but rather map-

pings of the classical symmetries on spaces with noncommutative ⋆-products. Following

what has been done for other gauge groups [17–19], one should properly deform also the

action on single fields in order to have a definition of ⋆ (or deformed) diffeomorphisms. To

our knowledge, no such formulation is currently available in the literature. The introduc-

tion of deformed diffeomorphisms, as opposed to twisted diffeomorphisms, represents one

of the main objectives of the present work.
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In addition, we propose a new line of inquiry and ask whether diffeomorphisms can

be consistently quantized in the sense of a deformation theory in analogy to what has

been already done for the special relativistic (SR) group of Poincaré symmetries. We

therefore provide candidate structures for any deformed general relativistic theory, without

using specific actions or dynamical equations. In contrast to most previous studies of

noncommutative geometry, we follow a canonical approach. Along the lines of the classical

analysis of Dirac [84] and Arnowitt-Deser-Misner (ADM) [83], it should be possible to

perform a 3+ 1-splitting of the action of Ref. [79]. Poisson brackets of the resulting scalar

and momentum constraints would then lead to the corresponding hypersurface-deformation

algebroid (HDA) or Dirac spacetime algebra [84–86]. Unfortunately, however, the full ADM

machinery turns out to be rather involved when it is applied to gravitational actions on

noncommutative manifolds.

As we point out in this paper, there is a shortcut that can provide us with general (that

is, action-independent) hints for hypersurface deformations or diffeomorphisms on such

manifolds. It therefore leads us to a notion of deformed general covariance. The shortcut

is motivated by recent results of Ref. [87] for classical smooth manifolds, further developed

in Ref. [88] under weaker assumptions that allow one to bring in some quantum-gravity

effects. For our purposes here, the main achievement is the recognition that the symmetry

structure of hypersurface deformations (which is usually described as a “Lie algebra with

structure functions” in the physics literature) is that of a Lie algebroid which can be

derived from a groupoid of finite evolutions between space-like hypersurfaces in Lorentzian

manifolds. (A similar Euclidean version also exists.) In particular, the rather complicated

Poisson brackets between the gravitational constraints of canonical gravity are reproduced

by the tangential and normal components of Lie brackets between suitable (Gaussian)

space-time vector fields. In order to inspect the HDA for noncommutative spacetimes,

it is then not necessary to know the explicit expressions of constraints as phase-space

functions, which in fact would not be available for noncommutative gravity. It is sufficient

to introduce a suitable differential calculus and apply it to such a noncommutative version

of a tangential-normal decomposition by following the steps of recent analyses [87, 88],

observing certain consistency conditions extracted from [87].

We will start by modifying general coordinate transformations of commuting variables

into diffeomorphisms of noncommuting functions. Moyal-Weyl maps allow us to treat

operator-valued objects as standard functions, but multiplied with a noncommutative ⋆-

product. (That is, to introduce noncommutativity we do not need to change the classical

function space, but only the product in the algebra of functions.) At the classical level,

infinitesimal diffeomorphisms form a Lie algebra with an extension of their action from

vector fields to tensor fields because the standard Leibniz rule applies. We deform this

structure by using Drinfeld twists and, thus, define a deformed differential geometry. When

we analyze the case of twisted diffeomorphisms, the algebra remains unchanged while

the comultiplication changes, confirming the suggestions made in Refs. [79, 80]. Twisted

diffeomorphisms are opposed to deformed (or ⋆-) diffeomorphisms which we introduce and

discuss for the first time.

In the definition of the action on single fields we follow established results in the lit-
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erature, while we explore two possibilities regarding the comultiplication rule or coalgebra

sector of ⋆-diffeomorphisms. We will first try to mimic the situation of U(N) noncommu-

tative gauge theories [17, 19, 21, 89–93] and work with trivial coproducts. (The standard

Leibniz rule then applies.) We will note several drawbacks of retaining the standard Leibniz

rule, which leads us to propose a suitable deformation of comultiplication. In both cases we

are able to compute the HDA brackets and show that, as opposed to the twisted case, there

are ⋆-product deformations in the algebra which distinguish deformed from twisted diffeo-

morphisms. Sharing the concerns raised in Ref. [81], we expect that ⋆-diffeomorphisms,

rather than twisted ones, should be chosen as the symmetries of a noncommutative theory

of gravitation.

Together with previously established results in the literature on noncommutative grav-

ity, our work provides general results about possible formulations of a deformed gravity

theory, defined with a deformed differential geometry on noncommutative hypersurfaces.

The closed brackets of hypersurface-deformation generators with star products found here

can be used to test the covariance of existing proposals for noncommutative gravity theories,

but they may also prove useful in the construction of new such models or in a classification

of all possible deformations of classically covariant theories.

To some extent, noncommutative gravity represents an independent approach to QG.

However, we wish to stress that, besides the aforementioned seminal papers [52–54] showing

the appearance of noncommutativity in string theory due to the presence of external fields,

additional support to a possible role for spacetime noncommutativity in string theory has

been recently claimed in Refs. [94–96]: There, it has been shown that the target space

of closed strings is noncommutative regardless of the specific features of the background.

Additional motivation for our work comes from the recent interest in modifications and/or

generalizations of the HDA found in the QG literature [97–105], including a possible way

to ascribe Minkowski spacetime quantization and Poincaré symmetry deformation to loop

quantum gravity corrections [106–113]. General deformations of the HDA have also been

studied recently in Ref. [114], where the authors found a (partial) no-go theorem forbidding

specific modifications of the scalar constraint in a general covariant theory. It is possible

to regard our work as an explicit example showing that the assumptions of such a theorem

can be weakened so as to evade the original conclusions.

Our paper is organized as follows. In Section 2, we first review the definitions of Lie

algebroids and rederive the classical HDA starting from the Lie brackets of a suitable class

of space-time vector fields. Then, we remind the reader of the notions of Hopf algebras

and introduce a differential calculus on noncommutative manifolds. Vectors, differential

forms, tensors, ⋆-Lie derivatives, inner products, and index contraction are all defined.

Two different notions of brackets are introduced — Moyal and ⋆-Lie brackets — together

with a discussion of their differences. Section 3 is dedicated to the analysis of hypersur-

face deformations generated by twisted diffeomorphisms with the Moyal ⋆-product. After

defining a proper modification of the classical condition on space-time vector fields, we

compute the Lie brackets between them and then decompose the result into normal and

tangential parts, thereby obtaining a twisted version of the HDA. Confirming the expecta-

tions of Refs. [79, 80], we find that the HDA is unmodified. This result also ensures that
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twisted gravity possesses the same degrees of freedom as classical GR. In Section 4, we

focus on deformed diffeomorphisms. Two different possibilities for the coalgebra sector are

considered before an analysis analogous to the previous case is carried out. The resulting

HDA is deformed due to the presence of explicit ⋆-product contributions. Finally, we draw

our conclusions and sketch an outlook in Section 5.

2 Mathematical preliminaries

The main mathematical tools used here, Lie algebroids and Hopf algebras, are reviewed in

this section.

2.1 Lie algebroids

We closely follow [87, 88] but similar content can also be found, for instance, in [123]. A

Lie algebroid is a vector bundle A over a smooth base manifold B together with a Lie

bracket [·, ·]A on the set Γ(A) of sections of A and a bundle map ρ : Γ(A)→ Γ(TB), called

the anchor, provided that the following two properties are satisfied:

• ρ : (Γ(A), [·, ·]A) → (Γ(TB), [·, ·]) is a Lie-algebra homomorphism: for any ξ, η ∈
Γ(A), we have ρ([ξ, η]A) = [ρ(ξ), ρ(η)] (the Lie bracket of vector fields in Γ(TB)).

• For any ξ, η ∈ Γ(A) and f ∈ C∞(B), the Leibniz rule [ξ, fη]A = f [ξ, η]A + (ρ(ξ)f)η

holds.

If the base manifold B is a point, the Lie algebroid is a Lie algebra. Let us also mention that,

in the case of Lie algebroids, one needs to generalize the notion of Lie algebra morphisms

if one desires to identify classes of equivalence. However, morphisms between algebroids

will not play any role in our analysis. We refer the interested reader to Ref. [123] and

references therein.

We are primarily interested in the specific Lie algebroid of hypersurface-deformations,

which provides a mathematical formulation of the Poisson brackets of gravitational con-

straints [83–85]. Gauge transformations generated by the constraints are equivalent to

space-time diffeomorphisms. In a canonical formulation, invariance under these transfor-

mations ensures that observables of the theory are independent of the particular embedding

of spatial hypersurfaces in space-time. An explicit derivation of hypersurface-deformation

brackets can make use of coordinate choices to simplify calculations. The closure of the

brackets in the form of a Lie algebroid then ensures that they are covariant under changes

of the embedding.

A convenient choice turns out to be given by Gaussian embeddings, which are defined

such that the space-time metric gµν assumes a Gaussian form:

ds2 = −dt2 + qabdx
adxb . (2.1)

Thus, for the components of gµν one has

gµν = −nµnν + qabX
a
µX

b
ν (2.2)
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with the spatial metric qab. We have written the metric in a basis dual to (nµ,Xµ
a ), where

nµ is the unit normal to a family of space-like hypersurfaces Σt (at constant t), while

Xµ
a form a basis of TΣt. With these conditions, we have the orthonormality relations

gµνn
µnν = −1 and gµνn

µXν
a = 0. Following the ADM treatment of canonical gravity [83],

we then decompose the time-evolution vector field τµ by τµ = Nnµ +MaXµ
a , where N is

the lapse function and Ma the shift vector field.

A foliation which is Gaussian for one embedding is, in general, not Gaussian for a

different embedding. Gaussianity is therefore not preserved by general coordinate trans-

formations. We can, however, restrict the class of transformations to diffeomorphisms

generated by Gaussian vector fields vµ obeying

inLvg = 0 , (2.3)

or, in components,

nµLvgµν = 0 . (2.4)

Here (and throughout the paper) iw stands for the internal product (or contraction) with

a vector field w. The normal components of the metric remain invariant under transforma-

tions along the direction of such a vµ, preserving the Gaussian form. Choosing a Gaussian

embedding corresponds to fixing a representative in each equivalence class of hypersur-

face embeddings, in which the subset of Gaussian vµ furnishes the remaining coordinate

freedom.

Expanding the Lie derivative, the Gaussian condition can be rewritten as

nµvρ∂ρgµν + nµ(∂µv
ρ)gρν + nµ(∂νv

ρ)gρµ = 0 , (2.5)

resulting in

vρdnρν + ∂ν(v
ρgρµn

µ) + gµν [n, v]
µ = 0 . (2.6)

We used the Cartan identity, the definition of the Lie bracket, and (dn)µν = ∂µnν − ∂νnµ.

Due to the Gaussian from of the metric (2.2), we have dn = 0 because n = dt is closed.

