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Abstract

Vibro-impact dynamics has been, and still is, the subject of growing interest
for its practical and theoretical significance. Many practical engineering problems
involve mechanical components or structures repeatedly colliding with one another
or with obstacles during their motion. From a theoretical point of view, impact
dynamics is highly interesting for the complex nonlinear behaviors and phenomena
exhibited by vibro-impact systems, even the simplest. Despite the vibro-impact
dynamics has been the subject of intense study, few works deal with the topic
resorting to both experimental and numerical analyses. Furthermore, there are still
some aspects that, to date, have been little deepened and deserve more attention.

The aim of this Ph.D. thesis is to characterize, in a systematic and transversal
way, the nonlinear non-smooth response of vibro-impact systems with two-sided
constraints. The study was inspired by the practical problem of large horizontal
seismic-induced displacements in base-isolated structures. These displacements can
damage the isolation system itself or can lead to pounding with surrounding moat
walls or adjacent structures if the available seismic gap is not sufficient.

The problem was studied considering a Single-Degree-Of-Freedom (SDOF) system
with two-sided deformable and dissipative constraints (bumpers) under harmonic
base excitation and resorting to extensive parametric analyses, of both experimental
and numerical nature, continuously interacting and feeding each other throughout the
doctoral course. Shaking table tests were carried out on a small-scale physical model,
using a rich sensor apparatus, and considering different values of gap amplitude,
peak table acceleration and different bumpers. The numerical simulations were
performed considering a relatively simple model, in which the impact phenomenon
was modeled by a viscoelastic law, and using a Matlab code, specifically created for
this purpose. This made it possible to carry out extensive parametric investigations.
The adoption of a soft impact model allowed to describe the deformation and the
recovery of the bumpers, otherwise not observable by resorting to the coefficient of
restitution.

The influence of the fundamental parameters which characterize the problem
on the system’s response was first investigated. The numerical model, despite its
relative simplicity, satisfactorily reproduced the experimental results and allowed to
extend the range of investigation, compared to the experimental tests. A wide variety
of behaviors and phenomena was observed. Different types of primary resonance
(without hysteresis, with right or left hysteresis), secondary resonances (without
hysteresis, with right or left hysteresis or of non-regular type), non-symmetric
responses, multiple impacts, periodic, quasi-periodic and chaotic motion, were
highlighted and investigated resorting to different types of representations. The
occurrence of the (primary and secondary) grazing phenomenon, and its relationship
with some of the observed scenarios, was also highlighted. The transition from a
hardening-like to a softening-like behavior was experimentally observed passing from
positive to small negative gaps, through the zero-gap configuration.

The study of the scenarios, besides being interesting from a theoretical point
of view, highlighted possible issues associated with the occurrence of impact. This
enabled to make interesting considerations on vibration control. By properly selecting
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the bumpers’ parameters (gap and mechanical properties), it is possible to guide the
system’s response to reach specific objectives, avoiding some undesirable scenarios
and encouraging others, and thus exploiting the occurrence of impact with beneficial
effects. Some indications of optimal design of the bumpers are provided to reduce
both the displacement and the acceleration of the mass, compared to the case without
obstacles, without possibly reducing the vibration isolation frequency range.
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Sommario

Da diversi anni ormai, la dinamica con impatto è oggetto di crescente interesse da
parte della comunità scientifica per la sua rilevanza teorica ed applicativa. In molti
problemi concreti tipici dell’ingegneria, e non solo, si verificano impatti ripetuti tra
componenti meccaniche o strutture. D’altra parte, i sistemi che impattano, anche i
più semplici, mostrano una grande varietà di comportamenti dinamici estremamente
interessanti dal punto di vista teorico. Nonostante l’attenzione rivolta alla tematica
della dinamica con impatto, sono pochi gli studi che affrontano il problema sia dal
punto di vista sperimentale che teorico. Inoltre, ci sono alcuni aspetti che, ad oggi,
sono stati poco approfonditi e che quindi meritano maggiore attenzione.

L’obiettivo di questa tesi di dottorato è caratterizzare, in una maniera sistematica
e trasversale, la risposta non lineare di sistemi soggetti ad impatto. Lo studio è stato
ispirato dal problema concreto ed attuale dei grandi spostamenti nelle strutture
isolate alla base. Tali spostamenti possono, da un lato, deformare eccessivamente, o
addirittura danneggiare, il sistema di isolamento. Dall’altro lato, se il gap sismico
disponibile non è sufficiente, possono provocare l’urto tra il sistema isolato ed
eventuali strutture adiacenti.

Il problema è stato studiato considerando un sistema ad un grado di libertà
(SDOF) soggetto ad un’azione armonica applicata alla base, il cui moto è limitato
da due ostacoli deformabili e dissipativi (bumpers). Lo studio è stato condotto
attraverso estese indagini parametriche, di carattere sia numerico che sperimentale,
che hanno interagito e si sono alimentate a vicenda durante tutta la durata del
dottorato. Le prove sperimentali sono state condotte su un modello fisico in scala
ridotta del sistema ed utilizzando la tavola vibrante. Sono state utilizzate diverse
tipologie di sensori e sono stati investigati diversi valori del gap, del valore di
picco dell’accelerazione e diversi bumpers. Le analisi numeriche sono state condotte
considerando un modello relativamente semplice, nel quale l’impatto è stato modellato
con un legame visco-elastico, ed utilizzando un codice Matlab appositamente creato
per lo scopo. L’adozione del modello visco-elastico per la forza di contatto ha
permesso di descrivere la deformazione ed il recupero dei bumpers, cosa non possibile
utilizzando il coefficiente di restituzione.

Nella prima parte dello studio condotto durante il dottorato, è stata investigata
l’influenza dei principali parametri coinvolti sulla risposta del sistema. Il modello
numerico, nonostante la sua relativa semplicità, si è dimostrato in grado di riprodurre
i risultati sperimentali in maniera soddisfacente. Per questo motivo è stato sfruttato
per estendere il campo di indagine, considerando altri valori dei parametri non
testati in laboratorio. Le indagini numeriche hanno permesso di evidenziare una
grande varietà di comportamenti e fenomeni. Sono stati osservati: diversi tipi di
risonanze primarie (senza isteresi, con isteresi a destra o a sinistra) e secondarie
(senza isteresi, con isteresi a destra o a sinistra, oppure non regolari), risposte
non simmetriche, impatti multipli, risposte periodiche, quasi-periodiche e caotiche.
Questi aspetti sono stati successivamente investigati ricorrendo a diversi tipi di
rappresentazione. Il fenomeno del grazing, distinto in primario e secondario, è stato
inoltre evidenziato e messo in relazione con alcuni degli scenari osservati. Il passaggio
da un comportamento di tipo hardening ad un comportamento di tipo softening è
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stato osservato sperimentalmente passando da gaps positivi a piccoli gaps negativi,
attraverso la configurazione con gap nullo.

Lo studio parametrico degli scenari, oltre ad essere interessante dal punto di vista
teorico, ha permesso di evidenziare possibili problemi legati al verificarsi dell’impatto
e di fare degli interessanti ragionamenti sul controllo delle vibrazioni. Scegliendo
opportunamente le caratteristiche geometriche e meccaniche dei bumpers è possibile
guidare la risposta del sistema in modo tale da evitare alcuni scenari e favorirne altri,
sfruttando in questo modo il verificarsi dell’impatto con effetti benefici. Sono state
fornite anche delle indicazioni preliminari sulla progettazione ottimale dei bumpers
al fine di ridurre sia lo spostamento che l’accelerazione della massa rispetto al caso
senza bumpers.
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List of Symbols

The principal symbols used in this thesis are listed below, together with their
meaning. All symbols are defined, within the text, where they first appear. It can
happen that the same symbol may denote more than one quantity, but the meaning
should be clear when read in context.

Dimensional symbols

Ω Base acceleration circular frequency

a(t) Absolute acceleration of the mass

AG Base acceleration amplitude

At(t) Base acceleration

C Viscous damping coefficient of the damper

Cj Viscous damping coefficient of the bumpers (j = R, L)

Ea0 Maximum excursion of the absolute acceleration of the mass in free flight
condition

Ea Excursion of the absolute acceleration of the mass

Ed0 Maximum excursion of the relative displacement of the mass in free
flight condition

Ed Excursion of the relative displacement of the mass

f Frequency

F ∗ Maximum force acting on the SDOF system in free flight condition

FI Inertia force

Fj(t) Contact force (j = R, L)

Gj(t) Clearance function (j = R, L)

G0j Initial gap (j = R, L)

K Elastic stiffness of the damper
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G Total initial gap

Dimensionless symbols

α(τ) Dimensionless absolute acceleration of the mass

β Frequency ratio

β1 Value of the frequency ratio corresponding to the lower limit of the
geometric impact range

β2 Value of the frequency ratio corresponding to the upper limit of the
geometric impact range

β3 Downward jump frequency ratio

βc Value of the frequency ratio, over which, when impact occurs, the
transmitted absolute acceleration is lower than the ground acceleration

βRa(ξ) Absolute acceleration resonant frequency ratio in the linear case

βRd(ξ) Relative displacement resonant frequency ratio in the linear case

βR Absolute acceleration resonant frequency ratio when impact occurs

∆α Excursion of the absolute acceleration of the mass

∆α0 Maximum value of the excursion of the absolute acceleration of the mass
in free flight condition

∆fB Excursion of the contact force

∆q Excursion of the relative displacement of the mass

∆q0 Maximum value of the excursion of the relative displacement of the mass
in free flight condition

∆qB Excursion of the deformation of the bumpers

δ Dimensionless total initial gap
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η∗a Value of the normalized excursion of the absolute acceleration of the
mass in resonance condition

ηB Normalized excursion of the deformation of the bumpers

η∗B Value of the normalized excursion of the deformation of the bumpers in
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ηd,st Normalized excursion of the static displacement of the mass

ηd Normalized excursion of the relative displacement of the mass

η∗d Value of the normalized excursion of relative displacement of the mass
in resonance condition

ηF Normalized excursion of the contact force

η∗F Value of the normalized excursion of the contact force in resonance
condition

ηj Normalized maximum deformation of the bumper (j = R, L)

γj Damping ratio (j = R, L)

λc Value of the stiffness ratio exceeded which the occurrence of impact
modifies the response of the system, compared to the free flight condition,
also for β >

√
2

λH Value of the stiffness ratio, exceeded which, a primary hysteresis region
is observed in the Pseudo-Resonance Curves

λopt Value of the stiffness ratio corresponding to the optimal condition (mini-
mum value of η∗a)

λj Stiffness ratio (j = R, L)

ω Natural circular frequency of the SDOF system
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Chapter 1

Introduction

1.1 Dynamics with impact

Vibro-impact dynamics has been, and still is, a subject of growing interest in
the engineering literature for its practical and theoretical significance. First of
all, mechanical collisions are ubiquitous in manufacturing, engineering, sports and
everyday life. Many practical (biomedical, mechanical, civil, . . . ) systems possess
mechanical components repeatedly colliding with one another or with obstacles
during their motion [27, 110, 203, 218]. Almost any mechanical device must have
space between its components, to allow for variability in the manufacture of the
components, for the effects of thermal expansion, or for the movement of components.
Potential collisions between components can cause noise, disturbing vibrations, wear
and fatigue, leading to reduced efficiency or even failure of the device. On the
other hand, the occurrence of impacts can be suitably exploited to reduce structural
vibrations with beneficial effects. Another widespread problem is the study of the
effects of earthquakes, of sea waves or of other forms of excitation causing two or
more structures to repeatedly collide. From a theoretical point of view, impact
dynamics is highly interesting, because vibro-impact systems, even the simplest,
exhibit complex nonlinear nonsmooth dynamics and a wide variety of phenomena,
characterized by different types of resonances, instabilities, bifurcations, periodic and
quasi-periodic trajectories and chaotic regimes, that need to be carefully investigated
[205,206,257].

1.2 Practical applications of vibro-impact dynamics

The recent scientific literature has shown a growing interest in the practical ap-
plications of the vibro-impact dynamics. In this section and in the following one
(Sect. 1.3), an overview of some of well-known applications is provided. Greater
emphasis is given to some of these applications, close to the study presented in this
thesis with regard to the methodological approach (formulations, modeling, analy-
sis and control techniques), namely the endoscopic vibro-impact capsule systems
(Sect. 1.2.1), the drill string vibrations (Sect. 1.2.2). An entire section is finally
dedicated to structural pounding (Sect. 1.3), in the context of which this research
work is framed.



2 1. Introduction

1.2.1 Endoscopic capsule

Impacts occur in the capsule systems used in clinic endoscopy to inspect the surface
lining of the intestine in the human body, an anatomical site previously considered
to be inaccessible to clinicians. The dynamics of this system has been the subject of
several works, of both numerical and experimental nature [87, 160,163–166,293,294].
In these studies the endoscopy capsule is typically modeled by a two-degree-of-freedom
system, consisting of rigid capsule and a movable internal mass, the latter driven by
a harmonic force, with one-sided or two-sided soft constraints (Fig. 1.1). The impact
occurs when the relative displacement of the internal mass and the capsule exceeds
the gap between them. The studies focused on exploring the dynamics of the system
(bifurcation phenomena, co-existing attractors, . . . ) and its performance (progression
speed, energy efficiency, . . . ) under various system and control parameters, such as
the frequency and the magnitude of excitation, the natural frequency of the inner
mass, the gap between the inner mass and the constraint, the capsule’s geometry,
the constraints’ properties and the friction models.

(a) (b)

Figure 1.1. Models of the vibro-impact capsule systems, with: a double-sided constraints;
b one-sided constraint [293].

1.2.2 Drill string vibrations

Non-smooth dynamics is observed also in the drilling rig used in the oil and gas
industry for creation of the wellbore [53,57,65,131,132,141,155,156,158,159,161,
198, 267]. A typical drill string system, which is the fundamental part of the rig,
consists of a drill bit, the drill collars, and the drill pipes (Fig. 1.1). The drill bit,
which is located at the bottom of the wellbore, is used to break up rock formations,
while the drill collars are used to apply weight to the drill bit [159]. During drilling,
the interaction between the drill-string and the rock causes alternating contact and
noncontact phases, leading to detrimental axial, torsional and flexural vibrations.
These vibrations may cause catastrophic failures in drill strings or could lead to the
wear of expensive equipment. The behavior of the system, typically studied resorting
to reduced order models, is highly nonlinear, due to dry friction, loss of contact, and
collisions, and shows rich and complex dynamics, characterized by the occurrence of
bifurcations, multistability phenomena, aperiodic dynamics and chaotic motion.

1.2.3 Other applications

There are many other practical applications of vibro–impact dynamics including
inertial shakers [282, 283], pile drivers [178], vibration hammers [290], forming
machines [175], geared systems [58, 169, 170, 219, 233] (Fig. 1.3a), ground moling
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Figure 1.2. Schematic view of a typical
drilling rig [132].

[214], fuel rods [107], sloshing impact [70, 220, 303], impact of ships with fenders,
barriers or floating ice [83, 84, 111] (Fig. 1.3b), woodpecker toy [149,218] (Fig. 1.3c),
collision of human vocal folds [88,104,110,128,145] to mention a few.

(b)(a) (c)

Figure 1.3. a One-stage gear rattling model [218]; b ship in roll motion with one-sided ice
barrier impact [83,84]; c woodpecker toy model [149].

1.3 Structural pounding

In earthquake-prone areas, civil structures can experience exceptional loading condi-
tions that may result in wide undesirable losses, significant damage or even total
collapse of the structures. In metropolitan areas, due to limited separation distance
between adjacent structures, the large horizontal displacements resulting from the
seismic excitation, may cause the collision between adjacent structures. Such colli-
sions, known as seismic-induced pounding, may occur between adjacent conventional
buildings, base-isolated highway bridges, base-isolated building and the surrounding
moat wall, base-isolated building and adjacent structures, isolated equipment con-
fined by physical constrains. The consequences of pounding can range from local
slight nonstructural to serious structural damage or even collapse. A sufficiently
extensive and in-depth review can be found in [14], where distinction is made be-
tween Pounding of ADJacent Structures (PADJS) and Pounding of Base-Isolated
Structures (PBIS).
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1.3.1 Adjacent structures

The pounding between adjacent buildings usually generate large impact forces,
displacements and short duration acceleration pulses which may result in significant
damage to the colliding buildings [196]. Furthermore, it may be unfavorable to the
response of equipment due to the considerable influence on acceleration and, thus,
on floor response spectra [51]. The effects of pounding depend on the vibration
characteristic of the adjacent buildings, the input excitation characteristic, the gap
size, coefficient of restitution, impact velocity, and stiffness of impact spring element
[201]. In particular, pounding can cause high overstresses mainly when the colliding
buildings have significantly different heights, periods or masses [7]. The parametric
investigation presented in [6] shows that in a block of several adjacent structures, the
end structures experience almost always substantial increases in their response while
for interior structures the opposite often happens. When the colliding buildings
have the same floor heights usually a slab-to-slab collision occurs (Fig. 1.4a), while
when the colliding buildings have different floor heights a slab-to-column collisions
take place (Fig. 1.4b) causing high shear forces developed at the mid-height of the
impacted column [196].

(a) (b)

Figure 1.4. Pounding between adjacent structures: a slab-to-slab collision; b slab-to-
column collision [196].

1.3.2 Base-isolated systems

In the context of civil engineering, seismic isolation represents one of the most
applied, reliable and effective, passive control strategies to mitigate the dynamic
response of both new and existing structures [35,106,121,130,133–136,244,246,253],
bridges [36, 62, 120,143,167,193,212,287], strategic facilities [38, 284], nonstructural
components and equipment [5, 44, 73, 80, 92, 116, 168, 228, 229, 255], works of art
[37, 49, 245]. The aim of base isolation is to uncouple the motion of the structure
from that of the ground by introducing some type of support that isolates it
from the shaking ground, thus limiting the energy input into the system and
protecting it from damaging. By means of its flexibility and energy absorption
capability, the isolation system partially reflects and partially absorbs some of the
earthquake input energy before this energy can be transmitted to the structure.
Furthermore, isolation systems possess re-centering capability to bring back the
structure to its original position at the end of the earthquake. The flexibility
introduced by base isolation increases the fundamental vibration period of the
structure. Consequently, seismically isolated structures are expected to experience
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large horizontal displacements relative to the ground especially under near-fault (NF)
earthquakes, which are characterized by one or more intense long-period velocity
and displacement pulses. Such large displacements, concentrated in the isolation
system, are accommodated by providing a sufficient seismic gap around the isolated
structure. During severe seismic excitations, these displacements, if excessive, can
permanently deform or seriously damage the isolation system itself or can lead to
pounding with the surrounding moat walls or adjacent structures, if the available
seismic gap is not sufficient because of practical constraints. Pounding may result in
local structural damage, excitation of higher modes and substantial increase of storey
accelerations, which can be detrimental, not only for the structure itself, but also
for any sensitive equipment housed in it. Typically, the isolation system is placed on
top of piers and abutments, for what concerns the bridges, and at the foundation
level, for what concerns the buildings. However, also different configurations can
be encountered, such as roof isolation [260, 268, 269] that utilizes the tuned mass
damper concept, inter-story isolations, in which the isolation systems is placed at
intermediate locations along the height of the building [230,234,276–278,313] and
floor isolation [8,124], which can be an efficient and cost-effective mean for providing
seismic protection for precision equipment or delicate works of art.

Bridges

The seismic performance of highway and railway bridges can be significantly improved
by employing base-isolation devices, placed on top of piers and abutments. The
augmented system deformability, provided by the isolation system leads to an
increase of displacements under earthquake loading. This may be detrimental for
railway structures because the lateral displacements of the ground can lead to
displacements between the decks and between the decks and abutments along the
transversal direction, which can permanently deform the rail tracks, impairing the
serviceability of the bridge [62] (Fig. 1.5a). Typical earthquake-induced damages in
bridges structures include: span collapses due to unseating at expansion joints, shear
key failure, and damage of the expansion joint due to the slide-induced large relative
displacement between the bottom of the girder and the top of the laminated-rubber
bearing [153] (Figs. 1.5b,c). Furthermore, during strong earthquakes pounding may
occur in bridge structures with conventional expansion joints, due to the small
amplitude of the separation gap of an expansion joint [64, 93, 197]. Pounding has
been identified as one of the primary causes of damage in many major earthquakes[90,
153,197]. It takes place because the closing or opening relative displacement between
adjacent structures is larger than the provided structural gap between adjacent
decks or between the deck and abutment [25,151,197]. The influence of pounding on
the structural response is significant in the longitudinal direction of the bridge and
significantly depends on the gap size between superstructure segments [123]. The
smallest response can be obtained for very small gap sizes and for gap sizes large
enough to prevent pounding. In addition to damage along longitudinal direction,
lateral displacement and rotation of bridge girders caused by pounding to adjacent
girders can also lead to unseating [312]. Li et al. [151] experimentally studied the
influence of spatial variation of ground motions on the pounding behaviour of three
adjacent bridge segments and found that the spatially non-uniform ground motions
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increase the relative displacement of adjacent bridge girders and pounding forces.

(a) (b) (c)

Figure 1.5. Typical earthquake-induced damage in bridges: a deformation of rail tracks
[62]; b relative displacement between the bottom of the girder and the top of the
laminated-rubber bearing [153]; c expansion joint damage [153].

Spatially varying transverse ground motions at multiple bridge supports or
asymmetric decks may result in torsional response of the adjacent decks and thus
eccentric pounding between adjacent bridge decks [25]. The experimental and
numerical results shown in [100] show that non-uniform excitations and foundation
rocking can affect the relative displacements and pounding responses significantly.

Strategic facilities

Seismic isolation can be an effective strategy for the protection of strategic facilities,
such as seismically isolated nuclear power plants [142, 235, 284, 285] (Fig. 1.6a),
liquid-storage tanks [41,42,119,188,189,240] (Fig. 1.6b), to mention a few, from the
damaging effects of horizontal earthquake ground shaking.

(b)(a)

Figure 1.6. Schematic representations of a an isolated nuclear facility [285]; b a sliding
base-isolated concrete rectangular liquid-storage structure with a moat wall [41, 42].

A simplified model for impact simulation that captures the impact forces and
the effects of impact on the response of is presented in [142,235]. In order to identify
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the parameters that influence the response of the system, different values of the
clearance to the stop and a range of properties for the moat wall and isolation system
were considered by the authors. The dynamic response of a concrete rectangular
liquid-storage structure and the effects of pounding with the surrounding moat wall,
due to large amounts of slippage during strong earthquakes, were studied in [42].
The dynamic responses and the liquid sloshing height were found to increase after
pounding. Furthermore, a parametric analysis showed that impact stiffness, initial
gap, peak ground velocity, isolation period, liquid height and length-width ratio of
the structure are the main factors affecting the pounding response. The effect of
soil-structure interaction (SSI), initial gap, and friction coefficient, on the pounding
response of the rectangular liquid-storage structure was considered in [41]. The
results of the analysis showed that when soil-structure interaction is considered, the
liquid sloshing height increases, whereas the friction energy dissipation and pounding
energy dissipation of the system are reduced.

Buildings

The consequences of impact between base-isolated buildings and the surrounding
moat walls, which exclusively occurs in correspondence of the base level where the
isolator is located (Figs. 1.7a,c), has been the subject of several scientific works of both
numerical and experimental nature. The effects of pounding on the seismic response
of base-isolated structures, modeled as elastic or inelastic shear beams impacting
against elastic or inelastic stops, was numerically studied in [263]. The results showed
that impact can induces high accelerations if the beam remain elastic, whereas if
the beam yields, the impact waves cannot propagate through the shear beam and
low accelerations were observed except for the base of the beam. Furthermore, the
acceleration response can be reduced considering nonlinear elastic stops. Similar
studies were carried out by Malhotra [187], showing that the base shear forces
increase with the stiffness of the isolated structure or the surrounding retaining
wall and with the mass of the base mat. The seismic response of base-isolated
multi-story building, supported on various base isolation systems, during impact
with adjacent walls was investigated, through numerical analyses, in [192] under
different real earthquake ground motions. The results of the simulations indicated
that as the gap increases, the superstructure acceleration increases until a certain
gap value is reached and then the decreases with further increase of gap, whereas
the displacement decreases. Furthermore, the consequences of impact are found
to be more serious for the system with flexible superstructure, increased number
of story and greater stiffness of the adjacent structure. The effects of potential
pounding of seismically isolated building with the surrounding moat wall on the
effectiveness of seismic isolation were investigated by Komodromos et al. [139,140]
through parametric analyses conducted. Parametric numerical simulations under
strong near-fault ground motions, and considering different contact force models,
were carried out by Ye et al. [298] to investigate the behavior of a base-isolated
multi-story building pounding with adjacent retaining walls. The results showed
that the occurrence of pounding with the moat walls increases floor accelerations,
especially at the ground level where impacts occur and excites higher modes of
vibration, thus increasing the inter-story drifts. Furthermore, both inter-story drifts
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and floor absolute accelerations increase with the impact stiffness Masroor and
Mosqueda conducted a series of shake table tests [190] and numerical simulations
[191] in order to investigate the response of a three-story frame impacting against
the surrounding moat wall. Different moat wall types and gap amplitudes were
considered. The test results highlighted the influence of the gap distance, impact
velocity and wall flexibility on the contact forces. The effects of impact modeling
characteristics on the response of a base-isolated building that experiences structural
pounding were investigated in [194].

(a) (b) (c)

Figure 1.7. Schematic configurations of a seismically isolated multi-story building with a
a retaining wall on one side; b a retaining wall and a conventional fixed-base building
on one side; c two retaining walls on both sides [210].

In addition to the impact against the surrounding moat walls, another situation
that may occur, when there are other buildings nearby the base-isolated one, is the
risk of pounding also in correspondence of the upper floors, due to the deformation
of the superstructures during strong earthquakes (Fig. 1.7b). The effect on the
structural performance of a four-story base-isolated reinforced concrete building,
of pounding against retaining walls at the base and with a four-story fixed-base
reinforced concrete building, was studied in [210], through three-dimensional finite
element analyses, including material and geometric nonlinearities and considering
different earthquake ground motions. Three different configurations were analyzed,
namely: one-sided and two-sided pounding of the building with a retaining wall,
pounding with the retaining wall and a fixed-base building on one side (Fig. 1.7).
The effects of potential earthquake-induced pounding between a seismically isolated
building and adjacent fixed-supported buildings, subjected to various earthquake
excitations, were investigated through numerical simulations by Polycarpou and
Komodromos [221, 222]. Different configurations of neighboring structures and
earthquake excitations were considered. The results of the numerical simulations
showed that the impact at the upper floor levels, due to the deformation of the
superstructures, may occur even if the provided gap is sufficient to avoid pounding
with the surrounding moat wall at the base of the building. Polycarpou et al. [225]
proposed a numerical approach for the dynamic analyses of 3D multistory buildings,
considering the possibility of pounding and taking into account the geometry of the
overlapping region during contact and without limitations regarding the geometry of
the simulated structures and their position in plan. Nonlinear time-history analyses
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were carried out in [195] to numerically investigate the conditions that lead to
pounding between base-isolated buildings (BIB) and adjacent conventionally fixed-
supported buildings and/or the surrounding moat walls, and considering the effect
of the directionality of the imposed seismic excitations, the clearance, the structural
characteristics of the neighboring structures and the torsional vibrations due to
potential mass eccentricities.

1.4 Nonlinear response of vibro-impact systems

The study of practical problems involving collisions has been the subject of several
scientific works. It allowed to highlight a wide variety of complex behaviors and
non-smooth dynamical phenomena exhibited by vibro-impact systems, even the
simplest. Most studies on this topic are numerical [12,29,31,47,72,152,172–174,176,
177, 179–182, 184, 204, 217, 237, 238, 254, 256, 273, 274, 291, 295], whereas few works
address the subject resorting to both numerical and experimental investigations
[9, 10,13,14,50,61,102,112,113,162,185,216,232].

Parametric investigations The nonlinear response of vibro-impact systems is
influenced by several factors, including the mechanical properties of the obstacles,
the distance between them and the system (gap) and the excitation frequency and
amplitude. There are few works in which extensive parametric, numerical and/or
experimental, investigations are carried out. Typically, the variation of one or few
parameters is considered and the results of the investigations are presented in the
form of bifurcations diagrams, phase portraits, basins of attraction and Poincaré
maps. Andreaus et al. [9, 10,13] carried out experimental and numerical analyses
on a Single-Degree-Of-Freedom (SDOF) oscillator with two-sided deformable and
dissipative constraints (bumpers) considering different bumpers, gaps amplitudes,
and table accelerations. Christopher et al. [47], considering a Multi-Degree-Of-
Freedom (MDOF) structure impacting a rigid stop, found that as the contact-to-
structure stiffness ratio reduces, also the complexity of the bifurcation parameter
space decreases, whereas as the contact-to-structure stiffness ratio increases, very
complex and rich bifurcation structures are encountered. de Souza Rebouças et
al. [61] investigated the experimental response of a cantilever beam with unilateral
constraint, considering different gap configurations and levels of excitation. Ing
et al. investigated, both experimentally and numerically, the influence of the
excitation frequency, for a number of values of the excitation amplitude, on the
bifurcation scenarios in a SDOF system with two-sided [112] and one-sided [113]
elastic constraints. The influence of the exciting frequency and of the clearance on
the dynamics of a two-degree-of-freedom system with a two symmetric rigid stops
was investigated by Luo et al. [176]. The correlation between the dynamics of a
two-degree-of-freedom periodically-forced system with symmetric motion limiting
constraints and the constraint parameters, clearance and stiffness ratio, was studied
by Luo and Wang [182]. Masroor and Mosqueda [190] experimentally investigated
the effect of various moat wall properties, including stiffness and gap distance, on
the response of a quarter scale three-story frame isolated at base.
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Small, null and negative gaps As concerns the influence of the gap size, few
works can be found in Literature, usually dealing with positive gaps. In these
works the response is found to decrease as the gap increases [6, 139, 140, 221, 222].
Very small seismic gaps, in combination with strong ground excitation, can lead to
relatively milder consequences from pounding, not allowing the structure to develop
high velocities before the impact [221, 222]. Considering a harmonically excited
Duffing-type suspension system, with a pair of symmetric viscoelastic buffers under
primary resonance conditions, Sun et al. [254] observed that as the free travel
decreases, the amplitude of the displacement response decreases for a hardening
primary system, while it increases for a stronger softening primary system. However,
if there is enough damping of the end-stop in the stronger softening primary system,
the response amplitude decreases for a smaller free travel. Furthermore, the decrease
of the free travel results in the amplification of the acceleration response for the
softening primary system. According to Jankowski et al. [123] the optimal gap
size to reduce the response is either a very small one or large enough to avoid
collisions. The zero-gap configuration was recommended by Aguiar and Weber [4],
since it allows to maximize the impact force in a vibro-impact system without the
occurrence of nonlinear jumps. Even less are the works that deal with negative gaps,
which cause an initial pre-stress/pre-strain state in the bumpers. Relatively simpler
dynamic responses of a two-degree-of-freedom periodically-forced system are found
in [182] if the constraints are initially prepressed. The effect of the introduction of a
prepressing constraint in a capsule system was highlighted in [293].

Primary resonance Some of studies available in literature focus the attention
mainly on the response of vibro-impact systems in primary resonance conditions.
The primary resonance was theoretically and experimentally investigated by Rigaud
and Perret-Liaudet [232], considering a preloaded Hertzian contact subjected to
harmonic normal forces. Sun et al. [254] studied the primary resonance response
of a harmonically excited duffing-type suspension system with a pair of symmetric
viscoelastic buffers, considering the effect of the end-stops parameters (stiffness ratio,
damping ratio and free travel).

Secondary resonances The motion of vibro-impact systems under harmonic
excitation may include also superharmonic and subharmonic resonances [48, 236,
238]. Impact oscillators can exhibit, to the right of the mean resonance, family of
subharmonic resonant peaks between which cascades of period-doubling bifurcations
leading to chaotic regimes are observed, and, to the left, irregular resonances [257].
There are not many studies dealing with this topic. Andreaus et al. [12], studying the
dynamic response of a SDOF oscillator, exited by a base acceleration and constrained
by two unilateral constraints (bumpers), highlighted the existence of peaks and
dwells in the low frequency range, at which multiperiodicities of orbits were observed
and the existence of super-harmonics detected.

Types of impact motions Most of the works deal with the types of motion,
bifurcations and phenomena that can occur in the dynamics of such non-smooth
dynamical systems. Many different types of periodic and chaotic impact motions
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exist even for simple systems with external periodic excitation forces [217]. Each
type of periodic motion is characterized by a number of impacts in one motion period
and has a region in the space of system parameters in which the solution can exist
and is stable. Harmonic, subharmonic, and chaotic motions are found to exist in
the response of a periodically forced SDOF system with one-sided elastic constraint
studied in [238]. For some parameter values, infinitely many unstable periodic
and nonperiodic orbits coexist with a stable orbit [237]. These unstable orbits can
have a dramatic effect on the transient motion of the system, and cause sensitive
dependence on initial conditions. Wagg and Bishop [271] investigated the dynamics
of a two-degree-of-freedom impact oscillator with motion limiting constraint, and
highlighted a range of periodic and nonperiodic impact motions. They studied the
bifurcations which occur between differing regimes of impacting motion, in particular
those which occur due to a grazing bifurcation, the periodic and chaotic chatter
motions and the regions of sticking. Luo et al. [176], considering a two-degree-of-
freedom system with two-sided rigid stops subjected to harmonic excitation, defined
the fundamental group of impact motions and studied the transitions from one
motion to the other, which basically goes through different types of bifurcations, and
the occurrence of chattering-impact vibration. A similar system was studied in [173],
where stability and local bifurcations of the period-one double-impact symmetrical
motions, with special attention to Neimark–Sacker bifurcations, were analyzed by
using the Poincaré maps. Poincaré maps were used also to analyze the nonlinear
dynamics of a MDOF system having placed a single rigid stop and subjected to
periodic excitation [177]. The observed properties of the map have been shown
to exhibit particular types of sliding and grazing bifurcations of periodic-impact
motions under parameter variation. The generation mechanism of complete and
incomplete chattering-impact vibration in a SDOF with one-sided rigid constraint
was investigated in [181]. In the theoretical-numerical work by Andreaus and De
Angelis in [12], the study of the dynamic response of SDOF oscillator with two-sided
deformable and dissipative constraints (bumpers) allowed the authors to highlight
the presence of hysteresis ranges, jumps between multi-periodic orbits, and super-
harmonics and to observe how unilateral constraints modify the response of the
system with respect to the absence of bumpers. The study of the dynamics of a
two-degree-of-freedom periodically-forced system with symmetric motion limiting
constraints, with emphasis on the transition between fundamental impact motions,
together with the design and implementation of an electronic circuit, describing the
dynamic characteristics of the non-smooth system, were presented in [182]. Gritli
and Belghith [86] illustrated, through time-traces, phase portraits and Poincaré
sections, the occurrence of several behaviors in the nonlinear dynamic behavior of a
one-degree-of-freedom impact oscillator with a single rigid constraint, including the
period-doubling route to chaos, the period-adding cascade, interior and boundary
crisis, the complete and incomplete chaotic chattering, the cyclic-fold bifurcation, the
saddle-saddle bifurcation, the Neimark–Sacker bifurcation, the sub-critical period-
doubling bifurcation, the grazing bifurcation and the border-collision bifurcation.
Extremely rich and complex behaviour were observed by Christopher et al. [47],
exploring, through parametric investigations, the nonlinear dynamics of a MDOF
structure impacting a rigid stop, particularly in the cases where at least two-floor
degrees of freedom impact the stop and when the contact-to-storey stiffness ratio
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is large. In [50] Costa et al. explored, both experimentally and numerically, the
complex dynamics of a SDOF oscillator with one-sided elastic constraint [286] and
proposed a new technique for processing of the experimental data to improve quality
of the recorded phase portraits. In [183], pattern types, stability domains and
bifurcation characteristics of periodic motions for a two-degree-of-freedom oscillator
with a clearance are investigated and attracting domains and Poincaré mapping
diagrams of coexisting motions in the neighborhood of grazing bifurcations are
discussed. Phenomena of coexisting attractors and chaotic transitions, including
crisis, are discussed in [299], considering single and two degree-of-freedom impact
oscillators. Focusing on the switching behaviors on the boundary between two
adjacent domains, in a periodically forced modified Duffing-Rayleigh system, the
coexistence of attractors, under different initial conditions, is illustrated through
basins of attraction and phase planes in [304].

Grazing In studying vibro-impact systems different types of bifurcations may be
encountered. Among these, of particular interest is the grazing impact bifurcation.
Grazing bifurcation occurs when an orbit just touches the constraint, or stop, with
a zero (or very low) velocity impact. It thus represent the bordering state between
impacting and nonimpacting motion. When the driving frequency is continuously
varied, the vibro-impact system can undergo complicated motions, with several
impacts or chaotic behavior, close to the value of frequency at which impact may
first occur, due to this type of bifurcation [28, 105, 207, 270]. A sudden loss of
stability and either a jump to a distant attracting solution or an immediate jump to
long period, apparently chaotic behaviour can result from the system undergoing a
grazing bifurcations [79]. Three major types of grazing bifurcations that can occur
in a simple sinusoidally forced oscillator system in the presence of friction and with
one-sided rigid stop were analyzed by Chin et al. [43]. Different transition scenarios
associated with grazing conditions for a periodic response of an impact microactuator
were presented by Dankowicz and Zhao [56]. Banerjee et al. [17] experimentally
demonstrated that simple soft impact oscillator may exhibit a peculiar dynamical
behavior where the orbit abruptly jumps to a large-amplitude chaotic motion close
to a grazing condition, which lasts for a very narrow range of the parameter. This
abrupt onset to chaos is caused by a dangerous bifurcation in which two unstable
periodic orbits, created at “invisible” grazings, take part. The rich dynamics of an
impact oscillator with a one-sided elastic constraint close to grazing is demonstrated
in [213], paying particular attention to the chaotic oscillations recorded near grazing
frequency when a nonimpacting orbit becomes an impacting one under increasing
excitation frequency. The differences between the grazing-induced bifurcations in
impact oscillators with one-sided elastic and rigid constraints by a path-following
(continuation) method were investigated by Jiang et al. [126].

Coexisting attractors Vibro-impact systems can be characterized by the coexis-
tence of different final stable states (attractors), depending on the considered set
of parameters (multistability). In this case, which of the attractors is eventually
reached depends strongly on the initial conditions [32]. Multistability is significant
in suggesting the possibility of multiple operating conditions for the physical systems
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under consideration [306]. The set of initial conditions leading to a certain attractor
is called basin of attraction. The shape of the basin reflects the nature of the
behavior of the system. A basin with a smooth shape indicates periodic dynamics
while a basin with fractal boundaries suggests either a complex mixture of different
dynamical patterns or a coexistence of periodic solutions [144]. The results obtained
by Błażejczyk-Okolewska and Kapitaniak [32] showed that some attractors cannot be
reached if their basins of attraction are too small and the noise forces the trajectories
out of them towards other attractors with larger basins. Depending on the specific
system requirements and objectives, switching between co-existing attractors should
either be avoided to increase operational lifetime or desired to rapidly bring the
system from one stable state to another [50].

1.5 Control strategies for vibro-impact systems

Potential collisions between mechanical components can cause noise, disturbing
vibrations, wear and fatigue, leading to reduced efficiency or even failure of the
device. As concerns seismically isolated civil structures, the consequences of potential
pounding can range from local slight nonstructural to serious structural damage or
even collapse. Therefore, in general, impact is seen as a negative aspect to avoid, as
far as possible.