Decomposing the Gaussian vector in the basis chosen above — that is, writing vµ =

Nnµ +MaXµ
a — we then have

− ∂νN + gµν(n
µnρ∂ρN + [n,M ]µ) = 0 , (2.7)

where we have used the orthogonality of the basis. (Although we use the same notation for

components N and Ma of a Gaussian vector field and the time-evolution vector field, the

former are more general since they refer to a coordinate change.) Projecting this expression

along normal and tangential directions, respectively, we find

∂νN = 0 and [n,M ]a = qab∂bN . (2.8)

Here, qab is the inverse of the spatial metric. (The bracket [n,M ]µ does not have a normal

component thanks to the geodesic property of nµ for a Gaussian system; see [88] for details.)
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We can now compute the HDA by calculating the Lie bracket between two Gaussian

vector fields:

[v1, v2]
µ = vρ1∂ρv

µ
2 − vρ2∂ρv

µ
1 = (N1LnN2 −N2LnN1 + LM1N2 − LM2N1)n

µ

+[M1,M2]
µ +N1[n,M2]

µ −N2[n,M1]
µ

= (LM1N2 − LM2N1)n
µ + [M1,M2]

µ + qµb(N1∂bN2 −N2∂bN1) ,

(2.9)

where we decomposed both v1 and v2 in the basis (n,X), and then used the equations

(2.8). The terms of the type LnN = nρ∂ρN are all zero due to the first equality in (2.8).

In order to obtain the HDA, we have to extract normal and tangential contributions: If

N1 = N2 = 0,

[v1, v2]
µ = [M1,M2]

µ , (2.10)

if Ma
1 = 0 and N2 = 0,

[v1, v2]
µ = −nµLM2N1 , (2.11)

and if Ma
1 = 0 = Ma

2 ,

[v1, v2]
µ = qµb(N1∂bN2 −N2∂bN1) . (2.12)

Finally, we view the pairs (N,Ma) as fibers of a Lie algebroid over the space of spatial

metrics, and interpret the three cases of [v1, v2]
µ as Lie-algebroid brackets

[(0,Ma
1 ), (0,M

b
2 )] = (0,LM1M2) , (2.13)

[(N, 0), (0,Ma)] = (−LMN, 0) , (2.14)

[(N1, 0), (N2, 0)] = (0, (N1∂bN2 −N2∂bN1)q
ab) . (2.15)

(The anchor map is given by the Lie derivative of the metric along τµ = Nnµ+MaXµ
a ; see

[87].) With these brackets, pairs (N,Ma) form the hypersurface-deformation Lie algebroid

over the space of spatial metrics. Spatial diffeomorphisms form a subalgebroid which is

also a Lie algebra, while the brackets involving only normal deformations depend on the

inverse-metric components as coordinates on the base manifold (the “structure functions”).

(We note that the base manifold can be extended to the full phase space of general rela-

tivity, given by spatial metrics and extrinsic curvature, or linear combinations of the latter

components. While this extension is not necessary in the classical algebroid, it may be

required for some quantum effects as we will see later in this paper.)

The derivation presented here has several advantages over the usual ones in canonical

gravity. It is much shorter and minimizes the amount of technical calculations. Moreover,

it utilizes space-time tensor calculus and implements the 3 + 1-split only by decomposing

vector fields. It is therefore ideal for an application to non-classical space-time structures

in which some versions of tensor calculus exist. The rest of our work is dedicated to an

application of these methods to the deformation theory of this algebroid in order to have

a notion of (deformed) general covariance for noncommutative manifolds. We will focus

on the brackets and not discuss the anchor. As shown in [123], the latter is not subject to

deformations.

One question to be discussed in more detail is the definition of Gaussian systems

in non-classical space-times. The Gaussian nature, by itself, is not relevant because it
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just constitutes a choice of gauge fixing. However, the Gaussian system simplifies the

classical derivation, and it makes it easier to check two important consistency conditions

which we emphasize here: (i) The derivation of the hypersurface-deformation brackets

requires us to extend the fields N and Ma from a given hypersurface into a space-time

neighborhood. Only such an extension makes it possible to compute the space-time Lie

derivative of two vector fields in (2.9) and then decompose the result into normal and spatial

components. In the classical derivation, such an extension is possible thanks to the form of

the differential equations (2.8), which are well-posed with N and Ma as initial conditions

on one hypersurface. (ii) The resulting hypersurface-deformation brackets (2.13) depend

only on spatial data, given by the fields N and Ma together with the spatial metric qab. It

is therefore possible to interpret them as Lie-algebroid relations over the space of metrics.

There is no dependence on properties of the embedding of a hypersurface in space-time.

In our new derivations below, we will take a pragmatic approach and look for a gen-

eralization of the Gaussian condition such that these two consistency conditions are still

satisfied. From this perspective, the main advantage of the Gaussian system turns out to

be that it leads to a normal vector nµ with coordinate-independent components.

2.2 Hopf algebras and noncommutative calculus

We now introduce the basic notion of Hopf algebras and the associated noncommutative

calculus [79]. We will define only those objects that will be necessary for our analysis.

2.2.1 Hopf algebras

Let us start by introducing the vector space K of smooth real or complex vector fields on

our classical (commutative) differentiable manifoldM. One can always equip K with a Lie

bracket [u, v] which obeys the Jacobi identity. The pair A := (K, [·, ·]) is the Lie algebra

of classical infinitesimal diffeomorphisms on M. Infinitesimal transformations of tensors

under diffeomorphisms are provided by the Lie derivative Lv which obeys Lv◦Lu−Lu◦Lv =

L[v,u] where ◦ stands for composition.

The Lie derivative of a tensor produces a tensor of the same type and weight. We shall

see in Section 4 that ⋆-diffeomorphisms obeying the standard Leibniz rule do not satisfy

such a condition. We will therefore be led to a suitable modification of comultiplication.

Classically, infinitesimal diffeomorphisms act on tensor products of tensor fields, τ ⊗ τ ′, by

means of the Leibniz formula Lv(τ ⊗ τ ′) = (Lvτ) ⊗ τ ′ + τ ⊗ (Lvτ ′). This equation can

be interpreted as using the representation v 7→ Lv of vector fields as Lie derivatives after

applying comultiplication v 7→ v⊗ 1+1⊗ v. Moreover, one can define inverse infinitesimal

diffeomorphisms by v → −v and interpret the complex unit 1 ∈ K⊗0 as a neutral element

which acts by L1 ≡ 1.

These are the ingredients which can be generalized to a Hopf algebra. To this end,

for an abstract Lie algebra (K, [·, ·]), one constructs the universal enveloping algebra UK

(also denoted as U [A]) as the quotient F/I, where F is the free algebra generated by

(K,⊗) and I ⊂ F the subspace containing all elements of the form u⊗ v − v ⊗ u− [u, v].

The Leibniz rule is then related to a coalgebra structure. In the example of infinitesimal

diffeomorphisms, the Leibniz rule gives us the action of A on tensor products of functions
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on M. Abstractly, we can write this action as the result of a coproduct on U [A], given
by an algebra homomorphism ∆: U [A] 7→ U [A]⊗ U [A]. The universal enveloping algebra

of a Lie algebra A has a trivial coproduct given by ∆v = v ⊗ 1 + 1 ⊗ v for any v ∈ K.

If U [A] is instead equipped with a different coproduct, it is called a Hopf algebra, or

quantum Lie algebra, provided that the following conditions hold: (i) Comultiplication is

coassociative: (∆ ⊗ 1) ◦ ∆ = (1 ⊗ ∆) ◦ ∆. (ii) There is an inversion map or antipode

S : U [A] → U [A] which is an antihomomorphism. (iii) The unit (or neutral) element

I ∈ U [A] is complemented by a co-unit ǫ : U [A] 7→ C which is a homomorphism. (iv) These

maps are compatible with the multiplication map µ : U [A] ⊗ U [A] → U [A] in the sense

that µ ◦ (S ⊗ 1) ◦∆ = µ ◦ (1⊗ S) ◦∆ = Iǫ. If these conditions are satisfied, the quintuple

H = (U [A], µ,∆, ǫ, S) constitutes a Hopf algebra. For the universal enveloping algebra of

a Lie algebra, for instance, we have S(v) = −v and ǫ(v) = 0 for v ∈ A, as well as S(I) = I

and ǫ(I) = 1.

It is possible to construct a Hopf algebra from a Lie algebra by using Drinfeld twists

[37, 38]. The Hopf algebra of 4-dimensional diffeomorphisms has been studied in Refs. [79,

80]. In the present work we are interested in deriving the deformation theory of the

hypersurface Lie algebroid generating (3+1)-dimensional diffeomorphisms, as reviewed in

the preceeding section for classical differential calculus. To this end, we derive the Hopf-

algebra relations of 4-dimensional diffeomorphisms explicitly for the specific case of the

Moyal-Weyl noncommutative spacetime (or θ-canonical space).

2.2.2 Noncommutative calculus

Suppose that space-time coordinates (locally) obey a Heisenberg-like commutation relation,

such that the commutator between coordinates is analogous to the commutation relation

between configuration and momentum variables in quantum mechanics:

[x̂µ, x̂ν ] = iθµν . (2.16)

We restrict our attention to the case in which θµν = −θνµ is constant and real. (It is an

anti-symmetric matrix of numbers and does not depend on coordinate operators.) This

is the so-called Moyal-Weyl spacetime [115]. As a result of assuming such a non-trivial

commutator, the multiplication between functions no longer enjoys the commutativity

property:

F (x̂)G(x̂) 6= G(x̂)F (x̂) . (2.17)

By means of a Moyal-Weyl map Ω [115], it is possible to establish a correspondence be-

tween the object F (x̂)G(x̂) and a suitably modified multiplication rule f(x)⋆g(x) between

functions of coordinates,

F (x̂)G(x̂) =: Ω(f(x) ⋆ g(x)) . (2.18)

One can show that there are infinitely many possible choices for Ω that reproduce standard

expressions in the appropriate limit. Thus, given a noncommutative algebra there is no

unique Weyl map.

For the constant-θ case, the most straightforward choice is

f(x) ⋆ g(x) = f(x)e−
1
2
i
←−
∂αθαβ−→∂βg(x) . (2.19)
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We follow the usual quantum-group notation and introduce the twist element F = fα ⊗
fα := e

1
2
iθαβ∂α⊗∂β ∈ U [A]⊗U [A] and its inverse, F−1 = f

α⊗ fα := e−
1
2
iθαβ∂α⊗∂β . Here, α

is used as a multi-index as shown by an expansion of the exponential function:

F = 1 +
1

2
i θαβ∂α ⊗ ∂β −

1

8
θα1β1θα2β2∂α1∂α2 ⊗ ∂β1∂β2 + · · ·

+
1

n!
(i/2)nθα1β1 · · · θαnβn∂α1 · · · ∂αn ⊗ ∂β1 · · · ∂βn

+ · · · . (2.20)

We can then write

fα =

∞∑

n=0

(i/2)n/2√
n!

∂α1 · · · ∂αn , (2.21)

raise the multi-index using θα1β1 · · · θαnβn , and write more compactly

f(x) ⋆ g(x) =: f
α
(f(x))fα(g(x)) . (2.22)

Thus, the identity or neutral element of the tensor product of algebras, U [A] ⊗ U [A], is
given by 1 ⊗ 1 = F−1F = f

β
fα ⊗ fβfα. In this notation, when we omit the right (or

left) arrow over partial derivatives
−→
∂ α (or

←−
∂ α), the derivative on the left-hand side of a

tensor product acts to the left while the derivative on the right-hand side acts on functions

standing to the right of the star.

The ⋆-product allows one to map the product of operator-valued functions to a modified

product between functions. The product is noncommutative but still obeys associativity:

(f ⋆ g) ⋆ h = f ⋆ (g ⋆ h) . (2.23)

In terms of the twist and the coproduct, the associative property can be expressed as

F12(∆⊗ 1)F = F23(1⊗∆)F , (2.24)

or equivalently

fβfα
1 ⊗ fβf

α
2 ⊗ fα = fα ⊗ f1

αf
β ⊗ fβf

2
α . (2.25)

In the former equation we have used F12 = F ⊗ 1 = fα⊗ fα⊗ 1 ∈ U [A]⊗U [A]⊗U [A] and
F23 = 1 ⊗ F = 1 ⊗ fα ⊗ fα ∈ U [A] ⊗ U [A] ⊗ U [A]. An analogous property holds for the

inverse twist element. (These identities can be confirmed by using the explicit expression

for the twist F = e
i
2
θαβ∂α⊗∂β and its inverse F−1 = e−

i
2
θαβ∂α⊗∂β .) A second property

which F has to satisfy is

(ǫ⊗ 1) ◦ F = 1 = (1⊗ ǫ) ◦ F . (2.26)

We now wish to define a commutator element in U [A] ⊗ U [A], which is called the

R-matrix and allows us to make a permutation of the functions we are (star) multiplying.

We define

f ⋆ g =: R
α
(g) ⋆ Rα(f) , (2.27)

where R−1 = R
α ⊗Rα. In order to find the R-metrix in explicit form, we write

f ⋆ g = f
α
(f)fα(g) = fβfγf

α
(f)f

β
fγfα(g) = f

β
(fγfα(g))fβ(fγf

α
(f))

= f
β
(R

α
(g))fβ(Rα(f)) = R

α
(g) ⋆ Rα(f) ,

(2.28)
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with R
α ⊗ Rα := fγfα ⊗ fγf

α
. Here we used only the representation of the identity in

the second step. As a result, the R-matrix is given by R = Rα ⊗ Rα = fγf
α ⊗ fγfα. In

particular, for the Moyal-Weyl spacetime we are considering here, one can verify

R = eiθ
αβ∂α⊗∂β , R−1 = e−iθ

αβ∂α⊗∂β . (2.29)

Using twist properties, the Yang-Baxter equation R12R13R23 = R23R13R12 follows.

2.2.3 Twisted and deformed diffeomorphisms

Before turning to diffeomorphisms, we introduce the notion of a Lie bracket. We define

two different generalizations of standard brackets between two fields: the ⋆-Lie bracket [, ]⋆
and the Moyal bracket [ ⋆, ]. In the next sections, we will define the action of twisted and

deformed diffeomorphisms on single fields by using these two brackets. The ⋆-Lie bracket

between two generic vector fields, v1 and v2, is defined as

[v1, v2]⋆ := v1 ⋆ v2 −R
α
(v2) ⋆ Rα(v1) . (2.30)

In components,

[v1, v2]
µ
⋆ = vρ1 ⋆ ∂ρv

µ
2 − fγfαv

ρ
2 ⋆ ∂ρfγf

α
vµ1 . (2.31)

Given this definition we can show that

[v1, v2]⋆ = [fα(v1), fα(v2)] , (2.32)

where on the right-hand side we have the classical Lie bracket: We compute

[v1, v2]⋆ = v1 ⋆ v2 −R
α
(v2) ⋆ Rα(v1) = fα(v1)fα(v2)− fγfαf

β
(v2)fγf

α
fβ(v1)

= fα(v1)fα(v2)− fα(v2)f
α
(v1) = [fα(v1), fα(v2)] .

(2.33)

This ⋆-Lie bracket satisfies the following modification of the Jacobi identity

[v1, [v2, v3]⋆]⋆ = [[v1, v2]⋆, v3]⋆ + [R
α
(v2), [Rα(v1), v3]⋆]⋆ . (2.34)

Alternatively, we can define what we call the Moyal bracket:

[v1 ⋆, v2] := v1 ⋆ v2 − v2 ⋆ v1 . (2.35)

It obeys the usual Jacobi identity

[v1 ⋆, [v2 ⋆, v3]] = [[v1 ⋆, v2] ⋆, v3] + [v2 ⋆, [v1 ⋆, v3]] , (2.36)

in contrast to ⋆-Lie brackets. Indeed, it is immediate to notice that [v1, v2]⋆ 6= [v1 ⋆, v2]. This

result will be at the root of the difference between twisted diffeomorphisms and deformed

diffeomorphisms. We anticipate that the former do not change the action on single fields

but have a modified Leibniz rule, while the latter retain the Leibniz rule but act on single

fields in a non-standard way. As mentioned, to have a consistent differential structure,

we will then have to change the definition of deformed diffeomorphisms in such a way

that there is a deformation not only of the action but also of the Leibniz rule. We also
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mention that the Moyal bracket allows us to map Eq. (2.16) into [xµ ⋆, xν ] = iθµν . Thus,

this bracket is needed to provide a representation of Eq. (2.16) on manifolds equipped with

the non-standard product of Eq. (2.19).

Another property which we will extensively use is ∂µ ⋆ f = ∂µf , which is a direct

consequence of Eq. (2.19) with constant θ, and, consequently, ∂µ(f⋆g) = (∂µf)⋆g+f⋆(∂µg).

Finally, as first discussed for instance in Ref. [79], the ⋆-tensor product of tensors, which

is needed to have a noncommutative differential calculus together with the generalizations

of Lie brackets defined above, is given by

τ ⊗⋆ τ
′ = f

α
(τ)⊗ fα(τ

′) . (2.37)

The tensor product is therefore twisted just as the pointwise product of functions.

Let us now discuss the two different paths to treating diffeomorphisms on A, that is

twisted and deformed (or ⋆-) diffeomorphisms. As already stressed, for the latter, which we

here study for the first time, we will consider two different candidates: either with trivial

or non-trivial co-product. The general idea consists in finding a meaningful generalization

of general covariance to noncommutative manifolds, where noncommutative manifolds are

quantizations of classical smooth manifolds in the sense that the product of fields evaluated

at a spacetime point is noncommutative and is given by the ⋆-product.

3 Twisted diffeomorphisms

We return to the derivation of hypersurface-deformation brackets, but now in a general-

ization to noncommutative calculus.

3.1 Lie derivative

We start by analyzing twisted diffeomorphisms, which have already been introduced, for

instance in Ref. [79], in their 4-dimensional form. Here, we will focus on their 3 + 1-

dimensional version. We shall see that most of the statements made in Ref. [79] apply also

for the twisting of hypersurface-deformation brackets.

Consider a generic tensor u. On a commutative space, it transforms as u′ = u +

δvu = u+Lvu under infinitesimal diffeomorphisms generated by the vector field v = vµ∂µ.

As usual, Lvu is the Lie derivative of u along v. It is possible to represent standard

diffeomorphisms on A by means of twisting. For a function u, we write

δvu = Lvu = vρ∂ρu = fβf
α
(vρ∂ρ)fβfα(u) = (fβ(vρ∂ρ)fβ) ⋆ u = Lv⋆ ⊲ u (3.1)

We have inserted the representation of the identity in terms of the twist and its inverse,

and defined

v⋆ := fβ(v)fβ =
∑

n

(
− i

2

)n 1

n!
θµ1ν1 . . . θµnνn(∂µ1 . . . ∂µnv

ρ)∂ν1 . . . ∂νn∂ρ (3.2)

as an element of U [A]. The application of Lv⋆ is what we call an infinitesimal twisted

diffeomorphism.
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For a vector field uµ, we proceed in a similar way and write

Lvuµ = vρ∂ρu
µ − (∂ρv

µ)uρ

= fβ(vρ∂ρ)fβ ⋆ uµ − ∂ρ(f
β(vµ)fβ) ⋆ u

ρ

= (vρ∂ρ)
⋆ ⋆ uµ − (∂ρv

⋆)µ ⋆ uρ , (3.3)

always keeping v to the left of u. In the second term, we may change the ordering by

applying the R-matrix,

Lvuµ = v⋆ ⋆ uµ − R̄α(uρ) ⋆ ∂ρR̄α(v
⋆)µ (3.4)

= [v⋆, u]⋆ , (3.5)

in order to derive a relationship with Eq. (2.30). However, this notation has to be treated

with some care because (v⋆)µ is not a function but acts to the left on uρ in the second term

of the commutator.

The same procedure can be used to derive the Lie derivative of an arbitrary tensor

(density), rewriting the classical relationships in such a way that components of v (the

vector field along which we take the Lie derivative) always stay on the left. For instance,

for the metric tensor gµν , we have

Lvgµν = v⋆ ⋆ gµν + (∂µv
⋆ρ) ⋆ gρν + (∂νv

⋆ρ) ⋆ gµρ . (3.6)

3.2 Twisted Gaussian system

With these preparations, we can introduce the notion of a noncommutative Gaussian sys-

tem for twisted diffeomorphisms. From the point of view of hypersurface deformations, the

main property of a Gaussian system should be that it leads to constant components g0µ
of the metric. In this way, the lapse function and shift vector in the background metric

are fixed, and it becomes possible to isolate the role of lapse and shift as generators of

hypersurface deformations. The simplest choice of constant background lapse and shift

that is compatible with a non-degenerate metric of Lorentzian signature is g00 = −1 and

g0i = 0 for i 6= 0.

We need to show that there is a choice of coordinates on a noncommutative manifold

such that the metric is Gaussian in the specified sense. We do so by assuming the classi-

cal Gaussian system under the standard product of functions or coordinates, and showing

that there is a frame in which the required properties are satisfied also for a noncommu-

tative product and twisted diffeomorphisms. In particular, the classical system provides

us with a time coordinate t such that n = dt is the co-normal to spatial hypersurfaces

t = constant. The same 1-form is a co-normal on a noncommutative manifold with twisted

diffeomorphisms: For a vector field X tangential to a spatial hypersurface and n = dt, we

have

Xµ ⋆ nµ = iX⋆ ⋆ dn = LX⋆ ⊲ t = Xµ∂µt = 0 . (3.7)

The Lie derivative along X⋆ is equal to the classical Lie derivative because all higher-

derivative terms in (3.2) vanish when acting on a linear function such as t. In a Gaussian
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frame, the co-normal therefore has constant components, and so does the normal nµ =

gµν ⋆ nµ = gµνnµ because higher derivatives in the star product vanish when applied to a

constant nµ. Here we introduced the inverse metric gνα ⋆ gαµ = δαµ , defining the inverse

metric by its action from the left (alternatively one can define the inverse by-the-right)

[79].