Damage because of large displacements In the context of civil engineering,
seismically isolated structures, due to the greater flexibility offered by the isolators
at the base, are expected to experience large horizontal displacements relative to
the ground, especially under near-fault (NF) earthquakes, characterized by long-
period pulses. These large displacements, on the one hand, can seriously damaged
the isolation system by exceeding its limit deformation, on the other, can lead to
pounding with surrounding moat walls or adjacent structures if the available seismic
gap size is not sufficient.

Seismic gap A first possibility to reduce the risk of pounding consists in providing
an adequate clearance at expansion joints in bridges, around base-isolated structures
and between adjacent structures [26, 103, 125, 157, 215, 289]. When a sufficient gap is
provided, however, the possible permanent deformation, or rupture, of the isolation
system must be taken into account.

Inner and outer pounding In order to prevent the damage of the isolation
system, the displacements should be limited. This objective could be achieved, for
example, by inserting suitable obstacles, which can be placed at a certain distance
(gap) from the structure to be protected (outer pounding, [14]) or can be incorporated
into the isolation system (inner pounding, [14]). In this latter case, the built-in
buffer (self-braking) mechanism prevents pounding of the isolated structure with
the surrounding structures and limits the possible pounding (if any) to be only
within the own body of the isolator. Some isolation systems include self-braking
mechanisms which serve as end-stops, limiting their displacement. Sliding isolator
bearings, for example, have a restraining rim along the perimeter of the sliding
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plate to prevent the slider from exceeding the displacement capacity and dropping
off the sliding surface [18, 75]. Also the High Damping Rubber Bearing (HDRB)
devices are inside self-braking seismic isolators (by constitutive law), due to their
strong nonlinearities and stiffening characteristics at large shear strains, because
of a strain crystallization process in the rubber [262, 288, 302]. Alternatively, the
maximum stroke of rubber bearings can be limited using supplemental spring and
damping devices [309]. In the Rolling Isolation System (RIS), proposed by Harvey
et al. [98] and Harvey and Gavin [96, 97], the displacement of the steel spheres
encapsulated between convex surfaces is limited by means of a lip, located at the
edge of each rolling surface, which acts as stiff end-stop. The roll-n-cage (RNC)
isolator [114, 115, 117,118] has a built-in buffer (braking) mechanism that limits the
isolator displacement under extreme earthquakes and prevents adjacent structural
pounding.

Other types of control strategies Alternatively to the introduction of obstacles,
which may lead to possible pounding, or when it is not possible to guarantee a
sufficient seismic gap, such as in densely built metropolitan areas, the seismic-induced
displacements can be limited including other types of (passive, active, semi-active,
hybrid) control strategies. The control devices can be installed on the single building
or between adjacent structures, in order to reduce the vibrational response of the
main individual structure and avoid undesirable interactions with adjacent structures
(pounding) [2, 21,23,24,46,122,138,209,227,231,297,301,305,310,311].

Damage because of large accelerations Very often, especially when base-
isolation is used as retrofitting strategy for existing structures in metropolitan
zones, the width of the provided seismic gap is limited due to practical constraints.
Consequently, the possibility of impact against the surrounding moat walls or
adjacent structures during severe earthquakes, and its likely consequences, must
be taken into account. Potential pounding can produce detrimental effects on
the effectiveness of seismic isolation [140, 222]. In particular, the occurrence of
impact, either with the surrounding moat wall or with adjacent buildings, causes an
increase in both floor accelerations and interstory deflections. The increase in both
accelerations at floor levels and displacements between stories can impair not only
the operation of the structure itself, but also the functionality of any equipment
housed in the structure [6,140,190,211]. In particular, the existence of high spikes in
the acceleration response, in correspondence of the floors where pounding occurs, and
whose amplitude is influenced by impact rigidity, may affect floor response spectra
and thus the response of vulnerable equipment housed in the buildings [52,224].

Deformable shock absorbers When it is not possible to avoid the occurrence
of impact, the side effects induced by the collisions against rigid obstacles can be
mitigated reducing the impact stiffness, by interposing deformable shock absorbers.
Anagnostopoulos [6] investigated the effects of pounding in several adjacent build-
ings due to strong earthquakes and found that the interposition of soft viscoelastic
materials between two adjacent structures can reduce the effects of pounding signifi-
cantly. The effectiveness of rubber bumpers as mitigation measure for pounding of
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seismically isolated buildings was numerically investigated in [223,224]. The use of
polymer bumpers in the suppression of pounding forces between colliding buildings,
considering different types of pounding force models, was studied by He et al. [99].
The results showed that polymer bumpers can reduce maximum values of pounding
force but increase pounding times and the viscoelasticity of bumper materials has a
certain range of influences on pounding force responses. The application of polymer
elements placed between the colliding members so as to mitigate earthquake-induced
pounding between adjacent steel structures in series was studied experimentally in
[242], considering different dynamic characteristics of the structures and various
in-between distances. The effectiveness of rubber shock-absorber model in reducing
pounding response in the adjacent planar structures due to the earthquake, was
demonstrated by Trung et al. [261]. The mitigation of impact effects between bridge
segments or at the restrainers’ ends using shock absorbers was investigated by Abdel
Raheem [1]. The natural rubber shock absorber can smooths the sudden changes
of stiffness during poundings, and prevents to some extent, the acceleration peaks
due to impact. Furthermore, the reaction forces at the pier bases and the pounding
forces exerted on the superstructure can be satisfactorily reduced. The study carried
out by Jankowski at al. [123] showed that the bridge behaviour, in the presence of
collisions between adjacent superstructure segments, can be effectively improved by
placing hard rubber bumpers between segments and by stiff linking the segments one
with another. An extensive investigation on the effectiveness of combining rubber
bumpers as a shock absorbing device along with Shape Memory Alloy (SMA) or
steel cable restrainers to mitigate pounding and unseating damages on multiple-span
bridges subjected to spatially varying ground motions is presented in [239]. The
results indicated that the SMA restrainers combined with rubber bumpers could
lead to better performance in terms of reduction of joint opening and mitigation
of large pounding forces. In [296] an experimental study on the transverse pound-
ing reduction of a high-speed railway (HSR) simply-supported girder bridge using
rubber dampers was presented. The experimental results showed that the rubber
bumpers are effective on mitigating the adverse seismic responses caused by the
pounding. The structural acceleration response and pounding forces due to collisions
between adjacent segments of a highway bridges with base-isolated rubber bearings
in severe seismic events can be effectively reduced also using magnetorheological
(MR) dampers [89]. A pair of symmetric linear viscoelastic end-stops was used by
Sun et al. [254] to improve the performance of a SDOF nonlinear suspension system
under primary resonance conditions, which has cubic nonlinearity.

Response scenarios and control The study of the behavior of vibro-impact
systems, allowing to highlight possible issues associated with the occurrence of impact,
is necessary to identify suitable strategies to mitigate and control the response of such
systems. There is therefore a close link between the study of the nonlinear dynamics
and the control of vibro-impact systems. Several authors proposed different strategies
for the control of unstable orbits, bifurcation, co-existing orbits and chaos on the
basis of the study of practical problem involving collisions. By properly selecting
the parameters which characterize the vibro-impact problem, it is possible to guide
the behavior of the system, in order to avoid certain scenarios and encourage others,
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and thus exploit the occurrence of impact with beneficial effects. Bolotnik and
Melikyan [33] proposed a time-optimal feedback control, for a simple vibro-impact
system consisting of a particle moving on a line segment between two rigid stops
and undergoing elastic impacts against these stops, by driving the particle from an
arbitrary initial state to a prescribed terminal position is constructed. Considering
two periodically forced oscillators that can interact via soft impacts, Brzeski et
al. [34] showed that with properly selection of the systems’ parameters, such as
the gap between the systems or/and the phase shift of external excitation, it is
possible to decrease the number of coexisting solutions via discontinuous coupling.
A method for controlling the persistence of a local attractor in the near-grazing
dynamics of an impact oscillator was presented in [54, 55]. The Ott–Grebogi–Yorke
(OGY) method was used by de Souza and Caldas [59] to stabilize a desired unstable
periodic orbit embedded in the chaotic invariant sets of mechanical vibro-impact
systems by applying a small perturbation on an available control parameter. Gritli
and Belghith [86] proposed a state-feedback control law designed based on the OGY
approach in order to control chaos exhibited in the impulsive hybrid non-autonomous
linear dynamics of a SDOF impact mechanical oscillator with a single rigid obstacle.
Considering the same system, Gritli [85] adopted a state-feedback controller for the
robust stabilization of the master-slave synchronization error and the Linear Matrix
Inequality (LMI) approach for the design of stability conditions. A similar control
strategy was proposed by Turki et al. [264, 265] for a periodically forced SDOF
impact oscillator with two asymmetric rigid end-stops. Gutiérrez and Arrowsmith
[91] considered a representative model of the doubly constrained impacting system
and studied the control strategies, based on the OGY scheme and applied to both
numerical and experimental models, for preservation and annihilation of experimental
and analytical resonant periodic orbits. A two-sided damping constraint control
strategy was proposed by Hao et al. [95] to improve the performance of the quasi-
zero stiffness (QZS) isolator. The proposed control approach can largely lower the
isolation frequency while enhancing the effectiveness of isolation in high frequencies
and preventing the severity of end-stop impacts. Based on the analysis of two-
parameter bifurcations and basins of attraction, the authors found that the key
issue to realize such control objective, is the suppression of period-3 solutions that
coexist with the desired period-1 orbits. Lee and Yan [148] proposed a position
control method for an impact oscillator under asymmetric double-side end stops,
which can control and keep the stable or unstable (chaotic) impact oscillators in a
desired position. Lenci and Rega [150] studied the problem of reducing the chaotic
response of an inverted pendulum with rigid unilateral constraints. They showed
that a significative reduction of the region of chaotic response can be obtained by
suitably adjusting the shape of the excitation. In particular, this can be obtained by
applying two equal and opposite impulses plus a regular excitation. An impulsive
control method was developed in [275] to stabilize the chaotic motions in a class of
vibro-impact systems, by implementing the pulses just when the impact occurs. In
[171] Luo et al. studied the dynamics of a two-degree-of-freedom impact oscillator
in which the maximum displacement of one of the masses is limited to a threshold
value by the symmetrical rigid stops, with special attention to periodic-impact
motions and bifurcations. Chaotic-impact motions are suppressed to minimize their
adverse effects by using external driving force, delay feedback and feedback-based
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method of period pulse. The results of the analysis carried out by Sun et al. [254]
showed that by properly designing the dynamic parameters of viscoelastic end-stops,
the relative displacement response of a SDOF nonlinear suspension system can
be effectively suppressed and the jump can be eliminated for both hardening and
softening primary isolators. Suitable choices of pairs of bumpers and gaps, that
allows to reach a trade-off between two conflicting objectives, namely, control of
excessive displacements and control of excessive accelerations in a base-isolated
SDOF with two-sided deformable constraints, were suggested in [14].

Vibro-impact as passive control strategy The occurrence of impact can also
be used as control strategy to mitigate the structural response. Vibro-impact systems
can be used as absorbing sources of undesirable vibrations of structures, machines,
and multi-storey buildings [110]. Some well-known examples are represented by the
impact dampers and the Pounding Tuned Mass Dampers (PTMDs), whose behavior
has been the subject of experimental, analytical and numerical investigations.

An impact damper is a freely moving mass, constrained by stops, located on a
dynamic structural system to be controlled [154]. As the main system is excited,
the impact mass moves relative to the structure resulting in impacts between the
mass and the stops, transferring momentum from the structure to the impact mass,
and dissipating energy as heat, noise and high frequency vibrations. On the other
hand, the occurrence of collisions gives rise to discontinuity and strong nonlinearity
[39]. In order to reduce the acceleration spikes imparted to the structures, a
buffer region can be incorporated between the mass and the stop at the point of
impact [154]. Compared to a rigid impact damper, the buffered impact damper not
only significantly reduces the accelerations, contact force and the associated noise
generated by a collision but also enhances the level of vibration control. Application
of the impact dampers for suppressing forced vibrations was studied in [3] with
changing the mass ratio and restitution coefficient.

Pounding Tuned Mass Damper (PTMD) is a control system obtained by com-
bining a traditional Tuned Mass Damper (TMD) with the impact damper. It
thus exploits the occurrence of collisions or impacts with viscoelastic materials to
efficiently absorb and dissipate the vibration energy of the primary structures to
be controlled. An experimental study on the use of a PTMD system to suppress
the undesired vibrations of a submerged cylindrical pipe was carried out by Jiang
et al. [127]. The results showed that the PTMD system is effective and efficient
to suppress the forced vibrations of the submerged cylindrical pipe at the tuned
frequency and is also robust over a range of detuning frequencies. The effectiveness
of PTMDs as control strategies to reduce the response of pipeline structures, was
also investigated, both numerically and experimentally, by Song et al. [243]. The
use of PTMDs to control the wind-induced vibrations of power transmission tower
was studied in [258]. Results showed that the PTMD is very effective in reducing
the wind-induced vibration and the vibration control performance improves as the
external wind load increases. The PTMD was found to be very effective in reducing
also the vibrations of power transmission tower under multi-component seismic
excitations [259]. The non-smooth dynamics of a Tuned Mass Damper system
with stiff lateral stops was studied by van Til et al. [266], using an alternating
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frequency/time harmonic balancing (AFT-HB) method. The control performance
of pounding tuned mass damper (PTMD) in reducing the dynamic responses of
SDOF structures was investigated in [292], taking into account the influence of
material properties and contact geometries for PTMD, as well as the robustness of
the device. In [280] Wang et al. proposed a single-side PTMD in which the pounding
boundary covered by viscoelastic materials is simply added to one side of the tuned
mass. Unlike the conventional PTMD, the gap between the tuned mass and the
viscoelastic pounding boundary is zero. They verified the control performance of
the proposed PTMD through both experimental and numerical investigations. The
same control system was proposed to mitigate vortex-induced vibrations of a bridge
deck [281]. Yin et al. [300] studied, through numerical simulations, the effectiveness
of a new pounding tuned mass damper (PTMD), compared to a traditional TMD, to
reduce the traffic-induced bridges vibrations, considering the road surface conditions.
Comprehensive numerical simulations of the wind/traffic/bridge coupled system
with multiple PTMDs (MPTMDs) were performed by Yin et al. [300], considering
different numbers and locations, mass ratio, and pounding stiffness of MPTMDs. A
PTMD was also proposed by Zhao et al. [308] to reduce the wind-induced vibrations
in cantilevered traffic signal structures. Semi-active vibration absorbers (SAVAs),
including rubberized stops that limit the absorber mass motion, were proposed by
Arena et al. [15] to suppress large amplitude oscillations in container cranes during
maneuvers and wind forcing.

Vibro-Impact Nonlinear Energy Sinks (VI NESs) were used by Nucera et al. [208]
to control the seismic-induced vibrations of a two degree-of-freedom primary linear
system. The VI NESs can passively absorb, at a fast time scale, and locally dissipate
a significant portion of the seismic energy of the primary structures to which they are
attached. Furthermore, vibro-impacts cause a redistribution of seismic energy from
lower to higher structural modes of the integrated system, resulting in a reduced
response of the primary structures, since higher structural modes generally possess
lower amplitudes of vibration, and, in addition, dissipate energy more efficiently
than lower structural modes.

Wang et al. [279] studied, numerically and experimentally, the effectiveness of a
Pendulum-Pounding Tuned Mass Damper (PPTMD), consisting of a tuned pendulum
mass and a pounding boundary next to the equilibrium position of the pendulum
mass, to mitigate the response of a single degree-of-freedom structure under various
excitations. A layer of viscoelastic materials is attached on the pounding boundary
to dissipate the vibration energy through impacts. They found that the PPTMD
still achieves considerable control performance even if the frequency of the controlled
structure is varied in a wide range.

1.6 Modeling of vibro-impact systems

The modeling of vibro-impact systems is a crucial aspect in order to study and
predict their behavior.

Experimental vs. Numerical modeling The problem can be studied resorting
to physical (or experimental) and numerical models. Actually, these two types of
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modeling, equally important, are intimately linked to each other, interact and feed
each other. On the one hand, the experimental investigations are used to validate
the numerical predictions and modeling and can also highlight behaviors which can
guide subsequent numerical studies. On the other hand, the numerical simulations,
once proven the ability of the model to reproduce the experimental results, are useful
tools which allow to interpret the experimental outcomes and to extend the range of
investigation, considering values of the parameters not investigated experimentally.
Furthermore, the results of the numerical simulation are essential to guide the design
of experimental setup and tests.

SDOF vs. MDOF models The study of vibro-impact systems can be carried
out resorting to more or less complex models, depending on the particular problem
studied, ranging from continuous [11,71,74,191,199,272] to lumped systems with one
[9,10,13,14,50,112,113,152,162,173,184,185,204,216,217,232,237,238,254,274,295]
or more [29, 47, 172,174,176,177,179–182,256,273,291] degrees of freedom. The use
of simple Single-Degree-Of-Freedom (SDOF) model allows to identify, in a simple
manner, the fundamental and general aspects which characterize the nonlinear
non-smooth vibro-impact dynamics and to provide conceptual insights which are
fundamental for the study of more complicated systems, such as Multi-Degree-Of-
Freedom (MDOF) systems. It is worth noting that the use of complex models entails
the risk of making less visible the influence of the various parameters of the model
on the response in general and on the parameters of the impact in particular.

Hard vs. soft impact modeling When dealing with vibro-impact dynamics,
resorting to numerical simulations, one of the crucial problems is represented by
the selection of appropriate impact models [30]. The classical approach, assumes
infinitely small time of the contact between non-deformable colliding bodies (hard
impact) [30]. The impact is modeled using the momentum conservation principle and
the energy loss during impact is represented by a constant value of the coefficient of
restitution s, defined as the ratio between the post- (δ̇+) and the pre-impact (δ̇−)
velocities [77,82,252]:

s = − δ̇
+

δ̇−
(1.1)

The coefficient of restitution, thus defined, attains values between 0 and 1. In
particular, for a fully elastic contact is equal to unity, while for a fully plastic contact
is null; in this last case the kinetic energy is entirely converted to heat by work done
in deforming the objects.

Impact can be modeled also by resorting to a force-based approach [129], assuming
the finite nonzero contact time and considering the deformation of the colliding
bodies (soft impact) [30]. In this approach, which more accurately describes the
process of collision, the contact phenomenon is simulated through suitable more
or less sophisticated force-penetration laws. A comprehensive literature survey on
the contact modeling techniques is presented in [16, 77, 78, 81, 186, 200, 241]. The
simplest model is represented by the linear spring element, which assumes a linear
relation between the contact force FN and the penetration δ (Fig. 1.8a), not taking
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into account the energy loss during the impact:

FN = Kδ (1.2)

Another well-known contact force model, which, in turn, does not account for
energy dissipation, is the Hertz contact model [101, 226], represented by a nonlinear
spring element, in which the normal contact force FN is expressed as a nonlinear
power function of the penetration δ (Fig. 1.8b):

FN = Kδn (1.3)

In Eq. 1.3, K and n are the contact stiffness parameter and the nonlinear power
exponent determined from material and geometric of the contact surfaces. One
advantage of the Hertz contact law, compared to the Hooke law, is that it considers
the geometric and material characteristics of the contacting surfaces, which are of
particular importance in the contact dynamic responses [186]. The power exponent
n is typically equal to 3/2 for the case where there is a parabolic distribution of
contact stresses [76]. For two spheres in contact, the generalized stiffness parameter
is a function of radii of the spheres i and j and the material properties as [82]:

K = 4
3(σi + σj)

[
RiRj
Ri +Rj

] 1
2

(1.4)

where the material parameters σl (l = i, j) are given by:

σl = 1− ν2
l

El
(1.5)

and the quantities νl and El are, respectively, the Poisson’s ratio and Young’s
modulus associated with each sphere. For contact between a sphere i and a plane
surface body j, the generalized stiffness parameter K depends on the radius of the
sphere and the material properties of the contacting surfaces, and is expressed as
[76]:

K = 4
3(σi + σj)

√
Ri (1.6)

By definition, the radius Ri is negative for concave surfaces and positive for convex
surfaces [101].

�

FN(a) (b) (c) (d)

�

FN

�

FN

�

FN

Figure 1.8. Normal contact force vs. penetration laws for: a linear spring element; b Hertz
non-linear spring element; c Kevin-Voigt model; d Hertzdamp model.
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In order to overcome the limitations of the pure elastic contact force models,
dissipative contact force models were proposed to take into account the energy loss
during the contact process. Among these, one of the first proposed was the linear
Kelvin-Voigt model which combines a linear spring with a linear damper, arranged
in parallel [82] (Fig. 1.8c). The normal contact force is expressed as:

FN = Kδ +Dδ̇ (1.7)

where D is the damping coefficient of the damper, and δ̇ represents the relative
normal contact velocity [77,81]. The existence of the damping component causes that,
at the beginning of the contact process, the damping force is not null. Furthermore,
at the end of the restitution phase, the relative velocity, and thus the contact force,
is negative meaning that the colliding bodies attract each other, but this does
not make sense from a physical point of view. Another limitation of the model,
not fully consistent with reality, is that the assumption of a constant damping
coefficient results in a uniform dissipation during the impact time interval. Despite
these weaknesses, the Kelvin-Voigt model has been used by a several researchers
[66–69,137].

To overcome the drawbacks of the Kelvin-Voigt model, modified versions have
been proposed by several authors [60,108,146,147,186,307]. Hunt and Crossley [108]
proposed a compliant contact force model in which the nonlinear elastic Hertz’s
element is combined with a nonlinear viscoelastic element:

FN = Kδn + χδnδ̇ (1.8)

where the hysteresis damping factor χ, which depends on the generalized stiffness
parameter K, the coefficient of restitution s (Eq. 1.1) and the initial contact velocity
δ̇−, is given by:

χ = 3K(1− s)
2δ̇−

(1.9)

Since the damping term is expressed as a function of indentation, the contact
force is null both at the beginning and at the end of the contact process (Fig. 1.8d).

The applicability of soft and hard impact models in modeling of the vibro-impact
systems was discussed by Błażejczyk-Okolewska et al. [30], deriving the conditions
under which both methods are equivalent in the sense of the same rate of energy
dissipation and discussing the advantages and disadvantages of both models. They
showed that both methods give the same results when considering a stiff base,
whereas in the case of an elastic base, the hard impact model leads to wrong results.

One-sided vs. Two-sided constraints Some of the existing studies on vibro-
impact dynamics deal with the problem of the impact against a single rigid or soft
obstacle (one-sided constraints) [29,47,50,113,174,177,181,184,185,216,217,232,
237,238,272]. Others consider the presence of two rigid or soft obstacles (two-sided
constraints) [9,10,13,14,112,152,162,173,176,180,182,204,254,256,274,291,295]. It
is worth noting that the literature on the vibro-impact systems with two-sided soft
constraints has developed in more recent years.
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1.7 Motivations
Despite, as illustrated in the previous sections, vibro-impact dynamics has been the
subject of intense study and broad interest, this topic still deserves attention. Some
of the existing studies available in literature are only numerical, others experimental
and only a few deals with the subject resorting both to experimental and numerical
investigations [9,10,13,14,17,50,112,113,162,163,165,185,213,216,232]. As concerns
the dynamics of base-excited Single-Degree-Of-Freedom (SDOF) vibro-impact sys-
tems with two-sided constraints, some, but not all, phenomena that may occur have
been highlighted and studied, in more or less depth, and some control strategies have
been proposed, but there are still many things to explore. Furthermore, as concerns
the modeling, in many cases, the impact phenomenon is still modeled resorting
to the coefficient of restitution, without taking into account the deformability of
impacting bodies at the interaction zones.

1.8 Objectives and original contributions
The main objective of this Ph.D. thesis is to characterize, in a systematic and
transversal way, the nonlinear non-smooth response of a SDOF vibro-impact system
with two-sided deformable and dissipative constraints under base excitation. Fur-
thermore, based on the results obtained studying the behavior of such vibro-impact
system, another aim of this study is to give some preliminary control-oriented indi-
cations. Extensive parametric analyses, of both experimental and numerical nature,
are used for these purposes.

The nature, both experimental and numerical, of the study represents the first
original contribution of this Ph.D. thesis. The numerical and experimental modeling
are two instruments, equally important, used in parallel, that interact and feed each
other. On the one hand, the experimental investigations are used to validate the
numerical predictions and modeling. Furthermore, they can also highlight behaviors
which can guide subsequent numerical studies. On the other hand, the numerical
simulations, once proven the ability of the model to reproduce the experimental
results, are useful tools which allow to interpret the experimental outcomes and to
extend the range of investigation. Furthermore, the results of the numerical analyses
are essential to guide the design of experimental setup and tests.

Another important aspect that characterizes this Ph.D. thesis is the intimate
link between the study of the response scenarios and control problem. The study
was inspired by the practical problem of large displacement in base-isolated systems.
With the aim of mitigating the system response (displacements and accelerations),
the first step was that of studying, through numerical and experimental parametric
analyses, the influence of the fundamental parameters that characterize the problem
on the system response. This allowed to identify different response scenarios that
can occur varying the involved parameters. The study of the scenarios enabled to
highlight interesting aspects related to the nonlinear non-smooth response of the
system, but also to make considerations about vibration control. On the other hand,
reasoning about the control problem, brought out interesting considerations about
the response scenarios.
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As concerns the modeling, the study is carried out considering a simple system
(SDOF), in which both the damper and the bumpers are modeled by a viscoelastic
model (Kelvin-Voigt model). The adoption of an elementary system allows to identify
and study, in a simple manner, the fundamental aspects which characterize the
nonlinear non-smooth vibro-impact dynamics without resorting to complex models.
Simple systems can provide conceptual insights which are fundamental for the study
of more complicated systems. The SDOF model is considered adequate to simulate
the behavior of equipment devices, bridge decks, and buildings representing a very
stiff superstructure, where the maximum acceleration spikes are observed at the
base level, closest to the point of impact. The use of this model, however, does
not allow to include the effects of the excitation of higher modes, which is a major
consequence of impact in base-isolated buildings. Despite its relative simplicity, the
SDOF vibro-impact model with linear components (damper and bumpers) exhibited
complex nonlinear dynamics and allowed to highlight a wide variety of behaviors and
phenomena, with different types of primary and secondary resonances and periodic,
quasi-periodic and chaotic motion.

The adoption of a soft impact model (Kelvin-Voigt model), although quite simple,
allowed to take into account the dynamics of the bumpers and to more accurately
describes some phenomena related to the process of collision, such as the deformation
of the obstacles, otherwise not observable by resorting to the hard impact model.
Furthermore, this modeling is more suitable to simulate the bahavior of real shock
absorbers, which are more or less deformable [30], and when dealing with the control
problem. The inclusion of other sources of nonlinearity, such as those associated
with the behavior of the damper, probably will change something or will allow to
highlight other features. The adopted simple model, however, has proven to be
satisfactory for the purposes of this study, being able to highlight the peculiarities
of the problem.

Similar models have been studied in literature, but not in a such a systematic
way, resorting to extensive parametric analyses, of both experimental and numerical
nature, and different types of representations. Some of the phenomena and scenar-
ios that can occur in the response of SDOF vibro-impact systems with two-sided
constraints have already been highlighted. However, there are other aspects, inves-
tigated in this thesis, that, to date, have been little deepened and which deserve
more attention, such as the types of secondary resonances in the low frequency range
(with right or left hysteresis or of non-regular type) which can occur, the existence of
eccentric solutions, the occurrence of primary and secondary grazing and the effect
null and negative gaps on the system response.
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1.9 Structure of the thesis
Chapter 2. The numerical and experimental modelization of the studied Single-
Degree-Of-Freedom (SDOF) vibro-impact system is described. In the first part of the
chapter, the numerical model is introduced, together with the governing equations,
written in terms of both physical and dimensionless parameters. The adopted contact
force model, including the modeling of the bumpers’ relaxation, is described. The
main dimensionless parameters which influence the system response are defined and
the nonlinearities sources taken into account are stated. In the second part of the
chapter, the experimental apparatus is introduced, describing its main components,
the considered inputs, the used sensors and acquisition system. Finally, a summary
of the tests carried out, with the corresponding sensors configurations, is provided.

Chapter 3. Possible scenarios within the experimental dynamic response of the
vibro-impact SDOF system are identified and described. The different scenarios were
experimentally realized varying the peak table acceleration, the amplitude of the
total gap between mass and bumpers and the bumper’s stiffness. A comparison with
the results obtained with the numerical model is performed. The existence of other
scenarios, that can be obtained for values of the parameters not considered in the
experimental laboratory campaign, is highlighted with further numerical analyses.

Chapter 4. The results of a more extensive and detailed numerical analysis on
the scenarios that can occur in the nonlinear non-smooth response of the vibro-
impact SDOF system, varying selected dimensionless parameters, are presented.
The scenarios are described in a systematic way, identifying homogeneous frequency
intervals, characterized by similar features in terms of number and types of limit
cycles, and resorting to phase portraits, basins of attraction and Fourier spectra.

Chapter 5. The influence of the gap amplitude on the response of the SDOF
vibro-impact oscillator is investigated through experimental tests, considering both
positive, null and negative gaps. Particular attention is paid to the study of the
effect, on the system’s response, of the transition from positive to small negative
gaps and of excessive negative gaps. Finally, a comparison with the results obtained
with the numerical model is performed.

Chapter 6. The effect of the presence of (existing or newly added) obstacles on the
response of the SDOF system is investigated through numerical parametric analyses.
The aim is to understand if, by properly selecting the obstacles’ parameters, it is
possible to guide the system’s response to achieve specific objectives, avoiding some
scenarios and favouring others, and thus exploiting the occurrence of impact with
beneficial effects.

Chapter 7. The main conclusions are drawn and possible future developments of
this Ph.D. thesis are illustrated.
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Chapters 3-6 were structured as journal papers, with their own introduction,
motivations and aims, model description, results and conclusions. I am aware
that this choice inevitably involves some repetitions. However, I believe that this
structure, with self-supporting chapters, represents a valuable element of this thesis.
The individual chapters, in fact, can be read both in the context of the thesis and
independently of each other. This can help the reader, who has at hand all the
necessary elements to read each chapter, without needing to look for them in the
thesis.
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Chapter 2

Theoretical and experimental
modelization

Chapter outline In this chapter the numerical and experimental modeling of the
studied vibro-impact system is described. First, the numerical model is introduced,
together with the governing equations, written in terms of both physical and dimen-
sionless parameters. The adopted contact force model, including the modelling of
the bumpers’ relaxation, is described. The main dimensionless parameters, which
influence the system response, are defined and the nonlinearities sources are stated.
In the second part of this chapter, the experimental apparatus is introduced, describ-
ing its main components, the considered inputs, the used sensors and acquisition
system. Finally, a summary of the tests carried out, with the corresponding sensors
configurations, is provided.

2.1 Introduction

The modeling of vibro-impact systems is a crucial aspect in order to study and predict
their behavior. The problem can be studied resorting to physical (or experimental)
and numerical models. Actually, these two types of modeling, equally important, are
intimately linked, interacting and feeding each other constantly. On the one hand,
the experimental investigations are used to validate the numerical predictions and
modeling and can also highlight behaviors which can guide subsequent numerical
studies. On the other hand, the numerical simulations, once proven the ability of the
model to reproduce the experimental results, are useful tools which allow to interpret
the experimental outcomes and to extend the range of investigation, considering
values of the parameters not investigated experimentally. Furthermore, the results
of the numerical simulation are essential to guide the design of experimental setup
and tests.

The numerical model considered in this thesis is quite simple, with regards to
the constituent elements and the number of degrees of freedom. However, despite its
relative simplicity, it shows strong nonlinearities, due to the presence of clearance,
the unilateral constrains and the occurrence of impact that causes abrupt changes
of stiffness and damping during the contact phase.
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2.2 Numerical modeling
The numerical model consists of a Single-Degree-Of-Freedom (SDOF) system, com-
posed of a mass M and a damper D, that is constrained by two deformable and
dissipative obstacles (bumpers), symmetrically located on either side of the mass
(Fig. 2.1). In the following, the two bumpers will be denoted as right (BR) and left
(BL) bumper respectively. The system is excited by a harmonic base acceleration
At(t) = AG sin Ωt, with amplitude AG and circular frequency Ω. The damper D is
modeled by a linear elastic element, with stiffness K, and a linear viscous dashpot,
with damping coefficient C, arranged in parallel (Kelvin-Voigt model) and connects
the mass with the vibrating base.

Figure 2.1. Model of the system: dimensional parameters.

2.2.1 Governing equations

During its motion, the mass can be or not in contact with the bumpers. The two
conditions will be referred to as contact and flight phases respectively. The equations
that govern the motion of the system can be written in the following form:{

Mü(t) + Cu̇(t) +Ku(t) + Fj(t) · ψ1 [Gj(t)] · ψ2 [Fj(t)] = −MAt(t)
Fi(t) = 0

(2.1)

In Eq. 2.1, it is assumed that whether j = L then i = R, or whether j = R
then i = L. u(t) and uj(t) (j = R, L) are the relative displacements of the mass
and of the bumpers respectively with respect to the ground and the dot (.) denotes
differentiation with respect to the time t. The absolute acceleration of the mass is
therefore given by a(t) = ü(t) + At(t). Gj(t) (j = R, L) is the clearance function
which represents the distance, at all times, between the mass and the j-th bumper:

Gj(t) = G0j + ∆uj(t) (j = R,L) (2.2)

where:
∆uR(t) = uR(t)− u(t); ∆uL(t) = u(t)− uL(t) (2.3)
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and G0j (j = R, L) is the j-th initial gap, that is the initial distance between the
mass and the j-th bumper. When the mass is in contact with the j-th bumper
Gj(t) = 0, otherwise Gj(t) > 0.

In Eq. 2.1, ψ1 and ψ2 represent the Heaviside functions, defined as follows:

Contact ψ1 [Gj(t)] =
{

0, Gj(t) > 0
1, Gj(t) = 0

(2.4a)

Separation ψ2 [Fj(t)] =
{

0, Fj(t) ≤ 0 (j = R) or Fj(t) ≥ 0 (j = L)
1, Fj(t) > 0 (j = R) or Fj(t) < 0 (j = L)

(2.4b)

where Fj(t) is the contact force occurring during the contact period with the j-th
bumper (Sect. 2.2.2).

Nondimensionalization

The equations of motion can be written in dimensionless form, by introducing the
following characteristic quantities:

ω =

√
K

M
, u∗ = MAG

K
Rd,max, F ∗ = Ku∗ = Mω2u∗ = MAGRd,max (2.5)

namely the natural circular frequency of the SDOF system ω, the maximum relative
displacement u∗ and the maximum force F ∗ in the SDOF system in free flight
(that is without obstacles) resonance condition. In Eq. 2.5, Rd,max represents the
maximum value of the dynamic amplification factor Rd [45], defined as the ratio
between the amplitude of the dynamic displacement u0 to the static displacement
ust,0 = MAG/K:

Rd(ξ, β) = u0
ust,0

= 1√
(1− β2)2 + (2ξβ)2

(2.6)

In Eq. 2.6, β = Ω/ω represents the ratio between the circular frequency of the
base excitation Ω and the natural circular frequency of the SDOF system ω and
ξ = C/(2Mω) is the damping ratio of the SDOF system. At the resonant frequency,
βR =

√
1− 2ξ2 (for ξ <

√
2/2), from Eq. 2.6, it follows that:

Rd,max(ξ) = 1

2ξ
√

1− ξ2
(2.7)

By dividing both members of Eq. 2.1 by F ∗, the equations of motion can be
written in the following dimensionless form:{

q′′(τ) + 2ξq′(τ) + q(τ) + fj(τ) · ψ1 [δj(τ)] · ψ2 [fj(τ)] = −aG sin βτ
fi(τ) = 0

(2.8)

In Eq. 2.8, it is assumed that whether j = L then i = R, or whether j = R then
i = L. The dimensionless relative displacements of the mass and of the right and left
bumper are denoted as q = u/u∗ and qj = uj/u

∗ (j = R, L) respectively (Fig. 2.2),
and the apex (′) indicates differentiation with respect to the dimensionless time
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Figure 2.2. Model of the system: dimensionless parameters.

τ = ωt. aG = 2ξ
√

1− ξ2 is the dimensionless amplitude of the base acceleration
at(τ). The normalized absolute acceleration of the mass is therefore given by
α(τ) = q′′(τ) + at(τ). The dimensionless clearance function is denoted by δj(τ) and
it is given by:

δj(τ) = δ0j + ∆qj(τ) (j = R,L) (2.9)

where:
∆qR(τ) = qR(τ)− q(τ), ∆qL(τ) = q(τ)− qL(τ) (2.10)

When the mass is in contact with the j-th bumper δj(τ) = 0 (j = R, L), otherwise
δj(τ) > 0. In Eq. 2.9 δ0j = G0j/u

∗ (j = R, L) denotes the initial dimensionless
gap between the mass and the j-th bumper. Based on the adopted normalization,
δ0j = 0 if the j-th bumper is initially in contact with the mass; for 0 < δ0j < 1 the
mass beats and deforms the j-th bumper; whereas the mass will be in free flight
condition for δ0j ≥ 1.

The Heaviside functions ψ1 and ψ2 assume the following expression:

Contact ψ1 [δj(τ)] =
{

0, δj(τ) > 0
1, δj(τ) = 0

(2.11a)

Separation ψ2 [fj(τ)] =
{

0, fj(τ) ≤ 0 (j = R) or fj(τ) ≥ 0 (j = L)
1, fj(τ) > 0 (j = R) or fj(τ) < 0 (j = L)

(2.11b)

where fj(τ) is the normalized contact force occurring during the contact period
with the j-th bumper (Sect. 2.2.2).

2.2.2 Contact force model

The two bumpers are massless and, as the damper, are modeled by a linear elastic
element, with stiffness Kj (j = R, L), and a linear viscous dashpot, with damping
coefficient Cj (j = R, L), arranged in parallel (Kelvin-Voigt model). The contact
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force, occurring during the contact phase with the j-th bumper, is therefore given
by:

Fj(t) = Cj u̇j(t) +Kjuj(t) (j = R,L) (2.12)
When the mass is in contact with the j-bumper Gj(t) = 0 (Eq. 2.2). Consequently,

from Eq. 2.3 it follows that: {
uR(t) = u(t)−G0R

uL(t) = u(t) +G0L
(2.13)

Since G0j (j = R, L) is constant, from Eq. 2.13 it follows that, during the contact
phase, the velocity of the bumper is equal to that of the mass u̇j(t) = u̇(t) (j = R,
L). In terms of dimensionless parameters, Eq. 2.12 can be rewritten as follows:

fj(τ) = 2ξγjq′j(τ) + λjqj(τ) (j = R,L) (2.14)

where γj = Cj/C (j = R, L) is the ratio between the viscous damping coefficient
of the j-th bumper and that of the damper and λj = Kj/K (j = R, L) represents
the ratio between the stiffness of the j-th bumper and that of the damper. During
the contact phase q′j(τ) = q′(τ) (j = R, L) and:{

qR(τ) = q(τ)− δ0R

qL(τ) = q(τ) + δ0L
(2.15)

The Kelvin-Voigt model has some weaknesses [77,78,186,241]. In particular, the
existence of the damping component causes that, at the beginning of the contact
process, the contact force is not continuous This is not realistic, because, when
impact begins, both the components of the contact force must be null. Furthermore,
at the end of the restitution phase, while the deformation of the bumper is null (and
thus also the elastic component of the contact force), the relative velocity, and thus
the contact force, is negative meaning that the colliding bodies attract each other,
but this does not make sense from a physical point of view. Another limitation of the
model, not fully consistent with reality, is that the assumption of a constant damping
coefficient results in a uniform dissipation during the impact time interval. Despite
these weaknesses, the model has been used by several researchers [66–69,137].