The normal is therefore normalized with respect to the noncommutative system, in

the following sense:

in⋆ ⋆ g ⋆ in = n⋆µ ⋆ gµν ⋆ n
ν = fαnµfα ⋆ gµν ⋆ n

ν (3.8)

= nµgµν ⋆ n
ν = nν ⋆ n

ν = nνn
ν = −1 . (3.9)

In a classical Gaussian system, we have nµ∇µn
ν = 0 because worldlines normal to spa-

tial hypersurfaces are geodesics. In a Gaussian frame, all contributions from connection

components in this equation are zero because the only relevant ones,

Γ0
0µ =

1

2
g0α(∂µg0α + ∂0gµα − ∂αg0µ) = 0 , (3.10)

vanish identically for a Gaussian metric. The equation nµ∇µn
ν = 0 is therefore equivalent

to nµ∂µn
ν = 0 in a Gaussian system. The same equation is true in the form nµ ⋆ ∂µn

ν = 0

for a noncommutative Gaussian system because, as we just showed, the components of nµ

are still constant. From this equation, we can derive nµ ⋆∇µ ⋆ nν = 0 using the definition

of the noncommutative Christoffel connection from [79], which gives

Γ0
0µ =

1

2
g0α ⋆ (∂µg0α + ∂0gµα − ∂αg0µ) (3.11)

=
1

2
g0α ⋆ ∂0gµα = 0 , (3.12)

for the relevant connection components.

It will be convenient to do calculations of the hypersurface-deformation brackets in

a Gaussian frame. However, whenever possible, we will not make explicit use of the fact

that normal components are constant in order to display all relevant star products. In

particular, in order to be as general as possible, we will derive differential equations for

the normal and tangential components of a Gaussian vector field without using constant

components of the normal. We will see that a counterterm is then required in the classical

Gaussian condition. We then analyze these differential equations using all the properties

of a Gaussian frame, including the constant nature of components of the normal. This step

will allow us to show that there is a well-posed initial-value problem and a set of algebroid

brackets which depend only on hypersurface data.

3.3 Gaussian condition

We are interested in deriving properties of hypersurface deformations in noncommutative

space-time, with possible modifications of the action of twisted diffeomorphisms. We mod-

ify the classical expression used to define a Gaussian vector field as follows: Instead of

inLvg = 0, we require that

(Lv⋆ ⊲ g) ⋆ in = 0 . (3.13)
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We act with in from the right in order to make sure that it stands next to the metric, without

components of v⋆ in between. Classically, we say that v is Gaussian if a diffeomorphism

of the metric along the direction given by v does not have a normal component. We have

generalized this statement by saying that the twisted infinitesimal diffeomorphism of g,

generated by v, gives zero if we ⋆-contract the result with the normal n. Since the normal

components are constant, (3.13) is equivalent to the classical condition on Gaussian vector

fields, and it is therefore consistent with the metric form of a Gaussian system.

We have that inLvg = nµ(Lvg)µν , and analogously we can write the twisted version

in components as (Lv⋆ ⊲ g)µν ⋆ nµ, where the Lie derivative of the metric is given in (3.6)

in terms of twisted diffeomorphisms. We rewrite star products using (2.22), for instance

(vρ)⋆⋆∂ρg = f
α
((vρ)⋆∂ρ)fα(g) in the first term, and therefore obtain the Gaussian condition

for v as (
Lfα

(v⋆)fα
g
)
⋆ in = 0 . (3.14)

The next step is to try and obtain relations for the normal and tangential components of

the ⋆-Lie bracket between the normal n and the Gaussian vector field v. In doing that, we

will try to follow as close as possible the steps of the derivation for the commutative case.

First, we would like to compute Lfα
(v⋆)fα

(g ⋆ in), or the action of the twisted Lie

derivative on the ⋆-product of two fields:

f
α
(v⋆)fα(g ⋆ in) = f

α
(v⋆)fα(f

β
(g)fβ(in))

= f
α
(v⋆)f

1
αf

β
(g)f

2
αfβ(in) = f

α
(vµ)⋆f

1
αf

β
(∂µgσν)f

2
αfβ(n

σ)

+f
α
(∂νv

µ)⋆f
1
αf

β
(gσµ)f

2
αfβ(n

σ) + f
α
(vµ)⋆f

1
αf

β
(g)f

2
αfβ(i∂µn) .

(3.15)

Adding and subtracting the term f
α
(∂σv

µ)⋆f
1
αf

β
(gνµ)f

2
αfβ(n

σ), we obtain

f
α
(vµ)⋆f

1
αf

β
(∂µgσν)f

2
αfβ(n

σ)

+f
α
(∂νv

µ)⋆f
1
αf

β
(gσµ)f

2
αfβ(n

σ) + f
α
(∂σv

µ)⋆f
1
αf

β
(gνµ)f

2
αfβ(n

σ)

−fα
(∂σv

µ)⋆f
1
αf

β
(gνµ)f

2
αfβ(n

σ) + f
α
(vµ)⋆f

1
αf

β
(g)f

2
αfβ(i∂µn) .

(3.16)

Using both (2.25) and (2.27), for the first three terms we have

f
α
(vµ)⋆f

1
αf

β
(∂µgσν)f

2
αfβ(n

σ) + f
α
(∂νv

µ)⋆f
1
αf

β
(gσµ)f

2
αfβ(n

σ)

+f
α
(∂σv

µ)⋆f
1
αf

β
(gνµ)f

2
αfβ(n

σ) = f
α
1 f

β
(vµ)⋆f

α
2 fβ(∂µg)fα(in)

+f
α
1 f

β
(∂νv

µ)⋆f
α
2 fβ(gσµ)fα(n

σ) + f
β
f
α
1 (∂σv

µ)⋆f
α
2 fβ(gνµ)fα(n

σ)

=
(
Lfα

(v⋆)fα
g
)
⋆ in .

(3.17)

We write the last two terms of (3.16) as

f
α
(vµ)⋆f

1
αf

β
(g)f

2
αfβ(i∂µn)− f

α
(∂σv

µ)⋆f
1
αf

β
(gνµ)f

2
αfβ(n

σ)

= f
α
(R

γ
(g))f

1
αf

β
Rγ(v

µ)⋆)fβf
2
α(i∂µn)− f

α
(R

γ
(gνµ))f

1
αf

β
Rγ(∂σv

µ)⋆f
2
αfβ(n

σ)

= f
α
(R

γ
(g))fα

(
Rγ((v

µ)⋆∂µ) ⋆ in
)
− f

α
(R

γ
(gνµ))fα(Rγ(∂σv

µ)⋆ ⋆ (nσ))

= R
γ
(g) ⋆

(
iL

Rγ (f
β
(v⋆)fβ)

n

)
,

(3.18)
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and arrive at

Lfα
(v⋆)fα

(g ⋆ in) =
(
Lfα

(v⋆)fα
g
)
⋆ in +R

α
(g) ⋆

(
iL

Rα(f
β
(v⋆)fβ )

n

)
. (3.19)

We see that, as a direct consequence of loss of commutativity of the ⋆-product, the Leibniz

rule does not apply. It is modified through the action of the R-matrix, as one could have

anticipated. Using the above expressions we can rewrite Eq. (3.14) as

(
Lfα

(v⋆)fα
g
)
⋆ in = Lfα

(v⋆)fα
(g ⋆ in)−R

α
(g) ⋆

(
iL

Rα(f
β
(v⋆)fβ)

n

)
= 0 . (3.20)

The next step is an application of the Cartan identity. The validity of such an identity

is usually required as an axiom, or assumed (see for instance [116]), but it is possible to

prove it in the following manner. Let us make indices explicit in

Lfα
(v⋆)fα

(g ⋆ in) = f
α
(vρ∂ρ)

⋆fα (gµν ⋆ n
µ) = (vρ)⋆ ⋆ ∂ρ(gµν ⋆ n

µ) + ∂ν(v
ρ)⋆ ⋆ (gρµ ⋆ nµ)

= (vρ)⋆ ⋆ ∂ρ(gµν ⋆ n
µ) + ∂ν(v

ρ)⋆ ⋆ (gρµ ⋆ nµ) + (vρ)⋆ ⋆ ∂ν(gρµ ⋆ nµ)− (vρ)⋆ ⋆ ∂ν(gρµ ⋆ nµ)

= ∂ν((v
ρ)⋆ ⋆ gρµ ⋆ nµ) + (vρ)⋆ ⋆ (dn)ρν ,

(3.21)

where we defined the two-form (dn)ρν := ∂ρ(gµν ⋆ n
µ)− ∂ν(gµρ ⋆ n

µ). Thus, we derived

L⋆v ⊲ (g ⋆ in) = iv⋆ ⋆ d(g ⋆ in) + d(iv⋆ ⋆ g ⋆ in) , (3.22)

commonly known as the Cartan identity.

With this result, we have

Lfα
(v⋆)fα

(g ⋆ in)−R
α
(g) ⋆

(
iL

Rα(f
β
(v⋆)fβ)

n

)

= iv⋆ ⋆ d(g ⋆ in) + d(iv⋆ ⋆ g ⋆ in)−R
α
(g) ⋆

(
iL

Rα(f
β
(v⋆)fβ)

n

)
= 0 .

(3.23)

Now we use dn = d(g ⋆ in) = 0 and obtain

R
α
(g) ⋆

(
iL

Rα(f
β
(v⋆)fβ )

n

)
= d(iv⋆ ⋆ g ⋆ in) . (3.24)

3.4 Decomposition

Decomposing v⋆ into components normal and tangential to hypersurfaces, v⋆ = (N⋆ ⋆n)⋆+

(M⋆ ⋆ X)⋆ (with N⋆ := fα(N)fα and M⋆ := fα(M)fα), we write

R
α
(g) ⋆

(
iL

Rα(f
β
(N⋆⋆n)⋆fβ)

n

)
+R

α
(g) ⋆

(
iL

Rα(f
β
(M⋆⋆X)⋆fβ)

n

)
= −dN⋆ , (3.25)

where we have used the relations

in⋆ ⋆ g ⋆ in = −1 iX⋆ ⋆ g ⋆ in = 0 ; (3.26)
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see (3.8).

Writing indices explicitly,

R
α
(gνµ) ⋆

[
Rαf

β
(N⋆ ⋆ nρ)⋆fβ(∂ρn

µ)−Rαf
β
∂ρ(N

⋆ ⋆ nµ)⋆fβ(n
ρ)

+Rαf
β
(M⋆ ⋆ Xρ)⋆fβ(∂ρn

µ)−Rαf
β
∂ρ(M

⋆ ⋆ Xµ)⋆fβ(n
ρ)
]
= −∂νN⋆ , (3.27)

where we left implicit only the internal index a in M ⋆Xµ ≡ Ma ⋆ Xµ
a . Using Eq. (2.27),

we have

R
α
(gνµ) ⋆

[
Rαf

β
(N⋆ ⋆ nρ∂ρ)

⋆fβ(n
µ)− f

β
(R

γ
(nρ∂ρ))fβ(RαRγ(N

⋆ ⋆ nµ)⋆)

+Rαf
β
(M⋆ ⋆ Xρ∂ρ)

⋆fβ(n
µ)− f

β
(RαR

γ
(nρ∂ρ))fβ(Rγ(M

⋆ ⋆ Xµ)⋆)
]
= −∂νN⋆ , (3.28)

and finally, recalling Eq. (2.30),

R
α
(gνµ) ⋆

(
[Rα(N

⋆ ⋆ n)⋆, n]µ⋆ + [Rα(M
⋆ ⋆ X)⋆, n]µ⋆

)
= −∂νN⋆ . (3.29)

So far, following Refs. [79, 80], we have defined twisted (four) diffeomorphisms by

a representation of the infinitesimal diffeomorphisms of classical differential manifolds

on noncommutative manifolds or, rather, on manifolds equipped with a non-trivial ⋆-

multiplication rule (2.19). As a consequence, they have an undeformed action on single

fields or tensors but, due to the Moyal ⋆-product, act non-trivially on products of two or

more objects. Thus, twisting diffeomorphisms corresponds to mapping them to the Moyal

space (or, more generally, to a manifold with noncommutative products). In order to find

formulae relating the lapse function and shift vector components, it will be more useful to

rewrite the relation (3.29) as one on the commutative classical manifold in an intermediate

step. We will then represent the final hypersurface-deformation brackets on the Moyal

space in order to obtain a twisted version of the HDA.