Based on these considerations, in this study the change of sign of the contact force
was assumed as indicator of the end of the contact phase (Eqs. 2.4b, 2.11b). The
beginning of the contact was instead identified based on the value of the clearance
function (Eqs. 2.4a, 2.11a).

Bumper relaxation

At the time of detachment, the bumper has a residual deformation that it will
recover by dissipating energy. The dissipative component of the contact force means
that the bumper recovers this deformation more slowly than a fully elastic material,
for which the recovery is instantaneous. The time required to recover the residual
deformation, which depends on the dissipative capabilities of the bumpers, is defined
as relaxation time:

trj = Cj
Kj

(j = R,L) (2.16)
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Figure 2.3. Viscoelastic recovery of
the bumper deformation for differ-
ent values of the relaxation time τr
(Eq. 2.19a).

In dimensionless terms, Eq. 2.16 becomes:

τrj = ω trj = 2ξ γj
λj

(j = R,L) (2.17)

Form Eq. 2.17 it follows that, for a fully elastic material, that is when Cj = 0,
τrj = 0 (j = R, L), whereas for a fully viscous material, that is when Kj = 0,
τrj →∞ (j = R, L).

In the proposed model, the viscoelastic recovery of the deformation of the bumper
was modeled. After the detachment, the dynamics of the bumper is governed, in
dimensionless terms, by the equation:

2ξγjq′j(τ) + λjqj(τ) = 0 (j = R,L) (2.18)

which admits the following closed-form solution:

qj(τ) = q0j e
− τ−τ0

τrj (j = R,L) (2.19a)

q′j(τ) = q′0j e
− τ−τ0

τrj (j = R,L) (2.19b)

where τ0 represents the time instant at the beginning of the relaxation phase
(when the detachment from the mass occurs) and q0j = qj(τ0) (j = R, L) denotes
the corresponding residual deformation of the bumper. The bumper’s velocity in
the same instant is given by q′0j = −q0j/τrj (j = R, L). From Eqs. 2.19 it can be
observed that, after the detachment from the mass, which occurs when the velocity
of the mass exceeds that of the bumper, the latter recovers its deformation according
to an exponential law (Fig. 2.3).

For a fully elastic material (τrj = 0) the recovery is instantaneous, whereas a
fully viscous material (τrj → ∞) never recovers the deformation but it remains
deformed after the detachment. In presence of both elastic and viscous components,
the relaxation time is finite and, depending on the ratio of bumper relaxation time
to time interval between two consecutive contacts, it may happen that the mass
can impact again the same bumper when it has not yet recover all its deformation,
causing a gradually increment of the gap, compared to the initial one (G0j).



2.2 Numerical modeling 33

2.2.3 Parameters

Based on what was said in the previous sections, the dimensionless parameters that
influence the response of the system are:

• Frequency ratio β = Ω
ω

• Damping ratio ξ = C

Ccr
= C

2Mω

• Dimensionless initial gap δ0j = G0j
u∗

(j = R, L)

• Stiffness ratio λj = Kj

K
(j = R, L)

• Damping ratio γj = Cj
C

(j = R, L)

As an alternative to the damping ratio γj , the dissipative capabilities of the
bumpers can be represented through the relaxation time τrj (j = R, L).

The study carried out during the doctoral course was conducted considering two
equal bumpers symmetrically arranged on the two sides of the mass. It follows that
δ0R = δ0L = δ0, λR = λL = λ and γR = γL = γ (or alternatively τrR = τrL = τr).

2.2.4 Nonlinearities of the numerical model

The proposed numerical model, although both the bumpers and the damper have
been modeled by a linear elastic spring in parallel with a linear viscous dashpot
(Kelvin-Voigt model), is strongly nonlinear. In particular, the nonlinearities are due
to the presence of clearance, the unilateral constrains and the occurrence of impact
that causes abrupt changes of stiffness and damping during the contact phase. In
the following this model will be referred to as Simplified Nonlinear Model (SNM).

2.2.5 Procedure for numerical simulations

In the numerical simulations, the equations of motion (Eqs. 2.8) were numerically
solved using the central difference method [22], implemented with a numerical code
written in Matlab. As concerns the identification of the time period in which impact
occurs, this was done as follows. The beginning of the contact phase between the
mass and the j-th bumper was identified based on the value of the clearance function
δj(τ) (j = R, L), as illustrated in Eq. 2.11a. In particular, impact occurs when
δj(τ) = 0. Regarding instead the evaluation of the time instant of detachment, this
was made based on the value of the contact force fj(τ) (j = R, L), as illustrated
in Eq. 2.11b. This choice was motivated by the necessity to overcome one of the
drawbacks of the Kelvin-Voigt model, when used to model the contact, that is the
existence of attracting forces after the restitution phase [77,78,186,241]. Since this
does not make sense from a physical point of view, in this study the change of
sign of the contact force was assumed as indicator of the end of the contact phase.
Furthermore, using Eqs. 2.19, also the viscoelastic recovery of the bumpers after the
detachment was implemented.
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2.3 Experimental modeling

Based on the results of preliminary numerical investigations, an experimental setup
was designed in order to validate the numerical model through shaking table tests.
In particular, as it will be shown in more detail in Sect. 2.3.5, three experimental
laboratory campaigns were carried out, in 2016, 2017 and 2020 respectively. The
characteristics of the physical model were designed taking into account the perfor-
mances of the shaking table and considering the potential impact forces and relative
displacement of the mass with respect to the table. Furthermore, the selection of
the system was conditioned also by the availability of the required components for
the scaled model.

2.3.1 System

The physical model of the Single-Degree-Of-Freedom (SDOF) vibro-impact system
is shown in Fig. 2.4. It consists of a rigid body that can be treated as a lumped
mass, an elastomeric High Damping Rubber Bearing (HDRB) isolator (damper)
and two elastomeric shock absorbers (bumpers) symmetrically arranged on the two
sides of the mass. The mass (M = 550 kg), composed of eight plates of mild steel
(68× 78× 1.6 cm) jointed by bolts, is supported by four spherical bearings, rotating
within unidirectional guides. The unidirectionality of the motion is guaranteed by a
system composed by welded steel sections, bolted onto the base plate, with spherical
bearings, just touching the steel angular sections bolted to the mass. The bumpers
are mounted on steel plates, which are connected, by means of screws, to steel moat
walls bolted onto the base plate of the shaking table.

Isolator

The High Damping Rubber Bearing (HDRB) isolator (denoted also as damper),
whose dimensions are shown Fig. 2.6, consists of 27 2 mm-thick layers of rubber and
26 1 mm-thick steel shims. The height of the isolator, excluding the end plates, is
80 mm and its total diameter is 58 mm. The two end plates, with plan dimensions
100 × 100 mm and thickness 10 mm, permit the connection of the isolator with
adjacent structures. In particular, the lower end plate is bolted onto the shaking
table, while the upper end plate is centrally bolted to the lower plate of the mass
(Fig. 2.4).

Bumpers

In the experimental tests, four elastomeric bumpers were considered, in the following
denoted as Bk (k = 1, 2, 3, 4). The four bumpers were obtained from three types of
elastomeric shock absorbers, with D-shape hollow section (Fig. 2.7):

• type 1: width 60 mm and height 52 mm (Fig. 2.7a);

• type 2: width 40 mm and height 22 mm (Fig. 2.7b);

• type 3: width 65 mm and height 52 mm (Fig. 2.7c).
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Figure 2.4. Experimental setup: a plan view; b lateral view (Section A-A); c lateral view
(Section B-B).
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Figure 2.5. Photos of the experimental setup.

Figure 2.6. HDRB isolator: a plan view; b side view (Section A-A); c photo; d force-
displacement cycle (step-wise sine sweep signal).

Figure 2.7. Cross sections of bumpers: a type 1; b type 2; c type 3.
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As regards the material, the bumpers type 1 and 2 are constituted by a Styrene
Butadiene Rubber Copolymer (SBR) having a hardness of 70 Shore A, while the
bumper type 3 is constituted by an Ethylene Propylene Diene Monomer (EPDM)
having a hardness of 75 Shore A. The bumpers B1 and B2 were obtained from
bumper type 1; consequently, they have the same cross section but different contact
length: L = 100 mm for B1 and L = 400 mm for B2. The bumper B3 was obtained
from bumper type 2 and has contact length L = 400 mm. Finally, the bumper B4
was obtained from bumper type 3 and has contact length L = 400 mm. Table 2.1
summarizes the main features of the bumpers used in the experimental tests.

The mechanical (stiffness and damping) properties of the bumpers increase
passing from B1 to B4. In particular the bumper B1 can be assumed as representative
of soft (not very rigid) shock absorbers, whereas bumper B4 can be assimilated to a
hard (very rigid) obstacle. The remaining two bumpers, B2 and B3, are characterized
by intermediate mechanical properties.

Table 2.1. Main features of the bumpers

Bumper B1 B2 B3 B4

Cross section

Type type 1 type 1 type 2 type 3

Material SBRa SBR SBR EPDMb

Hardness 70 Shore A 70 Shore A 70 Shore A 75 Shore A

Contact length L 100 mm 400 mm 400 mm 400 mm

a Styrene Butadiene Rubber Copolymer.
b Ethylene Propylene Diene Monomer.

The mechanical characterization of the bumpers was carried out in the Materials
and Structures Testing Laboratory of the Department of Structural and Geotechnical
Engineering of “Sapienza” University of Rome, through static and dynamic cyclic
tests, using the Universal testing machine MTS 810 (Material Test System). Fig. 2.8
shows the hysteresis loops obtained in both the static and dynamic cyclic tests,
considering 400 mm long samples of bumpers type 1 (Fig. 2.8a), type 2 (Fig. 2.8b)
and type 3 (Fig. 2.8c) respectively. Before starting the tests, in order to obtain the
contact between the actuator and the sample, alternative initial conditions were
imposed of approaching equal to 3 mm or of compressive force of 200 N. As concerns
the static tests, they were performed by increasing the compressive force, until a
prefix value, with a specific loading and unloading velocity. The dynamic tests
were performed assigning an initial compressive displacement and then subjecting
the sample to programs of imposed displacement variable with sinusoidal law, at
different frequencies and with a specific amplitude, for a certain number of cycles.

As concerns the bumper type 1 (Fig. 2.8a), in the dynamic tests an initial
compressive displacement of about 15 mm was assigned to the specimen; subsequently,
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Figure 2.8. Results of static and dynamic cyclic tests (400 mm samples length): a bumper
type 1; b bumper type 2; c bumper type 3.

an excursion in displacement, with amplitude of about ±12 mm, was imposed, in a
frequency range between 0.5 and 2.5 Hz, with a step of 0.5 Hz. The “static” loop
(black curve) was obtained by increasing the compressive force until 35 kN with a 8
mm/min speed. From Fig. 2.8a an initial softening behavior, followed by a hardening
behavior was observed, in both “static” and “dynamic” loops. The initial softening
behavior is due to both slenderness and large dimension of the internal hole and
upward curvature of the contact surface of the sample (Fig. 2.7a). The “dynamic”
are substantially superimposed, with only small differences at the extremes, whereas
a significant difference is observed between the “dynamic” and the “static” loops.
In particular, in the loading phase, the “dynamic” curves coincide with each other
but not with the static cycle, whereas both the “static” and the “dynamic” curves
coincide in the unloading path in the displacement range between 0 and 20 mm.

As concerns the bumper type 2 (Fig. 2.8b), in the dynamic tests an initial
compressive displacement of about 5 mm was assigned to the specimen; subsequently,
an excursion in displacement, with amplitude of about ±5 mm, was imposed, in a
frequency range between 0.5 and 5 Hz, with a step of 0.5 Hz between 0.5 and 2 Hz,
and of 1 Hz between 2 and 5 Hz. The “static” loop (black curve) was obtained by
increasing the compressive force until 19 kN with a 8 mm/min speed. From Fig. 2.8b
it can be observed that there are no significant variations in stiffness between the
static and dynamic tests. When the displacement grows from 0 to 8 mm, the “static”
and “dynamic” curves have the same slope, but do not exactly coincide in the loading
path, whereas they coincide in the unloading path within the same displacement
range. Some differences were observed for displacements between 8 and 10 mm.

As concerns the bumper type 3 (Fig. 2.8c), in the dynamic tests an initial
compressive displacement of about 10 mm was assigned to the specimen; subsequently,
an excursion in displacement, with amplitude of about ±10 mm, was imposed, in
a frequency range between 0.5 and 2 Hz, with a step of 0.5 Hz. The “static” loop
(black curve) was obtained by increasing the compressive force until 35 kN with a 2
mm/min speed. From Fig. 2.8c it can be observed that in the phase of initial load,
the stiffness corresponding to the dynamic tests is larger than that of the static test.
Furthermore, the “dynamic” cycles are substantially superimposed, with only small
differences at the extremes.
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The three types of bumpers globally show similar behavior. In particular, a
significant increase of stiffness is observed for high values of compression load. This
is due to an important change in the form of bumpers, which leads to the almost
total closure of the internal hole and thus to the contact between the inner contours.

Gap

Different values of the total gap G, defined as the sum of right G0R and left G0L
gaps respectively were considered. The distance between bumpers and mass was
experimentally varied by adjusting the screws behind the plates on which the bumpers
are mounted (Fig. 2.4). In the following the considered gaps will be indicated as Gj,
where j = 1, 2, 3, 4 in the first laboratory campaigns (in particular G1 = 15 mm, G2
= 20 mm, G3 = 25 mm, G4 = 30 mm), whereas j denotes the amplitude, expressed
in mm, of the total gap in the last campaign of tests. Furthermore, G∞ will be
used to denote both the condition without bumpers (free flight condition) and all
the situations in which the gap is large enough not to have the impact between the
mass and the bumpers.

In the experimental tests both positive (G > 0), approximately null (G ' 0)
and negative gaps (G < 0) were tested. The negative gaps were realized by initially
compressing the bumpers against the mass, leading to an initial pre-stress/pre-strain
state in the bumpers.

2.3.2 Input

Shaking table

The experimental tests were performed using the uni-axial shaking table Moog (L081-
324-011), managed by Moog Replication Software, at the Materials and Structures
Testing Laboratory of the Department of Structural and Geotechnical Engineering of
“Sapienza” University of Rome (Fig. 2.9). The table, with dimensions 1.5× 1.5 m, is
characterized by a maximum payload capacity of 1000 kg and a maximum excitation
frequency of 100 Hz. Powered by a hydraulic cylinder controlled by servo-valves, it
is equipped with horizontal guides that allow the movement along only one direction,
with a maximum stroke of ±200 mm.

Figure 2.9. The uni-axial shaking table Moog.
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Input signals

The system was excited by a step-wise forward and backward sine sweep signal, that
is a harmonic signal in which the forcing frequency is increased (forward sweep) and
then decreased (backward sweep) over time, after a certain number of cycles nc,
within a specific frequency range and with an appropriate frequency increment ∆f .
In particular, using the shaking table, a signal in displacement control was applied
at the base of the system, in order to impose a given constant value of peak table
acceleration Ai (i = 1, 2, 3) and with a number of cycles nc, in each sub-frequency
range, sufficient to reach the steady state response. The attainment of the steady
state condition was checked by verifying the convergence to the limit cycle in both
hysteresis loops and phase portraits planes. In particular, three values of peak table
acceleration were considered, namely: A1 = 0.03 g, A2 = 0.04 g, A3 = 0.05 g, where
g is the acceleration due to gravity. For illustrative purposes, in Fig. 2.10 the time
histories of the step-wise forward and backward sine sweep signal are shown for A3
in terms of both displacement (Fig. 2.10a) and acceleration (Fig. 2.10b).

Figure 2.10. Step-wise forward and backward sine sweep signal for A3: a displacement; b
acceleration.

In most tests, the sweep frequency range was between 0.5 Hz and 5 Hz, with
frequency step ∆f = 0.1 Hz and a number of cycles per step nc = 10. In some cases,
in particular for very small and negative gaps, the sweep range, the frequency step
and the number of cycles were varied in order to better capture the response of the
system, especially in the low frequency range (Chap. 5).

2.3.3 Sensors

The measured response quantities are the absolute accelerations and the absolute
displacements of the mass, and of the table and the contact forces.

Accelerometers

The accelerations were measured by seismic ICP® accelerometers Model 393A03
by the PCB Piezotronics company (Fig. 2.11). The accelerometers have measuring
range ±5 g and frequency range from 0.5 Hz to 2000 Hz.



2.3 Experimental modeling 41

Figure 2.11. Accelerometers: a mass; b table.

Displacement transducers

The displacements were measured by:

• SLS190 linear displacement sensors (inductive transducers) by Penny&Giles
company with stroke length of 200 mm;

• optoNCDT Model ILD1402-600 laser displacement sensor by Micro-Epsilon
company, with measuring range of 600 mm;

• optoNCDT Model ILD1420-500 laser displacement sensor by Micro-Epsilon
company, with measuring range of 500 mm.

In particular, in the first two laboratory campaigns, the inductive transducer
SLS190/200 was used to measure the table absolute displacement (Fig. 2.12a),
whereas the optoNCDT ILD1402-600 laser sensor was used to measure the absolute
displacement of the mass (Fig. 2.12b). In the last campaign of tests, the absolute
displacements of both the table and the mass were measured by the optoNCDT
ILD1420-500 and the ILD1402-600 laser sensors respectively.

Figure 2.12. Displacement transducers: a SLS190/200; b optoNCDT ILD1402-600.

Impact load cells

The contact forces exchanged, at the moment of the impact, between mass and
bumpers were measured by the ICP® Force sensor Model 208C05 by the PCB
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Piezotronics company (Fig. 2.13). These force sensors are able to measure a max-
imum dynamic force of 22.24 kN in compression and of 2.224 kN in tension and
a maximum static force of 35.59 kN in compression and of 2.224 kN in tension.
Four impact load cells were used, symmetrically mounted on the mass, two on each
side (Fig. 2.13b). Between the impact load cells and the bumpers, steel plates were
mounted to distribute the impact force (Fig. 2.5). In the first laboratory campaign,
only accelerometers and displacement transducers were employed. In subsequent
campaigns of tests, the impact load cells were added.

Figure 2.13. Impact load cells.

2.3.4 Data acquisition system

Data acquisition and synchronization was performed by means of the KRYPTON-
3xSTG and KRYPTON-4xACC systems by Dewesoft company. The KRYPTON
acquisition data systems, to which the sensors are connected, are combined in a
single measurement chain. At one end, the chain is connected to the power supply
network, at the other to the Ethernet port of the computer (Fig. 2.14). The real
time visualization of the recorded signals was managed by Dewesoft X3 software,
which allows also to analyze and process the data. Once the data acquisition systems
are connected to the computers, the Dewesoft software automatically recognizes and
setups the devices.

Figure 2.14. Data acquisition system

The signals were acquired with a sampling rate of 2000 Hz and, subsequently, a
2nd order low-pass Butterworth filter, with 30 Hz cut-off frequency, was applied to
all data.
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2.3.5 Experimental tests summary

During the doctoral course three experimental laboratory campaigns were carried out:
in 2016, 2017 and 2020 respectively. These campaigns have constantly intersected
with the numerical analyses. Each campaign, which differs from the previous for
what concerns the objectives, the range of investigation and the sensors setup, was
motivated and designed based on the results obtained processing the data recorded
in the previous tests, together with the results of the numerical investigations. The
aim of each campaign was to cover the gaps left by the previous, extend the range
of investigation and validate numerical results.

The series of experimental investigations considered two distinct configurations:
the absence (No Bumpers, NB) and the presence (Yes Bumpers, YB) of bumpers,
under the same type of excitation. Each performed test corresponds to a combination
of peak table acceleration Ai, total gap amplitude Gj and bumper Bk. Table 2.2
reports the summary of the tested cases in the three campaigns. In particular, the
green square, the red triangle and the blue circle denote the tests performed in 2016,
2017 and 2020 respectively.

Table 2.2. Summary of the experimental tests.

G∞ G40 G30a G25b G20c G16 G15d G10 G4 G0 G-1 G-2 G-10

B0

A1

A2

A3

B1

A1

A2

A3

B2

A1

A2

A3

B3

A1

A2

A3

B4

A1

A2

A3
a Gap denoted as G4 in 2016 and 2017 tests
b Gap denoted as G3 in 2016 and 2017 tests
c Gap denoted as G2 in 2016 and 2017 tests
d Gap denoted as G1 in 2016 and 2017 tests
( ): 2016 tests; ( ): 2017 tests; ( ): 2020 tests.
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In Table 2.2 the NB configuration is referred to as a B0 bumper configuration,
indicating conventionally with B0 a bumper placed at an infinite distance from
the mass (G∞) or, equivalently, a bumper of stiffness tending to zero, and thus
representing the extreme case of absence of bumpers.

It can be observed that, in each campaign, some of the tests carried out in the
previous were repeated. In particular the configuration without bumpers (B0) was
tested in all experimental laboratory campaigns with the three values of peak table
acceleration. As concerns the configuration with bumpers, the first experimental
laboratory campaign (green square) has been relatively extended. All four bumpers
were tested, considering four gap amplitudes and three values of peak table accelera-
tion. In the second campaign (red triangle), only some of the tests carried out in
2016 with bumper B3 have been repeated. The main difference with the previous
experimentation, is the addition of the impact load cells to directly measure the
contact forces. Finally, based on the results of the numerical investigations, the
third campaign of tests (blue circle), was designed primarily to investigate the effect
of the gap, considering both large and small positive, null and negative gaps. Only
one value of peak table acceleration (A3) and one bumper (B2) were considered.

Sensors configurations

Experimental campaign 1 (2016) The absolute accelerations of the mass and
the table were measured by accelerometers (Sect. 2.3.3). In particular, the ac-
celeration of the mass was measured by two accelerometers (Fig. 2.15) and the
average value of the two measurements has been taken into account. The absolute
displacements were measured by a laser transducer, for what concerns the mass, and
by an inductive transducer, for what concerns the shaking table.

Experimental campaign 2 (2017) Compared to the previous experimental
laboratory campaign, four impact load cells were installed on the mass, two on each
side, to directly measure the contact force during the impact phases (Fig. 2.16).
Between the impact load cells and the bumpers, steel plates were mounted to
distribute the impact force.

Experimental campaign 3 (2020) The main difference with the previous cam-
paign of tests is the use of laser transducers to measure the absolute displacements
of both the mass and the table (Fig. 2.17). Furthermore, the absolute acceleration
of the mass was measured by a single accelerometer placed in a central position on
the mass.
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Figure 2.15. Sensors configuration - experimental laboratory campaign 1 (2016).
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Figure 2.16. Sensors configuration - experimental laboratory campaign 2 (2017).
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Figure 2.17. Sensors configuration - experimental laboratory campaign 3 (2020).
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2.4 Closing remarks
In this chapter, an overview of the numerical and experimental models used to
study the considered vibro-impact SDOF system has been provided. These two
instruments are of equal importance in the study conducted during the doctoral
course since, being intimately linked, they interacted and fed each other constantly.

The choice to study the vibro-impact phenomenon resorting to a simple model,
such as a SDOF system in which both the damper and the bumpers are modeled by a
viscoelastic model is motivated by the fact that the adoption of an elementary system
allows to identify and study, in a simple manner, the fundamental aspects which
characterize the nonlinear non-smooth vibro-impact dynamics without resorting
to complex models. Simple systems can provide conceptual insights which are
fundamental for the study of more complicated systems.

Furthermore, the adoption of a soft impact model, allows to take into account
the dynamics of the bumpers and to more accurately describes some phenomena
related to the process of collision, otherwise not observable by resorting to the hard
impact model.

The inclusion of other sources of nonlinearity, such as those associated with the
behavior of the damper, probably will allow to highlight other features. However,
already many important aspects have emerged with the simple model, which probably
is not able to cover all possible situations which can occur, but it has proven to be
satisfactory for the purposes of this study, being able to highlight the peculiarities
of the problem.

In the following chapters, the main characteristics of the numerical and/or
experimental model will be briefly recalled to help the reader.
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Chapter 3

Response scenarios: preliminary
experimental and numerical
study

Chapter outline In this chapter, possible scenarios within the experimental dy-
namic response of a vibro-impact Single-Degree-Of-Freedom (SDOF) system, sym-
metrically constrained by deformable and dissipative bumpers, are identified and
described. The different scenarios were obtained varying selected parameters, namely
peak table acceleration A, amplitude of the total gap between mass and bumpers
G and bumper’s stiffness B. Subsequently, using the Simplified Nonlinear Model
(SNM) results in good agreement with the experimental outcomes were obtained,
although the model includes only the nonlinearities due to clearance existence and
impact occurrence. Further numerical analysis highlighted other scenarios that
can be obtained for values of the parameters not considered in the experimental
laboratory campaign. Finally, to attempt a generalization of the results, suitable
dimensionless parameters were introduced.

The contents of this chapter were published in: “Stefani, G., De Angelis, M.,
Andreaus, U. Scenarios in the experimental response of a vibro-impact single-degree-
of-freedom system and numerical simulations, Nonlinear Dynamics (2021), [Springer
Nature]”, [251].

3.1 Introduction

The problem of impact is ubiquitous in many practical (biomedical, mechanical,
civil, . . . ) engineering applications involving mechanical components or structures
repeatedly colliding with one another or with obstacles [110]. Impacts occur, for
example, in the capsule systems used in clinic endoscopy to inspect the surface
lining of the intestine in the human body [87, 165, 166, 293, 294]. Non-smooth
dynamics is observed also in the drilling rig used in the oil and gas industry for
creation of the wells [57,65,158,159,161,267]. In the context of structural pounding,
the occurrence of exceptional loads, like severe earthquakes, can produce large



50 3. Response scenarios: preliminary experimental and numerical study

horizontal displacements in base-isolated structures. If these displacements cannot
be accommodated through adequate gaps, they can lead to pounding with the
surrounding moat walls or adjacent structures, with consequences that can range
from local to severe structural damage [140,187,190,191,194,221,222]. Furthermore,
the acceleration spikes, produced by the impacts, can damage sensitive equipment
housed in the structures [228, 229] and impair their functionality. Pounding is a
problem that also affects other systems like strategic facilities [235] and bridges
[90,93,123]. When it is not possible to guarantee a sufficient seismic gap, the side
effects induced by the occurrence of impacts can be mitigated reducing the impact
stiffness through the interposition of dissipative and deformable shock absorbers
(also known as bumpers) between the colliding systems [6, 223, 224]. Even in the
absence of obstacles, there may be a need to limit the displacements, so as to avoid
the damage of the isolation system. This objective could be achieved either by
inserting suitable obstacles or by using other types of control systems [15,231].

Several scientific works, of both numerical and experimental nature, dealt with
vibro-impact dynamics. In the numerical simulations impact can be modelled using
both a steromechanical or a force-based approach [129]. In the first approach, the
duration of the contact is neglected and the impact is modelled using the momentum
conservation principle and the coefficient of restitution, the latter defined as the ratio
between the post- and the pre-impact velocities [82]. In the second approach, the
contact force can be modelled in different ways, resorting to more or less sophisticated
modelling [77,78,186,200,232,241]. The simplest models are represented by the linear
spring element and Hertz contact model (nonlinear spring element) [101,226], which
do not account for energy dissipation. In order to overcome the limitations of the
pure elastic contact force models, dissipative contact force models were proposed to
take into account the energy loss during the contact process, such as the Kelvin-Voigt
model which combines a linear spring with a linear damper, arranged in parallel
[67, 82, 137] and the Hertzdamp model, proposed by Hunt and Crossley [108], in
which the elastic Hertz’s law is combined with a nonlinear viscoelastic element.

The types of motion and bifurcations that can occur in the dynamics of vibro-
impact systems, with the variation of selected parameters, are the subject of several
works. In [271] Wagg and Bishop investigated the dynamics of a two-degree-of-
freedom impact oscillator with motion limiting constraint, highlighting differing
regimes of impacting motion and studying the bifurcations which occur between them.
The dynamics of impact oscillators with multiple degrees of freedom, subject to more
than one motion limiting constraint, and the possible impact configurations were
investigated by the same authors in [273]. In [176,181], considering a two-degree-of-
freedom system with a clearance subjected to harmonic excitation, the fundamental
group of impact motions are defined and the transitions from one motion to the
other are studied. Luo and Wang [182] studied the dynamics of a two-degree-of-
freedom periodically-forced system with symmetric constraints, with emphasis on the
mutual transition characteristics between neighboring regions of fundamental impact
motions and designed and realized an electronic circuit for physical implementation
of dynamics of the system. A two-sided damping constraint control strategy to
improve the performance of the quasi-zero stiffness (QZS) isolator for both low- and
high-frequency components simultaneously and to prevent the severity of end-stop
impact is proposed by Hao et al. [95]. Wang et al. [274] investigated the dynamical
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behavior of a single degree-of-freedom impact oscillator that impacts at one stop
and is shocked with impulse excitation at the other stop and established the existing
and stability conditions for period-1 motion of the oscillator and its properties.
Furthermore, they discussed the effects of system parameters on dynamical response
under different initial velocities. The nonlinear dynamic behavior of a one-degree-
of-freedom impact oscillator with a single rigid constraint and controlled with an
OGY-based state-feedback control law was investigated by Gritli and Belghith [86],
through bifurcation diagrams. The experimental response of a cantilever beam with
unilateral constraint was studied by de Souza Rebouças et al. [61], considering
different gap configurations and levels of excitation. They highlighted different
qualitative behaviors and used numerical simulations to reproduce experimental
observations.

The practical problem of base-isolated structures impacting against moat-walls
inspired several works by the Andreaus et al., of both numerical and experimental
nature, in which the response of these structures was simulated using a Single-
Degree-Of-Freedom (SDOF) oscillator, consisting of a mass and a damper and
impacting against two deformable and dissipative constraints (bumpers), symmetri-
cally arranged on the sides. The theoretical-numerical study presented in [12], allows
the authors to outline possible scenarios within the system response and guided
subsequent experimental parametric laboratory campaigns [9, 10], conducted on a
small-scale physical model of the system using the shaking table. The influence of
geometrical and mechanical characteristics of isolation and mitigation devices on
the nonlinear non-smooth response of vibro-impact systems was experimentally and
numerically investigated in [13]. Suitable choices of pairs of bumpers and gaps, that
allows to reach a trade-off between two conflicting objectives, namely, control of
excessive displacements and control of excessive accelerations were suggested in [14].
In [249] the author of this thesis with her co-authors focused the attention on the
experimental pseudo-resonance curves of maximum absolute acceleration and excur-
sion of the SDOF oscillator and characterized the hysteresis zone between the jumps.
Some characteristics of the dynamics with impact, evaluated from the experimental
results, namely force and time of contact between mass and bumpers, coefficient of
restitution and energy dissipated by the bumpers during the impact were presented
and discussed in [247]. In [248], referring to the experimental results relating to
one of the considered bumpers, different scenarios that can occur in the system’s
experimental response, varying the investigated parameters, were highlighted and
described. Those scenarios were reproduced also numerically using a Simplified
Nonlinear Model (SNM), described in terms of dimensionless parameters.

The present study represents a deepening and an extension of the study presented
in [248], the latter limited to one of the considered bumpers. In this chapter the
attention is devoted to the identification and characterization of possible scenarios
that can occur in the experimental response of the vibro-impact Single-Degree-Of-
Freedom (SDOF) system, symmetrically constrained with deformable and dissipative
bumpers, varying the peak value of table acceleration A, the amplitude of the total
gap between mass and bumpers G and the bumper’s stiffness B. Based on the
experimental results, the parameters of a Simplified Nonlinear Model (SNM) were
identified in order to reproduce the experimental scenarios. In this model both
the behaviors of the bumpers and the damper were modelled using a Kelvin-Voigt
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model, retaining the other sources of nonlinearity, namely the existence of clearances,
the unilaterality of the contact and the occurrence of impact, which causes abrupt
changes of stiffness and damping at the contact time. Using the same model, further
numerical analyses were carried out in order to integrate the experimental results
and highlight the existence of other possible scenarios. Finally, in order to attempt
a generalizations of the obtained results, suitable dimensionless parameters were
introduced. Despite the limitations of the Kelvin-Voigt model, it is considered
satisfactory for the purposes of this study. As emerges from the scientific Literature
on this topic, there are not many works that in a such systematic way, resorting
both to experimental and numerical investigations, and using different synthetic
representations, frame and classify the scenarios that can occur, in the dynamic
non-smooth response of a vibro-impact SDOF system.

The chapter is organized as follows. The numerical model of the system and
the equations of motion are introduced in Sect. 3.2; the physical model and the
experimental tests are described in Sect. 3.3; in Sect. 3.4 some of the experimental
results and the identified scenarios are shown and discussed; the identification
of the parameters of the Simplified Nonlinear Model (SNM) and the comparison
between experimental and numerical results are presented in Sect. 3.5; in Sect. 3.6
further numerical scenarios, obtained for values of the parameters not experimentally
investigated, are presented and discussed; suitable dimensionless parameters and
a rereading of the results according to these parameters are given in Sect. 3.7; the
main conclusions and future developments are drawn in Sect. 3.8.

3.2 Model and equations of motion

The numerical model of the SDOF oscillator is shown in Fig. 3.1. It consists of a
mass M , a damper (D) and two bumpers, denoted as right bumper (BR) and left
bumper (BL) respectively, symmetrically arranged on the two sides of the mass. The
system is subject to a base excitation At(t).

Figure 3.1. Model of the SDOF system.

During the motion, the system can be in three configurations. The corresponding
equations of motion are:



3.3 Experimental setup 53

• The mass is not in contact with any of the bumpers (flight):

Mü(t) + Cu̇(t) + F (t) = −MAt(t) (3.1a)
Cj u̇j(t) + Fj(t) = 0; Gj(t) > 0 (j = R,L) (3.1b)

• The mass is in contact with the right bumper:

Mü(t) + Cu̇(t) + F (t) + CRu̇R(t) + FR(t) = −MAt(t) (3.2a)
CLu̇L(t) + FL(t) = 0; GR(t) = 0 (3.2b)

• The mass is in contact with the left bumper:

Mü(t) + Cu̇(t) + F (t) + CLu̇L(t) + FL(t) = −MAt(t) (3.3a)
CRu̇R(t) + FR(t) = 0; GL(t) = 0 (3.3b)

where u(t) and uj(t) (j = R, L) are the relative displacements of the mass and
of the bumpers respectively with respect to the ground and the dot (.) denotes
differentiation with respect to the time t. C and Cj (j = R, L) are the damping
coefficients of the damper and the bumpers respectively; F (t) and Fj(t) (j = R, L)
are the restoring forces exerted by the damper and the bumpers respectively. Gj(t)
(j = R, L) is the clearance function which represents the distance, instant by instant,
between the mass and the j-th bumper:

Gj(t) = G0j + ∆uj(t) (j = R,L) (3.4a)
∆uR(t) = uR(t)− u(t); ∆uL(t) = u(t)− uL(t) (3.4b)

where G0j (j = R, L) is the j-th initial gap, that is the initial distance between
the mass and the j-th bumper. When the mass is in contact with the j-th bumper
Gj(t) = 0, otherwise Gj(t) > 0. In this study two equal bumpers symmetrically
positioned on the two sides of the mass are considered. Thus, it is FR = FL, CR = CL
and G0R = G0L. The studied physical model is strongly nonlinear. Nonlinearities
are due to the behavior of damper and bumpers, the gap, the unilateral constrains
and the impact that induces abrupt changes of both stiffness and damping.

3.3 Experimental setup
The physical model of the system consists of a rigid body (mass M = 550 kg), an
elastomeric High Damping Rubber Bearing (HDRB) isolator (damper), and a couple
of symmetrically mounted elastomeric shock absorbers (bumpers placed on steel
moat walls), as shown in Fig. 3.2. The system was excited by a step-wise forward
(f = 0.5− 5 Hz with ∆f = 0.1 Hz) and backward (f = 5− 0.5 Hz with ∆f = 0.1 Hz)
sine sweep in displacement control, in order to impose a given peak acceleration A,
with a number of cycles such as to reach the steady state condition. The attainment
of the steady state condition was checked by verifying the convergence to the limit
cycle in both planes of phase portraits and hysteresis loops. Two configurations,
with and without bumpers, under the same base excitation, were considered.

The experimental tests were carried out to investigate the influence on the system
response of selected parameters, namely:
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Figure 3.2. Schematic view of the experimental setup.

• peak table acceleration Ai (i = 1, 2, 3); in particular A1 = 0.03g, A2 = 0.04g,
A3 = 0.05g, where g is the gravity’s acceleration;

• amplitude of the total gap Gj (j = 1, 2, 3, 4 and G∞) between mass and
bumpers, defined as the sum of right G0R and left G0L gaps (Fig. 3.2); in
particular G1 = 15 mm, G2 = 20 mm, G3 = 25 mm, G4 = 30 mm and G∞
denotes all the situations in which the gap is large enough not to have the
impact between the mass and the bumpers; this occurs both in the free flight
condition (absence of bumpers) and when the mass just grazes the bumpers;
in the latter case, the corresponding value of G∞ depends on A;

• bumper’s stiffness Bk (k = 1, 2, 3, 4); the stiffness of the bumper increases as
k increases.

In the experimental laboratory campaign, each performed test corresponds to a
combination of these three parameters. The measured parameters during the tests
were the absolute accelerations and displacements of the mass and of the shaking
table. The accelerations were measured by accelerometers and the displacements
were measured by a laser transducer, for what concerns the mass, and by an inductive
transducer, for what concerns the shaking table (Fig. 3.2). For a more detailed
description of the experimental setup see Sect.2.3 and [14].

3.4 Experimental results

In this Section the experimental results, represented in terms of forward and backward
Pseudo-Resonance Curves (PRCs) of normalized excursion of absolute acceleration
(ηa = Ea/Ea0) and relative displacement (ηd = Ed/Ed0) of the mass, are discussed.
The excursion Ei (i = a, d) was calculated as the difference between the maximum and
minimum values recorded at steady-state of each sub-frequency range. Subsequently,
these excursions E were normalized with respect to the maximum excursion in the
backward sweep in free flight condition Ei0 (i = a, d). Based on this normalization,
a value of normalized excursion ηi (i = a, d) greater than 1 means that in presence
of bumpers the excursion is larger compared to the free flight condition.
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3.4.1 Free flight condition

In the free flight condition, that is when the mass is free to move without obstacles,
forward (in the following figures identified with the letter (f) in the legend) and
backward (in the following figures indicated with the letter (b) in the legend) PRCs
of the excursion of absolute acceleration (Ea) and relative displacement (Ed) of the
mass, show a softening behavior, due to the damper, gradually more evident as the
excitation amplitude A increases.

Figure 3.3. Free flight condition: a Ea[m/s2]; b Ed[mm].

As shown in Fig. 3.3, as A increases (increasing thickness of the lines and size
of the markers), the maximum values of excursion, of both absolute acceleration
and relative displacement, increase and resonance occurs for decreasing values of
frequency. As can be seen from the same figures, even in the case of the maximum
amplitude of the excitation considered in the laboratory campaign (A3), the extension
of the hysteresis is limited.

3.4.2 Contact condition

When impact occurs, the PRCs bend to the right (Figs. 3.4b,c) due to the hardening
caused by impact against the bumpers, as it can be seen in Fig. 3.4a, in which
the absolute acceleration vs relative displacement cycles, in steady-state forward
resonance condition, corresponding to the absence (free flight, black curve) and
presence of bumper (red curve, corresponding to the combination B4-G4-A3) are
compared. In Figs. 3.4b,c the same comparison is made in terms of PRCs of
normalized excursion of absolute acceleration ηa (Fig. 3.4b) and relative displacement
ηd (Fig. 3.4c). In these figures, the PRCs corresponding to the free flight condition
are represented with solid (forward sweep) and dashed (backward sweep) black lines,
whereas the PRCs representative of the contact condition (combination B4-G4-A3)
are represented with red (forward sweep) and blue (backward sweep) markers. By
increasing the excitation frequency (red markers, forward sweep), the amplitude
of the response increases, initially overlapping the curve in free flight, until impact
occurs; subsequently, the response continues to increase, following a different path
until a sudden downward jump (represented with a vertical red arrow pointing
downwards) to a smaller amplitude response (associated with the absence of impact)
occurs and then continues to decrease slowly, overlapping the curve in free flight. If
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Figure 3.4. Comparison between free flight and contact (B4-G4-A3) condition: a absolute
acceleration vs relative displacement cycle; b ηa; c ηd.

the exciting frequency is decreased (blue markers, backward sweep), the amplitude
of the response increases slowly, overlapping the curve in free flight, until a sudden
upward jump (represented with a vertical blue arrow pointing upwards) to a larger
amplitude response (associated with the occurrence of impact) occurs and then
continues to decrease, following the corresponding forward curve. The presence of
jumps give rise to an hysteresis in the ηi vs f (i = a, d) plane (primary resonance
with right hysteresis), highlighted in Figs. 3.4b,c with a light gray shaded area.
The attribute “right” refers to the fact that the hysteresis is a consequence of the
bending to the right of the frequency response curve at the primary resonance. In
the frequency interval between the two jumps, for each value of frequency there are
three steady-state solutions, two stable, corresponding respectively to large and small
amplitude oscillations, and one unstable and thus not experimentally reproducible.

In the following Figs. 3.5 and 3.6 the forward (solid lines) and backward (dashed
lines) PRCs, respectively of normalized excursion of absolute acceleration ηa (Fig. 3.5)
and relative displacement ηd (Fig. 3.6) of the mass, are represented for different
values of the total gap G (each color corresponds to a gap amplitude). The sub-
figures belonging to the same column of the grid are characterized by the same value
of peak table acceleration A, while the sub-figures belonging to the same row of the
grid correspond to the same bumper B.

From Fig. 3.5 it can be observed that, compared to the free flight condition,
the occurrence of impact against the bumpers causes an increase in acceleration;
in resonance condition and for the investigated combinations of parameters, ηa is
observed to be always greater than 1, both in the forward and in the backward sweeps,
with the amplitude of the forward resonance greater than that of the backward
resonance. This does not exclude that, for other combinations of the parameters,
not investigated, in resonance condition, ηa may be less than 1. For a given pair
B-A, which corresponds to a sub-figure in Fig. 3.5 (for example B2-A3), compared
to the free flight condition, as the total gap G decreases, the jump frequencies, both
in the forward and in the backward sweeps, the latter to a lesser extent, increase.
For the selected B-A pair, the maximum values of excursion, both in the forward
and in the backward resonance condition, the latter to a lesser extent, show a
bell-shaped trend. For other combinations of B and A, it is possible to capture only
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Figure 3.5. Experimental PRCs of ηa.
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Figure 3.6. Experimental PRCs of ηd.
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the ascending branch (see for example the sub-figure corresponding to B1-A1) or
only the descending branch (see for example the sub-figure corresponding to B4-A3)
of the envelope of the maxima. Furthermore, decreasing the total gap, secondary
resonances in the low frequency range appear. For a given pair B-G (see for example
the second row of sub-figures, associated with the bumper B2 and focus the attention
on the curves corresponding for example to the total gap G1), increasing the table
acceleration , that is moving from the left column to the right column, it can be
observed that the jump frequencies, both in the forward and in the backward sweeps,
the latter to a lesser extent, increase. The maximum values of excursion in the
forward resonance condition increase, while the maximum values of excursion in the
backward resonance condition increase to a lesser extent. Furthermore, increasing
the table acceleration, secondary resonances in the low frequency range appear.
With the same acceleration A and total gap G (see for example the third column
of sub-figures, associated with the acceleration A3 and focus the attention on the
curves corresponding to the total gap G1), increasing the bumper stiffness, that
is moving from the top row to the bottom row, it can be observed that the jump
frequencies, both in the forward and in the backward sweeps, the latter to a lesser
extent, increase. The maximum values of excursion both in the forward and in the
backward resonance condition increase. Furthermore, increasing the stiffness of the
bumper, secondary resonances in the low frequency range appear. It can also be
observed that bumpers B2 and B3 behave in a similar way. From Fig. 3.5, it can also
be observed that in the case of the combination of the most deformable bumper with
the smallest table acceleration (pair B1-A1, top left corner of the figure) PRCs are
quite similar to those associated with the free flight condition, while the difference
becomes more evident for the pair characterized by the stiffest bumper and the
greatest table acceleration (pair B4-A3, lower right corner of the figure). Finally, a
fixed point for f ' 1Hz can be observed, especially for the higher values of B and A.

From Fig. 3.6 it can be observed that, compared to the free flight condition,
in presence of bumpers, due to the limitation of the displacement imposed by the
constraint, ηd is always lower than 1, both in the forward and in the backward sweeps,
with the amplitude of the forward resonance greater then that of the backward
resonance. This difference decreases increasing the stiffness of the bumper. It can
be observed that, in the absence of impact, PRCs overlap with those relating to the
free flight condition. The overlap can occur on both the ascending branch, if impact
occurs for frequencies greater that 0.5 Hz, and the descending branch, after the
downward jump in the forward sweep and before the upward jump in the backward
sweep. The upward jumps, compared to the PRCs of ηa are less evident, especially in
the case of large gaps and small accelerations. As regards the variation of the jumps
frequencies, and the appearance of secondary resonances, what has already been said
for ηa applies. For a given pair B-A, which corresponds to a sub-figure in Fig. 3.6 (for
example B2-A2), compared to the free flight condition, as the total gap G decreases
the maximum values of excursion, both in the forward and in the backward resonance
condition decrease. In the ascending branch, the deviation from the PRCs associated
with the free flight condition, occurs for gradually lower frequency values. For a
given pair B-G (see for example the second row of sub-figures, associated with the
bumper B2 and focus the attention on the curves corresponding to the total gap G1),
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increasing the table acceleration, that is moving from the left column to the right
column, it can be observed that the maximum values of excursion both in the forward
and in the backward resonance condition decrease. With the same acceleration A
and total gap G (see for example the third column of sub-figures, associated with the
acceleration A3 and focus the attention on the curves corresponding to the total gap
G1), increasing the bumper stiffness, that is moving from the top to the bottom, it
can be observed that the maximum values of excursion both in the forward and in the
backward resonance condition decrease. It can also be observed that bumpers B2 and
B3 behave in a similar way. Increasing B, with the same pair G-A, the penetration
of the mass into the bumper decreases and becomes progressively independent of the
forcing frequency. This branch, characterized by a concavity for the most deformable
bumper, becomes gradually more straight and horizontal moving on to the bumper
B4, which can be assimilated to a quite rigid obstacle. As already emerged from
the Fig. 3.5, also from Fig. 3.6, it can also be observed that in the case of the
combination of the most deformable bumper with the smallest table acceleration
(pair B1-A1, top left corner of the figure) PRCs are quite similar to those associated
with the free flight condition, while the difference becomes more evident for the
pair characterized by the stiffest bumper and the greatest table acceleration (pair
B4-A3, lower right corner of the figure). Finally, making a comparison, with the
same frequency, between the PRCs with and without bumpers, it can be observed
that in the presence of the bumpers there are frequency ranges in which, contrary
to what one would expect, the excursion of relative displacement of the mass can be
greater than what occurs in free flight condition.

Figs. 3.5 and 3.6 provide analogous and dual indications, since they represent
two different points of view from which to observe the same problem. In particular,
they provide the same indications regarding the evolution of the jumps frequencies
and the appearance of secondary resonances. Furthermore, they reflect the dual
evolution of the represented quantities, namely accelerations and displacements,
that is the introduction of the bumpers causes on the one hand the increase of the
accelerations and on the other the decrease of the displacements.

3.4.3 Experimental scenarios

Based on the previous observations, as G decreases, different scenarios can be
identified:

• Scenario 0 (S0): free flight condition;

• Scenario 1 (S1): grazing condition;

• Scenario 2 (S2): PRCs with only the primary resonance with right hysteresis;

• Scenario 3 (S3): PRCs with both the primary resonance with right hysteresis
and a secondary resonance in the low frequency range, to the left of the primary
resonance.

In the following these scenarios will be described, starting from the scenario S3,
in more detail. Phase portraits, Fourier spectra and time histories in steady-state
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condition will be analysed. In the time histories, the time axis t will be normalized
with respect to the period T = 1/f of the harmonic base excitation.

Scenario S3 PRCs belonging to this scenario show both the primary resonance
with right hysteresis, between the downward and upward jumps, and a secondary
resonance without hysteresis in the low frequency range. This scenario was experi-
mentally obtained with different combinations of the investigated parameters. For
example, the PRCs shown in Fig. 3.7 correspond to the combination B2-G1-A3. The
red markers refer to the forward sweep, while the blue ones to the backward sweep.
The arrows indicate the two jumps. The three vertical dashed lines represent three
values of frequency, corresponding respectively to the secondary resonance (fI = 0.7
Hz), the following valley (fII = 0.9 Hz) and the primary resonance (fIII = 2.5 Hz),
that will be investigated in more detail. It is worth noting that, in this case impact
occurs already at 0.5 Hz.

Figure 3.7. Scenario S3 (B2-G1-A3): a ηa; b ηd.

By focusing the attention on the ridge of the secondary resonance without
hysteresis (first vertical dashed line on the left in Fig. 3.7, f = fI), from Fig. 3.8a it
can be observed that, in the phase plane, the two solutions, corresponding to the
forward (red line) and backward (blue line) sweep are approximatively coincident.
The red and blue points represent the Poincaré sections and the two vertical dashed
lines indicate the gaps. These two coincident solutions are characterized by several
harmonic components (as can be seen from Fig. 3.8d), whose amplitude decreases
with increasing frequency. At the secondary resonance, in each forcing cycle the
mass hits each bumper once, and these impacts are highlighted by peaks in the time
history of the absolute acceleration (Fig. 3.8j) and by sudden changes in relative
velocity (Fig. 3.8m). The time history of relative displacement is represented in
Fig. 3.8g) in which the horizontal dashed lines indicate the gaps. In the same figures,
two consecutive impacts, the first one with the right bumper and the second one
with the left bumper, were highlighted with vertical yellow bands. The yellow points
emphasize the instants of start and end of the contact phase and the corresponding
values of displacement, acceleration and velocity, while the acceleration peaks are
marked with cyan stars. Moving to the next valley in the PRC (central vertical
dashed line in Fig. 3.7, f = fII), we still observe, in the phase plane, the presence



62 3. Response scenarios: preliminary experimental and numerical study

Figure 3.8. Scenario S3 (B2-G1-A3): Phase portrait: a f = fI; b f = fII; c f = fIII;
Fourier spectrum: d f = fI; e f = fII; f f = fIII; Time history of relative displacement:
g f = fI; h f = fII; i f = fIII; Time history of absolute acceleration: j f = fI; k f = fII;
l f = fIII; Time history of relative velocity: m f = fI; n f = fII; o f = fIII.
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of two coincident solutions (Fig. 3.8b). As in the previous case, the two solutions
are characterized by several harmonic components (Fig. 3.8e) and, in each forcing
cycle, the mass hits each bumper once (Fig. 3.8k). In Figs. 3.8h,k,n two consecutive
impacts, the first one with the right bumper and the second one with the left bumper,
were highlighted with vertical yellow bands. In the same figures, the yellow points
emphasize the instants of start and end of the contact phase and the corresponding
values of displacement, acceleration and velocity, while the acceleration peaks are
marked with cyan stars. Moving from the valley to the primary hysteresis, the
solutions corresponding to the forward and backward sweeps are still coincident and,
as the frequency increases, the phase portraits gradually regularize and take on the
appearance of an ellipse.

By focusing the attention on the primary resonance with right hysteresis (third
vertical dashed line in Fig. 3.7, f = fIII), just before the downward jump, from
Fig. 3.8c it can be observed that, in the phase plane, there are two different steady-
state solutions:

• Large-amplitude resonant motion associated with the occurrence of impact
(red line);

• Small-amplitude non-resonant motion without impact (blue line).

The two solutions are both periodic with one predominant harmonic component
(Fig. 3.8f). Actually, there would be also an unstable solution, that could not be
obtained experimentally. By focusing the attention on the large-amplitude motion,
it can be observed that, in each forcing cycle, the mass hits each bumper once. In
Figs. 3.8i,l,o two consecutive impacts, the first one with the right bumper and the
second one with the left bumper, were highlighted with vertical yellow bands. In the
same figures, the yellow points emphasize the instants of start and end of the contact
phase and the corresponding values of displacement, acceleration and velocity, while
the acceleration peaks are marked with cyan stars. Immediately after the downward
jump, for greater values of frequency, there is only one solution, the same in the
forward and in the backward sweep, characterized by the absence of impact and the
corresponding phase portrait takes on the appearance of an ellipse. It is worth noting
that the considered setup (B2-G1-A3) is characterized by an accidental geometric
dissymmetry, which is reflected in the asymmetry of the phase portraits and of the
time histories. This dissymmetry is due to imperfections in the experimental setup,
related to the gap, which is not perfectly symmetrical and slightly different from
the nominal value. This is particularly evident in Figs. 3.8a,b and less visible in
Fig. 3.8c, given the greater penetration of the mass into the bumpers. Furthermore,
from Fig. 3.8, it can be observed that the duration of the contact time compared
to the period T = 1/f of the harmonic base excitation (width of a single vertical
yellow band), increases going from f = fI to f = fIII.

Scenario S2 PRCs belonging to this scenario are characterized only by the pres-
ence of the primary resonance with right hysteresis, between the downward and
upward jumps. This scenario was experimentally obtained with different combi-
nations of the investigated parameters. For example, the PRCs shown in Fig. 3.9
correspond to the combination B2-G2-A2. In the frequency range between the two
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jumps, everything goes as described above. Unlike the case examined in the previous
paragraph (scenario S3), here, having increased the gap, impact does not occur
immediately starting from the smallest frequency value investigated, but in the range
between 0.7 and 2 Hz.

Figure 3.9. Scenario S2 (B2-G2-A2): a ηa; b ηd.

Scenarios S1 In the grazing condition, the mass just touches the bumpers without
deforming them significantly. Consequently, the corresponding PRCs are similar to
those occurring in the free flight condition. The grazing condition was experimentally
observed in few cases where the combination of the largest gap and the smallest
excitation amplitude occurred (Fig. 3.10, corresponding to the combination B2-G4-
A1).

Figure 3.10. Scenario S1 (B2-G4-A1): a ηa; b ηd.

Scenarios S0 As concerns the free flight condition, what has already been said in
Sect. 3.4.1 applies.



3.5 Identification via the Simplified Nonlinear Model (SNM) 65

3.5 Identification via the Simplified Nonlinear Model
(SNM)

The experimental results were compared with those obtained with a numerical model,
as described in Section 3.2, in which a linearization of the behaviors of both the
bumpers and the damper was made, retaining the other nonlinearities. In particular,
the behavior of both damper and bumpers was modelled with a linear elastic spring
in parallel with a linear viscous dashpot. Consequently, the restoring forces in
Eqs. 3.1, 3.2 and 3.3 assume the expression:

F (t) = Ku(t) (3.5a)
Fj(t) = Kjuj(t) (j = R,L) (3.5b)

where K and Kj (j = R, L) are the elastic stiffness of the damper and the bumpers
respectively. In the case of two equal bumpers symmetrically positioned on the two
sides of the mass, it is KR = KL. By virtue of the linearization made, this model
was called Simplified Nonlinear Model (SNM). It is worth noting that the other
sources of nonlinearities, namely the gap, the unilateral constrains and the impact
that induces abrupt changes of both stiffness and damping, are taken into account.

(a) (b)

Figure 3.11. Comparison between experimental and numerical PRCs (Scenario S3, combi-
nation B2-G1-A3): a ηa; b ηd.

The visco-elastic model, despite its well-known limitations, particularly when
used to model the contact, is considered satisfactory for the purposes of this study.
To compare the experimental results with those obtained with the SNM, it was
necessary to reduce the nonlinear constitutive law of the damper [9, 202] to a linear
elastic one. This was made considering an equivalent stiffness K, estimated in free
flight resonance condition, for each value of table acceleration A.

Once the parameters of the numerical model were identified, the scenarios
described above were reproduced numerically and a comparison with the experimental
data was made in terms of PRCs and phase portraits, as shown in Figs. 3.11, 3.12
and 3.13. In particular, Figs. 3.11 and 3.12 show the PRCs and the phase portraits
corresponding to the S3 scenario for the B2-G1-A3 combination; and Fig. 3.13 shows
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the PRCs of the S2 scenario for the B2-G2-A2 combination. In these figures, the
experimental results were represented with markers in the PRCs (Figs. 3.11 and 3.13)
and dotted lines in the phase portraits (Fig. 3.12), while the numerical results were
represented with solid and dashed black lines. The identified parameters of the
model were: KR = KL = 510 kN/m, CR = CL = 0.9 kN s/m for the bumper B2
and, with regards to the damper, K = 26.8 kN/m, C = 1.1 kN s/m for the scenario
S3 and K = 31.9 kN/m, C = 1.1 kN s/m for the scenario S2.

Figure 3.12. Comparison between experimental and numerical phase portraits (Scenario
S3, combination B2-G1-A3): a f = fI; b f = fII; c f = fIII.

It can be observed that, although the SNM does not include the nonlinearities
associated with the behavior of both the damper and the bumpers, there is a good
agreement between experimental and numerical results both in terms of PRCs
(Fig. 3.11 and 3.13) and in the phase portraits (Fig. 3.12).

Figure 3.13. Comparison between experimental and numerical PRCs (Scenario S2, combi-
nation B2-G2-A2): a ηa; b ηd.

The model is able to reproduce both qualitatively and quantitatively the primary
resonance and the downward jump, whereas it is not able to precisely capture
other phenomena such as the frequency of the upward jump. This is due to the
difference between the experimental (nonlinear) and numerical (linear) PRCs in free
flight condition which causes that, for a given value of the gap, in the SNM, the
upward jump occurs for lower values of the frequency. Furthermore, the position
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Figure 3.14. Experimental investigated
cases and scenarios.

and amplitude of the secondary resonance was reproduced in a sufficiently accurate
manner. The numerical model also highlighted the presence of internal loops in
the phase portrait, corresponding to the secondary resonance (f = fI, black cycle
in Fig. 3.12a) and something similar to small loops can also be recognized in the
experimental cycles.

Based on these considerations, the SNM appears to be adequate to simulate the
behavior of the system and can give quite satisfying results in good agreement with
the experimental outcomes.

3.6 Further numerical scenarios

From the analysis of the experimental results, it was observed that the scenarios
become more and more complex decreasing the total gap G, increasing the peak
table acceleration A and the bumper’s stiffness B (Fig. 3.14). In this figure, each
plane corresponds to an investigated value of peak table acceleration A, which grows
moving from the lower to the higher plane. In each plane, every single square of the
grid correspond to a pair B-G and the corresponding color denotes the associated
scenario (S1: green, S2: blue, S3: red). It can be observed that, for the lower value
of A (A1), only the scenarios S1 and S2 were observed, the former only for the pair
G4-A1; for values of G greater than G4, free flight condition occurs. Increasing A,
only the scenarios S2 and S3 were observed and the transition from S2 to S3 occurs
decreasing the total gap G and increasing the stiffness of the bumper B; furthermore,
the extension of the red region, associated with the scenario S3, increases. The
grazing condition was not observed for these values of A, i.e. A2 and A3, because
it occurs for values of G∞ greater than G4. Based on these considerations, using
the SNM, which has proven to be able to reproduce satisfactorily the experimental
results, further numerical simulations were carried out to investigate what happens
for combinations of the parameters not accomplished in the experimental tests.
Having available for the moment the same bumpers Bk (k = 1, 2, 3, 4) used in
the experimental campaign, new combinations can be obtained varying the gap
amplitude G and the peak table acceleration A. In order to investigate the existence



68 3. Response scenarios: preliminary experimental and numerical study

of more complex scenarios, one choice may be to keep the peak table acceleration A
fixed and to reduce the total gap G.

In Fig. 3.15 the numerical PRCs corresponding to the combination B3-A3 with a
total gap amplitude G = 10 mm are represented. It can be observed that, compared
to the previously defined scenario S3, in this case in the low frequency range different
types of secondary resonances arise. In particular, for f < 0.9 Hz, several secondary
resonances with left hysteresis are observed (see the area enclosed by a dotted gray
circle). The attribute “left” refers to the fact that the hysteresis is a consequence of
the bending to the left of the frequency response curve at the secondary resonance.
On the other hand, in the neighbourhood of 1 Hz (rectangular zoomed area), a
secondary non-regular resonance, with a less regular appearance, is noticed.

Figure 3.15. Numerical PRCs (B3-A3, G = 10 mm): a ηa; b ηd.

By focusing the attention on one of the secondary resonances with left hysteresis
(first vertical dashed line on the left in Fig. 3.15, f = fI = 0.651 Hz), it can be
observed that, there are two different steady-state solutions (Fig. 3.16a):

• Large-amplitude motion with impact (blue line);

• Small-amplitude motion with impact (red line).

Each of the two limit cycles in Fig. 3.16a is antisymmetric with respect to the axes.
Compared to the primary resonance (Fig. 3.8c), here the large-amplitude motion
is associated with the backward sweep. Furthermore, the two solutions are both
periodic multi-frequency (Fig. 3.16c) and are characterized by the occurrence of
impact, as it can be seen also from Fig. 3.16e,g,i. In particular, in each forcing cycle,
the mass hits each bumper twice in the forward sweep (vertical light red bands)
and once in the backward sweep (vertical light blue bands). The corresponding
acceleration peaks are marked with red (forward sweep) and blue (backward sweep)
stars respectively. The number of impacts can also be deduced from the phase
portraits (Fig. 3.16a). Both the limit cycles are characterized by the presence of
internal loops. In the backward sweep, these loop do not touch the vertical dashed
lines that represent the position of the obstacles, whereas in the forward sweep, the
loop cross them. As in the primary hysteresis, also here there would be also an
unstable solution, that could not be obtained experimentally.
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Figure 3.16. Numerical results (B3-A3, G = 10 mm). Phase portrait: a f = fI; b f = fII;
Fourier spectrum: c f = fI; d f = fII; Time history of relative displacement: e f = fI;
f f = fII; Time history of absolute acceleration: g f = fI; h f = fII; Time history of
relative velocity: i f = fI; j f = fII.
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Similar considerations apply to the other secondary resonances with left hysteresis
that occur for smaller frequency values. What changes, in addition to the amplitude
of the response, is the number and the position of the internal loops in the phase
portraits and, thus, the number of impacts. In particular, decreasing the frequency,
the number of impacts per forcing cycle increases, both in the forward and in the
backward sweep, with a greater number of impacts always on the forward sweep.

As concerns the secondary non-regular resonance (second vertical dashed line
in Fig. 3.15, f = fII = 1.029 Hz), it can be observed that, in this frequency range,
forward and backward PRCs overlap, therefore there is no hysteresis. In the central
part of this resonance, characterized by a more or less constant excursion of both
absolute acceleration and relative displacement, a pair of quasi-periodic solutions
is observed (Figs. 3.16b,d). These two limit cycles have the same excursion but
are characterized by an eccentricity, calculated as the half-sum of maximum and
minimum values at steady state of each sub-frequency range, equal in absolute value
but with opposite sign. Consequently, the two solutions are not antisymmetric
in themselves, but the antisymmetry is achieved through their envelope, as can
be seen from Fig. 3.16b, in which the envelope is highlighted in light gray. Each
cycle has an internal loop which, as time goes by, approaches, crosses and then
moves away from one of the left vertical dashed lines representing the position of
the obstacles. In particular, the internal loop of the red cycle crosses only the right
vertical line (right bumper), while the internal loop of the blue cycle crosses only
the left vertical line (left bumper). Given the quasi-periodicity of the response,
it is not possible to reach a steady-state condition. This results, for each of the
two solutions that make up the pair, in a different number of impacts, in each
forcing cycle, to the right and left as time goes on (Figs. 3.16f,h,j). In this frequency
range, starting from appropriate initial conditions, it is possible to observe, besides
the pair of quasi-periodic solutions, also a periodic solution, represented with a
dashed green curve in Fig. 3.16b. Compared to the two quasi-periodic solution, this
solution is antisymmetric in itself and is characterized by a smaller excursion and
zero eccentricity. In the PRCs (Fig. 3.15) the values of excursion associated with
these periodic solutions are placed on the dashed green curve, which represents the
ideal course of the PRC that would have occurred in the absence of the secondary
non-regular resonance.

After passing the range characterized by almost constant excursion, along the
following descending branch, the presence of a pair of solutions, with an antisymmetric
envelope, is still observed and both the quasi-periodicity and the internal loops
gradually disappear increasing the frequency. In the next ascending branch, before
the primary hysteresis, we return to having a single periodic solution.

In Fig. 3.17 the numerical PRCs corresponding to the combination B3-A3 with
the bumpers initially attached to the mass (G = 0 mm) are represented. It can
be observed that the situation returns to be smooth, the forward and backward
curves overlap without jumps, hysteresis or secondary resonances and the primary
resonance has moved to higher frequencies (about 5.4 Hz). For each frequency value,
there is always a single periodic mono-frequency solution (Figs. 3.18a,b), the same
on both the forward and backward sweep, and the mass, during its motion, would
seem to be always in a contact condition, alternatively with a bumper or the other
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Figure 3.17. Numerical PRCs (B3-A3, G = 0 mm): a ηa; b ηd.

(Figs. 3.18c,d,e). In reality, there is also in this case a phase of free flight but it is
very short. This is related to the small value of the relaxation time of the bumper,
which causes the detachment between the mass and the bumper to take place when
the latter has recovered practically all its deformation and immediately afterwards
the mass impacts the other bumper, which in the meantime has already recovered
its deformation.

Figure 3.18. Numerical results (B3-A3, G = 0 mm), resonance condition: a Phase portrait;
b Fourier spectrum; c Time history of relative displacement; d Time history of absolute
acceleration; e Time history of relative velocity.

This can be seen better by looking at the zoomed areas in Fig. 3.18c, in which,
in addition to the relative displacement of the mass, also the displacements of the
right (green curve) and left (orange curve) bumpers are represented. Focusing on the
zoomed area at the top of the figure, it can be observed that, after the detachment
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between the mass and the right bumper, highlighted with a green dot, the right
bumper recovers its deformation (green curve) while the mass goes towards the left
bumper and the subsequent contact is highlighted with an orange dot.

Repeating the numerical analysis, conducted for the pair B3-A3, for other values
of the total gap G and representing all the corresponding PRCs in the same graph,
Fig. 3.19 is obtained. In this figure, solid line represent the forward sweep, dashed
lines the backward sweep, the vertical arrows indicate the two jumps and each color
corresponds to a scenario. Compared to the scenarios observed also experimentally
and represented respectively with the colors green (S0 and S1), blue (S2) and red
(S3), magenta was used to highlight the PRCs similar to those shown in Fig. 3.15
(the corresponding scenario will be denoted as scenario S4) and light blue for the
PRCs (similar to those shown in Fig. 3.17) corresponding to a zero initial gap (the
corresponding scenario will be denoted as scenario S5).

Figure 3.19. Numerical PRCs for the pair B3-A3 and different values of the total gap G:
a ηa; b ηd.

It is worth noting that, using the Simplified Nonlinear Model (SNM), PRCs
corresponding to the grazing condition (scenario S1) coincide with those relating
to free flight (scenario S0), which are the typical dynamic amplification curves of a
visco-elastic system, without jumps and softening.

Figure 3.20. Numerical PRCs for the pair G3-A1 and different values of the bumper’s
stiffness B: a ηa; b ηd.
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In Fig. 3.20 numerical PRCs corresponding to the pair G3-A1 and increasing
values of bumper’s stiffness B are represented in the same graph. The green PRCs
correspond to the free flight condition. It can be observed that, for the selected pair
G-A, secondary resonances do not occur even for high values of bumper’s stiffness.
Most of the PRCs belong to the scenario S2 (color blue), except for very small values
of stiffness. In these cases (in the following denoted as scenario S6), forward and
backward PRCs (in Fig. 3.20 represented with orange curves) are slightly bent to the
right and overlap without jumps and hysteresis; in the frequency range associated
with the occurrence of the impact, a single periodic mono-frequency solution is
observed. The values of the parameters (G and B) corresponding to the curves
shown in Figs. 3.19 and 3.20 have not been indicated because the purpose of the
figures is not to make a comparison between numerical and experimental results,
which has already been done in Section 3.5, but to give a more complete idea,
compared to Figs. 3.5 and 3.6, of how the PRCs evolve with G and B, expanding
the range of considered parameters also to values not investigated experimentally.

Based on the numerical results obtained with the SNM which, despite its relative
simplicity, has proven to be able to reproduce the experimental scenarios satisfactorily,
one of the future developments of this study will be to understand if the further
numerical scenarios can be obtained also experimentally.

3.7 Interpretation of the results in terms of dimension-
less parameters

The SDOF system response can be described also in terms of the following dimen-
sionless parameters:

• λj = Kj/K (j = R, L): ratio between the stiffness of the j-th bumper and
that of the damper;

• τrj = ωCj/Kj (j = R, L): dimensionless relaxation time of the j-th bumper;

• δ0j = G0j/u
∗ (j = R, L): dimensionless initial gap, that is the initial distance

between the mass and the j-th bumper normalized with respect to the maximum
displacement of the SDOF system (mass M and damper D, Fig. 3.1) in the
free flight resonance condition. Based on this normalization, a value δ0j = 0
indicates that the j-th bumper is initially attached to the mass; if δ0j takes
values between 0 and 1, the mass beats and deforms the j-th bumper; whereas
the mass will be in the free flight condition for δ0j ≥ 1;

• ξ: damping factor of the SDOF system.

For symmetrically positioned equal bumpers it is λR = λL = λ, τrR = τrL = τr
and δ0R = δ0L = δ0. Consistently with what has been done in physical terms, in
the following we will refer to the dimensionless total gap, denoted simply with δ,
without subscript, and defined as the ratio between the total gap (G0R +G0L) and
the maximum excursion of the SDOF system in the free flight resonance condition
(2u∗). It follows that, for δ0R = δ0L = δ0, δ = 0.5(δ0R + δ0L) = δ0.
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Table 3.1. Dimensionless parameters

δ λ

G1 G2 G3 G4 G∞ B1 B2 B3 B4

A1 0.47 0.62 0.78 0.93 ≥ 1.00 2.9 15.0 20.0 67.8

A2 0.30 0.40 0.49 0.59 ≥ 1.00 3.5 17.8 23.7 80.1

A3 0.22 0.29 0.36 0.43 ≥ 1.00 3.8 19.4 25.9 87.5

The estimation of the values of the dimensionless parameters, corresponding
to each experimentally investigated combination of bumper’s stiffness B, total gap
amplitude G and peak table acceleration A, was made assuming a constant value of
the damping factor ξ equal to 0.15. In the numerical investigations carried out using
the SNM, for each value of peak table acceleration A, an equivalent stiffness K of the
damper was considered, evaluated in free flight resonance condition. Consequently,
to each bumper B correspond three values of λ, increasing with A (Table 3.1). For
the same peak table acceleration A, λ increases with the stiffness of the bumper
B. It can be observed that λ, so esteemed, in our case is always greater than 1
and takes on values between about 3 (combination of the most deformable bumper
with the smallest table acceleration) and about 90 (combination of the stiffest
bumper with the greatest table acceleration). Furthermore, for the types of bumpers
considered in the experimental laboratory campaign (Sect. 2.3.1), the relaxation
time τr does not vary significantly and consequently it was assumed constant and
equal to 0.01. As concerns the dimensionless gap δ, since the maximum displacement
of the SDOF system u∗ depends on the peak table acceleration A, twelve values of δ
were considered, each one corresponding to a combination of A and G (Table 3.1).
The dimensionless total gap increases with the total gap amplitude G, for a given
value of A, and decreases increasing A, for a given value of G. It can be observed
that δ in our case takes on values greater than 0.22.

The cases investigated experimentally (corresponding to different combinations
B-G-A) are represented in terms of dimensionless parameters, as λ − δ pairs, in
Fig. 3.21 for fixed values of ξ and τr. As in Fig. 3.14, each color corresponds to
a scenario; in addition to the scenarios experimentally observed, obtained with
different combinations of the parameters (S0: black horizontal line δ = 1 and vertical
line λ = 0, the latter not shown, S1: green region, S2: blue region, S3: red region),
also those highlighted by the numerical model (S4: magenta region, S5: light blue
horizontal line δ = 0, S6: orange region) are represented. Each symbol corresponds
to a bumper (B1: circle, B2: square, B3: triangle, B4: diamond). To each bumper
correspond three values of stiffness ratio λ (three vertical dashed lines), one for
each value of table acceleration A. For each value of λ (combination B-A) there
are four values of δ, one for each value of total gap G. Fig. 3.21 can be seen as the
translation in dimensionless terms of Fig. 3.14. The introduction of the dimensionless
parameters allowed to summarize both the experimental and numerical results in a
single representation (Fig. 3.21). Since the aim of the figure is only to give an idea
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Figure 3.21. Investigated cases in terms
of dimensionless parameters (ξ = 0.15,
τr = 0.01). B1: circle, B2: square, B3:
triangle, B4: diamond.

of the extension of the regions in which homogeneous behaviors were observed, the
author did not deal with defining their boundaries precisely. Consequently, they
must be understood as qualitative and must be seen as thick blurred lines, because
the transition from one region to another occurs with gradual evolutions.

It is worth noting that, while in physical terms the gap corresponding to graz-
ing G∞ depends on the table acceleration, in dimensionless terms this condition
translates into a single value δ = 1. It can be noted that the values of λ associated
with the two bumpers B2 and B3 are close to each other. This is due to the fact
that these two bumpers have similar stiffness. It can be observed that most of the
experimental tests are associated with the scenario S2 (intermediate values of δ), four
tests (highest values of δ) can be associated with the scenario S1 and the remainder
with the scenario S3 (smallest values of δ). The experimental investigation did not
cover a portion of the λ− δ plane. In particular, the vertical band characterized by
λ < 2 and the horizontal band characterized by δ < 0.2 were not explored. Some
indications on the scenarios that could arise in these regions have been provided
by the SNM (scenarios S4, S5, S6), which has proven to be able to reproduce the
experimental results satisfactorily. The unexplored area (light gray shaded area)
will be investigated with more detail in future developments of this study, because it
is not said that, for example, within the magenta region (scenario S4), there is only
the behavior shown in Fig. 3.15.

Once the dimensionless parameters were introduced, Figs. 3.5 and 3.6, represented
and described in Sect. 3.4.2 in terms of physical parameters (B, G, A), can be reread
also in terms of dimensionless parameters. In particular, each graph of Figs. 3.5
and 3.6, associated with a pair B-A, corresponds to a specific value of λki (the
subscript k is associated with the bumper Bk, k = 1, 2, 3, 4 and the subscript i
is associated with the acceleration Ai, i = 1, 2, 3) and each curve of the graph
corresponds to a specific value of dimensionless gap δji (the subscript j is associated
with the total gap Gj, j = 1, 2, 3, 4 and the subscript i is associated with the
acceleration Ai, i = 1, 2, 3). Thus, each sub-figure of Figs. 3.5 and 3.6 corresponds
to a section λ = constant in Fig. 3.21. Fig. 3.19 coincides with one of these section,
and it was highlighted with a vertical dashed black line λ = 25.9. Along each section
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λ = constant, if A is kept fixed and G is reduced, this means reducing δ and thus
moving downward. Also Fig. 3.20 can be synthetically represented in Fig. 3.21. It
corresponds to the section δ = 0.78, highlighted with an horizontal dashed black line.
In fact, each section δ = constant corresponds to a specific pair G-A along which to
increase B means increase λ and therefore move to the right. The introduction of
dimensionless parameters allowed to generalize the obtained results, to reduce the
number of parameters that influence the response of the system and to highlight how
what matters are, not the values assumed by the individual physical parameters, but
rather their relationships. This causes that the same result can be obtained with
different combinations of the involved physical parameters.

3.8 Closing remarks

In this chapter, some of the scenarios which can occur in the experimental nonlinear
nonsmooth response of a vibro-impact SDOF system, symmetrically constrained
by deformable and dissipative bumpers under harmonic excitation (forward and
backward sine sweep signal), were identified and described. The scenarios were
classified by observing the characteristics of the forward and backward Pseudo-
Resonance Curves (PRCs) of normalized excursion of absolute acceleration and
relative displacement, obtained for different combinations of selected parameters,
namely peak table acceleration A, amplitude of the total gap G and bumper’s
stiffness B.

Four scenarios were identified, specifically: scenario S0 corresponding to the
free flight condition; scenario S1 corresponding to the grazing condition; scenario
S2 with PRCs characterized by the presence of only the primary resonance with
right hysteresis; scenario S3 with PRCs with both the primary resonance with
right hysteresis and the secondary resonance. It has been observed that PRCs
belonging to the same scenario can be obtained with different combinations of the
investigated parameters. The identified scenarios were subsequently investigated in
more detail resorting to phase portraits, Fourier spectra and time histories of relative
displacement, absolute acceleration and relative velocity of the mass in steady-state
condition.

The experimental investigation was followed by a numerical analysis conducted
using the Simplified Nonlinear Model (SNM), in which both the bumpers and the
damper were modelled with a Kelvin-Voigt model, retaining the other nonlinearities
which characterize the problem, namely the existence of clearances, the unilaterality
of the contact and the occurrence of impact, which causes abrupt changes of stiffness
and damping at the contact time. The use of a linear visco-elastic modeling of both
damper and bumpers, despite its limitations, was satisfactory for the purposes of
this study. It was observed that the SNM, despite its relative simplicity, can give
quite satisfying results in good agreement with the experimental outcomes. For this
reason, it was used to extend the range of investigation, considering values of the
parameters not investigated experimentally.

The numerical investigations allowed to highlight the existence of more complex
response scenarios (characterized by the existence of secondary regular resonances
without hysteresis, secondary regular resonances with left hysteresis, secondary non-
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regular resonances, these last ones exhibiting pairs of quasi-periodic solutions of large
amplitude and -starting by appropriate initial conditions- also periodic solutions of
small amplitude), that could be obtained, for example, considering values of the
total gap G smaller than those considered in the experimental laboratory campaign.

Finally, suitable dimensionless parameters, namely stiffness ratio, dimensionless
relaxation time, dimensionless initial gap and damping ratio of the SDOF system were
introduced and the experimental results were framed in terms of these parameters.
The transition to the dimensionless parameters allowed to reduce the number of
parameters that influence the response of the system and, consequently, to synthesize
in a single graph the results of both the experimental and numerical investigations,
and to highlight how what matters are, not the values assumed by the individual
involved physical parameters, but rather their relationships. This causes that the
same scenario can be obtained with different combinations of the involved physical
parameters.