Using the definition of the R-matrix as well as that of the ⋆-Lie bracket, we rewrite

Eq. (3.29) as

−∂νN⋆ = (Nnρgνµ) ⋆ ∂ρn
µ − (∂ρ(Nnµ)gνµ) ⋆ n

ρ + (Mρgνµ) ⋆ ∂ρn
µ − (∂ρM

µgνµ) ⋆ n
ρ

= g⋆µν ⋆ N
⋆ ⋆ (nρ ⋆ ∂ρn

µ − (∂ρn
µ) ⋆ nρ)− g⋆µν ⋆ n

µ ⋆ ∂ρN
⋆ ⋆ nρ (3.30)

+g⋆νµ ⋆ Mρ ⋆ ∂ρn
µ − g⋆νµ ⋆ ∂ρM

µ ⋆ nρ .

We can now use the constant nature of nµ in a Gaussian frame, so that nρ star-commutes

with any function and the partial gradient ∂ρn
µ = 0 vanishes. Multiplying both sides of

(3.30) by nν , we have

− nν ⋆ ∂νN
⋆ − ∂νN

⋆ ⋆ nν = −nν ⋆ g⋆νµ ⋆ ∂ρM
µ ⋆ nρ , (3.31)

where we also used nµ ⋆ nµ = −1. Applying the product rule in

0 = nρ⋆∂ρ(nµ⋆M
µ) = (nρ⋆∂ρnµ)⋆M

µ+nµ⋆(n
ρ⋆∂ρM

µ)+(nµ⋆n
ρ−nρ⋆nµ)⋆∂ρM

µ , (3.32)
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and using nν ⋆ Xν = 0 as well as the vanishing star commutator nµ ⋆ nρ − nρ ⋆ nµ = 0 of

the constant nµ, implies that nρ ⋆ ∂ρM
µ = 0. Thus, we finally obtain

0 = −nν ⋆ ∂νN
⋆ − ∂νN

⋆ ⋆ nν = −2nν∂νN
⋆ = −2nν∂νN . (3.33)

In the last step, we have mapped the expression back to the commutative space and,

therefore, multiplication is the usual commutative rule.

The tangential projection of Eq. (3.29) is made in a similar way. By ⋆-multiplying

with qab, we have

[n,M ]a⋆ = qab ⋆ ∂bN
⋆ . (3.34)

Lapse N and shift Ma are subject to the same type of partial differential equations as in

the classical derivation. Therefore, they are extendable to a pace-time neighborhood of

a spatial hypersurface and can be used in the Lie brackets of Gaussian space-time vector

fields.

3.5 Brackets

We are now ready to evaluate the ⋆-Lie bracket of space-time vector fields. We calculate

the ⋆-product between the ⋆-Lie bracket [v⋆1 , v
⋆
2 ]

µ
⋆ and an arbitrary scalar function f for

twisted diffeomorphisms,

[v⋆1 , v
⋆
2 ]

µ
⋆ ⋆ f =

(
(vρ1)

⋆ ⋆ ∂ρ(v
µ
2 )

⋆ −R
α
(vρ2)

⋆ ⋆ Rα(∂ρv
µ
1 )

⋆
)
⋆ ∂µf

= vρ1∂ρv
µ
2 ∂µf − ∂ρv

µ
1 v

ρ
2∂µf

= (N1n
ρ +Mρ

1 )∂ρ(N2n
µ +Mµ

2 )∂µf − ∂ρ(N1n
µ +Mµ

1 )(N2n
ρ +Mρ

2 )∂µf

= (N1n
ρ∂ρN2 − ∂ρN1N2n

ρ)nµ∂µf + (LM1N2 − LM2N1)n
µ∂µf

+[M1,M2]
µ∂µf +N1[n,M2]

µ∂µf −N2[n,M1]
µ∂µf , (3.35)

and extract normal and tangential terms and using the above relations for [n,M ]:

[(0,Ma
1 ), (0,M

b
2 )] = (0,LM1M2) , (3.36)

[(N, 0), (0,Ma)] = (−LMN, 0) , (3.37)

[(N1, 0), (N2, 0)] = (0, (N1∂bN2 −N2∂bN1)q
ab) . (3.38)

The fact that this result coincides with Eqs. (2.13) confirms the claim [79] that twisted

noncommutative gravity with the Moyal product has the same symmetry algebra as clas-

sical GR. Thus, the only deformations of symmetries are encoded in the coalgebraic sector

where, due to the non-standard multiplication, the Leibniz rule does not apply. Having a

closed and consistent set of brackets also ensures that noncommutative gravity possesses

the same number of degrees of freedom as GR, as one should expect. We shall see that

this statement remains true also for deformed diffeomorphism symmetries, in which case

the HDA does receive ⋆-product deformations.

Once one has obtained the Poisson brackets for general coordinate transformations,

it is of interest to study their Minkowski (or flat) limit. In this way, one restricts the set

of diffeomorphisms and only allows a subset of coordinate transformations, which are the
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isometries of Minkowski spacetime. In terms of hypersurface deformations, this restriction

can be implemented by using the Euclidean spatial metric and requiring lapse and shift

to be linear in space coordinates, of the form N = α + αix
i and Ma = βa + Ra

bx
b (Rab

being a matrix of rotations in space). The interested reader can take a look at Refs.

[85, 107, 111] for the Minkowski limit of the HDA and its deformations. Here, as expected,

we find that the twisted HDA has no deformations compared with the standard version

of GR. It is then not difficult to show that, after the specified restrictions, the resulting

Poincaré algebra is also unmodified. On the other hand, one can expect that the action of

Poincaré generators on products of functions will be non-trivial as a result of the presence

of a noncommutative multiplication rule. This is consistent with the known fact that the

symmetry algebra dual to the Moyal-Weyl space-time is the so-called θ-Poincaré algebra

with standard commutators but deformed coproducts [117].

4 Deformed diffeomorphisms

We first perform the Gaussian analysis for the derivation of brackets by defining ⋆-diffeomorphisms

(or, equivalently, deformed diffeomorphisms) with a deformed action on single tensors but

still respecting the Leibniz rule. This is done in an attempt to reproduce what has been

studied for noncommutative quantum field theories [17–19, 21, 89–91], where the relevant

⋆-action is invariant under ⋆-U(1) symmetries obeying the Leibniz rule. Some rather en-

couraging results are achieved but we will explain later on why there is a strong reason

for abandoning the Leibniz rule and then working with deformed diffeomorphisms with

deformed comultiplication.

4.1 Deformed diffeomorphisms with trivial coalgebra

We define a deformed diffeomorphism by its infinitesimal action

Lv ⊲ u := vρ ⋆ ∂ρ ⋆ u = vρ ⋆ ∂ρu , (4.1)

on functions. In the last step we used the fact that, for the constant-θ case, the action of

the derivative is not modified, that is ∂µ⋆f ≡ ∂µf . Deformed diffeomorphisms are different

from twisted ones because vρ ⋆ ∂ρu 6= δvu defined in (3.1).

A deformed Gaussian system can be defined analogously to a twisted one. The first

place where we used the Lie derivative in the construction of a twisted Gaussian system was

in Eq. (3.7). Because it acts on a linear coordinate function t, it remains true if we use the

Lie derivative (4.1) corresponding to deformed rather than twisted diffeomorphisms. The

second place, the introduction of a condition on Gaussian vector fields, will be discussed

soon. But first, we have to insert a warning about a violation of the standard Leibniz rule

for the Lie derivative of deformed diffeomorphisms as defined so far.

In some sense, one could consider deformed diffeomorphisms the most natural definition

of diffeomorphisms on A. According to Eq. (2.19), we can obtain diffeomorphisms on A
thanks to the mapping given by the ⋆-product. Using a Weyl map, we have

δ̂V F (x̂) = V (x̂) ⊲ F (x̂) 7→ v(x) ⋆ f(x) = vρ(x) ⋆ ∂ρf(x) , (4.2)
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where the last expression gives us exactly the definition we proposed for deformed diffeo-

morphisms, (4.1).

However, an extension to vector fields and tensors is non-trivial if we want to preserve

the Leibniz rule. For instance, if we attempt such an extension by postulating that the

⋆-Lie derivative should agree with the Moyal bracket (2.35),

Lv1 ⊲ v2 = [v1 ⋆, v2] , (4.3)

for two vector fields v1 and v2, the Leibniz rule is in danger when we apply the derivative

to the product of a function u and a vector field w:

Lv ⊲ (u ⋆ w) = vρ ⋆ ∂ρ(u ⋆ wµ)− u ⋆ wρ ⋆ ∂ρv
µ (4.4)

= (Lv ⊲ u) ⋆ wµ + u ⋆ (Lv ⊲ w) + (vρ ⋆ u− u ⋆ vρ) ⋆ ∂ρw
µ . (4.5)

The last ⋆-commutator violates the Leibniz rule, but it vanishes when u is a constant, such

as a normal component in our deformed Gaussian system. We may therefore postpone a

detailed discussion of the Leibniz rule and first return to hypersurface deformations.

At this point, we have the necessary ingredients to develop the Gaussian analysis for

deformed diffeomorphisms, with our general aim of deriving the hypersurface-deformation

brackets they imply. Due to the ⋆-modification of the action of these symmetries, it is

then natural to expect modifications of the HDA and, thus, a deformed or ⋆-modification

of general covariance.

4.2 Modified Gaussian condition

Recall that we are not interested in the Gaussian system in its own right, but rather have to

make sure that the gauge choice leads to brackets of space-time vector fields which depend

only on hypersurface data. The latter can then be reinterpreted as Lie-algebroid brackets.