Based on the numerical results, as a first future development of this study, there is
the intention to investigate the possibility to experimentally regain the more complex
scenarios obtained with the SNM. Furthermore, to fully capture, qualitatively and
quantitatively, the main aspects of the response of the system, also a more refined
nonlinear numerical model, that includes all the nonlinearities will be considered in
future analyses.
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Chapter 4

Response scenarios: numerical
in-depth analysis

Chapter outline In this chapter, some of the scenarios that can occur in the numer-
ical nonlinear non-smooth response of a vibro-impact SDOF system, symmetrically
constrained by deformable and dissipative bumpers, are identified and described.
The different scenarios, obtained varying selected dimensionless parameters, are
investigated identifying homogeneous frequency intervals, characterized by similar
features in terms of number and types of limit cycles, and resorting to phase por-
traits, basins of attraction and Fourier spectra. Despite the relative simplicity of the
model, which however takes into account impact, clearance and unilaterality of the
constraints, decreasing the dimensionless gap δ0, from δ0 = 1 to δ0 = 0, gradually
more complex and varied scenarios, characterized by different types of secondary
resonances (with right or left hysteresis or of non-regular type), cascades in the low
frequency range, periodic, quasi-periodic or chaotic solutions were observed. The
occurrence of primary and secondary grazing was also highlighted.

The contents of this chapter were published in: “Stefani, G., De Angelis, M., An-
dreaus, U. Numerical study on the response scenarios in a vibro-impact single-degree-
of-freedom oscillator with two unilateral dissipative and deformable constraints.
Communications in Nonlinear Science and Numerical Simulation (2021), [Elsevier]”,
[250].

4.1 Introduction

In many practical (biomedical, mechanical, civil, . . . ) engineering applications,
mechanical components or structures repeatedly collide with one another or with
obstacles [110]. Impacts occur, for example, in the capsule systems used in clinic
endoscopy to inspect the surface lining of the intestine in the human body [87,165,
166,293,294], and in the drilling rigs used in the oil and gas industry for creation
of wells [57, 65, 158, 159, 161, 267]. In the field of civil engineering, base-isolated
systems (building [140,187,190,191,194,221,222], bridges [90,93,123], equipment
[5, 92, 116,168,228,229], strategic facilities [235]) when subject to exceptional loads,
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like severe earthquakes, can undergo large horizontal displacements, concentrated in
the isolation system. These displacement can damage the isolation system itself or
can lead to pounding between the isolated system and the surrounding moat walls
or any adjacent structures, if the available gap is not sufficient. The consequences of
pounding can damage the structure or sensitive equipment housed in it, impairing
their functionality. When it is not possible to guarantee a sufficient clearance, the
side effects of pounding can be mitigated reducing the impact stiffness through the
interposition of dissipative and deformable shock absorbers (also known as bumpers)
between the colliding systems [223,224]. In the absence of obstacles near the isolated
system, to avoid the excessive deformation or the damage of the isolation system,
the displacements can be limited either by inserting end stops or by using other
suitable types of control systems [15,80,231].

Several scientific works, of both numerical and experimental nature, dealt with
vibro-impact dynamics. In the numerical simulations impact can be modeled using
both a stereomechanical or a force-based approach [129]. In the first approach, the
duration of the contact is neglected and the impact is modeled using the momentum
conservation principle and the coefficient of restitution, the latter defined as the
ratio between the velocities immediately after impact and immediately before the
impact [82]. In the second approach, the contact force can be modeled in different
ways, resorting to more or less sophisticated modeling [77,78,186,200,241], going
from pure elastic contact force models, such as the linear spring element and the
Hertz contact model (nonlinear spring element [101, 226]), which however do not
take into account the energy loss during the impact, to dissipative contact force
models, such as the Kelvin-Voigt model [67, 82, 137] and the model proposed by
Hunt and Crossley [108], to overcome the drawbacks of the Kelvin-Voigt model, and
consisting of an elastic Hertz’s law combined with a nonlinear viscoelastic element
(Hertzdamp model).

The types of impact motion, and the bifurcations from one motion to the
other, that can occur in the dynamics of vibro-impact systems with motion limiting
constraints, with the variation of selected parameters are the subject of several studies,
of mainly numerical nature [40, 61, 86, 95, 126, 176, 181–183, 271, 273, 274, 299, 304].
The study of the dynamics of a two-degree-of-freedom periodically-forced system
with symmetric motion limiting constraints, with emphasis on the transition between
fundamental impact motions, together with the design and implementation of an
electronic circuit, describing the dynamic characteristics of the non-smooth system,
are presented in [182]. The motions of a periodically forced non-smooth Duffing
system at the switching boundary and the coexistence of different attractors are
investigated in [40] through numerical simulations. Focusing on the switching
behaviors on the boundary between two adjacent domains, in a periodically forced
modified Duffing-Rayleigh system, the coexistence of attractors, under different
initial conditions, is illustrated through basins of attraction and phase planes in [304].
The grazing-induced bifurcations in impact oscillators with one-sided elastic and
rigid constraints are investigated and classified in [126] by a path-following method.
In [183], pattern types, stability domains and bifurcation characteristics of periodic
motions for a two-degree-of-freedom oscillator with a clearance are investigated and
attracting domains and Poincaré mapping diagrams of coexisting motions in the
neighborhood of grazing bifurcations are discussed. The parameters influence and the
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features of the dynamic response of impact oscillators in the vicinity of degenerate
grazing points is investigated and characterized in [299], using the GPU computing
parallel technology and other numerical methods. Phenomena of coexisting attractors
and chaotic transitions, including crisis, are also discussed, considering single and
two degree-of-freedom impact oscillators.

The practical problem of base-isolated structures impacting against moat-walls
inspired several works of by Andreaus et al., of both numerical and experimental
nature, in which the response of these structures was simulated using a Single-Degree-
Of-Freedom (SDOF) oscillator, consisting of a mass and a damper, impacting against
two deformable and dissipative constraints (bumpers), symmetrically arranged on
both sides [9,10,12–14,247–249,251]. Some of the scenarios that can occur within the
system response were first investigated in the theoretical-numerical work presented
in [12]. The study of the scenarios was then taken up by the author of this thesis
together with her co-authors in [248,251], in which some scenarios, identified based
on the results of an experimental laboratory campaign, were investigated and then
reproduced using a suitable numerical model.

Based on the results obtained in [248, 251], the aim of the present work is to
deepen the study of the scenarios that can occur in the nonlinear non-smooth
response of a vibro-impact SDOF system, from a numerical point of view, extending
the range of investigated parameters, compared to the previous studies. The system,
symmetrically constrained with deformable and dissipative bumpers, and subject
to a sine sweep base excitation, is described in terms of dimensionless parameters
and particular attention is devoted in this work to the study of the role played by
the damping ratio, due to the adopted normalization. The scenarios are identified
based on the characteristics of the Pseudo-Resonance Curves (PRCs) of normalized
excursion and eccentricity of absolute acceleration and relative displacement of the
mass. The scenarios observed by reducing the dimensionless gap and keeping the
values of the other dimensionless parameters fixed, are subsequently investigated by
identifying homogeneous frequency ranges and resorting to phase portraits, basins
of attraction and Fourier spectra.

The chapter is organized as follows. The numerical model of the nonlinear SDOF
system, together with the dimensionless governing equations and the study on the
role of damping, are introduced in Sect. 4.2; the identified scenarios are shown and
discussed in Sect. 4.3; the conclusions and future developments of the work are
finally drawn in Sect. 4.5.

4.2 Numerical model

A suitable numerical model, able to simulate the dynamic behavior of a vibro-impact
Single-Degree-Of-Freedom (SDOF) system, impacting against unilateral dissipative
and deformable obstacles (bumpers), is shown in Fig. 4.1. The system consists of
a mass M and a damper (D), the latter modeled by a linear elastic element, with
stiffness K, and a linear viscous damper, with damping coefficient C, arranged in
parallel. The two obstacles, denoted as right bumper (BR) and left bumper (BL)
respectively, are symmetrically positioned on both sides of the mass, at an initial
distance (initial gap) G0j (j = R, L), are massless and are modeled by a linear elastic
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element, with stiffness Kj (j = R, L), and a linear viscous damper, with damping
coefficient Cj (j = R, L), arranged in parallel. The system is subject to a harmonic
base acceleration At(t) = AG sin Ωt, with amplitude AG and circular frequency Ω.
In Fig. 4.1, u and uj (j = R, L) denote the displacements, of the mass and of the
two bumpers respectively, relative to the ground.

Figure 4.1. Model of the system.

4.2.1 Dimensionless equations of motion

The equations of motion of the system depicted in Fig. 4.1 can be written in the
following dimensionless form:{
q′′(τ) + 2ξq′(τ) + r(τ) + [2ξγjq′(τ) + rj(τ)] · ψ1 [δj(τ)] · ψ2 [fj(τ)] = −aG sin βτ
2ξγiq′(τ) + ri(τ) = 0

(4.1)
In Eq. 4.1, it is assumed that whether j = L then i = R, or whether j = R

then i = L. The nondimensionalization of the governing equations was obtained by
introducing the following characteristic quantities:

ω =

√
K

M
, u∗ = MAG

K
Rd,max, F ∗ = Ku∗ = Mω2u∗ = MAGRd,max (4.2)

namely the natural circular frequency of the SDOF system ω, the maximum relative
displacement u∗ and the maximum force F ∗ in the SDOF system in free flight (that
is without obstacles) resonance condition. In Eq. 4.2, Rd,max is the maximum value
of the dynamic amplification factor Rd, defined as the ratio between the amplitude
of the dynamic displacement u to the static displacement MAG/K, at the resonant
frequency, which is function of the damping ratio ξ = C/(2Mω) of the SDOF system,
that is Rd,max = 1/(2ξ

√
1− ξ2) for ξ <

√
2/2. In Eq. 4.1, q = u/u∗ and qj = uj/u

∗

(j = R, L) are the dimensionless relative displacements of the mass and of the right
and left bumper respectively, and the apex (′) denotes differentiation with respect
to the dimensionless time τ = ωt; aG = 2ξ

√
1− ξ2 is the dimensionless amplitude

of the base acceleration at(τ); β = Ω/ω is the ratio between the circular frequency
of the base excitation Ω and the natural circular frequency of the SDOF system
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ω; γj = Cj/C (j = R, L) is the ratio between the viscous damping coefficients of
the j-th bumper and that of the damper and δj(τ) is the clearance function that
represents the distance, instant by instant, between the mass and the j-th bumper
and it is defined as follows:

δj(τ) = δ0j + ∆qj(τ) (j = R,L) (4.3a)
∆qR(τ) = qR(τ)− q(τ), ∆qL(τ) = q(τ)− qL(τ) (4.3b)

When the mass is in contact with the j-th bumper δj(τ) = 0 (j = R, L), otherwise
δj(τ) > 0. In Eq. 4.3a δ0j = G0j/u

∗ (j = R, L) denotes the initial dimensionless
gap between the mass and the j-th bumper. Based on the adopted normalization,
δ0j = 0 if the j-th bumper is initially in contact with the mass; for 0 < δ0j < 1 the
mass beats and deforms the j-th bumper; whereas the mass will be in free flight
condition for δ0j ≥ 1. In Eq. 4.1, ψ1 and ψ2 represent the Heaviside functions,
defined as follows:

Contact ψ1 [δj(τ)] =
{

0, δj(τ) > 0
1, δj(τ) = 0

(4.4a)

Separation ψ2 [fj(τ)] =
{

0, fj(τ) ≤ 0 (j = R) or fj(τ) ≥ 0 (j = L)
1, fj(τ) > 0 (j = R) or fj(τ) < 0 (j = L)

(4.4b)

where fj(τ) = 2ξγjq′(τ) + rj(τ) is the contact force occurring during the contact
period with the j-th bumper. The normalized restoring forces, exerted by the damper
and the bumpers, were denoted by r and rj (j = R, L) respectively, and they have
the following expressions:

r(τ) = q(τ) (4.5a)
rR(τ) = λRqR(τ) = λR[q(τ)− δ0R], rL(τ) = λLqL(τ) = λL[q(τ) + δ0L] (4.5b)

where λj = Kj/K (j = R, L) is the ratio between the stiffnesses of the j-th bumper
and that of the damper.

4.2.2 Parameters

The dimensionless parameters that influence the response of the system are therefore:
the frequency ratio β, the damping ratio ξ, the initial dimensionless gap δ0j (j =
R, L), the stiffness ratio λj (j = R, L) and the damping ratio γj (j = R, L). As
an alternative to the damping ratio γj , the dissipative capacities of the bumpers
can also be characterized through the dimensionless relaxation time τrj = ω trj ,
where trj = Cj/Kj (j = R, L). In this study we considered two equal bumpers
symmetrically arranged on the two sides of the mass. It follows that λR = λL = λ,
γR = γL = γ (or alternatively τrR = τrL = τr) and δ0R = δ0L = δ0.

4.2.3 Nonlinearities

Although both the bumpers and the damper have been modeled with a linear elastic
spring in parallel with a linear viscous dashpot, the system is however strongly
nonlinear. In particular, the nonlinearities are due to the presence of clearance, the
unilateral constrains and the occurrence of impact that causes abrupt changes of
stiffness and damping at the contact time.
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Figure 4.2. Dynamic amplification fac-
tor R(ξ, β) for different values of the
damping ratio ξ.

4.2.4 Role of damping

The damping ratio of the SDOF system ξ affects both the response of the system
(it reduces the response amplitude at all excitation frequencies) and, following the
adopted normalization, the amplitude of the base acceleration aG. In the absence
of bumpers, by normalizing the amplitude of dynamic displacement u with respect
to the maximum displacement in resonance condition u∗, instead of the static
displacement, the dynamic amplification factor (denoted as R to distinguish it from
Rd, Eq. 2.6), function of both damping ratio ξ and frequency ratio β, for ξ <

√
2/2,

is given by:

R(ξ, β) = 2ξ
√

1− ξ2√
(1− β2)2 + (2ξβ)2 (4.6)

In Fig. 4.2, R(ξ, β) is plotted for different values of damping ratio ξ. It can
be observed that, for β = 0 (slowly varying excitation), R (Eq. 4.6) attains the
value R(ξ, 0) = 2ξ

√
1− ξ2 and thus it increases with ξ, as long as 0 < ξ <

√
2/2;

for
√

2/2 ≤ ξ < 1, R(ξ, 0) = 1. The variation of the resonant frequency ratio
βRd(ξ) =

√
1− 2ξ2 with ξ is highlighted with black dots. It can be noted that βRd

decreases as ξ increases and, for
√

2/2 ≤ ξ < 1, βRd = 0.
In the presence of bumpers, symmetrically placed at an initial distance δ0, impact

can occur. In particular, it is possible to analytically determine the frequency interval
in which impact surely will occur, for a given value of δ0, by imposing:

R(ξ, β) = 2ξ
√

1− ξ2√
(1− β2)2 + (2ξβ)2 = δ0 (4.7)

By solving Eq. 4.7, for each (ξ, δ0) pair in the ranges 0 < ξ < 1 and 0 ≤ δ0 ≤ 1,
the contour maps of the roots, denoted as β1 (red) and β2 (blue) respectively (with
β2 ≥ β1), shown in Fig. 4.3a, were obtained. It can be observed that the δ0− ξ plane
is divided in two regions by the thick green curve with equation δ0 = 2ξ

√
1− ξ2 (for

0 < ξ <
√

2/2). Along this curve, β1 = 0 ∀ξ, whereas β2 decreases as ξ increases. In
the region above this curve, the two contour maps associated with the two roots of
Eq. 4.7, β1 and β2, overlap. In the region below this curve, there is only the contour
map associated with β2.
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Figure 4.3. a Contour maps of the frequency ratios β1 (red) and β2 (blue) in the ξ − δ0
plane; b dynamic amplification factor R for ξ = 0.1 with the location of β1 (red) and β2
(blue) corresponding to the considered δ0 values (horizontal dashed lines). The frequency
interval between β1 and β2 (highlighted in yellow) is characterized by the occurrence of
impact.

For a given value of damping ratio, for example ξ = 0.1 (see the thick black
vertical line in Fig. 4.3a and the corresponding dynamic amplification factor R(0.1, β)
in Fig. 4.3b), different situations can occur depending on the value of δ0 (yellow dots
in Fig. 4.3a). It can be observed that:

• For δ0 = 1, Eq. 4.7 admits two coincident roots β1 = β2 = βRd; consequently,
impact does not occur for any β value;

• For δ∗0 = 2ξ
√

1− ξ2 < δ0 < 1, e.g. δ0 = 0.6, Eq. 4.7 admits two non-zero roots,
β1 < βRd and β2 > βRd; these two roots approach as δ0 increases;

• For δ0 = δ∗0 = 2ξ
√

1− ξ2, e.g. δ0 ' 0.2, Eq. 4.7 admits two roots: β1 = 0 and
β2 > βRd;

• For 0 < δ0 < δ∗0 = 2ξ
√

1− ξ2, e.g. δ0 = 0.1, Eq. 4.7 admits a single non-zero
root (β2 > βRd), whose value decreases with increasing δ0;

• For δ0 = 0, R(ξ, β) > δ0 ∀β; consequently, Eq. 4.7 does not admit roots; this
means that impact always occurs independently of β.

In Fig. 4.3b, for each considered δ0 value, the frequency interval in which impact
will surely occur (β1 ≤ β ≤ β2) was highlighted with a yellow horizontal line. It
can be observed that, this frequency range increases as δ0 decreases. It is worth
noting that impact can also occur for β < β1 or β > β2, depending on the nonlinear
behavior of the system, the values of the parameters and the initial conditions. The
same considerations apply for other values of damping ratio 0 < ξ <

√
2/2; what

changes is the value of δ∗0 and consequently the amplitudes of δ0 intervals in which
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there is only the root β2 (below the green curve in Fig. 4.3a) or both roots β1 and
β2 (above the green curve in Fig. 4.3a). For

√
2/2 ≤ ξ < 1, Eq. 4.7 admits a single

non-zero root (β2 > 0) ∀δ0 ∈ ]0; 1[, whereas for δ0 = δ∗0 = 1, the two roots are
coincident and equal to zero (β1 = β2 = 0). As concerns the amplitude of the base
excitation, since the system is nonlinear, it can significantly affect the dynamical
phenomena exhibited by the system. Due to the adopted normalization, it depends
on the damping ratio ξ (aG = 2ξ

√
1− ξ2) and varies with the same law shown by

the thick green curve in Fig. 4.3a. It can be observed that aG increases with ξ, as
long as ξ <

√
2/2; whereas, for

√
2/2 ≤ ξ < 1, it is independent from ξ and it is

equal to 1. Consequently, the parameter that describes the input is not what is
expected (its amplitude), but rather the damping ratio ξ. The excitation, thus is
essentially filtered through the damping ratio. In this study we assumed ξ = 0.1,
which corresponds to aG almost equal to 0.2. This study on the role of damping ξ
and on the evolution of the roots of Eq. 4.7 with the dimensionless gap δ0 (Fig. 4.3b)
guided the subsequent numerical investigations and, thus, it is functional to what
will be said in the following Sections.

4.3 Scenarios

In this Section, some of the scenarios that can occur in the dynamic non-smooth
response of the SDOF system, with the variation of selected parameters, will be
identified and discussed. In particular, the analyses were conducted by assuming
ξ = 0.1 and γ = 5, and by varying λ and δ0. The author of this thesis do not claim
to have exhaustively identified all the possible scenarios that can occur; those shown
are just some of situations emerged in this exploratory numerical investigation.

The identification of the scenarios was made on the basis of the characteristics
of the Pseudo-Resonance Curves (PRCs) of normalized excursion and eccentricity
of relative displacement (ηd = ∆q/∆q0 and ed = q/∆q0 respectively) and absolute
acceleration (ηa = ∆α/∆α0 and ea = α/∆α0 respectively) of the mass. The
PRCs were obtained considering a step-wise forward and backward sine sweep base
acceleration, that is a harmonic signal with constant amplitude, in which the forcing
frequency is increased (forward sweep) and then decreased (backward sweep) over
time, within a specific frequency range and with an appropriate frequency increment,
after a certain number of cycles. Subsequently, based on the results obtained with the
sine sweep signal, in cases where it was considered necessary, further in-depth analyses
on the influence of initial conditions, with the construction of basins of attraction,
were carried out. The absolute acceleration of the mass α(τ) is given by the sum of the
acceleration of the ground at(τ) and the relative acceleration between the mass and
the ground q′′(τ): α(τ) = at(τ) + q′′(τ). The excursion (∆q and ∆α) was calculated
as the difference between the maximum and minimum values recorded at steady-
state of each sub-frequency range, that is ∆q = qmax − qmin and ∆α = αmax − αmin,
whereas the eccentricity (q and α) was calculated as the half-sum of maximum and
minimum values, that is q = (qmax + qmin)/2 and α = (αmax + αmin)/2 and thus, it
allowed to highlight non symmetric behaviors. Subsequently, both the excursion
and the eccentricity, thus calculated, were normalized with respect to the maximum
excursion in free flight resonant condition (∆q0 and ∆α0 respectively).



4.3 Scenarios 87

Referring to the situation characterized by the presence of the obstacles, initially
placed at a distance δ0 from the mass, in order to classify the scenarios from the
characteristics of PRCs, a first distinction was made on the basis of the absence
(δ0 ≥ 1) or occurrence (0 ≤ δ0 < 1) of impact. In the latter case, a further
differentiation was made based on the absence or existence of the primary resonance
with right hysteresis, between the jumps in the forward and backward sweeps. Finally,
the occurrence and type of secondary resonances in the low frequency range, and
the existence of frequency ranges characterized by non-zero eccentricity allowed to
recognize further scenarios. This procedure made it possible to identify, in the λ− δ0
plane, for 0 ≤ δ0 ≤ 1 and 0 < λ ≤ 100, seven homogeneous regions, identified by
Roman numerals enclosed within circles and highlighted with different colors in the
map shown in the central part of Fig. 4.4.

Figure 4.4. Homogeneous regions in the λ− δ0 plane (ξ = 0.1, γ = 5), identified by Roman
numerals enclosed within circles and highlighted with different colors. The colored dots
represent the λ − δ0 pairs investigated to qualitatively identify the boundaries of the
regions. Representative PRCs of ηa for λ = 50 (vertical black line), corresponding to the
colored squares, are arranged clockwise around the map.
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The colored dots represent some of the (λ, δ0) pairs investigated to qualitatively
identify, in a discrete way, the boundaries of these regions. These borders should
not be seen as well-defined dividing lines, but rather as thick blurred lines, because
the transition from one region to another occurs with gradual evolutions. For
small values of λ and δ0 (see the region enclosed by an ellipse), a high density of
investigated points is observed. In this zone, which will not be investigated in this
work, some of the identified regions converge (high chromatic variety), and thus,
small variations in both λ and δ0 determine the passage from one region to another.

From Fig. 4.4, it can be observed that two of the identified regions are more
properly lines, namely δ0 = 1 (Region I, highlighted with an horizontal orange line),
and δ0 = 0 (Region VII, highlighted with an horizontal cyan line). Furthermore, it
can be noted that Region II (yellow colored) follows the three sides of the λ − δ0
domain (δ0 close to 1, small values of λ and δ0 close to 0), Region III (highlighted in
green) seems to embrace Region IV (highlighted in red) and Region V (highlighted
in blue) is placed around δ0 = δ∗0 ' 0.2 (see Sect. 4.2.4). By focusing the attention
on a fixed value of stiffness ratio, e.g. λ = 50, which corresponds to a quite rigid
obstacle (see the black vertical line in the map of Fig. 4.4), the occurrence of one
scenario rather than the other depends on the value of the dimensionless gap δ0.
For this value of λ and for each identified region, representative PRCs of normalized
excursion of absolute acceleration ηa (which allow to better highlight some behaviors,
especially at low frequencies, compared to the PRCs of ηd) and corresponding to
the colored squares, are arranged clockwise around the map. In these figures, the
solid red curve refers to the forward sweep (indicated with an f in the legend), the
dashed blue curve to the backward sweep (indicated with a b in the legend), the
vertical arrows represents the jumps and the solid black horizontal line indicates the
unit value of ηa.

It can be observed that, starting from δ0 = 1 (see the figure on the top left), in
which the situation is smooth, the encountered scenarios become gradually more
complex decreasing δ0 (move clockwise around the map, following the colored arrows),
with the occurrence of the primary resonance with right hysteresis and different types
of secondary resonances (with right or left hysteresis or of non-regular type), while
in the limit case δ0 = 0 (bumpers initially in contact with the mass) the situation
returns to be smooth, although the dynamics is different from that corresponding
to δ0 = 1. Based on what was said in Sect. 4.2.4, the horizontal blue line δ0 = δ∗0,
at the turn of which lies the Region V, represents the locus of the (λ, δ0) pairs to
which correspond two distinct roots of the Eq. 4.7, one of which (β1) is equal to
zero (Fig. 4.3b), regardless of the λ value. This line represents a watershed that
divides the λ− δ0 plane into two parts. Above this line (δ∗0 ≤ δ0 < 1) there are the
(λ, δ0) pairs to which correspond two distinct roots (β1 and β2) of the Eq. 4.7; the
two roots become coincident for δ0 = 1. PRCs do not highlight complex behaviors,
except for some values of δ0 (inside the Region IV); in these cases however, these
complex behaviors are observed in small frequency ranges.

More complex and varied scenarios are observed instead for 0 < δ0 < δ∗0 . In this
zone there are the (λ, δ0) pairs to which corresponds a single non-zero root (β2) of
the Eq. 4.7 and impact occurs immediately starting from β = 0. It is worth noting
that inside Region VI very different behaviors can be observed, slightly varying δ0,
and the figure at the bottom left, corresponding to δ0 = 0.1, is just one example



4.3 Scenarios 89

of one of these behaviors. From Fig. 4.4 it can be observed how, although the
considered model seems apparently simple, by varying the involved parameters, even
particularly complex scenarios can be encountered. In the following Subsections, the
seven identified scenarios will be described in more detail, starting from the analysis
of the PRCs, and resorting to phase portraits in steady-state condition, Poincaré
sections, basins of attraction and Fourier spectra.

Region I

For δ0 ≥ 1 (Region I, horizontal orange line in Fig. 4.4), impact does not occur
for any β value (Sect. 4.2.4). The corresponding PRCs of normalized excursion of
relative displacement ηd, coincide with the thick black curve shown in Fig. 4.3b,
in which forward and backward curves overlap, without jumps or hysteresis. As
concerns the PRC of excursion of absolute acceleration ηa (see the small figure on
the top left corner of Fig. 4.4), it is very close to the PRC of ηd, due to the small
value of ξ considered in the analyses. Both for displacement and for acceleration, as
a consequence of the normalization adopted for the representation of the PRCs, the
maximum value in resonance condition is equal to 1 and occurs for β = βRd ' 0.99.
As concerns the eccentricity (ed and ea), it is null for each value of frequency ratio β.

Region II

For values of δ0 inside Region II (highlighted in yellow in Fig. 4.4), PRCs are
analogous to those shown in Fig. 4.5, which corresponds to δ0 = 0.99. In particular,
both the PRCs of normalized excursion ηd (left vertical axis) and eccentricity ed
(right vertical axis) of relative displacement are depicted in Fig. 4.5a, while both
the PRCs of normalized excursion ηa (left vertical axis) and eccentricity ea (right
vertical axis) of absolute acceleration are depicted in Fig. 4.5b.

(a) (b)

Figure 4.5. Region II (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.99), forward (solid red line) and
backward (dashed blue line) PRCs of: a ηd and ed (curves in the lower part of the
graph); b ηa and ea (curves in the lower part of the graph).
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It can be observed that forward (solid red lines) and backward (dashed blue
lines) curves overlap, there are neither jumps nor hysteresis and the eccentricity (see
the lower part of each figure) is equal to zero for each β value.

(a) (b)

Figure 4.6. Region II (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.99): a phase portrait with Poincaré
section and b Fourier spectrum for β = 1.

Since in this Region δ∗0 < δ0 < 1 and, in particular the selected value of δ0 is
very close to 1 (Sect. 4.2.4), impact occurs only in a small frequency range, in the
neighbourhood of the resonant frequency, and it is highlighted by the presence of
a spike in the PRC of ηa (Fig. 4.5b), while the peak of the PRC of ηd is slightly
flattened (Fig. 4.5a), due to the presence of the obstacles, highlighted with an
horizontal black line. In the frequency range associated with the occurrence of
impact, between β1 and β2 (see the red and blue dots in Fig. 4.5a), there is only
a periodic steady-state solution (Fig. 4.6a), with the same period of the excitation
(thus n = Ts/Tf = 1, where Ts is the period of the solution and Tf is the forcing
period, as it can be seen from Fig. 4.6b, where only the fundamental harmonic is
observed. Consequently, in the Poincaré section, obtained by marking the trajectory
at times that are integer multiples of the forcing period Tf , the points coincide with
the single point represented by a red dot in Fig. 4.6a. At steady-state, reached with
a small number of forcing cycles, the limit cycle in the phase plane is similar to a
circle, slightly flattened at the ends, due to the impact and, in each forcing cycle,
the mass hits each bumper (two vertical dashed black lines) once.

Region III (upper part)

In the green portion of the λ − δ0 plane (Region III), just below the yellow one
(Region II, Fig. 4.4), from Fig. 4.7, which refers to δ0 = 0.8, it can be observed that,
compared to the previous case (Fig. 4.5), the frequency range characterized by the
occurrence of impact is greater. Furthermore, the jump phenomena (highlighted
with vertical arrows) and the primary resonance with right hysteresis are observed.
Also in this case, eccentricity is zero for each value of β.
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(a) (b)

Figure 4.7. Region III, upper part (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.8), forward (solid red
line) and backward (dashed blue line) PRCs of: a ηd and ed (curves in the lower part
of the graph); b ηa and ea (curves in the lower part of the graph). The vertical arrows
represent the jumps.

In the frequency range between the two jumps (e.g. β = 1.1), there are two
steady-state solutions (Fig. 4.8a):

• Large-amplitude resonant motion with impact (red curve);

• Small-amplitude non-resonant motion without impact (blue curve).

Actually, there would be also an unstable solution, that could not be obtained
with the used procedure. Both the observed solutions are periodic, with the same
period of the excitation (n = 1). Consequently, in both cases, at steady-state
(reached with a small number of forcing cycles), the points in the Poincaré sections
coincide with a single point, colored red for the large-amplitude motion and colored
blue for the small-amplitude motion. In the Fourier spectra (Figs. 4.8c,d), only the
fundamental harmonic component is observed. From Fig. 4.8a it can be observed that
the small-amplitude limit cycle is similar to a circle, while the limit cycle of the large-
amplitude motion is slightly flattened at the ends, due to the occurrence of impact,
and in each forcing cycle, the mass hits each bumper once. The basins of attraction
of the two solutions are shown in Fig. 4.8b, together with the initial conditions
for the sine sweep frequency sub-range that includes the value β = 1.1, obtained
with the continuation technique during the forward (yellow right-pointing triangle)
and the backward (yellow left-pointing triangle) sweep. The basins were obtained
considering a sufficiently dense mesh of initial conditions (q0, q′0), represented with
colored dots. Each basin is made up of the set of dots (initial conditions) that lead
to the corresponding attractor. In particular, red dots represent the set of initial
conditions that lead to the large-amplitude motion, while blue dots represent the set
of initial conditions that lead to the small-amplitude motion. It can be observed
that the shape of the basins is smooth and regular, due to the periodic behavior of
the system.
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(a) (b)

(c) (d)

Figure 4.8. Region III, upper part (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.8, β = 1.1): a phase
portraits with Poincaré sections; b basins of attraction; Fourier spectra: c (q0 = 0.74,
q′0 = −0.4), yellow right-pointing triangle; d (q0 = 0.47, q′0 = 0.5), yellow left-pointing
triangle.
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Region IV

Decreasing the dimensionless gap δ0 and entering Region IV, in the PRCs (Fig. 4.9,
which corresponds to δ0 = 0.4), in addition to the primary resonance with right
hysteresis, the presence of a secondary resonance is observed (zoomed rectangular
area). This secondary resonance is characterized by the occurrence of a right
hysteresis, with zero eccentricity, followed by a small frequency range characterized
by increasing excursion and zero eccentricity. After an abrupt reduction of excursion,
a section, in the neighbourhood of β ' 0.8, with eccentricity other than zero and
characterized by an almost constant value of excursion, is observed. The secondary
resonance occurs at the frequency value for which, at steady-state, the mass just
begins to touch the bumpers with a velocity close to zero (β = β1 ' 0.72, Sect. 4.2.4,
highlighted with a red dot in Fig. 4.9a).

(a) (b)

Figure 4.9. Region IV (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.4), forward (solid red line) and
backward (dashed blue line) PRCs of: a ηd and ed (curves in the lower part of the graph);
b ηa and ea (curves in the lower part of the graph). The vertical arrows represent the
jumps. A detail of the secondary resonance is shown in the rectangular zoomed area.
The dashed vertical lines represent β values that will be investigated in more detail.

This causes the transition from a single periodic non-impacting steady-state
solution, to a single impacting periodic multi-frequency steady-state solution (see
Fig. 4.10a, corresponding to β = βI = 0.73, first vertical dashed line in Fig. 4.9). In
the following, this condition will be referred to as primary grazing, because it occurs
when the periodic non-impacting limit cycle, expanding as β increases, begins to
touch the obstacles, with a velocity close to zero.

At steady-state, reached with a quite small number of forcing cycles, the attractor
is characterized by interweaving cycles, very close to each other, with antisymmetric
envelope (Fig. 4.10a) and has a period that is three times the forcing period (n = 3).
Consequently, in the Poincaré section, three points were observed. In the Fourier
spectrum (Fig. 4.10b), in addition to the fundamental frequency, it is also possible
to observe the other commensurate frequencies, characterized by a much smaller
amplitude, one of which is equal to one third of the fundamental. At steady-state,
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(a) (b)

Figure 4.10. Region IV (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.40): a phase portrait with Poincaré
section and b Fourier spectrum for β = βI.

the mass alternatively hits once only one of the two bumpers, then neither, then only
the other. In the frequency range characterized by the presence of the secondary right
hysteresis (β = βII = 0.76, second vertical dashed line in Fig. 4.9) two coexisting
solutions, each with antisymmetric envelope, were observed (Fig. 4.11a):

• A periodic multi-frequency solution (red curve), with n = 3, associated with
the forward sweep;

• A quasi-periodic solution (blue curve), associated with the backward sweep.

Compared to the primary right hysteresis (Fig. 4.8a), both solutions are associated
with the occurrence of impact and one of them is quasi-periodic (blue curve). As
regards the periodic solution (red curve), which is similar to the limit cycle shown
in Fig. 4.10a, the considerations made previously apply. The differences concern the
amplitude of the limit cycle, the relative position of the interweaving cycles, which
lead to a different distance between the three points in the Poincaré section, and a
greater amplitude of the harmonic components in the Fourier spectrum (Fig. 4.11c).

The limit cycle corresponding to the quasi-periodic solution (blue curve) is quite
thick and it is characterized by a more complex structure of the Poincaré section. In
the Fourier spectrum (Fig. 4.11d), the fundamental frequency stands out significantly
compared to the others incommensurate frequencies, which can be seen better in
the rectangular zoomed area. Given the quasi-periodic nature of the response,
even considering a high number of forcing cycles, it is not possible to reach a real
stationary condition; this is reflected in the number of impacts per forcing cycle,
which is not constant but changes as time goes by. The basins of attraction of the
two coexisting solutions are shown in Fig. 4.11b, together with the initial conditions
for the sine sweep frequency sub-range that includes the value β = βII, obtained
with the continuation technique during the forward (yellow right-pointing triangle)
and the backward (yellow left-pointing triangle) sweep. Compared to Fig. 4.8b, the
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shape of the basins, especially that of the basin of attraction of the quasi-periodic
attractor (highlighed in blue), is less regular. The secondary downward jump in
the forward sweep occurs when one of the internal interweaving cycles grazes the
obstacles. In the following, this condition will be referred to as secondary grazing,
because it occurs when, in addition to the primary orbit, which impacts the obstacles
evidently, one of the internal cycles or loops, expanding, begins to touch them, with
a velocity close to zero. This causes the sudden transition, during the forward sweep,
to a quasi-periodic attractor, analogous to the blue one shown in Fig. 4.11a. This
single quasi-periodic solution was observed in the frequency range, after the jump,
characterized by increasing excursion and zero eccentricity, followed by an abrupt
reduction of excursion.

(a) (b)

(c) (d)

Figure 4.11. Region IV (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.4, β = βII): a phase portraits with
Poincaré sections; b basins of attraction; Fourier spectra: c (q0 = 0.19, q′0 = −0.28),
yellow right-pointing triangle; d) (q0 = 0.14, q′0 = −0.26), yellow left-pointing triangle.
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In the subsequent frequency range, characterized by eccentricity other than zero
and almost constant excursion, the existence of a pair of quasi-periodic solutions is
observed (Fig. 4.12a, which corresponds to β = βIII = 0.80, third vertical dashed
line in Fig. 4.9). These two limit cycles have the same frequency content, the same
excursion but are characterized by eccentricities, equal in absolute value but with
opposite sign. Consequently, the two solutions are not antisymmetric in themselves,
but the antisymmetry is achieved through their envelope.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12. Region IV (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.4), phase portraits with Poincaré
sections for: a β = βIII; d β = βIV; g β = βV; basins of attraction for: b β = βIII; e
β = βIV; h β = βV; Fourier spectra for: c β = βIII; f β = βIV; i β = βV.

Compared to the quasi-periodic solution shown in Fig. 4.11a, the limit cycles
that make up the pair are weakly quasi-periodic (less thick limit). Consequently,
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the incommensurate frequencies are much less obvious (Fig. 4.12c). By focusing
the attention on the single cycle that makes up the pair, it can be noted that, the
mass impacts one of the two bumpers in an evident manner, while it grazes the
other slightly. The basins of attraction of the two solutions are shown in Fig. 4.12b
and are characterized by quite irregular boundaries. By increasing β, on the one
hand the extent of the impact gradually increases, on the other the grazing reduces
(see Fig. 4.11d, corresponding to β = βIV = 0.82 and Fig. 4.11g, corresponding
to β = βV = 0.84). Consequently, the quasi-periodicity of the solutions, and thus
the irregularity of the basins of attraction, decrease. Furthermore, as the quasi-
periodicity decreases, the number of forcing cycles required to reach the stationary
is also reduced. After this range, characterized by irregular behavior, and before
the primary right hysteresis, a single periodic steady-state solution with n = 1 is
observed. As concerns the primary right hysteresis, in the frequency range between
the two jumps, everything goes as described in Sect. 4.3.

Region III (lower part)

From Fig. 4.4 it was observed that Region III (highlighted in green) embraces Region
IV (highlighted in red). Starting from Region IV and moving into the lower green
band, by decreasing δ0, from Fig. 4.13, which refers to δ0 = 0.25, it can be observed
that the PRCs are qualitatively similar to those observed for δ0 = 0.8 (Fig. 4.7) and
are characterized by the presence of only the primary resonance with right hysteresis
and by a null eccentricity for each β value.

(a) (b)

Figure 4.13. Region III, lower part (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.25), forward (solid red
line) and backward (dashed blue line) PRCs of: a ηd and ed (curves in the lower part
of the graph); b ηa and ea (curves in the lower part of the graph). The vertical arrows
represent the jumps.

Compared to the case δ0 = 0.8, the frequency range associated with the occurrence
of impact is larger, the primary hysteresis is shifted to higher frequency values and
its extension is greater. Furthermore, for β = β1 = 0.4575, highlighted with a red
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dot in Fig. 4.13a, it can be observed that, in the PRCs, especially that of ηa, a rather
vertical section is observed. When the mass reaches the obstacles, a distortion of the
limit cycle occurs, which gradually assumes the appearance of the red one shown in
the Fig. 4.14a characterized by an evident antisymmetry.

(a) (b)

Figure 4.14. Region III, lower part (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.25): a phase portraits
with Poincaré sections and b basins of attraction for β = 2.

As previously said in Sect. 4.3, in the frequency range between the two jumps
(e.g. β = 2), two steady-state solutions (Fig. 4.14a), a large-amplitude resonant
motion with impact (red curve) and a small-amplitude non-resonant motion without
impact (blue curve), are observed. Both solutions are periodic, with the same period
of the excitation (n = 1).

Compared to the case δ0 = 0.8 (Fig. 4.8), as previously said, the large amplitude
limit-cycle turns out to be more distorted and in the corresponding Fourier spec-
trum, in addition to the fundamental harmonic, the presence of another harmonic
component, with smaller amplitude, at a frequency that is three times that of the
fundamental, is also observed, (Fig. 4.15a) whereas in the Fourier spectrum corre-
sponding to the small-amplitude motion, only the fundamental harmonic component
is observed (Fig. 4.15b). Furthermore, since δ0 is lower, that is the bumpers are
closer to the mass, the large-amplitude limit cycle (red curve in Fig. 4.14a) is more
squashed at the ends, due to the occurrence of impact, and in each forcing cycle,
the mass hits each bumper once. As concerns the small-amplitude limit cycle, it is
more like an ellipse.

The basins of attraction of the two solutions are shown in Fig. 4.14b, together
with the initial conditions for the sine sweep frequency sub-range including the
value β = 2, obtained with the continuation technique during the forward (yellow
right-pointing triangle) and the backward (yellow left-pointing triangle) sweep. As
in the case δ0 = 0.8 (Fig. 4.8b), also in this case the shape of the basins returns to
be smooth and regular.
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(a) (b)

Figure 4.15. Region III, lower part (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.25), Fourier spectra for
β = 2 and initial conditions: a (q0 = 0.26, q′0 = −0.35); b (q0 = 0.008, q′0 = 0.13).

Region V

The scenarios previously analyzed referred to values of dimensionless gap δ∗0 < δ0 ≤ 1,
for which Eq. 4.7 admits two non-zero roots (β1 and β2, coincident for δ0 = 1).
Moving into the blue region, which straddles the line δ0 = δ∗0 ' 0.2, in the forward
sweep impact occurs immediately starting from β = β1 = 0 and the PRCs are
characterized by the presence of both the primary resonance with right hysteresis
and several secondary resonances without hysteresis in the low frequency range
(enclosed within an ellipse in Fig. 4.16). A detail of the smaller resonances is shown
in the rectangular zoomed area. It can be observed that eccentricity is always
zero except for a very small frequency range in the neighbourhood of β ' 0.4
(highlighted with a small dashed circle). In the low frequency range, characterized
by the alternation of ridges and valleys, a single periodic multi-frequency solution,
with n = 1 is observed.

In Fig. 4.17, each sub-figure describes the evolution of the phase portraits, at
steady-state, moving from one valley to the next ridge (left column, Figs. 4.17a,c,e)
and moving from one ridge to the next valley (right column, Fig.s 4.17b,d,f). The
β values corresponding to the investigated ridges and valleys are indicated with
Roman numerals in Fig. 4.16 and the associated phase portraits are represented
with thicker lines. From Fig. 4.17 it can be observed that, starting from a valley
(βI = 0.192, βIII = 0.316 or βV = 0.48) and approaching the next ridge (βII = 0.24,
Fig. 4.17a, βIV = 0.43, Fig. 4.17c, or βV = 0.67, Fig. 4.17e), in the phase portrait
two internal loops appear. These loops were not observed for β < βI. As β increases,
the internal loops gradually move inward, growing first and then getting smaller.
Referring to the two smaller considered ridges (Figs. 4.17a,c), they never touch the
obstacles; consequently, in each forcing cycle, the mass hits each bumper once. As
regards the larger ridge (Fig. 4.17e) instead, it is observed that the internal loops
come to touch the obstacles (secondary grazing), more or less in the middle of the
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(a) (b)

Figure 4.16. Region V (ξ = 0.1, γ = 5, λ = 50, δ0 = δ∗0 , forward (solid red line) and
backward (dashed blue line) PRCs of: a ηd and ed (curves in the lower part of the graph);
b ηa and ea (curves in the lower part of the graph). The vertical arrows represent the
jumps. The secondary resonances are enclosed by the solid black ellipse and a detail of
the smaller resonances is shown in the rectangular zoomed area. The small dashed black
circles highlight the small frequency interval characterized by non-zero eccentricity. The
dashed vertical lines represent β values that will be investigated in more detail.

ascending branch, just before the frequency range with non-zero eccentricity. This
will be investigated in more detail later.

Beyond the frequency range with non-zero eccentricity, a single periodic solution
with n = 1 is observed again. The two internal loops touch the obstacles, causing the
mass to impact each bumper twice for each forcing cycle. Subsequently, by further
increasing β, the loops begin to move inward, becoming gradually smaller (Fig. 4.17e)
and when they no longer intersect the obstacles, the mass returns to hit each bumper
once. Conversely, starting from a ridge (βII, βIV or βVI) and approaching the
next valley (βIII, Fig. 4.17b, βV, Fig. 4.17d, or βVII, Fig. 4.17f), the two internal
loops gradually disappear, taking on the appearance of cusps progressively more
rounded and in each forcing cycle, the mass hits each bumper once. Let’s now
focus the attention on the frequency range enclosed by the small dashed circle,
more or less in the middle of the ascending branch, just before the frequency range
with non-zero eccentricity. When the internal loops reach the obstacles (secondary
grazing, indicated by the first green star on the left in Fig. 4.18a), the transition
from a periodic impacting steady-state solution with n = 1, to a periodic impacting
steady-state solution with n = 3 is observed (Fig. 4.18b), in a similar way to what
was seen for δ0 = 0.4. At steady-state, reached with a quite small number of forcing
cycles, the solution is similar to the one shown in Fig. 4.10a; in addition to the
interweaving cycles there are also six internal loops, two of which intersect the
obstacles. Consequently, in each forcing cycle, the mass impacts in one cycle once a
bumper and two times the other, in the next cycle once both, and so on alternately.
As also observed for δ0 = 0.4 (Fig. 4.11), a small frequency range characterized
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Figure 4.17. Region V (ξ = 0.1, γ = 5, λ = 50, δ0 = δ∗0), secondary resonances in the
low frequency range: evolution of the phase portraits passing from the valley to the
ridge (left column) and passing from the ridge to the valley (right column): a βI → βII;
b βII → βIII; c βIII → βIV; d βIV → βV; e βV → βVI; f βVI → βVII. The cycle
corresponding to the investigated valleys and ridges are represented with thicker lines.
The order of the sub-figures is given by the colored arrows.
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by the presence of a secondary right hysteresis with zero eccentricity follows (see
the zoomed area in Fig. 4.18a). In order to highlight this hysteresis a quite small
frequency increment and a higher number of forcing cycles were required. At the
hysteresis two coexisting solutions, both associated with the occurrence of impact
and each with antisymmetric envelope, were observed (Fig. 4.18c):

• A periodic multi-frequency solution (red curve), with n = 3, similar to the
limit cycle shown in Fig. 4.18a and associated with the forward sweep;

• A quasi-periodic solution (blue curve), associated with the backward sweep.

(a) (b)

(c) (d)

Figure 4.18. Region V (ξ = 0.1, γ = 5, λ = 50, δ0 = δ∗0): a zoom of the PRCs of ηa and ea
in the neighbourhood of the frequency range with non-zero eccentricity; phase portraits
with Poincaré sections for: b β = 0.378; c β = 0.3865 (right hysteresis) d basins of
attraction for β = 0.3865 (right hysteresis).

The basins of attraction of the two coexisting solutions are shown in Fig. 4.18d.
It can be observed that the boundaries of the basins are quite irregular (fractal)
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and most of the initial conditions lead to the quasi-periodic solution (blue basin).
In the forward sweep a sudden small downward jump was observed, when two of
the internal loops of the solution (see Fig. 4.18b, or the red curve in Fig. 4.18c)
reach the obstacles (another secondary grazing, indicated by the second green star in
Fig. 4.18a)), causing the transition to a quasi-periodic attractor, similar to the blue
one shown in Fig. 4.18c. After another small jump, a small frequency interval, in
the neighbourhood of β ' 0.4, with non-zero eccentricity follows. In this frequency
range, a pair of quasi-periodic solutions, whose overall envelope is antisymmetric, is
observed (Fig. 4.19a, which corresponds to β = 0.40).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.19. Region V (ξ = 0.1, γ = 5, λ = 50, δ0 = δ∗0), phase portraits with Poincaré
sections: a β = 0.40; d β = 0.41; g β = 0.42; basins of attraction: b β = 0.40; e
β = 0.41; h β = 0.42; Fourier spectra: c β = 0.40; f β = 0.41; i β = 0.42.
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Each of the cycles that make up the pair have internal loops, which, as time goes
by, approach, cross and then move away from the vertical dashed lines representing
the position of the obstacles. In particular, by focusing the attention on the single
cycle that makes up the pair, it can be observed that, one of the internal loop
impacts one bumper in an evident manner, while the other only grazes the other
bumper. This results, for each of the two solutions, in a different number of impacts,
in each forcing cycle, to the right and left as time goes on. It is worth noting that,
to reach a stationary condition, a high number of cycles was required. Since the
limit cycles that make up the pair are weakly quasi-periodic, the incommensurate
frequencies are not very evident in the Fourier spectrum (Fig. 4.19c).

The basins of attraction of the two solutions are shown in Fig. 4.19b and are
characterized by quite irregular (fractal) boundaries. By increasing β (Fig. 4.19d,
which corresponds to β = 0.41 and Fig. 4.19i, which corresponds to β = 0.42), on
the one hand the extent of the impact gradually increases, on the other the grazing
reduces and therefore also the quasi-periodicity and the complexity of the basins of
attraction. As previously said, after the frequency range with non-zero eccentricity
and before the ridge (βVI), a single periodic solution, with n = 1, is observed again,
in which the inner loops, that initially intersect both the obstacles (double impact),
progressively become smaller and move inward as β increases. When they no longer
intersect the obstacles (cyan dot in Fig. 4.18a), the mass return to hits each bumper
once. This sequence of behaviors, similar to that observed for δ0 = 0.4 and related to
the occurrence of consecutive secondary grazing, was not observed before the other
smaller ridges, where the internal loops do not cause further impacts, but evolve far
from the obstacles, as β varies.

Region VI

Further reducing the dimensionless gap δ0, we move onto Region VI (highlighted in
magenta in Fig. 4.4). Since 0 < δ0 < δ∗0, Eq. 4.7 admits only a non-zero root (β2,
see Sect. 4.2.4) and impact occurs already starting from β = 0.

In Fig. 4.20 the PRCs for δ0 = 0.1 are represented. It can observed that they are
characterized by the occurrence of both the primary resonance with right hysteresis
and different types of secondary resonances in the low frequency range. In particular,
for β < 0.9, a cascade of secondary resonances with left hysteresis is observed (in
Fig. 4.20 enclosed by an ellipse). Furthermore, in the neighbourhood of β = 1,
a secondary non-regular resonance is noticed (rectangular zoomed area) and the
eccentricity shows non-zero values. Unlike what was seen in Sect. 4.3 and 4.3, were
the irregularity interval (Fig. 4.9 and 4.18) followed a secondary resonance with right
hysteresis, here the secondary non-regular resonance is preceded by a cascade of
secondary resonances with left hysteresis. In the low frequency range, where the
cascade of secondary resonance with left hysteresis occurs (see the ellipse in Fig. 4.20),
the eccentricity is always zero and the observed solutions, reached with a small
number of forcing cycles, have the same period of the excitation (n = 1) and are
characterized by the occurrence of several internal loops, which is reflected in a high
number of impacts, increasing as β decreases. This can be seen better in Fig. 4.21h,
where the trend of the number of impacts per forcing cycle, against each bumper, is
shown as β changes, both on the forward (increasing β, solid red line) and on the
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(a) (b)

Figure 4.20. Region VI (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.1), forward (solid red line) and
backward (dashed blue line) PRCs of: a ηd and ed (curves in the lower part of the graph);
b ηa and ea (curves in the lower part of the graph). The vertical arrows represent the
jumps. The cascade of secondary resonances with left hysteresis is enclosed by the solid
black ellipse, whereas a detail of the secondary non-regular resonance is shown in the
zoomed square area.

backward (decreasing β, dashed blue line) sweep. Some investigated β values are
marked with colored dots and the corresponding phase portraits are represented
above and below Fig. 4.21h. In particular, the phase portraits corresponding to the
valleys between the secondary resonances are depicted above, in Figs. 4.21a,c,e,g
while the solutions observed in the secondary left hysteresis, just before the downward
jumps in the backward sweep, denoted as ridges are shown below, in Figs. 4.21b,d,f.

From Fig. 4.21h, it can be noted that, starting from a valley (Fig. 4.21a, for
β = 0.935), in which the limit cycle has no internal loops and the mass hits each
bumper once per forcing cycle, and following the backward sweep, that is decreasing
β (dashed blue line in Fig. 4.21h, from right to left), a pair of internal loops appears.
They grow as β decreases and when they reach the obstacles (blue curve in Fig. 4.21b,
for β = 0.64), a sudden downward jump is observed. This results in an increase of
1 in the number of impacts per forcing cycle against each bumper (Fig. 4.21c, for
β = 0.588). By further decreasing β, another pair of internal loops appears. When
even these loops reach the obstacles (blue curve in Fig. 4.21d, for β = 0.43), another
downward jump occurs, after which the numbers of impacts against each bumpers
increases again by 1, and so on for the successive ridges and valleys (Figs. 4.21e-g, for
β = 0.41, β = 0.345 and β = 0.326 respectively). The limit cycle shown in Fig. 4.21g
has six internal loops that intersect the obstacles and the number of impacts against
each bumper per forcing cycle is equal to four. Conversely, starting from the valley
shown in Fig. 4.21g and following the forward sweep, that is increasing β (solid red
line in Fig. 4.21h, from left to right), immediately after the upward jump, the two
innermost loops move away from the obstacles (Fig. 4.21f); this results in a 1 drop
in the number of impacts against each bumper per forcing cycle.
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Figure 4.21. Region VI (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.1): h number of impacts against
each bumper per forcing cycle vs β and example phase portraits with Poincaré sections,
at steady-state, at the valleys (a, c, e, g) and at the ridges (secondary left hysteresis,
just before the downward jump) (b, d, f). Basins of attraction at the ridges (m-o).
Fourier spectra at the valleys (i-l) and at the ridges (p-r).
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By further increasing β, this pair of loops progressively disappears. They
transform themselves into cusps that gradually blunt, until another jump occurs.
This again involves the moving away of the two innermost loops, of those left, from
the obstacles (Fig. 4.21e) and the reduction of the number of impacts and so on,
until all the inner loops disappear (Figs. 4.21d-a) and the mass returns to hit each
bumper once (Fig. 4.21a). The Fourier spectra of the solutions observed at the
valleys are shown in Figs. 4.21i-l; they are characterized by the presence of several
harmonic components, in addition to the fundamental one, whose number grows as
β decreases.

At the secondary left hysteresis, colored gray in Fig. 4.21h, there are two steady-
state solutions with impact (see Figs. 4.21b,d,f): a large-amplitude motion (blue line)
and a small-amplitude motion (red line). As for the primary right hysteresis, the
third unstable solution was not obtained. Compared to the primary resonance with
right hysteresis, here the large-amplitude motion is associated with the backward
sweep (blue curve). Both the solutions are periodic, with the same period of the
excitation (n = 1) and in the corresponding Fourier spectra (Figs. 4.21p-r), several
harmonic components, in addition to the fundamental one, are observed.

The basins of attraction are shown in Figs. 4.21m-o and are characterized by
gradually more irregular (fractal) boundaries as β decreases. It can be observed
that both the solutions have the same number of internal loops; however, while
in the small-amplitude solution (red) all the loops intersect the obstacles, in the
large-amplitude solution (blue) the innermost loops do not reach them. Consequently,
the number of impacts on the forward sweep always exceeds the number of impacts
on the backward sweep by 1 (see Fig. 4.21h). Decreasing β, the number of internal
loops, and thus, the number of impacts per forcing cycle increases, both in the
forward and in the backward sweep, with a greater number of impacts always on
the forward sweep. Furthermore, the amplitude of the limit cycles decreases, the
number of harmonic components increases and the basins of attraction become less
regular, with a gradually decreasing extension of the basin of the smaller cycle (red
basin).

In the frequency range in correspondence with the secondary non-regular reso-
nance, characterized by almost constant excursion, the same in both the forward
and backward curve, and non-zero eccentricity, the existence of a pair of quasi-
periodic solutions, with antisymmetric envelope, was observed (red and blue curves
in Fig. 4.22a, for β = 0.96). Each cycle that makes up the pair has a thick internal
loop which, as time goes by, approaches, grazes, crosses and then moves away from
one of the left vertical dashed line representing the position of the obstacle. In
particular, the internal loop of the red cycle crosses only the left vertical dashed line
(left bumper), while the internal loop of the blue cycle crosses only the right vertical
dashed line (right bumper). This results, for each of the two solutions that make up
the pair, in a different number of impacts, in each forcing cycle, to the right and left
as time goes on. Given the quasi-periodic nature of the response, a high number of
forcing cycles was required to reach a fairly stationary condition. By appropriately
calibrating the initial conditions, and the number of forcing cycles, it is also possible
to observe a periodic multi-frequency solution with n = 1, antisymmetric in itself
(green curve in Fig. 4.22a), characterized by smaller excursion and zero eccentricity.
In the PRCs (Fig. 4.20) the values of excursion and eccentricity, corresponding to
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this periodic limit cycle, are represented with green dots. They are placed on the
ideal course of the PRC that would have occurred in the absence of the secondary
non-regular resonance.

(a) (b)

(c) (d)

Figure 4.22. Region VI (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.1, β = 0.96), secondary non-regular
resonance: a phase portraits with Poincaré sections; b basins of attraction; Fourier
spectra: c pair of quasi-periodic solutions, solid red line for (q0 = −0.027, q′0 = −0.056)
and dashed blue line for (q0 = 0.1, q′0 = −0.002); d) green solution for (q0 = 0.042,
q′0 = −0.21).

The basins of attraction of the solutions are shown in Fig. 4.22b. It can be
observed that the initial conditions, corresponding to the periodic solution are
located at the boundary between the basins of attraction of the cycles that make
up the pair. The Fourier spectra of the two solutions that make up the pair
(solid red and dashed blue lines in Fig. 4.22c) coincide and are characterized by
several harmonic components. Since the limit cycles are weakly quasi-periodic, the
incommensurate frequencies are much less obvious. These can be seen better in the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.23. Region VI (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.1) descending branch of the PRCs,
after the secondary non-regular resonance, phase portraits with Poincaré sections: a
β = 1.12; c β = 1.14; e β = 1.18; basins of attraction: b β = 1.12; d β = 1.14; f
β = 1.18.
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rectangular zoomed areas. As concerns the periodic solution, the same commensurate
harmonic components are observed (Fig. 4.22d), but some of them have much smaller
amplitudes, compared to the two quasi-periodic solutions.

Increasing β, the internal loops of the quasi-periodic solutions gradually move
away from the obstacles, reducing the extent of the grazing. Consequently, the
quasi-periodicity of the solutions, and thus the irregularity of the basins of attraction,
decrease. Also the number of forcing cycles required to reach the stationary reduces.

After passing the range characterized by almost constant excursion, a straight
descending branch, along which there is a pair of periodic solutions with n = 1
(Fig. 4.23), is observed. Also in this frequency range, it is possible to observe a
third periodic solution with n = 1 (green curve, similar to that shown in Figs. 4.21a
and 4.22a), antisymmetric in itself, reachable starting from initial conditions that
are placed on the boundaries of the basins of attraction of the other two solutions.
The limit cycles that make up the pair initially have internal loops which no longer
reach the obstacles (Fig. 4.23a); consequently, in each forcing cycle, the mass hits
each bumper once. As β increases, these loops gradually disappear, taking on the
appearance of cusps (Fig. 4.23c), progressively more rounded (Fig. 4.23e) and the
solutions that make up the pair progressively become more and more similar to each
other and to the third (green) solution. The basins of attraction (Figs. 4.23b,d,f)
return to have more regular boundaries, compared to Figs. 4.21i-k and 4.22b, and
no significant variations are observed with increasing β.

Further scenario inside Region VI

As anticipated in Sect. 4.3, for 0 < δ0 < δ∗0 , the observed scenarios are more varied
and complex than those seen for δ∗0 < δ0 ≤ 1. An example of the possible situations
that can be encountered inside Region VI has been shown in Sect. 4.3, for δ0 = 0.1.
However, by slightly varying δ0, quite different scenarios can be observed, like
the one shown in Fig. 4.24, corresponding to δ0 = 0.05, which will be described
below, without going into too much detail. It can be observed that, as for δ0 = 0.1
(Fig. 4.20), in the low frequency range, a cascade of similar secondary units was
observed (enclosed by an ellipse). By analyzing the single unit, for example the
largest one, in the range 0.96 ≤ β ≤ 1.71 (rectangular zoomed area in Fig. 4.24),
different homogeneous frequency ranges can be distinguished as β increases:

• Range 1 (0.963 ≤ β ≤ 1.214) with a secondary non-regular resonance, approxi-
matively zero-eccentricity and almost constant excursion;

• Range 2 (1.214 < β < 1.45) with a secondary non-regular resonance, non-zero-
eccentricity and slightly decreasing excursion;

• Range 3 (1.45 ≤ β ≤ 1.502) with a secondary resonance with left hysteresis
and non-zero eccentricity;

• Range 4 (1.502 < β ≤ 1.7) with non-zero-eccentricity and decreasing excursion.

Within Range 1, a single chaotic solution, with antisymmetric envelope is observed
(Fig. 4.25a, for β = βI = 1.03). The corresponding Fourier spectrum is shown in
Fig. 4.25b. It can be observed that the trajectory, during its chaotic evolution as
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(a) (b)

Figure 4.24. Region VI, further scenario (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.05), forward (solid
red line) and backward (dashed blue line) PRCs of: a ηd and ed (curves in the lower
part of the graph); b ηa and ea (curves in the lower part of the graph). The vertical
arrows represent the jumps. The cascade in the low frequency range is enclosed by the
solid black ellipse, and a detail of one of the units in the cascade is shown in the two
zoomed rectangular areas. The two dashed vertical lines represent β values that will be
investigated in more detail.

(a) (b)

Figure 4.25. Region VI, further scenario (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.05), Range 1,
chaotic solution for β = βI = 1.03 : a phase portrait with Poincaré section; b Fourier
spectrum.
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time goes by, sometimes grazes the obstacles. Within Range 2, a pair of quasi-
periodic solutions, similar to those shown in Fig. 4.22a, is observed. Within Range
3, characterized by a left hysteresis with non-zero eccentricity, varying the initial
conditions, two pairs of periodic solutions, (Fig. 4.26a, for β = βII = 1.48), each with
n = 1, are observed. Each pair is associated with specific values of excursion and
eccentricity and the corresponding basins of attraction are shown in Fig. 4.26b. All
four solutions have an internal loop. However, while in the pair associated with the
forward sweep, the internal loop intersects the obstacle, in the pair associated with
the backward sweep the loop does not reach it. Consequently, in each forcing cycle,
the number of impacts on the forward sweep always exceeds the number of impact
on the backward sweep by 1, as also observed in Sect. 4.3. In the PRCs (Fig. 4.24)
the values of excursion and eccentricity, corresponding to the two pairs of periodic
limit cycle, are represented with circular markers, and they can be seen better in
the two zoomed rectangular areas. By focusing the attention on the eccentricity, it
can be observed that, they are placed on four lines, two by two symmetrical with
respect to the horizontal axis, respectively ed = 0 and ea = 0. Within Range 4, a
pair of periodic multi-frequency solutions, with n = 1, is observed (similar to that
shown in Fig. 4.23). The two solutions evolve with β in a similar way to what was
described in the last part of Sect. 4.3.

(a) (b)

Figure 4.26. Region VI, further scenario (ξ = 0.1, γ = 5, λ = 50, δ0 = 0.05), Range 3, two
pairs of periodic solutions β = βII = 1.48: a phase portraits with Poincaré sections; b
basins of attraction. The first pair is made up of red and black solutions, the second
pair is made up of blue and green solutions.

All the units in the cascade are similar to each other and are interspersed with
frequency intervals characterized by a single periodic multi-frequency solution with
n = 1. As observed in Sect. 4.3, decreasing β and moving from one valley to the other,
the number of internal loops, and therefore of impacts, increases. By appropriately
reducing the frequency increment ∆β of the sine sweep excitation, it is possible to
observe, even in the smallest units, the left hysteresis, otherwise not visible. Also in
this case, the difference between the left hysteresis belonging to different units lies



4.3 Scenarios 113

in the number of internal loops in the limit cycles, and therefore in the number of
impacts. In particular, decreasing β, the number of internal loops and of impacts
increases, with a number of impacts on the forward sweep which always exceeds the
number of impact on the backward sweep by 1. In addition to the scenarios shown
in Fig. 4.20 and 4.24, there may be many others. Given the complexity found within
Region VI, it therefore deserves to be further investigated and this will be the aim
of our future works.

Region VII

In the limit case δ0 = 0, that is when the bumpers are initially in contact with
the mass, the situation returns to be smooth (Fig. 4.27). Forward and backward

(a) (b)

Figure 4.27. Region VII (ξ = 0.1, γ = 5, λ = 50, δ0 = 0), forward (solid red line) and
backward (dashed blue line) PRCs of: a ηd and ed (horizontal line in the lower part of
the graph); b ηa and ea (horizontal line in the lower part of the graph).

PRCs overlap, without jumps, hysteresis or secondary resonances and the primary
resonance has moved to higher frequencies. Furthermore, eccentricity is always zero.
However, the dynamic is different from that observed for δ0 = 1. Based on what was
said in Sect. 4.2.4, impact occurs for each β value. It can be observed that the values
of excursion of relative displacement ηd are much smaller than those corresponding
to the other previously considered values of δ0.

For each β value a periodic mono-frequency solution, with the same period of
the excitation, that is n = 1, is observed (Fig. 4.28a). Consequently, at steady-
state, reached with a small number of forcing cycles, the points in the Poincaré
sections coincide with a single point. The limit cycle takes on the appearance of a
very flattened ellipse and in the Fourier spectra (Fig. 4.28b), only the fundamental
harmonic component is observed. Given the fairly small value of the relaxation time
of the considered bumpers compared to the forcing period (τr = 0.02), it is difficult
to see the flight phases between consecutive contacts. In fact, the duration of each
flight phase is very short, because the detachment between the mass and the single
bumper takes place when the latter has recovered practically all its deformation and
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(a) (b)

Figure 4.28. Region VII (ξ = 0.1, γ = 5, λ = 50, δ0 = 0): a phase portrait with Poincaré
section and b Fourier spectrum for β = 7.1.

immediately afterwards the mass impacts the other bumper, which in the meantime
has already recovered its deformation.

4.4 Summary
In Sect. 4.2.4, it was shown that, once the value of the damping ratio ξ has been set,
it is possible to analytically determine, resorting to geometric considerations, the
frequency interval in which impact surely will occur (β1 ≤ β ≤ β2), for a given value
of δ0 (see the yellow horizontal lines in Fig. 4.3b). Due to the mainly hardening
behavior of the considered vibro-impact system, this frequency range, highlighted in
yellow in Fig. 4.29a, extends to the right (green region). The green region is bounded
by the descending branch of the PRC, after the resonance, which represents the
locus of β2 values, and by the thin dotted black curve which represents the locus
of the downward jumps frequencies in the forward sweep (denoted as β3). While
if β1 ≤ β ≤ β2 the impact will surely occur for geometric reasons, if β2 ≤ β ≤ β3
it will occur, due to the nonlinear behavior of the system, and depending on the
values of the parameters and the initial conditions. In the same figure, the horizontal
dashed lines represent the investigated δ0 values and the red and blue dots indicate
the corresponding values of β1 and β2. Finally, the identified regions are shown on
the left, with Roman numerals enclosed within circles.

In the previous Sections, for each considered δ0 value, and for ξ = 0.1, γ = 5 and
λ = 50, starting from the analysis of the PRCs, homogeneous frequency intervals,
characterized by similar features in terms of number and type of observed solutions,
presence or absence of hysteresis and eccentricity, were identified. In Fig. 4.29b
these frequency ranges are represented with colored horizontal bars. Within the
single horizontal bar, every color represents a homogeneous β interval and a brief
description of its main characteristics is given in the legend shown at the bottom of
Fig. 4.29. The limits of the sub-ranges must be understood as qualitative, especially
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in the low frequency range. Furthermore, it is worth noting that these colors have
nothing to do with those used in Fig. 4.4 to distinguish the regions in the λ − δ0
plane. By stacking, one below the other, the frequency intervals corresponding to
the investigated values of δ0, and thanks to the use of different colors, it is possible
to have an overview of the encountered scenarios and to get an idea of the possible
evolution of the different secondary behaviors, as δ0 decreases, starting from the free
flight condition (δ0 = 1).

(a) (b)

Figure 4.29. a PRC of normalized excursion of relative displacement ηd in free flight
condition for ξ = 0.1 (thick black curve) with indication of the frequency intervals
in which impact surely will occur (yellow) or in which it will occur depending on the
initial conditions (green); the dashed horizontal lines represent the investigated δ0 values
and the Roman numerals enclosed within circles indicate the regions. b Homogeneous
frequency intervals corresponding to the investigated δ0 values (for ξ = 0.1, γ = 5,
λ = 50). The magenta star denotes the occurrence of primary grazing, whereas the
orange stars correspond to the secondary grazing and the shaded black bands highlight
the frequency intervals characterized by the occurrence of grazing. A summary of the
main features of each frequency interval is given at the bottom of the figure.

It can be observed that in the two limit cases, that is δ0 = 1 (Region I) and
δ0 = 0 (Region VII), the situation is smooth, although the dynamic is different.
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Indeed, in the first case (δ0 = 1) impact does not occur for any β value, whereas in
the second case (δ0 = 0) impact occurs for each β value.

Leaving out the frequency range characterized by the absence of impact, left white,
it can be noted that decreasing δ0, the amplitude of the frequency range associated
with the occurrence of impacting solutions (colored bars) increases. Also the number
of used colors, and therefore of encountered behaviors, increases, especially in the
low frequency range and for 0 < δ0 < δ∗0 .

Yellow and green colors appear to prevail over the others. The former represents
the frequency range associated with the occurrence of a single periodic impacting
solution with n = 1 or n = 3, while the latter corresponds to the primary right
hysteresis. It can be observed that, starting from the absence of hysteresis for δ0 = 1
(forward and backward PRCs overlap), this frequency range increases and finally
disappears again for δ0 = 0 (forward and backward PRCs overlap again). The other
colors were used to represent the smaller frequency ranges corresponding to the
observed secondary resonances.

As can be seen from Fig. 4.29b, and as already noted in Sect. 4.3, the reference
value δ0 = δ∗0 seems to represents the watershed between different types of observed
behaviors. Indeed, for δ∗0 ≤ δ0 < 1, the situation is quite calm, except for very small
frequency ranges in which secondary resonances with right hysteresis, followed by
intervals with non-zero eccentricity, were observed (for δ = 0.4, inside Region IV
and for δ = δ∗0, inside Region V). Conversely, more complex and varied scenarios
(with secondary resonances with left hysteresis, secondary non-regular resonances
and cascades of similar behaviors), which reflect in a greater chromatic variety,
were observed for 0 < δ0 < δ∗0 (inside Region VI). These secondary behaviors affect
gradually wider frequency ranges as the δ0 decreases.

Despite the great variety of identified homogeneous frequency intervals, the use
of colors allows to recognize a certain regularity and to highlight the presence of
cascades of behaviors that are repeated on different scales, keeping a similar shape.
In particular, the cascade of secondary left hysteresis, for δ0 = 0.1, highlighted in
blue, and the cascade of more complex secondary units (formed by the adjacent
cyan, red, purple and gray ranges, corresponding to the four ranges defined in
Sect. 4.3) observed for δ0 = 0.05. For values of 0 < δ0 ≤ δ∗0, internal loops in
the phase portraits were also observed. These loops, in the low frequency range,
often reach and cross the obstacles, giving rise to number of impacts per forcing
cycle, against each bumper, greater than one. As β decreases, these loops gradually
increase in number, and thus also the number of impact increases. Therefore, while
for δ∗0 ≤ δ0 < 1 neither cascades, nor secondary resonances with left hysteresis were
observed, but only secondary resonances with right hysteresis localized in a small
frequency interval, for 0 < δ0 < δ∗0 no secondary right hysteresis were observed and
the secondary resonances affect wider frequency ranges. Furthermore, this study
allowed to observe that, in the considered model, the grazing phenomenon plays an
important role, and it is related to the occurrence of some of the observed scenarios.
In particular, in Fig. 4.29b the occurrence of primary and secondary grazing is
highlighted with magenta and orange stars respectively, whereas the shaded black
bands represent the frequency intervals in which the trajectories graze the obstacles
as time goes by and the extent of grazing decreases as β increases.
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4.5 Closing remarks
In this chapter, some of the scenarios that can occur in the numerical nonlinear
non-smooth response of a SDOF system, symmetrically constrained by deformable
and dissipative bumpers, under a harmonic base excitation, with the variation of
selected parameters, were identified and investigated. In the numerical model, both
the damper and the bumpers were modeled with the Kelvin-Voigt model. The
model is described in terms of dimensionless parameters and, due to the adopted
normalization, the damping ratio plays a fundamental role by influencing both the
response of the system and the amplitude of the base excitation.

By observing the characteristics of the PRCs of excursion and eccentricity of
absolute acceleration and relative displacement of the mass, obtained for fixed values
of ξ and γ and considering a sine sweep base excitation, seven homogeneous regions
in the λ− δ0 plane, each corresponding to a scenario, were identified. Subsequently,
referring to a constant value of the stiffness ratio λ, each scenario, corresponding
to a different value of the dimensionless gap δ0, was investigated resorting to phase
portraits and Fourier spectra. In some cases, further analyses varying the initial
conditions (basins of attraction) were carried out.

Within each scenario, homogeneous frequency intervals, characterized by similar
features in terms of number (single solution, coexisting solutions or pair of solutions)
and types of limit cycles (periodic, quasi-periodic or chaotic), were identified.

Decreasing the dimensionless gap, starting from δ0 = 1, gradually more complex
and varied scenarios, characterized by the presence of the primary resonance with
right hysteresis and also by the occurrence of different types of secondary resonances
(with right or left hysteresis or of non-regular type) and cascades, affecting gradu-
ally wider frequency ranges, were observed. The occurrence of the (primary and
secondary) grazing phenomenon, and its relationship with some of the observed
situations, was also highlighted.

A reference value for the dimensionless gap, denoted as δ∗0, was identified. It
allowed to distinguish some δ0 ranges (namely δ0 = 1, δ∗0 < δ0 < 1, 0 < δ0 < δ∗0 and
δ0 = 0) in which different behaviors were observed. In particular, the most complex
scenarios were noticed for 0 < δ0 < δ∗0. Conversely, for δ∗0 ≤ δ0 < 1, more calm
situations were observed. In the two limit cases (δ0 = 1 and δ0 = 0), the situation is
instead smooth, although characterized by different dynamics.

Based on the results obtained in this work and in [251], a future development
of this study will be to investigate in more detail the part of the λ − δ0 plane
where the identified regions converge (enclosed within an ellipse in Fig. 4.4), and to
deepen the study of Region VI, which has proven to be particularly complex and
rich in behaviors. Furthermore, based on the indications provided by the numerical
model, a further experimental laboratory campaign will be carried out to confirm the
numerical results, especially for small, null and negative values of the dimensionless
gap.
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Chapter 5

Experimental study of the
transition from positive to
negative gaps

Chapter outline In this chapter, the influence of the gap amplitude on the ex-
perimental response of a SDOF vibro-impact oscillator, excited by a harmonic
base acceleration and symmetrically constrained by two unilateral deformable and
dissipative bumpers, is investigated. The parametric investigation considered both
positive, null and negative gaps. Particular attention is paid to the study of the
effect, on the system response, of the transition from positive to small negative gaps
and of excessive negative gaps. Secondary resonances in the low frequency range,
associated with the occurrence of multiple impacts, were observed for small positive
gaps. Finally, the experimental results were reproduced, in a sufficiently accurate
manner, using a suitable numerical model, whose parameters were identified based
on the experimental data.

5.1 Introduction

The impact phenomenon is ubiquitous in many (biomedical, mechanical, civil, . . . )
engineering applications involving mechanical components or structures repeatedly
colliding with one another or with obstacles. Some examples are represented by the
capsule systems used in clinic endoscopy to inspect the surface lining of the intestine
in the human body [87, 165,166, 293, 294] and the drilling rig used in the oil and gas
industry for creation of the wells [57, 65, 156, 158, 159, 161, 267]. In the context of
civil engineering, base isolation represents one of the most applied passive control
strategies to mitigate the dynamic response of both new and existing structures
[121,134,136,253], bridges [90,93,123], strategic facilities [142,235], nonstructural
elements and equipment [5,116,168,228,229]. The aim of base isolation is to uncouple
the motion of the structure from that of the ground by introducing some type of
support that isolates it from the shaking ground, thus limiting the energy input
into the system and protecting it from damaging. The flexibility introduced by
base isolation increases the fundamental vibration period of the structure. The
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occurrence of exceptional loads, like strong earthquakes, can produce large horizontal
displacements in base-isolated structures, concentrated in the isolation system, which
can damage the isolation system itself or can lead to pounding with the surrounding
moat walls or adjacent structures [19, 20, 51], if the available seismic gap is not
sufficient. A possible mitigation measure consists in the interposition of deformable
shock absorbers (bumpers) [6, 223, 224]. On the one hand, the introduction of
the bumpers limits the displacement of the structure; on the other, the possible
occurrence of the impact with the bumpers can produce acceleration spikes which can
be detrimental, not only for the structure itself, but also for any sensitive equipment
housed in it. Furthermore, the occurrence of impact can excessively deform the
bumpers. In order to limit the response of the base-isolated system, so as to avoid
the damage of the isolation system, also other types of control systems can be
implemented [15,21,80,231].

The non-smooth dynamics of systems with one-sided or two-sided constraints,
the types of impact motion, attractors and bifurcations, have been the subject of
several scientific works, of both numerical and experimental nature [29, 47, 50, 85,
86,112,113,126,181,183,213,256,265,274,286,299]. The effect of the introduction
of the obstacle on the system response depends on several factors, including the
mechanical properties of the bumpers and the distance between them and the
structure (gap). As concerns the influence of the gap size, few works can be found
in Literature, usually dealing with positive gaps. In these works the response is
found to decrease as the gap increases [6, 139, 140, 221, 222]. Very small seismic
gaps, in combination with strong ground excitation, can lead to relatively milder
consequences from pounding, not allowing the structure to develop high velocities
before the impact [221,222]. According to Jankowski et al. [123] the optimal gap
size to reduce the response is either a very small one or large enough to avoid
collisions. The zero-gap configuration was recommended by Aguiar and Weber [4],
since it allows to maximize the impact force in a vibro-impact system without the
occurrence of nonlinear jumps. Even less are the works that deal with negative gaps,
which cause an initial pre-stress/pre-strain state in the bumpers. Relatively simpler
dynamic responses of a two-degree-of-freedom periodically-forced system are found
in [182] if the constraints are initially prepressed. The effect of the introduction of a
prepressing constraint in a capsule system was highlighted in [293].