The original Gaussian condition for the metric reads

nµ ⋆ Lv ⋆ gµν = 0 . (4.6)

However, it does not lead to a well-defined Lie-algebroid structure for deformed diffeomor-

phisms. We modify it by subtracting a term which will lead to consistent relations:

nµ ⋆ Lv ⋆ gµν − ∂γ(v
ρ ⋆ nµ ⋆ gρµ) ⋆ g

γα ⋆ nβ ⋆ gαβ ⋆ nν = 0 , (4.7)

is the new ⋆-modified Gaussian condition. In abstract notation, the commutative analog

of the new condition reads

inLvg = (ind(iving))n , (4.8)

or, in components,

nµLvgµν = nρ∂ρ(gδγn
γvδ)nν . (4.9)

The difference with respect to the usual Gaussian condition is that the variation of the

metric g under a diffeomorphism along the direction identified by v is non-zero. We are

therefore choosing a different gauge where, instead of being zero, the normal contribution
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to Lvg is fixed to another specific value. Since the structure of hypersurface deforma-

tions should be gauge independent, we expect the new condition (4.9) to imply the same

hypersurface-deformation brackets as derived in [87] when applied to the ordinary prod-

uct. In App. A, we confirm that this modification indeed does not change the result of

the classical calculation for commutative theories. As a brief argument, we can see that

the classical condition can be modified by our counterterm because the latter is zero when

the conditions for lapse and shift that follow from the original condition are satisfied, in

particular when 0 = nρ∂ρ(N
2) = ind(iving). (The counterterm vanishes “on shell.”)

Using the Cartan identity, we write the modified Gaussian condition as

iv ⋆ dn+ d(iv ⋆ in ⋆ g) + i[n ⋆, v] ⋆ g + (d(iv ⋆ in ⋆ g) ⋆
←−
in) ⋆ n = 0 , (4.10)

where
←−
in highlights the fact that the normal vector is ⋆-contracted with the tensor on the

left of the product, d(iv ⋆ in ⋆ g). Decomposing v = N ⋆ n +M ⋆ X and using dn = 0 as

well as the orthogonality conditions

in ⋆ g ⋆ in = −1 iX ⋆ in ⋆ g = 0 , (4.11)

we find

[n ⋆, N ⋆ n] ⋆ g + [n ⋆, M ⋆ X] ⋆ g = dN + (dN ⋆ in) ⋆ n (4.12)

or

in ⋆ dN ⋆ nµ ⋆ gµν + [n ⋆, M ⋆ X]µ ⋆ gµν = ∂νN + ∂γN ⋆ nγ ⋆ nν . (4.13)

We extract the tangential part by ⋆-multiplying both sides of the equation by gνα ⋆qaα from

the right

[n ⋆, M ⋆ X]a = ∂νN ⋆ gνα ⋆ qaα , (4.14)

and the normal part by ⋆-multiplying both sides of the equation by nν from the right

− nρ ⋆ ∂ρN + [n ⋆, M ⋆ X]µ ⋆ gµν ⋆ n
ν = 0 . (4.15)

The commutator term is equal to

[n ⋆, M ⋆X]µ ⋆ gµν ⋆ n
ν = nρ ⋆ ∂ρ(M ⋆X)µ ⋆ gµν ⋆ n

ν − (M ⋆X)ρ ⋆ (∂ρn
µ) ⋆ gµν ⋆ n

ν . (4.16)

In our Gaussian frame, nα is normalized, geodesic, and has constant components. The

commutator is therefore zero and we have

nν ⋆ ∂νN = 0 . (4.17)

Since the components nν are constant, the ⋆-product does not imply higher derivatives in

this equation. Therefore, we still have a well-posed initial-value problem for lapse N and

shift Ma.

Using a decomposition as in (3.35), we now obtain

[(N1, 0) ⋆, (N2, 0)] = (0, (N1 ⋆ ∂bN2 −N2 ⋆ ∂bN1) ⋆ q
ab) . (4.18)
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For brackets involving tangential vector fields, we have

[(0,Ma
1 )

⋆, (0,Ma
2 )] = (0, [M1 ⋆ X ⋆, M2 ⋆ X]α ⋆ qaα) (4.19)

and

[(N, 0) ⋆, (0,Ma)] = (−LM⋆X ⊲ N, 0) . (4.20)

Therefore, we are able to derive a well-defined HDA in our modified Gaussian frame. It

has the form of the classical version without any correction term other than a generalization

to Moyal space. This means that we find for the ⋆-HDA the same form of the classical

HDA but with the usual point product replaced by the ⋆-product. Note, however, that the

⋆-product implies higher time derivatives which affect the interpretation of the HDA. We

will comment on this implication in more detail in Section 4.4.

We now have a possible candidate for a ⋆-HDA. According to Ref. [17], for instance,

once the deformation of infinitesimal diffeomorphisms has been introduced, the action for

gravity should be written with the requirement of invariance under these ⋆-symmetries.

In particular, the deformed Einstein–Hilbert action should be formulated in terms of star-

products. However, in order to make sure that there is a fully covariant tensor calculus,

we have to return to a discussion of the Leibniz rule.

4.3 Modified Leibniz rule

The demonstration that an action for noncommutative gravity, such as the one introduced

in Ref. [79], is covariant requires an application of the Leibniz rule. In particular, inserting

the Lie derivative δvL in the Lagrangian density L = E ⋆ R in an action

S⋆ =

∫
d4xL =

∫
d4xE ⋆ R , (4.21)

where d4xE is a suitably deformed measure and R is the ⋆-Ricci scalar, should result in a

boundary term. (See, for instance, [79] for details and explicit expressions.)

Assuming the Leibniz rule, the infinitesimal variation of the Lagrangian density under

deformed diffeomorphisms would be given by

δvL = Lv ⊲ (E ⋆ R) = (Lv ⊲ E) ⋆ R+ E ⋆ Lv ⊲ R (4.22)

= (vρ ⋆ ∂ρE + ∂ρv
ρ ⋆ E) ⋆ R+ E ⋆ vρ ⋆ ∂ρR (4.23)

= ∂ρ(v
ρ ⋆ E ⋆ R) + E ⋆ vρ ⋆ ∂ρR− vρ ⋆ E ⋆ ∂ρR , (4.24)

which differs from a total derivative by the non-zero star commutator (E⋆vρ−vρ⋆E)⋆∂ρR.

However, foregoing the Leibniz rule at this point and applying the Lie derivative directly

to the density E ⋆ R does give us a total derivative:

Lv ⊲ (E ⋆ R) = vρ ⋆ ∂ρ(E ⋆ R) + (∂ρv
ρ⋆)(E ⋆ R) (4.25)

= ∂ρ(v
ρ ⋆ E ⋆ R) . (4.26)

The action would then be invariant but the Lie derivative does not agree with (4.22).
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We therefore have to refine our notion of deformed diffeomorphisms, in contrast to the

situation in noncommutative field theories [17, 18], for which there are ⋆-actions invari-

ant under both twisted U(N) transformations with non-trivial coproducts and deformed

U(N) transformations with standard Leibniz rule [21]. The main reason why we tried

to define ⋆-diffeomorphisms with trivial co-multiplication was the desire to mimic what

happens in noncommutative quantum field theories, but we now see that there is a pro-

nounced difference between noncommutative gravity and other noncommutative systems

at a fundamental level.

In our example of a density times the Ricci scalar, the defect in the Leibniz rule was

given by a star commutator of components. We can therefore try to modify the Leibniz

rule by rearranging different factors. We now define

Lv ⊲ (u ⋆ w) := (Lv ⊲ u) ⋆ w +R(u) ⋆ (LR(v) ⊲ w) , (4.27)

where R is defined in (2.27). Together with this deformed Leibniz rule, we also change the

ordering in the action of ⋆-diffeomorphisms on vectors to obtain the new Lie derivative

Lv ⊲ uµ := vρ ⋆ ∂ρu
µ − ∂ρv

µ ⋆ uρ . (4.28)

Now we can prove that uµ⋆uµ transforms as a scalar under deformed diffeomorphisms:

We have

(Lv ⊲ uµ) ⋆ uµ +R(uµ) ⋆ (LR(v) ⊲ uµ)

= (vρ ⋆ ∂ρu
µ − ∂ρv

µ ⋆ uρ) ⋆ uµ +R(uµ) ⋆ (R(vρ) ⋆ ∂ρuµ +R(∂µv
ρ) ⋆ uρ)

= vρ ⋆ ∂ρu
µ ⋆ uµ − ∂ρv

µ ⋆ uρ ⋆ uµ + vρ ⋆ uµ ⋆ ∂ρuµ + ∂µv
ρ ⋆ uµ ⋆ uρ .

(4.29)

The second and the fourth terms in the last line cancel out, and we have

(Lv ⊲uµ)⋆uµ+R(uµ)⋆(LR(v) ⊲uµ) = vρ ⋆∂ρu
µ ⋆uµ+vρ ⋆uµ ⋆∂ρuµ = Lv ⊲(uµ ⋆uµ) . (4.30)

In order to prove that the new Leibniz rule implies a consistent extension of the de-

formed Lie derivative to tensors, we start with the ⋆ product of two vector fields, uµ1 ⋆ uν2 :

Lv ⊲ (uµ1 ⋆ uν2) = (Lv ⊲ uµ1 ) ⋆ uν2 +R(uµ1 ) ⋆ (LR(v) ⊲ u
ν
2)

= vρ ⋆ ∂ρu
µ
1 ⋆ uν2 − ∂ρv

µ ⋆ uρ1 ⋆ u
ν
2 + vρ ⋆ uµ1 ⋆ ∂ρu

ν
2 − ∂ρv

ν ⋆ uµ1 ⋆ uρ2

= vρ ⋆ ∂ρ(u
µ
1 ⋆ uν2)− ∂ρv

µ ⋆ uρ1 ⋆ u
ν
2 − ∂ρv

ν ⋆ uµ1 ⋆ uρ2 = Lv ⊲ T µν (4.31)

with the contravariant 2-tensor T µν := uµ1 ⋆ uν2 . By induction, the claim then follows for
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arbitrary tensors:

Lv ⊲ (uµ1
1 ⋆ uµ2

2 ⋆ · · · ⋆ uµn
n ⋆ w1

ν1 ⋆ · · · ⋆ w
n
νn)

= (Lv ⊲ uµ1
1 ) ⋆ (uµ2

2 ⋆ · · · ⋆ uµn
n ⋆ w1

ν1 ⋆ · · · ⋆ w
n
νn)

+R1(u
µ1
1 ) ⋆ (LR1(v)

⊲ (uµ2
2 ⋆ · · · ⋆ uµn

n ⋆ w1
ν1 ⋆ · · · ⋆ w

n
νn))

= (vρ ⋆ ∂ρu
µ1
1 ) ⋆ (uµ2

2 ⋆ · · · ⋆ uµn
n ⋆ w1

ν1 ⋆ · · · ⋆ w
n
νn)

−(∂ρvµ1 ⋆ uρ1) ⋆ (u
µ2
2 ⋆ · · · ⋆ uµn

n ⋆ w1
ν1 ⋆ · · · ⋆ w

n
νn)

+vρ ⋆ uµ1 ⋆ ∂ρu
µ2
2 ⋆ uµ3

3 ⋆ · · · ⋆ uµn
n ⋆ w1

ν1 ⋆ · · · ⋆ w
n
νn

−∂ρvµ2 ⋆ uµ1
1 ⋆ uρ2 ⋆ u

µ3
3 ⋆ · · · ⋆ uµn

n ⋆ w1
ν1 ⋆ · · · ⋆ w

n
νn

+R1(u
µ1
1 ) ⋆ R2(u

µ2
2 ) ⋆ (LR2R1(v)

⊲ (uµ3
3 ⋆ · · · ⋆ uµn

n ⋆ w1
ν1 ⋆ · · · ⋆ w

n
νn))

= · · · = Lv ⊲ (T µ1µ2...µn
ν1ν2...νn ) (4.32)

with T µ1µ2...µn
ν1ν2...νn := uµ1

1 ⋆ uµ2
2 ⋆ · · · ⋆ uµn

n ⋆ w1
ν1 ⋆ · · · ⋆ wn

νn .