The practical problem of excessive displacements in base-isolated structures
inspired several works of Andreaus et al., of both numerical and experimental nature,
in which a single-degree-of-freedom oscillator, impacting against two deformable
and dissipative bumpers, was considered [9, 10, 12–14, 247–249, 251]. Some of the
scenarios which can occur in the experimental nonlinear nonsmooth response of the
system were identified and described in [251]. These scenarios were also reproduced
with a suitable numerical model. Further numerical investigations highlighted the
existence of gradually more complex and varied behaviors, that could be observed
for values of the gap smaller than those considered in the experimental laboratory
campaign [251]. Furthermore, the combination of small gaps with quite deformable
bumpers appeared to be a good choice which allows to realize, compared to the
free flight condition, a reduction of both accelerations and displacements or a good
compromise between reduction of displacements and limited increase in accelerations
[14].
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Based on these preliminary results, a new laboratory campaign was designed and
conducted to investigate, in particular, small positive, null and negative values of the
gap and to validate the numerical predictions. The experimental investigation of small
positive, null and negative gaps represent an element of novelty of this laboratory
campaign. Furthermore, compared to the previous experimental investigations,
impact load cells were installed between the mass and the bumpers, to directly
measure the contact force during the impact phases.

In this chapter some results of the new laboratory campaign will be presented
and discussed. The attention is focused of the influence of the gap amplitude on the
system (mass and bumpers) response, especially when passing from small positive
to small negative gaps and when the negative gap exceeds a certain threshold value.
For small positive gaps, secondary resonances in the low frequency range were
observed and the response of the system at these resonances was investigate. Based
on the experimental results, the parameters of a relatively simple numerical model
were identified in order to reproduce the experimental outcomes. Although several
scientific works deal with the problem of impact, there are not many studies that
address, in such a systematic way, the study of the influence of the gap on the
dynamic response of the system, extending the investigations also to small positive,
null and negative gaps.

The chapter is organized as follows. The experimental setup is introduced in
Sect. 5.2; some experimental results are presented and discussed in Sect. 5.3; the
transition from positive to small negative gaps, the effect of excessive negative
gaps and the characteristics of the system’s response at the secondary resonances
are investigated in Sect. 5.4; the numerical model and the comparison between
experimental and numerical results are presented in Sect. 5.5; finally, concluding
remarks and future developments of the work are given in Sect. 5.6.

5.2 Experimental setup and performed tests

The experimental setup, shown in Fig. 5.1, consists of a rigid body (mass M = 550
kg), an elastomeric High Damping Rubber Bearing (HDRB) isolator (damper), and
two elastomeric shock absorbers (bumpers), symmetrically mounted on steel moat
walls, denoted as right (BR) and left (BL) bumper respectively. The experimental
tests investigated two configurations, namely with and without bumpers (the latter
will be referred to as free flight condition), under the same base excitation. To
study the response of the system in the presence of obstacles, an elastomeric bumper
with D-shape hollow section, in the following denoted as B2, was tested (see the
photograph in the bottom right corner of Fig. 5.1).

By adjusting the screws behind the plates on which the bumpers are mounted, the
distance between the mass and the bumpers (gap) was varied. The gaps considered
in the experimental tests were denoted as: G∞, G30, G16, G10, G4, G0, G-1, G-2,
G-10, where the number, expressed in mm, represents the nominal amplitude of the
total gap G, defined as the sum of the right and left gaps and G∞ indicates the free
flight condition. It is worth noting that in the experimental tests, as far as possible,
an attempt has been made to achieve a gap equal to the nominal value. The negative
gaps (G-1, G-2, G-10) were realized by initially compressing the bumpers against
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Figure 5.1. Experimental setup: a plan view and b side view with indication of the main
components and sensors. The zoomed areas show two photographs with details of the
impact load cells, enclosed by red squares.

the mass, leading to an initial pre-stress/pre-strain state in the bumpers. The
investigation of small positive, null and negative gaps represents one of the novelty
elements of this laboratory campaign, compared to previous tests and studies.

The experimental tests were carried out in the Materials and Structures Test-
ing Laboratory of the Department of Structural and Geotechnical Engineering of
“Sapienza” University of Rome, using a uni-axial shaking table Moog 1.50× 1.50 m,
managed by Moog Replication Software. The system was excited at the base by
a step-wise forward and backward sine sweep in displacement control, in order to
impose a given value of peak table acceleration, namely A = 0.05 g, where g is the
gravity’s acceleration, with a number of cycles nc, in each sub-frequency range, such
as to reach the steady state condition. For positive gaps (G > 0), the investigated
frequency range was between 0.5 and 5 Hz, with frequency step ∆f = 0.1 Hz and
nc = 10. For G ≤ 0, the investigated frequency range was extended from 0.5 to
10 Hz, with frequency step ∆f = 0.1 Hz and nc = 10. In some cases, especially
for small positive gaps (G10 and G4), in order to better capture the experimental
response of the system in the low frequency range, the frequency step ∆f and the
number of cycles nc were varied, depending on the performance of the shaking table,
as it will be illustrated in more detail in Sect. 5.4.3.

The measured quantities during the tests were the absolute accelerations and
displacements of the mass and of the shaking table and the contact forces between
mass and bumpers (Figs. 5.1). The accelerations were measured by accelerometers
and the displacements by laser transducers. The forces developed during the
contact phases between mass and bumpers were measured by four impact load cells,
symmetrically mounted on the mass, two on each side (Sect. 2.3.3). Between the
impact load cells and the bumpers, steel plates were mounted to distribute the impact
force. The use of impact load cells, in addition to the other sensors, represents
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another novelty element of this laboratory campaign, compared to previous tests
and studies.

5.3 Experimental results
The total gap amplitude G influences the system response, as shown in Fig. 5.2, in
terms of forward (red lines and dots) and backward (blue lines and dots) Pseudo-
Resonance Curves (PRCs). Each PRC corresponds to an experimentally tested value
of G. The size of the dots and the thickness of the lines decrease as G decreases. In
Fig. 5.2a,b the green curves refer to the free flight condition (also referred to as G∞
in the legend).

The represented response quantities are the normalized excursion of the relative
displacement of the mass ηd (Fig. 5.2a), the normalized excursion of the absolute
acceleration of the mass ηa (Fig. 5.2b), the normalized maximum deformation ηj
(Fig. 5.2c) and maximum contact force rj (Fig. 5.2d) of the right (BR) and left (BL)
bumpers respectively (j = R, L). These quantities are defined as follows:

ηd = Ed
Ed0

= umax − umin
2u∗ (5.1a)

ηa = Ea
Ea0

= amax − amin
2a∗ (5.1b)

ηj = uj,max
u∗

(j = R,L) (5.1c)

rj = Fj,max
Mg

(j = R,L) (5.1d)

In the first three cases (Eqs. 5.1a-c), the normalization was made with respect
to the free flight resonance condition (u∗ and a∗ denote the maximum relative
displacement and absolute acceleration of the mass in free flight resonance condition).
As concerns the contact force Fj (j = R, L), it is normalized with respect to the
weight Mg of the impacting mass (Eq. 5.1d).

From Fig. 5.2 it can be observed that, for G > 0, compared to the free flight
condition (green curves), the hardening caused by the impact between the mass and
the bumpers bends the Pseudo-Resonance Curves (PRCs) to the right, causing the
occurrence of jumps (represented with vertical arrows for G4), and thus of a primary
right hysteresis (highlighted in yellow). Referring to the primary resonance condition,
it can be observed that, progressively approaching the bumpers to the mass, that is
decreasing G, the movement of the mass is increasingly limited and, consequently,
the maximum value of ηd decreases (Fig. 5.2a). On the other hand, the maximum
acceleration, after an initial increase, starts to decrease (Fig. 5.2b). Furthermore,
as highlighted by previous numerical investigations [251], for quite small gaps (G10
and G4) secondary resonances in the low frequency range were observed, and the
number of secondary resonances was found to increase decreasing G. As concerns
the two bumpers (Figs. 5.2c,d), it can be observed that the PRCs of the normalized
deformation ηj and contact force rj corresponding to the to bumpers (BR, above
the frequency axis and BL, below the frequency axis) are qualitative similar to each
other, due to the mostly symmetric behavior of the studied system. The trends of
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both the deformation (Fig. 5.2c) and the contact force (Fig. 5.2d) for decreasing
positive gaps are similar to that of the acceleration of the mass (Fig. 5.2b). The
jumps, the right hysteresis and the secondary resonances, are still visible also in
these curves. Compared to the PRCs of ηd and ηa, for G > 0, the PRCs of ηj and
rj (j = R, L) are zero at the frequency values for which the impact does not occur.

Figure 5.2. Forward (red) and backward (blue) PRCs of: a ηd; b ηa; c ηj (j = R, L) and
d rj (j = R, L) for different values of the total gap amplitude G. In a and b, the free
flight condition (G∞) is represented with green curves.

The situation returns to be smooth for bumpers initially more or less in contact
with the mass (G ' 0), with the forward and the backward PRCs, of both ηd,
ηa, ηj and rj (j = R, L) substantially overlapped, the resonance shifted to higher
frequencies (about 4.8 Hz) and without jumps or hysteresis. As concerns the bumpers,
since now impact occurs for each frequency value, the PRCs of ηj and rj (j = R, L)
are always different from zero.

For small negative gaps (G-1), obtained by initially slightly compressing the
bumpers against the mass, the PRCs bend to the left, due to a softening-like
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behavior, showing jumps (represented with vertical arrows) and a primary left
hysteresis (highlighted in cyan). The left hysteresis is observed in the PRCs of both
ηd, ηa, ηj and rj (j = R, L). The initial pre-stress/pre-strain state of the bumpers,
resulting from the negative gaps, causes an offset of the PRCs of ηj (Fig. 5.2c) and
rj (Fig. 5.2d) (j = R, L) from the frequency axis. Consequently, as in the G' 0
case, these curves are always different from zero.

By further compressing the bumpers against the mass (G-2 and G-10), the PRCs
are no longer bent, show neither jumps nor hysteresis and the resonance is shifted
to higher frequencies (about 7.5 Hz). Furthermore, while the PRCs of ηd and ηa
corresponding to these two values of the gap are substantially overlapped, those of
ηj and rj (j = R, L) are similar but appear to be shifted with respect to each other,
with the extent of the shift related to initial pre-stress/pre-strain state caused by
the negative gap.

The effect of the gap amplitude G on the system response can be seen also from
Fig. 5.3, in which the force-displacement cycles, in steady-state primary resonance
condition, are represented, for both the mass (inertia force FI vs. relative displace-
ment u of the mass, Fig. 5.3a) and the two bumpers (contact force Fj vs. position
vj of the bumper, j = R, L, Fig. 5.3b).

Figure 5.3. Force-displacement cycles in steady-state primary resonance condition corre-
sponding to the investigated values of the total gap G: a mass; b bumpers.

The position of the extremity of the bumper vj (j = R, L) is measured from
the side of the mass at time t = 0 s, as shown in the schematic representations in
Fig. 5.4, which refers to the right bumper (j = R). The position vj is related to
the deformation uj , the latter used for the calculation of ηj , through the expression
vj = uj +G0j , where G0j (j = R, L) represents the initial distance (gap) between
the mass and the j-th bumper.

In Fig. 5.3 each color corresponds to a gap amplitude G and the vertical dashed
lines represent the initial position of the bumpers for G > 0. Through these
representations it is possible to see, in the same figure, the evolution of both the
forces and the displacements with the amplitude of the gap. From Fig. 5.3a it is
possible to observe both the increment of stiffness (hardening), which occurs when
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Figure 5.4. Graphical represen-
tation of the relationship be-
tween bumper’s deformation
uj and position vj for j =
R (right bumper) and consid-
ering a positive, b null and
c negative initial gaps. The
dashed black lines represent
the initial configuration of the
system.

the mass impacts the bumper, for G ≥ 0, and the decrease in stiffness (softening) for
small negative gaps (G-1, light orange curve). For negative gaps beyond a certain
value (G-2 and G-10), the response of the mass does not vary significantly and the
FI-u cycles are substantially overlapped, though they are not quite the same, as it
will be said in the following section. On the contrary, the pre-stress state induced in
the bumpers by the negative gap causes the Fj-vj (j = R, L) cycles to move away
from the x-axis (Fig. 5.3b). The behavior of the system for small positive, null and
negative values of the gap will be discussed in more detail in the following Sect. 5.4.

5.4 Insights

In this section the attention is focused on the range of small positive, null and
negative gaps. Starting from Fig. 5.5, in which only the PRCs corresponding to
G4 (black lines and dots), G0 (red lines and dots), G-1 (blue lines and dots), G-2
(light green lines and dots) and G-10 (dark green lines and dots) are represented,
three aspects will be further investigated, namely the transition from positive to
negative small gaps (Sect. 5.4.1), the effect of excessive negative gaps on the mass
and the bumpers’ responses (Sect. 5.4.2), the characteristics of the system response
for small positive gaps and in the low frequency range, where secondary resonances
were observed (Sect. 5.4.3).

5.4.1 Transition from positive to negative small gaps

From Fig. 5.5 it can be observed that the transition from the hardening-like (black
PRCs with primary right hysteresis) to the softening-like (blue PRCs with primary
left hysteresis) behavior occurs moving from small positive to small negative values
of the gap, passing through the approximately zero-gap configuration (G'0, red
PRCs). The force-displacement cycles in resonance condition, corresponding to the
three gaps in the neighborhood of this transition (namely G4, G0 and G-1), are
represented in Fig. 5.6. The top row refers to the mass (inertia force FI vs. relative
displacement u of the mass), the bottom row to the bumpers (contact force Fj vs.
position vj of the bumper, j = R, L).

The first column on the left (Figs. 5.6a,d) corresponds to G4; at the primary
right hysteresis (black PRCs in Fig. 5.5) two coexisting stable solutions are observed
(Figs. 5.6a, 5.7a): one corresponding to large-amplitude oscillations with the occur-
rence of impact (forward sweep, solid red cycles) and the other to small-amplitude
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Figure 5.5. Forward (solid line) and backward (dashed line) PRCs of: a ηd; b ηa; c ηj
(j = R, L) and d rj (j = R, L) for G4 (black), G0 (red), G-1 (blue), G-2 (light green)
and G-10 (dark green). In a and b, the PRCs corresponding to G-2 and G-10 are almost
superimposed on each other. In c and d, the initial pre-strain/pre-stress states of the
bumpers, resulting from the negative gap, are indicated by horizontal dashed lines and
also highlighted with gray shaded areas which have, as baseline, the frequency axis.
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oscillations without impact (backward sweep, dashed blue cycles). In this frequency
range, there would be also a third unstable solution, that could not be obtained
experimentally. In Fig. 5.7a, in which the time history of the relative displacement
u of the mass is depicted, both in the forward (solid red line) and in the backward
(dashed blue line) sweeps, the horizontal dashed lines represent the initial gap and
the vertical colored bands highlight the contact phases with each bumper (identified
from the time histories of the contact forces). In the time interval between two
consecutive colored bands, the mass is not in contact with either bumper (flight).
The hardening-like behavior is related to the occurrence of the impact with one of
the bumpers, which causes the adding of the resisting force exerted by the bumper
to that of the damper.

Figure 5.6. Force-displacement cycles in steady-state resonance condition corresponding
to the forward (red curve) and the backward sweep (blue curve) for: G4, f = 3.4 Hz
(hardening): a mass; d bumpers. G0, f = 4.8 Hz: b mass; e bumpers. G-1, f = 6 Hz
(softening): c mass; f bumpers.

For G ' 0 (second column, Figs. 5.6b,e), the forward and backward cycles
are more or less overlapping. In this condition, which is quite difficult to obtain
experimentally, although no jumps or hysteresis occur in the PRCs (red PRCs in
Fig. 5.5), the behavior of the system is still nonlinear [251]. The dissipative capability
of the bumpers means that there is a short time interval in which the mass is not
in contact with either bumper (Fig. 5.7b). This phase vanishes for purely elastic
bumpers. Due to the small value of the relaxation time of the considered bumper
(B2), the mass detaches from one bumper when the latter has recovered practically
all its deformation and, right after, it impacts the other bumper, which, in the
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Figure 5.7. Time histories of the relative displacement u of the mass in steady-state
condition: a G4, f = 3.4 Hz (right hysteresis); b G0, f = 4.8 Hz; c G-1, f = 6 Hz
(left hysteresis). Red lines refer to the forward sweep, blue lines to the backward sweep.
The horizontal dashed lines represent: a-b the initial gap; c the initial pre-strain of the
bumpers. The contact phases with each bumper, identified from the time histories of
the contact forces, are highlighted with vertical bands (red for the forward sweep, blue
for the backward sweep).

meantime, has already recovered its deformation. Consequently, also in this case,
in addition to the nonlinearities associated with the behaviors of the damper and
the bumpers, there is still the nonlinear contribution related to the occurrence of
impact. By looking at Fig. 5.6b, it is possible to observe the increment of the stiffness
associated with the occurrence of impact, while the central part of the cycle refers
to the flight condition.

For small negative gaps (third column, Figs. 5.6c,f), a primary left hysteresys,
associated with a softening-like behavior, was observed (blue PRCs in Fig. 5.5). In cor-
respondence with this hysteresis, two stable solutions can be found (Figs. 5.6c, 5.7c).
In particular:

• forward sweep (solid red cycles): the oscillations amplitude is always lower
than the absolute value of the negative gap (represented in Fig. 5.7c with
horizontal dashed lines). Consequently, the mass, during its motion, is always
in contact with both bumpers and the resisting force is given by the sum of
the forces exerted by the damper and the two bumpers.

• backward sweep (dashed blue cycles): as long as the amplitude of the dis-
placement u of the mass is lower than the absolute value of the negative gap,
the mass is in contact with both bumpers (the corresponding time interval is
highlighted in Fig. 5.7c with darker vertical bands), while when u exceeds this
value, the mass detaches from one of the bumpers, remaining in contact with
the other; this causes a reduction of the stiffness.

The initial pre-stress of the bumpers, resulting from the negative gap, causes
an offset of the Fj-vj (j = R, L) cycles from the x-axis (Fig. 5.6f). From the same
figure, it is possible to observe also the increment of the stiffness when the mass is
in contact with both bumpers (red cycles). As for the primary right hysteresis, also
in this case, it was not possible to obtain the third unstable solution.

It is worth noting that the large-amplitude cycles, observed for G4 (forward
sweep, Fig. 5.6a) and G-1 (backward sweep, Fig. 5.6c), are both characterized by
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Figure 5.8. Force-
displacement cycles
in steady-state resonance
condition corresponding
to the forward (solid red
curve) and the backward
sweep (dashed blue curve)
for: G-2, f = 7.3 Hz: a
mass; c bumpers. G-10,
f = 7.6 Hz: b mass; d
bumpers.

nonlinearities associated with the unilateral constraint, as well as by the nonlinearities
related to the behavior of the damper and the bumpers. The stiffness change is
caused in the first case by the occurrence of impact between the mass and one of the
two bumpers (hardening), and, in a dual manner, by the detachment with one of the
bumpers in the second case (softening). In the other cases (small-amplitude cycles
for G4 and G-1), the behavior of the system is still nonlinear, due to the behavior of
the damper and the bumpers.

5.4.2 The effect of excessive negative gaps

From Fig. 5.5 it can also be observed that, for negative gap values greater than
G-1 (G-2 and G-10), the PRCs (light green for G-2 and dark green for G-10) are
no longer bent and show neither jumps nor hysteresis. For these values of the gap
the mass, during its motion is always in contact with both bumpers. The PRCs of
ηd (Fig. 5.5a) and ηa (Fig. 5.5b) are substantially superimposed, but they are not
exactly the same, due to the nonlinear behavior of the damper and the bumpers.
As concerns the bumpers, the PRCs of ηj (j = R, L) (Fig. 5.5c) and rj (j = R,
L) (Fig. 5.5d) have shifted with respect to each other. This shift is caused by the
initial pre-stress/pre-strain state resulting from the negative gap, which has been
highlighted in Figs. 5.5c,d with horizontal dashed lines and with gray shaded areas
which have, as baseline, the frequency axis. Consequently, passing from G-2 to G-10,
the PRCs of ηj and rj (j = R, L) move away from the frequency axis. It is worth
noting that, once the initial shift value has been removed, the resulting PRCs are
substantially overlapped. Also in this case, these curves are not exactly the same,
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due to the nonlinear behavior of the damper and the bumpers. Based on these
considerations, it follows that, when the negative gap exceeds a certain value which,
for the considered system (mass, damper and bumpers), is between G-1 and G-2,
since the mass never detaches from the two bumpers, the resisting force is given by
the sum of the forces exerted by the damper and the two bumpers. In this case,
further increases in the absolute value of the negative gap, will only increase the
initial pre-stress and pre-strain state of the bumpers, without significantly affecting
the mass response (Fig. 5.5). This can be seen also from Fig. 5.8, where the force-
displacement cycles corresponding to G-2 (first column) and G-10 (second column),
in steady-state resonance condition, are represented. As in Fig. 5.6, the top row
refers to the mass (inertia force FI vs. relative displacement u of the mass), and the
bottom row to the bumpers (contact force Fj vs. position vj of the bumper, j = R,
L). It can be observed that, passing from G-2 to G-10, the FI-u cycle (Figs. 5.8a,b)
does not vary significantly. On the other hand, the consequent increase of the initial
pre-stress state in the bumpers causes a gradually increasing distancing of the Fj-vj
(j = R, L) cycles (Figs. 5.8c,d).

5.4.3 Secondary resonances

Previous numerical investigations [251] highlighted the existence of gradually more
complex response scenarios, as the gap decreases, with the occurrence of the different
types of secondary resonances in the low frequency range, not observed in previ-
ous experimental laboratory campaigns. The new experimental results, obtained
considering smaller gaps compared to the previous tests, confirmed the numerical
predictions. In fact, for quite small gaps (G10 and G4) secondary resonances in
the low frequency range were observed and the number of resonances was found to
increase decreasing the gap. In order to experimentally describe these resonances
in a sufficiently accurate manner, it was necessary to properly calibrate the input
signal, as previously mentioned in Sect. 5.2.

In particular, as concerns the case G4 (Fig. 5.9), three sine sweep (SSi, i = 1, 2, 3)
signals were imposed to capture the secondary resonances, compatibly with the
shaking table performances, namely:

• SS1 (highlighted with a vertical green band in Fig. 5.9a): sweep frequency
range between 0.5 Hz and 0.8 Hz, with frequency step ∆f = 0.03 Hz and
nc = 20 cycles in each sub-frequency range;

• SS2 (highlighted with a vertical orange band in Fig. 5.9a): sweep frequency
range between 0.8 Hz and 1.6 Hz, with frequency step ∆f = 0.05 Hz and
nc = 30 cycles in each sub-frequency range;

• SS3 (highlighted with a vertical light blue band in Fig. 5.9a): sweep frequency
range between 0.5 Hz and 5 Hz, with frequency step ∆f = 0.1 Hz and nc = 10
cycles in each sub-frequency range.

By combining the results of these three tests, the PRCs corresponding to the
gap G4, shown in Figs. 5.5 and 5.9a, were obtained. Three secondary resonances
were observed at frequencies f1 = 0.53 Hz, f2 = 0.71 Hz, f3 = 1.1 Hz (vertical
dashed black lines in Fig. 5.9a). In correspondence with these resonances, it can
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be observed that forward and backward PRCs are substantially superimposed. The
phase portraits, in steady state condition, corresponding to the three resonances, are
represented in Figs. 5.9b-d. The inertia force FI vs. relative displacement u of the
mass cycles are instead shown in Figs. 5.9e-g and the contact force Fj vs. position vj
of the bumper cycles (j = R, L) are represented in Figs. 5.9h-j. In the right part of
Fig. 5.9, the time histories of the relative displacement u of the mass (Figs. 5.9k-m),
the absolute acceleration a of the mass (Figs. 5.9n-p) and the contact forces Fj (j =
R, L) (Figs. 5.9q-s), are illustrated. The solid red lines refer to the forward sweep,
whereas the dashed blue lines correspond to the backward sweep.

Figure 5.9. Secondary resonances in the low frequency range for G4: a PRC of ηa with
indication of the different sweep frequency intervals (SSi, i = 1, 2, 3). The three vertical
lines indicate the values of frequency corresponding to the observed secondary resonances
(f1 = 0.53 Hz, f2 = 0.71 Hz, f3 = 1.1 Hz). The other sub-figures represent, at these
frequency values: b-d trajectories on the phase plane; e-g inertia force FI vs. relative
displacement u of the mass cycles; h-j contact force Fj vs. position vj of the bumper
cycles (j = R, L); k-m time history of the relative displacement u of the mass; n-p
time history of the absolute acceleration a of the mass; q-s: time history of the contact
forces Fj (j = R, L). In b-m the dashed black lines represent the initial gap. In h-p the
vertical red bands represent the time intervals corresponding the contact phases with
each bumper in one forcing cycle.

The occurrence of internal loops in both the force-displacement cycles, rarely
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shown in literature, and the phase portraits, was observed in all three investigated
cases. The existence of internal loops for small gap values was already predicted by
the numerical model [251] and now confirmed experimentally. It can be observed that,
for f3 (Figs. 5.9d,g) these internal loops barely intersect the vertical dashed lines
representing the position of the obstacles. Decreasing the frequency, that is passing
from f3 (Figs. 5.9d,g) to f1 (Figs. 5.9b,e), these loops move outwards, intersecting the
vertical lines in a more evident manner; furthermore, the number of internal loops
increases. This is reflected in a number of impacts per forcing cycle, between the mass
and each bumper, which increases decreasing the frequency, as shown in Figs. 5.9k-s.
In these figures, referring to one forcing cycle, the impacts are highlighted with
vertical red bands. It can be observed that for f3 (Figs. 5.9m,p,s), the mass impact
each bumper twice, with both the intensity and duration of the second impact lower
than the first one. Passing to f2 (Figs. 5.9l,o,r), the mass continues to impact each
bumper twice, but the second impact is more evident. Actually, also a third slight
impact was sometimes observed. Finally, in correspondence to f1 (Figs. 5.9k,n,q),
the mass impacts, in an evident way, each bumper three times, with the intensity of
the impact decreasing passing from the first one to the third one. Also in this case,
sometimes four impacts were observed. This trend of the number of impacts with
decreasing frequency confirms the numerical predictions [251].

5.5 Numerical modeling
The numerical model of the vibro-impact system shown in Fig. 5.1 is illustrated in
Fig. 5.10. In this model the behaviors of both the damper (D) and the bumpers
(Bj , j = R, L) were linearized. In particular, in both cases, the resisting forces were
modeled by a linear spring, with stiffness K and Kj (j = R, L) respectively, in
parallel with a linear viscous damper, with damping coefficient C and Cj (j = R,
L) respectively. Despite this linearization, the model is still nonlinear, due to the
other sources of nonlinearity taken into account, namely the presence of the gap, the
unilateral constrains and the occurrence of impact that causes abrupt changes of both
stiffness and damping. For this reason, this model was called Simplified Nonlinear
Model (SNM) [251]. The authors, aware of the limitations of the linear viscoelastic
model, particularly when used to model the contact, consider it satisfactory for their
purposes.

During its motion, the mass M can be or not in contact with the bumpers. The
two conditions will be referred to as contact and flight phases respectively. The
equations that govern the motion of the system are written as:{

Mü(t) + Cu̇(t) +Ku(t) + Fj(t) · ψ1 [Gj(t)] · ψ2 [Fj(t)] = −MAt(t)
Fi(t) = 0

(5.2)

where it is assumed that whether j = L then i = R, or whether j = R then i =
L. In Eq. 5.2, u(t) and uj(t) (j = R, L) represent the relative displacements of the
mass and of the bumpers respectively with respect to the ground and the dot (.)
denotes differentiation with respect to the time t. As previously said, the position of
the extremity of the bumper vj (j = R, L), measured from the side of the mass at
time t = 0 s (Fig. 5.10), is related to uj through the expression vj = uj +G0j , where
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Figure 5.10. Numerical model of the vibro-impact system.

G0j (j = R, L) is the j-th initial gap, that is the initial distance between the mass
and the j-th bumper. At(t) = AG sin Ωt is the base acceleration, with amplitude
AG and circular frequency Ω. The total (or absolute) acceleration of the mass is
therefore given by a(t) = ü(t) + At(t). Gj(t) (j = R, L) is the clearance function
which represents the distance, instant by instant, between the mass and the j-th
bumper:

Gj(t) = G0j + ∆uj(t) (j = R,L) (5.3)

where:
∆uR(t) = uR(t)− u(t); ∆uL(t) = u(t)− uL(t) (5.4)

When the mass is in contact with the j-th bumper Gj(t) = 0, otherwise Gj(t) > 0.
In Eq. 5.2, ψ1 and ψ2 represent the Heaviside functions, defined as follows:

Contact ψ1 [Gj(t)] =
{

0, Gj(t) > 0
1, Gj(t) = 0

(5.5a)

Separation ψ2 [Fj(t)] =
{

0, Fj(t) ≤ 0 (j = R) or Fj(t) ≥ 0 (j = L)
1, Fj(t) > 0 (j = R) or Fj(t) < 0 (j = L)

(5.5b)

where Fj(t) = Cj u̇j(t) + Kjuj(t) (j = R, L) is the contact force occurring during
the contact period with the j-th bumper.

The parameters of the model were identified based on the experimental results.
In order to make a comparison with the results obtained with the SNM, it was
necessary to reduce the nonlinear restoring force exerted by the damper to a linear
elastic one. This was made considering an equivalent stiffness K, estimated in free
flight resonance condition for a peak table acceleration A = 0.05 g. The identified
parameters of the model are: K = 36 kN/m, C = 1.1 kN s/m, for what concerns
the damper, and Kj = 510 kN/m, Cj = 0.9 kN s/m, for what concerns the bumper
B2 (j = R, L).

Considering the gap amplitude G4, some comparisons of the experimental results
with the numerical simulations are shown in Fig. 5.11. In the upper part of the
figure, the comparison is made in terms of PRCs of both ηa (Fig. 5.11a) and ηd
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Figure 5.11. PRCs of a ηa and b ηa obtained experimentally (red and blue dots) and with
the numerical model (solid and dashed black lines) for G4. The figures in the lower
part show, for five values of frequency, namely f = 0.53 Hz, 0.71 Hz, 1.1 Hz, 1.4 Hz
and 3.4 Hz, the comparison between experimental (red and blue lines) and numerical
results (black lines) in terms of: trajectories on the phase plane (c-l); inertia force FI vs.
relative displacement u cycles (m-v). In c-v the vertical dashed black lines represent
the initial gap.
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(Fig. 5.11b). The experimental results are represented with red (forward sweep) and
blue (backward sweep) dots, while the numerical results are represented with solid
(forward sweep) and dashed (backward sweep) black lines. The vertical dashed lines
indicates some values of frequency, namely 0.53 Hz, 0.71 Hz, 1.1 Hz, 1.4 Hz and 3.4
Hz, for which the comparison is made, in the lower part of Fig. 5.11, also in terms
of phase portraits and hysteresis loops. In particular, each column of sub-figures
corresponds to a frequency value. In these sub-figures, the experimental results are
represented with solid red (forward sweep) and dashed blue (backward sweep) lines,
while the numerical results are represented with solid (forward sweep) and dashed
(backward sweep) black lines. The initial gap is represented with vertical dashed
lines. As concerns the PRCs (Figs. 5.11a,b), it can be observed that there is a good
agreement between experimental and numerical results, although the model does
not take into account nonlinearities associated with the behaviors of the damper
and the bumpers. The model is able to reproduce satisfactorily the position and
amplitude of both the primary resonance and some of the secondary resonances in
the low frequency range. Some differences are noted in the branches of the PRCs
associated with the absence of impact (after the downward jump in the forward
sweep and before the upward jump in the backward sweep) and in the frequency of
the upward jump. This is due to the difference between the experimental (nonlinear)
and numerical (linear) PRCs in free flight condition; in particular, the numerical
curve is below the experimental one. A good agreement is observed also in the
trajectories on the phase plane (Figs. 5.11c-l) and in the force-displacement cycles
(Figs. 5.11m-v). The presence of internal loops, whose number increases as the
frequency decreases, is confirmed also by the model.

The numerical model highlighted the existence of several secondary resonances,
of different type (with left hysteresis and of non-regular type), in the low frequency
range (Figs. 5.11a,b). The calibration of the characteristics of the sine sweep signal,
bound by the limitations of the shaking table, has made it possible to observe also
experimentally some secondary resonances (Sect. 5.4.3), but not the left hysteresis,
due to the limitations of the shaking table, which didn’t allowed to further reduce
the frequency step of the sine sweep signal. Thanks to the model it is possible to
better describe what was observed with the experimentation. From Figs. 5.11h-j
it can be observed that, at the secondary resonances observed experimentally, the
numerical response is slightly quasi-periodic, with the extent of the quasi-periodicity
increasing with the frequency. Furthermore, the number of internal loops on the
left is greater than that of the internal loops on the right. While the larger loops
cross the vertical lines representing the obstacles in an evident way, the innermost
loops on the left as time goes by, approach, cross and then move away from the left
bumper, resulting in a different number of impacts. This behavior was observed also
experimentally. The situation returns to be quite symmetric, although with a greater
quasi-periodicity, for f = 1.1 Hz (third column, Figs. 5.11e,j,o,t). As previously
said, the numerical model highlighted also the existence of irregularities between
1 Hz and 1.5 Hz (Figs. 5.11a,b). In this frequency range, an evident asymmetric
response was observed experimentally, for example for f = 1.4 Hz (fourth column,
Figs. 5.11f,k,p,u), and also confirmed by the numerical model. In both the phase
portraits (Fig. 5.11f) and the hysteresis loop (Fig. 5.11p) a single internal loop,
intersecting the left vertical dashed line (left bumper) was noticed. This results in a
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different number of impacts between the mass and the bumpers. In particular, in
each forcing cycle, the mass impacts the left bumper twice and the right bumper
once.

The asymmetric behavior of the system in this frequency range can be seen also
from Fig. 5.12b, in which the time histories of the relative displacement u of the mass,
the absolute acceleration a of the mass and the contact forces Fj (j = R, L) obtained
experimentally (red and blue lines) and with the numerical model (black lines) are
compared. In Fig. 5.12a an analogous comparisons is made for f = 0.53 Hz, that is
in correspondence with the smallest secondary resonance observed experimentally,
where the highest number of impact was observed. Finally, in Figs. 5.11g,l,q,v and
5.12c the comparison is made for a value of frequency, f = 3.4 Hz, that is in the
frequency range between the two jumps (primary right hysteresis). Based on these
considerations, the SNM, despite its relative simplicity, has proven to be able to
simulate and reproduce satisfactorily the behavior of the system.

Figure 5.12. Time histories of the relative displacement u of the mass, the absolute
acceleration a of the mass and the contact forces Fj (j = R, L) obtained experimentally
(red and blue lines) and with the numerical model (black lines) for G4 and: a f = 0.53
Hz, b f = 1.4 Hz and c f = 3.4 Hz. The horizontal dashed black lines in the time
histories of the relative displacement represent the initial gap.

5.6 Closing remarks

Some of the results of an experimental laboratory campaign, designed based on the
results of previous studies, were presented. Compared to previous tests, also small
positive, null and negative values of the total gap G between mass and bumpers
were investigated. Furthermore, impact load cells were used to directly measure the
contact forces between mass and bumpers during the impact phases.

The amplitude of the gap was found to influence the response of both the mass
and the bumpers for G > 0, where the occurrence of impact causes a hardening-like
behavior, characterized by the presence of jumps and a primary right hysteresis
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in the PRCs. Referring to the primary resonance condition, the reduction of the
gap, causes the reduction of the relative displacement of the mass and an increase,
followed by a decrease, of the absolute acceleration. A trend similar to the latter
one was observed also in the deformation of the bumpers and in the impact force,
which attain zero values in the absence of impact.

By putting the bumpers initially, more or less, in contact with the mass (G ' 0)
the situation returns to be smooth, without jumps and hysteresis, although the
behavior is still nonlinear, due not only to the nonlinear behaviors of the damper and
the bumpers but also to the nonlinearity associated with the occurrence of impact,
consequent to the existence, also in this case, of a short time interval in which the
mass is in contact with either bumper.

For small negative gaps (G-1), obtained experimentally by slightly compressing
the bumpers against the mass, both the relative displacement and the absolute
acceleration of the mass, the bumpers’ deformation and the contact force, in resonance
condition, continue to decrease. Compared to G > 0, a softening-like behavior was
observed, characterized by the occurrence of jumps and a primary left hysteresis.
Furthermore, due to the initial pre-stress/pre-strain state resulting from the negative
gap, the PRCs of both the bumpers’ deformation and the contact forces are always
different from zero for each frequency value. The transition from the hardening-like
to the softening-like behavior occurs moving from small positive to negative values
of the gap, passing through the approximately zero-gap configuration, not easy to
realize experimentally. Compared to the case of small positive gaps (hardening) for
which the increase in stiffness is caused by the occurrence of impact between the
mass and one of the two bumpers, for small negative gaps (softening) the stiffness
reduction is due, in a dual manner, to the detachment with one of the bumpers.

For negative gaps exceeding a certain value which, for bumper B2, is between
G-1 and G-2, the mass, during its motion, always remains in contact with both
bumpers and therefore, the resisting force is given by the sum of the forces exerted
by the damper and the two bumpers. Consequently, the PRCs are no longer bent
and show neither jumps nor hysteresis. In this case, further increases in the absolute
value of the negative gap, will only increase the initial pre-stress and pre-strain state
of the bumpers, without affecting the mass response.

Previous numerical investigations highlighted the existence of secondary reso-
nances, of different type (with left hysteresis and of non-regular type), in the low
frequency range and for quite small gaps. Some of these resonances were observed
also experimentally and the number of secondary resonances was found to increase
decreasing G. To experimentally capture, in a sufficiently accurate manner, these
resonances, not observed in previous experimental laboratory campaigns, it was
necessary to properly calibrate the input signal, compatibly with the shaking table
performances. In correspondence with the observed resonances, the occurrence of
internal loops, intersecting the obstacles, in both the force-displacement cycles, rarely
shown in literature, and the phase portraits, was observed. Decreasing the frequency,
the number of internal loops increases, and consequently also the number of impacts
per forcing cycle between the mass and the bumpers.

The experimental results were reproduced, in a sufficiently accurate manner, by a
suitable numerical model, in which the behavior of both the damper and the bumpers
was linearized, retaining the other sources of nonlinearities, namely the presence of
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the gap, the unilateral constrains and the occurrence of impact that causes abrupt
changes of both stiffness and damping. The identification of the parameters of the
model was made based on the experimental data. A good agreement was observed
in terms of PRCs, trajectories on the phase plane, force-displacement cycles and
time histories.

With regard to the future developments of this work, there is the intention
to finish processing the recorded data and to extend the experimental laboratory
campaign also considering the earthquake excitation.
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Chapter 6

Optimal design of the bumpers
based on the response scenarios

Chapter outline In this chapter, the effect of the presence of (existing or newly
added) deformable and dissipative obstacles (bumpers) on the nonlinear dynamic
response of the SDOF system, is investigated via parametric numerical analyses.
Through the study of possible response scenarios, which can occur by varying the
bumpers’ parameters (i.e., the position, the stiffness, and the damping, respectively),
it is observed that the presence of the bumpers is not always unfavorable compared to
the free flight condition. By properly selecting the bumpers’ parameters it is possible
to guide the system’s response in order to achieve specific objectives, exploiting the
occurrence of impacts with beneficial effects. Furthermore, a relationship between
the stiffness and the damping parameters of the bumpers, which allows to minimize
the maximum value of the mass acceleration in primary resonance condition, is
identified and discussed.