4.4 Deformed diffeomorphisms with deformed Leibniz rule

We have clarified the reason why the Leibniz rule has to be modified when we adopt a

noncommutative multiplication rule, and provided a new definition to resolve the problem.

With this result, we can now focus on the derivation of the hypersurface-deformation

brackets for deformed diffeomorphisms with deformed Leibniz rule as in Eq. (4.27).

Combining the lessons from our previous derivation with the standard Leibniz rule as

well as the new Lie derivative, we now introduce a modified Gaussian condition by requiring

R(nµ) ⋆ (LR(v) ⊲ gµν) = −∂ρ(v
ρ ⋆ nν ⋆ gµρ) ⋆ n

γ ⋆ nρ ⋆ gγν (4.33)

for space-time vector fields v. Using the modified Leibniz rule we can rewrite this equation

as

Lv ⊲ (nµ ⋆ gµν)− (Lv ⊲ nµ) ⋆ gµν = −∂ρ(vρ ⋆ nν ⋆ gµρ) ⋆ n
γ ⋆ nρ ⋆ gγν , (4.34)

and thanks to the Cartan identity, obtain

∂ν(v
ρ ⋆ nµ ⋆ gµρ) + vρ ⋆ (dn)ρν − [v, n]µ⋆ ⋆ gµν = −∂ρ(vρ ⋆ nν ⋆ gµρ) ⋆ n

γ ⋆ nρ ⋆ gγν . (4.35)

Here (dn)ρν ≡ ∂ρ(n
µ ⋆ gµν)− ∂ν(n

µ ⋆ gµρ) vanishes as before. Decomposing vµ = N ⋆ nµ +

Ma ⋆ Xµ
a , we find

− ∂νN − [N ⋆ n, n]µ⋆ ⋆ gµν − [M ⋆X,n]µ⋆ ⋆ gµν = ∂ρN ⋆ nγ ⋆ nρ ⋆ gγν . (4.36)

Projection implies the normal part

−∂νN ⋆ gνα ⋆ nβ ⋆ gαβ − [N ⋆ n, n]α⋆ ⋆ nβ ⋆ gαβ − [M ⋆X,n]α⋆ ⋆ nβ ⋆ gαβ

= ∂ρN ⋆ nγ ⋆ nρ ⋆ gγν ⋆ g
να ⋆ nβ ⋆ gαβ ,

or

−∂νN ⋆ nν −N ⋆ nρ ⋆ ∂ρn
α ⋆ nβ ⋆ gαβ + ∂ρ(N ⋆ nα) ⋆ nρ ⋆ nβ ⋆ gαβ

−[M ⋆X,n]α⋆ ⋆ nβ ⋆ gαβ

= ∂ρN ⋆ nα ⋆ nρ ⋆ nβ ⋆ gαβ .
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We now use nρ ⋆ ∂ρn
µ = 0, cancel out ∂ρN ⋆ nα ⋆ nρ ⋆ nβ ⋆ gαβ , and obtain

− ∂νN ⋆ nν = [M ⋆X,n]α⋆ ⋆ nβ ⋆ gαβ . (4.37)

The commutator on the right is equal to

[M ⋆X,n]α⋆ ⋆ nβ ⋆ gαβ = (M ⋆X)γ ⋆ (∂γn
α) ⋆ nβ ⋆ gαβ −nγ ⋆ ∂γ(M ⋆X)α ⋆ nβ ⋆ gαβ . (4.38)

If we now use the properties of our Gaussian frame, in particular that nα is normalized,

geodesic, and has constant components, the commutator is zero and we arrive at

− ∂νN ⋆ nν = 0 . (4.39)

The tangential part of (4.36) is

−∂νN ⋆ gνα ⋆ qαb − [M ⋆X,n]α⋆ ⋆ qαb − [N ⋆ n, n]α⋆ ⋆ qαb (4.40)

= −∂bN − [M ⋆X,n]α⋆ ⋆ qαb −N ⋆ nρ ⋆ ∂ρn
α ⋆ qαb − ∂ρN ⋆ nα ⋆ nρ ⋆ qαb (4.41)

= ∂ρN ⋆ nα ⋆ nρ ⋆ qαb , (4.42)

which is equivalent to

[M ⋆X,n]a⋆ = −∂bN ⋆ qab . (4.43)

As before, the equations for lapse and shift provide a well-posed initial-value problem.

We can now compute the bracket

[v1, v2]
µ
⋆ = [N1 ⋆ n,N2 ⋆ n]

µ
⋆ + [N1 ⋆ n,M2 ⋆ X]µ⋆ (4.44)

+[M1 ⋆ X,N2 ⋆ n]
µ
⋆ + [M1 ⋆ X,M2 ⋆ X]µ⋆

= N1 ⋆ n
ρ ⋆ ∂ρ(N2 ⋆ n

µ)− ∂ρ(N1 ⋆ n
µ) ⋆ N2 ⋆ n

ρ

+N1 ⋆ n
ρ ⋆ ∂ρ(M2 ⋆ X

µ)− ∂ρ(N1 ⋆ n
µ) ⋆ M2 ⋆ X

ρ +M1 ⋆ X
ρ ⋆ ∂ρ(N2 ⋆ n

µ)

−∂ρ(M1 ⋆ X
µ) ⋆ N2 ⋆ n

ρ + [M1 ⋆ X,M2 ⋆ X]b⋆ ⋆ X
a
b . (4.45)

Choosing Gaussian vector fields with either zero lapse N or shift Ma functions we can

decompose the above brackets as a set of three distinct commutators [(0,M1), (0,M2)]⋆,

[(0,M1), (N2, 0)]⋆ and [(N1, 0), (N2, 0)]⋆. If both lapse functions are zero, we find

[(0,M1), (0,M2)]⋆ = (0, [M1 ⋆ X,M2 ⋆ X]a⋆) . (4.46)

For both shift vector fields equal to zero, we obtain

[(N1, 0), (N2, 0)]⋆ = (0, N1 ⋆ q
ab ⋆ ∂bN2 − ∂bN1 ⋆ N2 ⋆ q

ab) . (4.47)

The remaining bracket reads

[(0,M), (N, 0)]⋆ = (LM⋆X ⊲ N, 0) . (4.48)

It is perhaps surprising that the overall structure of the bracket between N and Ma

is preserved despite the noncommutativity of coordinates. In this regard, one can note
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that the ⋆-Lie bracket between two tangential deformations still gives us a tangential hy-

persurface deformation, the one involving a normal and a tangential deformations gives a

normal displacement, and the bracket between two normal deformations results in a spatial

shift. The only type of modifications that appear with respect to the standard hypersurface

brackets are higher derivative terms. Those terms are implicit in the above expressions,

but it is clear that such terms appear as soon as we expand the Moyal star product by

powers of θ.

Although the brackets bear a formal resemblance with the classical ones, their detailed

form is markedly different. The main reason is the non-locality of the ⋆-product, which

includes higher derivatives in space-time. In the noncommutative HDA brackets as written,

we therefore have time derivatives of N , Ma and the inverse spatial metric qab, which,

unlike those of the constant nµ, are in general non-zero. Since the brackets cannot contain

space-time data, we should interpret the ⋆-products in them as follows: Working in the

Gaussian frame, time derivatives of N and Ma can be replaced by spatial derivatives using

the equations (4.39) and (4.43). Any first-order time derivative of qab can be expressed

as a linear combination of extrinsic-curvature components Kab, while higher-order time

derivatives of qab are related to higher-order momenta in the Ostrogradsky treatment of a

canonical higher-derivative theory. Without a specific noncommutative action, we cannot

write these terms explicitly, but rather leave the brackets in the form (4.47) with implicit

higher-derivative terms.

We conclude that the base manifold of the noncommutative HDA should contain not

only the spatial metric but the entire phase space of a higher-derivative metric theory.

The presence of extrinsic curvature among these variables is reminiscent of holonomy mod-

ifications in models of loop quantum gravity, but the explicit dependence is, in general,

different (see e.g. [97, 98]).

5 Conclusions

We have studied infinitesimal diffeomorphisms on noncommutative manifolds equipped

with a non-standard multiplication rule in terms of ⋆-products. Previous studies on non-

commutative formulations of gravity (in particular [79, 80]) succeeded in twisting the group

of 4-dimensional diffeomorphisms, thereby achieving a deformation of GR symmetries in

the sense of Drinfeld twists [37, 38]. Nonetheless, as already pointed out in the literature

and further stressed in this work, it remains unclear whether diffeomorphisms on non-

commutative spaces should be introduced by means of twisting or explicitly deforming

their action, as it is the case for ⋆-gauge transformations in noncommutative extensions of

quantum field theories.

The study of the algebra of hypersurface deformations, generating diffeomorphisms if

we make a 3 + 1 splitting of the 4-manifold, can provide additional insights into general

covariance in noncommutative gravity as well as on the counting of physical degrees of

freedom of the theory. Our analysis is one of only a few in the context of canonical

formulations of noncommutative gravity. In addition to shedding some light on long-

standing questions in noncommutative gravity, it might also help in making contact with
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other recently proposed modifications of the HDA [97–104]. One possible point of contact

is the presence of extrinsic curvature as one of the coordinates on the base manifold of a

noncommutative HDA.

By using a recently developed approach to the derivation of the HDA [87], we have

shown a constructive method to derive the brackets between spatial and time components

of Gaussian vector fields when functions and tensors are multiplied with a noncommutative

⋆-product. This application is conceptually different from the derivation in classical general

relativity given in [87] because we cannot take for granted that there is a covariant theory

with a well-defined HDA on noncommutative manifolds. We therefore had to demonstrate

that the frame of a Gaussian system, used in [87], can be suitably generalized to specific

types of noncommutativity. After doing this, we derive well-defined HDAs, which implies

that there are infinitesimal space-time transformations that allow us to change the frame.

In this sense, we have demonstrated the covariance of such theories, even though we did

not use an explicit action principle.

In particular, we have studied both the HDA encoding twisted diffeomorphisms and the

deformations of the HDA produced by what we call deformed or ⋆-diffeomorphisms. In the

former case, we have found, not surprisingly, that the brackets are unmodified compared

with the classical algebra of GR gravitational constraints. This result confirms some of the

previous statements that appeared in the literature on twisted gravity [79].

In the analysis of the latter case — deformed diffeomorphisms — we did not have

any guidance from established results. Thus, building on the analogy with ⋆-U(1) (or in

general ⋆-U(N)) gauge theories, we first defined deformed diffeomorphisms with a suitably

deformed action on single fields but retaining the Leibniz rule in their action on the ⋆-

product of two or more functions. We were able to overcome the technical challenges

represented by the correction terms to the HDA brackets, but eventually recognized a major

obstacle to the implementation of a consistent noncommutative differential calculus where

diffeomorphism transformations have a trivial coalgebra. This forced us to deform the

coproducts of ⋆-diffeomorphisms. As a result, we have reached a meaningful deformation

of the HDA for deformed diffeomorphisms without pathological correction terms and with

a consistent differential calculus suitably adapted to ⋆-products.

While formally similar to the classical HDA, noncommutative HDAs based on de-

formed diffeomorphisms show crucial differences in their structure owing to non-locality

(in particular in time) of ⋆-products. We hope that this result may serve as a base for

an alternative formulation of noncommutative gravity in terms of the deformed diffeomor-

phisms put forward here, instead of relying on the symmetry principle of twisting as done

so far. The path we followed here provides a simplified way to get insight into how general

covariance might be affected by ⋆-products or other possible deformations.

For twisted diffeomorphisms we have also been able to discuss straightforwardly the

flat-spacetime (or Minkowski) limit since we had no deformations of the HDA. On the con-

trary, the study of the Minkowski regime of the deformed HDA encoding ⋆-diffeomorphisms

remains an open challenge which should be of particular interest both from the perspective

of relating ⋆-product corrections to the non-linear Poincaré transformations of noncom-

mutative spacetimes [64, 65] and also to have a better understanding of what general
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modifications of the HDA should affect the Poincaré algebra.
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A Modified Gaussian condition: Classical case

In this appendix, we show that a suitable modification (4.9) of the Gaussian system still

results in the usual classical HDA. We begin with

nµLvgµν = nρ∂ρ(gδγn
γvδ)nν . (A.1)

and write the Lie derivative explicitly:

nµvσ∂σgµν + nµgµσ∂νv
σ + nµgσν∂µv

σ = nρ∂ρ(gδγn
γvδ)nν , (A.2)

or, equivalently,

∂ν(gµσn
µvσ)− vσ∂ν(gµσn

µ) + vσ∂σ(gµνn
µ)− vσgµν∂σn

µ + nµgσν∂µv
σ = nρ∂ρ(gδγn

γvδ)nν .

Using (dn)σν := ∂σ(gµνn
µ)− ∂ν(gµσn

µ) and [n, v]µ = nρ∂ρv
µ − vρ∂ρn

µ, we obtain

∂ν(gµσn
µvσ) + vσ(dn)σν + [n, v]µgµν = nρ∂ρ(gδγn

γvδ)nν .

If we choose the metric such that

ds2 = −dt2 + qabdx
adxb , (A.3)

we have dn = d2t = 0. Although our Gaussian condition has been modified, the metric

(A.3) is consistent with the gauge choice as shown by the final result, in particular Eq. (A.7).

Moreover,

∂ν(gµσn
µvσ) + [n, v]µgµν = nρ∂ρ(gδγn

γvδ)nν . (A.4)

Decomposing v as vµ = Nnµ +Mµ we obtain

− ∂νN + [n,M ]µgµν = −nρ∂ρNnν . (A.5)

Let us now find the normal and tangential components of the above equality. For the

normal we have

− nν∂νN + [n,M ]νnν = nρ∂ρN , (A.6)

and thus

nν∂νN = 0 (A.7)
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because [n,M ] does not have a normal component. For the tangential part, we obtain

[n,M ]a = qab∂bN . (A.8)

We are now ready to compute the bracket between two vector fields:

[v1, v2]
µ = (N1LnN2 −N2LnN1 + LM1N2 − LM2N1)n

µ

−N2[n,M1] +N1[n,M2] + [M1,M2]
µ

= (N1n
ρ∂ρN2 −N2n

ρ∂ρN1 +M b
1∂bN2 −M b

2∂bN1)n
µ

+N1q
ab∂bN2 −N2q

ab∂bN1 + [M1,M2]
a

= (M b
1∂bN2 −M b

2∂bN1)n
µ + qab(N1∂bN2 −N2∂bN1) ,

where we used Eqs. (A.7) and (A.8). Finally, we can extract the normal and tangential

components of the brackets:

[(0,M1), (0,M2)] = (0,LM1M2) (A.9)

[(N1, 0), (0,M2)] = −(LM2N1, 0) (A.10)

[(N1, 0), (N2, 0)] = (0, qab(N1∂bN2 −N2∂bN1)) . (A.11)

These are the brackets of Dirac’s hypersurface-deformation algebroid.
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[113] J. Mielczarek, T. Trześniewski, Spectral dimension with deformed spacetime

signature,Phys. Rev. D 96, 024012 (2017)[arXiv:1612.03894].

[114] Henrique Gomes, Vasudev Shyam, Extending the rigidity of general

relativity,J. Math. Phys. 57, 112503 (2016)[arXiv:1608.08236].

[115] J. E. Moyal, Quantum mechanics as a statistical theory,Proc. Cambridge Phil. Soc. 45, 99 (1949).

[116] P. Schupp, Quantum groups, noncommutative differential geometry and applications,

[arXiv:hep-th/9312075].

[117] F. Koch, E. Tsouchnika, Construction of θ-Poincare algebras and their invariants on

Mθ,Nucl. Phys. B 717, 387 (2005)[arXiv:hep-th/0409012].

[118] F. Lizzi, P. Vitale, Gauge and Poincare’ Invariant Regularization and Hopf

Symmetries,Mod. Phys. Lett. A 27, 1250097 (2012)[arXiv:1202.1190 ].

[119] S. Galluccio, F. Lizzi, P. Vitale, Translation Invariance, Commutation Relations and

Ultraviolet/Infrared Mixing,JHEP 0909, 054 (2009)[arXiv:0907.3640].

[120] F. Ardalan, H. Arfaei, M. Ghasemkhani, N. Sadooghi, Gauge Invariant Cutoff

QED,Phys. Scripta 03, 035101 (2013)[arXiv: 1108.3215].

[121] P.G.N. de Vegvar, Commutative deformations of general relativity: nonlocality, causality, and dark

matter,Eur. Phys. J. C 77, 50 (2017) [arXiv:1605.06011].

– 35 –

http://dx.doi.org/ 10.1088/0264-9381/27/14/145009 
http://arxiv.org/abs/1001.3292
http://dx.doi.org/ 10.1088/1475-7516/2015/05/051 
http://arxiv.org/abs/1404.1018
http://dx.doi.org/10.1103/PhysRevD.87.044039
http://arxiv.org/abs/1210.6869
http://dx.doi.org/ 10.1103/PhysRevD.88.044028 
http://arxiv.org/abs/1204.0211
http://dx.doi.org/10.1103/PhysRevD.95.045001
http://arxiv.org/abs/1608.01667
http://dx.doi.org/ 10.1007/JHEP03(2017)138 
http://arxiv.org/abs/1612.05632
http://dx.doi.org/10.1103/PhysRevD.87.044044 
http://arxiv.org/abs/1212.4773
http://dx.doi.org/10.1103/PhysRevD.95.024028 
http://arxiv.org/abs/1605.00497
http://dx.doi.org/ 10.1103/PhysRevD.94.084044 
http://arxiv.org/abs/1606.03085
http://arxiv.org/abs/1707.05017
http://dx.doi.org/10.1103/PhysRevD.95.044005 
http://arxiv.org/abs/1610.07865
http://dx.doi.org/10.1209/0295-5075/108/40003 
http://arxiv.org/abs/1304.2208 
http://dx.doi.org/10.1155/2016/9897051 
http://arxiv.org/abs/1605.05979
http://dx.doi.org/10.1103/PhysRevD.96.024012 
http://arxiv.org/abs/1612.03894
http://dx.doi.org/10.1063/1.4967951
http://arxiv.org/abs/1608.08236
http://dx.doi.org/10.1017/S0305004100000487
http://arxiv.org/abs/hep-th/9312075
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.019 
http://arxiv.org/abs/hep-th/0409012
http://dx.doi.org/10.1142/S0217732312500976 
http://arxiv.org/abs/1202.1190 
http://dx.doi.org/10.1088/1126-6708/2009/09/054 
http://arxiv.org/abs/0907.3640
http://dx.doi.org/10.1088/0031-8949/87/03/035101
http://arxiv.org/abs/ 1108.3215
http://dx.doi.org/10.1140/epjc/s10052-017-4605-3 
http://arxiv.org/abs/1605.06011


[122] N. Deruelle, M. Sasaki, Y. Sendouda, D. Yamauchi, Hamiltonian formulation of f(Riemann)

theories of gravity,Prog. Theor. Phys. 123, 169 (2010)[arXiv:0908.0679].

[123] P. Xu, Quantum groupoids,Commun. Math. Phys. 216, 539 (2001)[arXiv:math/9905192].

[124] M. Kontsevich, Deformation quantization of Poisson manifolds.

1.,Lett. Math. Phys. 66, 157 (2003)[arXiv:q-alg/9709040].

[125] G. Amelino-Camelia, S. Majid, Waves on noncommutative space-time and gamma-ray

bursts,Int. J. Mod. Phys. A 15, 4301 (2000)[arXiv:hep-th/9907110].

[126] G. Amelino-Camelia, M. Arzano, Coproduct and star product in field theories on Lie algebra

noncommutative space-times,Phys. Rev. D 65, 084044 (2002)[arXiv:hep-th/0105120 ].

[127] P. Kosinski, J. Lukierski, P. Maslanka, Local field theory on kappa Minkowski space, star products

and noncommutative translations,Czech. J. Phys. 50, 1283 (2000)[arXiv: hep-th/0009120 ].

[128] C. Chryssomalakos, E. Okon, Star product and invariant integration for Lie type noncommutative

spacetimes,JHEP 0708, 012 (2007)[arXiv:0705.3780 ].

– 36 –

http://dx.doi.org/10.1143/PTP.123.169
http://arxiv.org/abs/0908.0679
http://dx.doi.org/10.1007/s002200000334
http://arxiv.org/abs/math/9905192
http://dx.doi.org/10.1023/B:MATH.0000027508.00421.bf 
http://arxiv.org/abs/q-alg/9709040
http://dx.doi.org/10.1142/S0217751X00002777
http://arxiv.org/abs/hep-th/9907110
http://dx.doi.org/ 10.1103/PhysRevD.65.084044
http://arxiv.org/abs/hep-th/0105120 
http://dx.doi.org/10.1023/A:1022821310096
http://arxiv.org/abs/ hep-th/0009120 
http://dx.doi.org/10.1088/1126-6708/2007/08/012 
http://arxiv.org/abs/0705.3780 

	1 Introduction
	2 Mathematical preliminaries
	2.1 Lie algebroids
	2.2 Hopf algebras and noncommutative calculus
	2.2.1 Hopf algebras
	2.2.2 Noncommutative calculus
	2.2.3 Twisted and deformed diffeomorphisms


	3 Twisted diffeomorphisms
	3.1 Lie derivative
	3.2 Twisted Gaussian system
	3.3 Gaussian condition
	3.4 Decomposition
	3.5 Brackets

	4 Deformed diffeomorphisms
	4.1 Deformed diffeomorphisms with trivial coalgebra
	4.2 Modified Gaussian condition
	4.3 Modified Leibniz rule
	4.4 Deformed diffeomorphisms with deformed Leibniz rule

	5 Conclusions
	A Modified Gaussian condition: Classical case