6.1 Introduction

Seismic isolation represents one of the most applied, reliable and effective, passive
control strategies to mitigate the dynamic response of both new and existing struc-
tures [35, 109, 118, 121, 135], bridges [36, 62, 120, 143, 167, 193, 212, 287], strategic
facilities [38,284], nonstructural components and equipment [5,44,73,80,92,116,168,
228,229,255], works of art [37,49,245].

Seismically isolated structures, due to the greater flexibility offered by the isolators
at the base, are expected to experience large horizontal displacements relative to the
ground, especially under near-fault (NF) earthquakes, characterized by long-period
pulses [63, 118, 121]. These large displacements, on the one hand, can seriously
damage the isolation system by exceeding its limit deformation, on the other, can
lead to pounding with surrounding moat walls or adjacent structures if the available
seismic gap size is not sufficient. Potential pounding can produce detrimental
effects on the effectiveness of seismic isolation and can lead to consequences which
range from local slight nonstructural to serious structural damage or even collapse
[6,140,190,211,222]. In particular, the existence of high spikes in the acceleration
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response, in correspondence of the floors where pounding occurs, and whose amplitude
is influenced by impact rigidity, may affect floor response spectra and thus the
response of vulnerable equipment housed in the buildings [52,224].

In order to prevent the damage of the isolation system and avoid the occurrence
of pounding against adjacent structures, the horizontal displacements can be limited
by inserting suitable obstacles, which can be placed at a certain distance (gap)
from the structure to be protected (outer pounding, [14]) or can be incorporated
into the isolation system (inner pounding, [14]). In this latter case, the built-in
buffer (self-braking) mechanism prevents pounding of the isolated structure with the
surrounding structures and limits the possible pounding (if any) to be only within
the own body of the isolator [18,75,96–98,114,115,117,118,309].

The occurrence of impact against the obstacles modifies the response of the
isolated system, turning it into a nonlinear vibro-impact system. Vibro-impact
systems, even the simplest, exhibit complex nonlinear nonsmooth dynamics and a
wide variety of phenomena, characterized by different types of resonances, instabilities,
bifurcations, periodic and quasi-periodic trajectories and chaotic regimes, that need
to be carefully investigated [12,47,50,86,176,183,217,238,251,286,299].

Some of these behaviors are undesirable as they can cause adverse effects [171].
The study of the behavior of vibro-impact systems, therefore, allowing to highlight
possible issues associated with the occurrence of impact, is necessary to identify
suitable strategies to mitigate and control the response of such systems. Several
authors proposed different strategies for the control of unstable orbits, bifurcation,
co-existing orbits and chaos on the basis of the study of practical problem involving
collisions [33, 54, 55, 59, 85, 91, 148, 150, 160, 166, 171, 264, 265, 275]. By properly
selecting the parameters which characterize the vibro-impact problem, it is possible
to guide the behavior of the system, in order to avoid certain scenarios and encourage
others, and thus exploit the occurrence of impact with beneficial effects.

Considering two periodically forced oscillators that can interact via soft impacts,
Brzeski et al. [34] showed that with properly selection of the systems’ parameters,
such as the gap between the systems or/and the phase shift of external excitation,
it is possible to decrease the number of coexisting solutions via discontinuous
coupling. Gritli and Belghith [86] proposed a state-feedback control law in order
to control chaos exhibited by a SDOF impact mechanical oscillator with a single
rigid obstacle. The results of the analysis carried out by Sun et al. [254] showed
that by properly designing the dynamic parameters of viscoelastic end-stops, the
nonlinear vibration of a SDOF nonlinear suspension system at primary resonance
can be effectively suppressed and the jump phenomena can be eliminated for both
hardening and softening primary isolators. Furthermore, the end-stop can effectively
attenuate also the absolute acceleration response for a hardening primary isolator,
while more damping is needed to attenuate that for a softening primary isolator.
Suitable choices of pairs of bumpers and gaps, that allows to reach a trade-off
between two conflicting objectives, namely, control of excessive displacements and
control of excessive accelerations in a base-isolated SDOF with two-sided deformable
constraints, were suggested in [14]. A two-sided damping constraint control strategy
was proposed by Hao et al. [95] to improve the performance of the quasi-zero stiffness
(QZS) isolator [94]. The proposed control approach can largely lower the isolation
frequency while enhancing the effectiveness of isolation in high frequencies and
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preventing the severity of end-stop impacts. Based on the analysis of two-parameter
bifurcations and basins of attraction, the authors found that the key issue to realize
such control objective, is the suppression of period-3 solutions that coexist with the
desired period-1 orbits.

The aim of this study is to investigate, through numerical parametric analyses, the
effect of the introduction of two deformable and dissipative obstacles on the response
of a Single-Degree-Of-Freedom (SDOF) system under harmonic base excitation,
compared to the free flight condition (that is without obstacles). The attention is
focused both on the resonance condition and on the frequency range of isolation.
Through the study of the response scenarios which can occur varying the parameters
which characterize the obstacles, that is the position and the mechanical (stiffness
and damping) properties, the possibility to exploit the occurrence of impact to
reduce both the peak value of the displacement and of the acceleration of the
mass, compared to the free flight condition, without possibly reducing the vibration
isolation frequency range, is investigated.

The chapter is organized as follows. In Sect. 6.2 the numerical model and the
governing equations are presented; in Sect. 6.3 preliminary considerations on control
are made; the results of the numerical simulations are shown and discussed in
Sect. 6.4; finally, the main conclusions and further development of this study are
drawn in Sect. 6.5.

6.2 Model and equations of motion
The study was carried out considering a Single-Degree-Of-Freedom (SDOF) system,
composed of a massM (highlighted in green) and an isolation damper (D, highlighted
in blue), with two-sided deformable and dissipative bumpers (highlighted in red),
denoted as right bumper (BR) and left bumper (BL) respectively, symmetrically
positioned on both sides of the mass, at an initial distance (initial gap) G0j (j = R,
L), as shown in Fig. 6.1.

Figure 6.1. Model of the SDOF system with two-sided bumpers.

The damper (D) is modeled by a linear elastic element, with stiffness K, and
a linear viscous dashpot, with damping coefficient C, arranged in parallel. The
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two bumpers are massless and, as the damper, are modeled by a linear elastic
element, with stiffness Kj (j = R, L), and a linear viscous dashpot, with damping
coefficient Cj (j = R, L), arranged in parallel. The system is subjected to a harmonic
base acceleration At(t) = AG sin Ωt, characterized by amplitude AG and circular
frequency Ω. The relative displacements of the damper and the bumpers with respect
to the ground are denoted as u and uj (j = R, L) respectively.

To attempt a more general description of the problem, the equations of motion are
written in dimensionless form by introducing the following characteristic quantities:
the natural circular frequency of the SDOF system ω =

√
K/M , the maximum

relative displacement u∗ = ustRd,max and the maximum force F ∗ = Mω2u∗ in
the SDOF system in free flight (that is without obstacles) resonance condition.
Rd,max(ξ) = 1/(2ξ

√
1− ξ2) is the maximum value of the dynamic amplification factor

Rd(ξ, β), defined as the ratio between the amplitude of the dynamic displacement
to the static displacement ust = MAG/K.

The following dimensionless quantities were subsequently defined: the dimen-
sionless time τ = ωt, the dimensionless relative displacements of the mass q = u/u∗

and of the bumpers qj = uj/u
∗ (j = R, L), the damping ratio of the SDOF system

ξ = C/(2Mω), the dimensionless amplitude of the base excitation aG = 2ξ
√

1− ξ2,
the frequency ratio β = Ω/ω and the dimensionless gap δ0j = G0j/u

∗ (j = R, L).
Based on the adopted normalization, δ0j = 0 if the j-th bumper is initially in contact
with the mass; for 0 < δ0j < 1 the mass beats and deforms the j-th bumper; whereas
the mass will be in free flight condition for δ0j ≥ 1. Finally, the generic dimensionless
force was denoted as f = F/F ∗.

By virtue of the above mentioned dimensionless quantities, the equations of
motion of the system can be written in the following dimensionless form:{

q′′(τ) + 2ξq′(τ) + q(τ) + fj(τ) · ψ1 [δj(τ)] · ψ2 [fj(τ)] = −aG sin βτ
fi(τ) = 0

(6.1)

where it is assumed that whether j = L then i = R, or whether j = R then i = L
and the apex (′) denotes differentiation with respect to the dimensionless time τ . In
Eqs. 6.1, the Heaviside functions ψk (k = 1, 2) are defined as follows:

Contact ψ1 [δj(τ)] =
{

0, δj(τ) > 0
1, δj(τ) = 0

(6.2a)

Separation ψ2 [fj(τ)] =
{

0, fj(τ) ≤ 0 (j = R) or fj(τ) ≥ 0 (j = L)
1, fj(τ) > 0 (j = R) or fj(τ) < 0 (j = L)

(6.2b)

where fj(τ) = 2ξγjq′j(τ) + λjqj(τ) (j = R, L) is the normalized contact force
occurring during the contact period with the j-th bumper, γj = Cj/C (j = R, L)
is the ratio between the viscous damping coefficient of the j-th bumper and that
of the damper and λj = Kj/K (j = R, L) is the ratio between the stiffness of
the j-th bumper and that of the damper. δj(τ) = δ0j + ∆qj(τ) (j = R, L), where
∆qR(τ) = qR(τ)− q(τ) and ∆qL(τ) = q(τ)− qL(τ), is the clearance function which
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represents the distance, at each time instant, between the mass and the j-th bumper.
When the mass is in contact with the j-th bumper δj(τ) = 0, otherwise δj(τ) > 0.

Despite the relative simplicity of the model, in which both the bumpers and
the damper have been modeled with a Kelvin-Voigt model, the system is however
strongly nonlinear, due to the presence of clearance, the unilateral constrains and
the occurrence of impact that causes abrupt changes of stiffness and damping at the
contact time.

In this study two equal bumpers symmetrically arranged on the two sides of the
mass were considered. Consequently, λR = λL = λ, γR = γL = γ and δ0R = δ0L = δ0.

The equations of motion (Eqs. 6.1) were numerically solved using the central
difference method [22], implemented with a numerical code written in Matlab. As
concerns the identification of the time period in which impact occurs, this was done
as follows. The beginning of the contact phase between the mass and the j-th
bumper was identified based on the value of the clearance function δj(τ) (j = R, L),
as illustrated in Eq. 6.2a. In particular, impact occurs when δj(τ) = 0. Regarding
instead the evaluation of the time instant of detachment, this was made based on
the value of the contact force fj(τ) (j = R, L), as illustrated in Eq. 6.2b. This choice
was motivated by the necessity to overcome one of the drawbacks of the Kelvin-Voigt
model, when used to model the contact, that is the existence of attracting forces
after the restitution phase [77, 78, 186, 241]. Since this does not make sense from
a physical point of view, in this study the change of sign of the contact force was
assumed as indicator of the end of the contact phase.

6.3 Preliminary considerations

Base-isolated systems, due to the flexibility introduced by the isolation system,
can undergo large horizontal displacements, when subjected to exceptional loads
like strong earthquakes. These displacements, concentrated in the isolation system,
can excessively deform, or even damage, the isolation system itself, or can lead
to pounding with the surrounding moat walls or existing adjacent structures or
obstacles, if the available seismic gap is not sufficient. The horizontal displacements
can be limited by introducing obstacles, with suitable mechanical properties (stiffness
and damping) and positioned at a certain distance (gap) from the structure. Due to
the occurrence of impact between the system and the obstacles, the introduction of
the obstacles modifies the response of the system, in terms of both displacements
and accelerations.

Without obstacles

In the absence of obstacles (free flight condition), the response of a viscously damped
SDOF system excited by a harmonic base acceleration is influenced by the forcing
frequency and the damping, as shown in Fig. 6.2, where the transmissibility TRa(ξ, β)
(Fig. 6.2a) and the displacement response factor Rd(ξ, β) (Fig. 6.2b) respectively,
are represented as a function of the frequency ratio β and for several values of
the damping ratio ξ. The transmissibility TRa(ξ, β), defined as the ratio between
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the amplitude of the absolute acceleration a0 transmitted to the mass M and the
amplitude of the ground acceleration AG, provides a measure of the rate of the ground
acceleration transmitted to the system. The displacement response factor Rd(ξ, β),
instead, is defined as the ratio between the amplitude of the relative displacement
u0 of the mass M and the amplitude of the static displacement ust,0. The analytical
expressions of both the transmissibility TRa(ξ, β) and the displacement response
factor Rd(ξ, β) are given in Table 6.1.

From Fig. 6.2 it is possible to observe the effect of both the frequency ratio β
and the damping ratio ξ on TRa(ξ, β) and Rd(ξ, β).

Figure 6.2. a Transmissibility TRa and b displacement response factor Rd for several
values of the damping ratio ξ.

Effect of β As concerns the effect of β, it can be observed that for β = 0, both
TRa(ξ, 0) = 1 and Rd(ξ, 0) = 1 regardless of ξ (yellow square), meaning that, in the
case of slowly varying excitation, the maximum absolute acceleration transmitted to
the mass is equal to the amplitude of the ground acceleration (and thus the mass
moves rigidly with the ground), and the amplitude of the dynamic displacement
is equal to the static displacement. Increasing β, also the response of the system
increases, until a maximum is reached (resonance), highlighted in Fig. 6.2 with a
colored dot, and denoted as TRa,max(ξ) and Rd,max(ξ) respectively (Table 6.1). By
further increasing the frequency ratio β, beyond the resonant frequency (denoted as
βRa(ξ) and βRd(ξ) respectively, Table 6.1), the response starts to decrease and tends
to zero as β →∞, meaning that, for rapidly varying excitation, the mass remains
still as the ground moves. By looking at Fig. 6.2a it can be noted that the condition
TRa = 1 is attained again, regardless of the value of ξ, for β =

√
2 (fixed point for

all the curves, highlighted with a yellow triangle). Consequently, referring to the
transmissibility, this frequency value (β =

√
2) divides the frequency interval in two

parts:

• for β <
√

2 the amplitude of the absolute acceleration transmitted to the mass
is greater than the amplitude of ground acceleration (TRa > 1).
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• for β >
√

2 the amplitude of the absolute acceleration transmitted to the mass
is lower than the amplitude of ground acceleration (TRa < 1).

Table 6.1. Analytical expressions related to the transmissibility and the displacement
response factor for a viscously damped SDOF system excited by a harmonic force
considering both the classical and the new definitions

Transmissibility Displacement response factor

C
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d
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n
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a TRa(ξ, β) =

√
1 + (2ξβ)2

(1− β2)2 + (2ξβ)2 =
√

1 + (2ξβ)2Rd(ξ, β) Rd(ξ, β) =
1√

(1− β2)2 + (2ξβ)2

TRa(ξ, 0) = 1 ∀ξ Rd(ξ, 0) = 1 ∀ξ

TRa,max(ξ) =
2
√

2ξ2√
−1− 4ξ2 + 8ξ4 +

√
1 + 8ξ2

Rd,max(ξ) =
1

2ξ
√

1− ξ2

βRa(ξ) =
1
2ξ

√
−1 +

√
1 + 8ξ2 βRd(ξ) =

√
1− 2ξ2
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b TR(ξ, β) =

√
1 + (2ξβ)2

(1− β2)2 + (2ξβ)2

√
−1− 4ξ2 + 8ξ4 +

√
1 + 8ξ2

2
√

2ξ2
R(ξ, β) =

2ξ
√

1− ξ2√
(1− β2)2 + (2ξβ)2

TR(ξ, 0) =

√
−1− 4ξ2 + 8ξ4 +

√
1 + 8ξ2

2
√

2ξ2
=

1
TRa,max(ξ)

R(ξ, 0) = 2ξ
√

1− ξ2 =
1

Rd,max(ξ)

TRmax = 1 ∀ξ Rmax = 1 ∀ξ

a See Fig. 6.2.
b See Fig. 6.3.
Note: The given expressions for βRd, Rd,max, and R are valid for 0 < ξ <

√
2/2. For

√
2/2 ≤ ξ < 1, no

peaks occur for Rd and the maximum response occurs under static conditions (β = 0) and Rd,max = 1. It
follows that, for

√
2/2 ≤ ξ < 1, R(ξ, β) = 1/

√
(1− β2)2 + (2ξβ)2 and R(ξ, 0) = 1.

Effect of ξ As concerns the effect of the damping ratio ξ, from Fig. 6.2b it can be
noted that damping reduces the amplitude of motion at all excitation frequencies
[45]. In particular, in the neighborhood of resonance, the response is very sensitive
to damping. As ξ increases (for 0 < ξ <

√
2/2) both the peak value Rd,max(ξ)

and the resonant frequency βRd(ξ) reduce. For
√

2/2 ≤ ξ < 1, no peak occurs for
Rd(ξ, β) and its maximum value is obtained in static conditions, that is for β = 0
(Rd,max = R(ξ, 0) = 1).

Referring to the transmissibility (Fig. 6.2a), damping produces opposite effects
depending on whether β <

√
2 or β >

√
2. In particular, for β <

√
2 the increase in

the damping ratio ξ reduces both the maximum transmitted acceleration TRa,max(ξ)
and the resonant frequency βRa(ξ), whereas for β >

√
2 the damping ratio ξ increases

the transmitted acceleration.
Comparing Figs. 6.2a and b, it can be observed that for small values of the

damping ratio ξ, in the neighborhood of the resonance, the curves of TRa and Rd
are close, both in terms of maximum values and resonant frequencies.
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In this study, consistently with the normalization adopted in the governing
equations (Sect. 6.2), both the transmissibility and the displacement response
factor were redefined. In both cases, the normalization was made with respect to
the maximum response in resonance condition. The analytical expressions of the
transmissibility and the displacement response factor so defined, and denoted as
TR(ξ, β) and R(ξ, β) respectively, are reported in the second part of Table 6.1. The
expression of R(ξ, β) given in Table 6.1 is valid for 0 < ξ <

√
2/2. For

√
2/2 ≤ ξ < 1,

R(ξ, β) = 1/
√

(1− β2)2 + (2ξβ)2 = Rd(ξ, β) and R(ξ, 0) = 1.
In Fig. 6.3, the trends of both TR(ξ, β) (Fig. 6.3a) and R(ξ, β) (Fig. 6.3b) are

plotted for different values of damping ratio ξ. As in Fig. 6.2, each color corresponds
to a value of ξ. Compared to Fig. 6.2, due to the adopted normalization, the
maximum value in resonance condition (highlighted with colored dots) is equal to
unity, regardless of damping, and the value assumed for β = 0 (highlighted with
colored squares) increases with ξ (Table 6.1). As concerns R (Fig. 6.3b), it can be
observed that R(ξ, 0) = 1 for

√
2/2 ≤ ξ < 1.

Figure 6.3. a Transmissibility TR and b displacement response factor R for several values
of the damping ratio ξ.

These preliminary considerations give us indications on how, by acting on the
damping and frequency ratios (ξ and β), it is possible to mitigate the system response
(acceleration and/or displacement) in the absence of obstacles. In particular, the
mitigation of the system response can be achieved in two ways: by increasing β for
the transmitted acceleration to be less than the ground acceleration (isolation), or
by increasing the dissipative capability (increasing ξ) in order to reduce the dynamic
amplification in resonance condition. Consequently, in the first case the attention
is directed towards the frequency interval β >

√
2, in which, theoretically, it would

be preferable not to have damping; in the second case, instead, the attention is
directed towards the frequency interval β <

√
2 in which the effect of damping is

beneficial. Even in the case of isolation, however, a certain amount of damping
must nevertheless be ensured in order to reduce, on the one hand, the response in
resonance condition and, on the other, to lead to acceptable static displacements.
Consequently, a compromise must be found.
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With obstacles

The presence of obstacles (existing or newly added) increases the number of parame-
ters that influence the system’s response. In addition to the frequency ratio β and
the damping ratio ξ, also the effect of the gap δ0 and of the mechanical properties
of the obstacles (λ and γ) must be taken into account.

Known the value of the dimensionless gap δ0, it is possible to preliminary
identify the frequency interval in which impact surely will occur, based on geometric
considerations. The limits of this frequency interval, denoted as β1 and β2 respectively
(with β1 < β2), can be determined analytically by solving, for each ξ − δ0 pair,
the equation R(ξ, β) = δ0, that is by finding the intersections between the curve
representative of the displacement amplification factor R(ξ, β), corresponding to
the selected ξ value, and the horizontal line δ0 = constant, as shown in Fig. 6.4 for
ξ = 0.1. In this figure, β1 and β2 are represented with red and blue dots respectively,
for some δ0 values, and the frequency interval β1 ≤ β ≤ β2 is highlighted with
horizontal yellow lines.

The roots of equation R(ξ, β) = δ0 have the following expressions:
β1(ξ, δ0) =

√
1− 2ξ2 − 2ξ

δ0

√
(δ2

0 − 1)(ξ2 − 1)

β2(ξ, δ0) =
√

1− 2ξ2 + 2ξ
δ0

√
(δ2

0 − 1)(ξ2 − 1)
for 0 < ξ <

√
2

2 (6.3a)


β1(ξ, δ0) =

√
1− 2ξ2 − 1

δ0

√
1 + (2ξδ0)2(ξ2 − 1)

β2(ξ, δ0) =
√

1− 2ξ2 + 1
δ0

√
1 + (2ξδ0)2(ξ2 − 1)

for
√

2
2 ≤ ξ < 1 (6.3b)

Figure 6.4. Dynamic amplification factor R for ξ = 0.1 (thick black line) with the location
of β1 (red dots) and β2 (blue dots) for some δ0 values (horizontal dashed lines). For
β1 < β < β2 (horizontal yellow lines) impact surely occurs for geometric reasons.

From Fig. 6.4 it can be observed that, for a given ξ value (i.e. ξ = 0.1), different
situations may occur depending on the dimensionless gap δ0. For δ0 = 1, that is
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in free flight condition, the two roots coincide (β1 = β2 = βRd) and thus impact
never occurs for any β value. On the contrary, for δ0 = 0, that is when the bumpers
are initially in contact with the mass, the equation R(ξ, β) = 0 does not admit
roots (Eqs. 6.3a), and consequently impact occurs for each β value. The interval
0 < δ0 < 1 can be divided into two sub-ranges through the value δ∗0 = 2ξ

√
1− ξ2.

For δ∗0 < δ0 < 1 (for example δ0 = 0.6) the two roots β1 and β2 are both non null and
different from each other, with β1 < βRd and β2 > βRd; furthermore, they diverge
as δ0 decreases, until, for δ0 = δ∗0, β1 becomes zero, meaning that impact occurs
already starting from β = 0. For 0 < δ0 < δ∗0 (for example δ0 = 0.1), the equation
R(ξ, β) = δ0 admits only one solution, that is β2, which increases as δ0 decreases
and also in this case the impact occurs immediately starting from β = 0.

It is worth noting that impact can occur also outside the frequency range
β1 ≤ β ≤ β2, depending on the nonlinear behavior of the system, the values of the
parameters and the initial conditions, as it will be shown in the following sections.

The introduction of the obstacles changes the response of the system, which will
be influenced not only by ξ and β but also by the parameters which characterize
the obstacles (position and mechanical properties). Preliminary considerations can
already be made on the basis of geometrical reasoning depending on the position
of the obstacle δ0. The response will be further modified taking into account also
the mechanical (stiffness and damping) properties of the obstacles (λ and γ). Based
on these preliminary considerations, it is of interest to investigate the effect of
obstacles’ parameters (δ0, λ and γ) on the system response, in order to identify
possible scenarios and also make some reasoning on control. The study is carried
out numerically assuming a fixed value of the damping ratio ξ = 0.1, for which
δ∗0 ' 0.199. The corresponding transmissibility TR and displacement response factor
R curves will be taken as a comparison to which reference will be made systematically
in the following.

6.4 Results of the numerical investigations

The effect of the introduction of deformable and dissipative obstacles (bumpers),
placed at a certain distance, on the dynamic response of a SDOF system, was studied
through parametric numerical analyses, considering the model described in Sect. 6.2
(SNM) subjected to a step-wise forward and backward sine sweep base excitation.

The analyses were conducted by assuming ξ = 0.1 and initially fixing also the
dissipative capability of the bumpers (γ = 5). To get an idea of how, through the
introduction of the obstacles, the response of the system varies, compared to the free
flight condition, in this section the evolution with the stiffness ratio λ, of the forward
and backward Pseudo-Resonance Curves (PRCs) of selected response quantities,
suitably normalized, is presented for fixed values of the dimensionless gap δ0, going
from δ0 = 1 (free flight condition) to δ0 = 0 (bumpers initially in contact with the
mass).

The selected response quantities are: the normalized excursion of the absolute
acceleration of the mass ηa = ∆α/∆α0, the normalized excursion of the relative
displacement of the mass ηd = ∆q/∆q0, the normalized excursion of the contact force
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ηF = ∆fB/∆α0 and the normalized excursion of the deformation of the bumpers
ηB = ∆qB/∆q0. The absolute acceleration of the mass α(τ) is given by the sum
of the acceleration of the ground at(τ) = aG sin βτ and the relative acceleration
between the mass and the ground q′′(τ), that is α(τ) = at(τ) + q′′(τ). The excursion
(∆i, i = α, q, fB, qB) was calculated as the difference between the maximum
and minimum values recorded at steady-state of each sub-frequency range. To
calculate the excursion of the contact force (∆fB) and of the bumpers’ deformation
(∆qB), both the bumpers have been considered. In particular, ∆fB and ∆qB were
calculated as the sum of the maximum absolute values of the contact forces and
of the deformations of the two bumpers respectively, recorded at steady-state of
each sub-frequency range. The normalization was made with respect to the free
flight condition. In particular, ∆α0 and ∆q0 denote the maximum excursion of the
absolute acceleration and of the relative displacement of the mass respectively in
free flight resonant condition. In addition to these response quantities, also some
considerations regarding the resonant frequency βR and the excursion of the static
displacement of the mass ηd,st will be made.

Starting from the free flight condition (δ0 = 1), the choice of the investigated δ0
values was made based on the considerations made in Sect. 6.3, involving vibration
isolation and the parameters β1, β2, δ∗0 , etc. First of all, the gap interval 0 ≤ δ0 ≤ 1
was divided, through the value δ∗0 ' 0.199, into two sub-ranges, namely δ∗0 ≤ δ0 ≤ 1
and 0 ≤ δ0 < δ∗0, in order to distinguish the situations in which the equation
R(ξ, β) = δ0 admits two or one roots. Subsequently, inside these two sub-ranges,
some δ0 values were selected. In particular, referring to the sub-range δ∗0 ≤ δ0 ≤ 1,
the following values of the dimensionless gap were selected: δ0 = 1, δ0 = 0.7, δ0 = 0.4
and δ0 = δ∗0. As concerns the sub-range 0 ≤ δ0 < δ∗0, in addition to the limit value
δ0 = 0, the values of dimensionless gap at which β2 =

√
2 and β2 = 2, that is

δ0 ' 0.1915 (denoted also as δ0c) and δ0 ' 0.066 respectively, were considered.

In the following figures (Figs. 6.5-6.10) the thick black curves represent the
PRCs of ηa and ηd in free flight condition (absence of obstacles). The other curves
represent the forward (solid lines) and backward (dashed lines) PRCs corresponding
to increasing values (increasing thickness of the lines) of λ between 0.1 and 100
(the latter assumed conventionally as representative of the impact against a rigid
obstacle and denoted as λmax). Only the curves corresponding to some λ values
inside this range (namely λ = 0.1, 1, 10, 50, 100) were represented to make the figures
more readable.

As concerns the symbols, the black dots identify the primary resonance condition
for all the investigated λ values (even those for which the PRCs are not shown). The
yellow squares represent the values of ηa and ηd for β = 0. The cyan symbols identify
the boundaries of the frequency interval (β1 ≤ β ≤ β2) in which, for the considered
value of δ0, impact will surely occur, based on purely geometric considerations
(Sect. 6.3). In particular, the cyan diamond corresponds to β1 (lower limit of the
“geometric” impact range) while the cyan circle corresponds to β2 (upper limit of
the “geometric” impact range). The green triangle was used to represent the β value
(denoted as βc) such that, for β > βc (this frequency interval is highlighted with
an horizontal green line) the maximum absolute acceleration of the mass is lower
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than the ground acceleration (ηa < ηa|β=0). Finally, the vertical arrows identify the
jumps.

Free flight (δ0 = 1) For δ0 = 1 impact does not occur for any β value (β1 = β2 =
βRd ' 0.99) regardless of λ, since the amplitude of the gap is equal to the maximum
displacement of the mass in resonance condition. Since in the adopted model (SNM),
both the bumpers and the damper were modeled through a linear spring in parallel
with a linear viscous dashpot (Kelvin-Voigt model), the corresponding PRCs of ηa
and ηd, represented with thick black curves in Figs. 6.5-6.10, coincide with the curves
representative of the transmissibility TR and the displacement response factor R for
ξ = 0.1 (Fig. 6.3). Due to the considered small value of damping ratio ξ, the PRCs
of ηa and ηd in free flight condition are close to each other. Forward and backward
curves overlap, without jumps or hysteresis, and the acceleration becomes lower
than the ground acceleration for β >

√
2.

δ0 = 0.7 For δ0 = 0.7 (Fig. 6.5), impact can occur since β1 (cyan diamond) and
β2 (cyan circle) (Eq. 6.3a) are both different from zero, with β1 < βRd and β2 > βRd.
In addition to the frequency range in which impact surely occurs, due to geometric
considerations (that is β1 ≤ β ≤ β2), the nonlinear behavior of the system causes
the occurrence of impact even outside this range.

As it can be seen from Fig. 6.5, due to the hardening caused by the impact,
compared to the free flight condition (black curve), the PRCs bend to the right, and
the bending becomes more pronounced as the stiffness ratio λ increases. Exceeded a
certain value of λ, which will be denoted as λH, the system exhibits jump phenomena
(highlighted with arrows), leading to the appearance of an hysteresis region between
the jumps. The jump phenomena and the hysteresis are observable in the PRCs
of both ηa (Fig. 6.5a), ηd (Fig. 6.5b), ηF (Fig. 6.5c) and ηB (Fig. 6.5d). For the
selected value of the dimensionless gap λH ' 2.2. As it can be seen from Fig. 6.5,
while the frequency value at which the upward jump (blue dashed arrow) occurs,
decreasing the forcing frequency (backward sweep), is the same for each λ value
and corresponds to β2, the downward jump (blue solid arrow) occurs, increasing the
forcing frequency (forward sweep), at a frequency value, in the following denoted as
β3, which increases with λ. Consequently, β2 and β3 give a measure of the extent
of the hysteresis region in terms of frequency. As λ increases, this frequency range
increases.

In the frequency range corresponding to the hysteresis (β2 < β < β3), for each β
value, and depending on the initial conditions, it is possible to observe two steady-
state stable solutions, corresponding respectively to large-amplitude (with impact)
and small-amplitude (without impact) oscillations. Actually, there would be also
a third unstable solution, that could not be obtained with the used methodology.
At the hysteresis region, making a comparison with the free flight condition at the
same frequency, depending on the initial conditions, the introduction of the obstacle
can be counter-productive (occurrence of impact), leading to an increase not only of
accelerations, but also of displacements, or, at best, the response does not change
(absence of impact). Therefore, the introduction of the obstacle does not always



6.4 Results of the numerical investigations 153

Figure 6.5. Sections of the PRCs for ξ = 0.1, γ = 5, δ0 = 0.7 and for several values of the
stiffness ratio λ (0.1 ≤ λ ≤ 100): a ηa; b ηd; c ηF; d ηB. The black curves (in a and b)
represent the free flight condition, the red curves identify the PRCs corresponding to
the λ value at which the envelope of the maximum values of the acceleration shows a
minimum (λ = λopt), while the blue curves represent the PRCs corresponding to the
other values of λ (the thickness of the line increases with λ). The black dots identify
the primary resonance condition. In a and b the yellow squares indicate the values
of ηa and ηd for β = 0; the cyan symbols represent the location of β1 (cyan diamond)
and β2 (cyan circle). Finally, in a the green triangle identifies the βc value, for all the
considered values of λ, such that ηa < ηa|β=0 for β > βc (horizontal green line).
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reduce the displacements compared to the free flight condition, as one would expect.
Based on these considerations, the hysteresis, if possible, should be avoided (choosing
λ < λH).

From Fig. 6.5, it can be observed that the primary resonance (highlighted with
black dots) moves to the right, that is it occurs for increasing values of β, as the
stiffness ratio λ increases. As concerns the acceleration (Fig. 6.5a) the maximum
value in resonance condition (denoted as η∗a), starting from the free flight condition
(black curve) and increasing λ, first increases, then decreases showing a minimum and
subsequently starts to grow again, tending to an almost vertical asymptote for large
values of stiffness ratio. For each λ value, the maximum value of ηa is always greater
than that corresponding to the free flight condition (η∗a > 1). The introduction of
the obstacle, on the contrary, always reduces the peak value of the excursion of
relative displacement (η∗d < 1), and the extent of the reduction increases with λ
(Fig. 6.5b). No changes in the excursion of the static displacement (highlighted with
yellow squares) are observed. As concerns the bumpers, both the contact force and
the deformation are null in the absence of impact. When impact occurs, the values
of the contact force at resonance (black dots in Fig. 6.5c) show a trend with the
stiffness ratio, similar to that of the maximum values of the acceleration, with the
occurrence of a minimum, while the deformation of the bumpers (Fig. 6.5d), quite
small for the selected δ0 value, always decreases with λ.

From Fig. 6.5, it can be also noted that, for the considered combination of
parameters (ξ, γ and δ0) and for 0 < λ ≤ 100, the occurrence of impact modifies the
response of the system only for β <

√
2, keeping unaltered the frequency range of

interest for the isolation in the linear case, that is β >
√

2.

Finally, by looking at the PRCs of ηa (Fig. 6.5a), it is possible to identify a
value of stiffness ratio (denoted as λopt) for which the envelope of the maximum
values of ηa shows a minimum (min[η∗a]), although it is, in any case, η∗a > 1. For
the considered value of δ0, this occurs for λopt ' 2 (red curve). In this condition,
the resonance occurs for βR ' 1.05 and since λopt ' 2 < λH, no hysteresis occurs.
Furthermore, for all the considered values of λ, the acceleration transmitted to the
mass becomes smaller than the ground acceleration for β >

√
2 (βc =

√
2, green

triangle). In Fig. 6.5a this frequency range was highlighted with an horizontal green
thick line.

In the condition corresponding to the minimum peak value of ηa (λ = λopt), also
a reduction of the peak value of the relative displacement of the mass, compared to
the free flight condition, was noticed (red curve in Fig. 6.5b). On the other hand,
no reduction of the static displacement was observed.

By comparing the PRC corresponding to λopt (red curve) and the PRC in free
flight condition (black curve) at the same frequency (for β1 ≤ β ≤ β2), it can
be noted that, in the condition corresponding to the minimum peak value of the
acceleration, while the acceleration is always greater than the free flight condition,
the displacement is in general lower, except for frequency values slightly lower than
β2, at which the red curve appears to be above the black one.
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δ0 = 0.4 By reducing the dimensionless gap, always remaining in the range δ∗0 <
δ0 < 1, the amplitude of the frequency interval in which impact occurs increases
(Fig. 6.6, for δ0 = 0.4). Compared to the previous case (δ0 = 0.7, Fig. 6.5), it is
possible to identify a value of the stiffness ratio (denoted as λc < λmax), beyond
which the occurrence of impact modifies the response of the system, compared to
the free flight condition, not only for β <

√
2, but also for β >

√
2. For δ0 = 0.4 this

occurs for λc ' 14. For λ > λc the transmitted acceleration becomes lower than the
ground acceleration after the downward jump, which occurs for increasing values of
β as λ increases. Consequently, compared to the linear case, the isolation frequency
range decreases.

Compared to the scenarios observed for δ0 = 0.7 (Fig. 6.5), for δ0 = 0.4, increasing
the stiffness ratio, secondary resonances in the low frequency range appear and
become gradually evident, affecting increasingly larger frequency ranges. At these
secondary resonances, particularly evident in the PRCs of ηa and ηF, periodic and
quasi-periodic responses can be observed, and the acceleration of the mass appear
to be always greater compared to the free flight condition.

As concerns the values of the response in resonance condition (black dots), similar
considerations apply to those made for δ0 = 0.7. In particular, also in this case the
envelope of the maximum values of the acceleration, in resonance condition, shows
a minimum which occurs for λopt ' 1. Since λopt is slightly lower than λH ' 1.2,
no hysteresis occurs. Furthermore, always referring to λopt (red curve), it can be
observed that the maximum value of the acceleration in resonance condition, which
occurs for βR ' 1.12, is close to the value corresponding to the free flight condition
(η∗a ' 1). We can see therefore the possibility of reducing the maximum value of the
acceleration compared to the free flight condition, also in the presence of impact, by
further reducing the dimensionless gap. Furthermore, since λopt < λc, the response
of the system is not altered for β >

√
2 (βc =

√
2, green triangle in Fig. 6.6a).

Finally, by comparing the PRC of ηa ( Fig. 6.6a) corresponding to λopt (red
curve) and the PRC in free flight condition (black curve) at the same frequency (for
β1 ≤ β ≤ β2), it can be noted that there is a frequency range (highlighted with a
vertical gray band) in which, despite the occurrence of impact, the acceleration is
lower than in the free flight condition.

δ0 = δ∗0 Moving to the value of the dimensionless gap δ0 = δ∗0 = 2ξ
√

1− ξ2 ' 0.199
(Fig. 6.7), a limit condition is reached in which the impact already occurs for β = 0
(since β1 = 0). In the low frequency range secondary resonances, of different type
compared to those observed for δ0 = 0.4, appear and become gradually evident,
affecting increasingly larger frequency ranges as λ increases. In the condition
corresponding to the minimum value of the acceleration at resonance (min[η∗a], red
curve), which occurs for λopt ' 1, no hysteresis is observed (λ < λH ' 1.8) and since
in this condition βc =

√
2 (λopt < λc ' 2), the response of the system is not altered

for β >
√

2, compared to the free flight condition. Furthermore, the maximum value
of the acceleration in resonance condition, which occurs for βR ' 1.22, is lower than
the value corresponding to the free flight condition (η∗a < 1). Finally, always for
λ = λopt (red curve), it can be noted that, compared to δ0 = 0.4 the amplitude of
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Figure 6.6. Sections of the PRCs for ξ = 0.1, γ = 5, δ0 = 0.4 and for several values of the
stiffness ratio λ (0.1 ≤ λ ≤ 100): a ηa; b ηd; c ηF; d ηB. The black curves (in a and b)
represent the free flight condition, the red curves identify the PRCs corresponding to
the λ value at which the envelope of the maximum values of the acceleration shows a
minimum (λ = λopt), while the blue curves represent the PRCs corresponding to the
other values of λ (the thickness of the line increases with λ). The black dots identify the
primary resonance condition. In a and b the yellow squares indicate the values of ηa
and ηd for β = 0; the cyan symbols represent the location of β1 (cyan diamond) and
β2 (cyan circle). Finally, in a the green triangle identifies the βc value, for λ = λopt,
such that ηa < ηa|β=0 for β > βc (horizontal green line). The vertical gray band in a
highlights the frequency interval in which the PRC of ηa corresponding to λ = λopt (red
curve) is below the PRC corresponding to the free flight condition (black curve).
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Figure 6.7. Sections of the PRCs for ξ = 0.1, γ = 5, δ0 = δ∗0 ' 0.199 and for several values
of the stiffness ratio λ (0.1 ≤ λ ≤ 100): a ηa; b ηd; c ηF; d ηB. The black curves (in a
and b) represent the free flight condition, the red curves identify the PRCs corresponding
to the λ value at which the envelope of the maximum values of the acceleration shows a
minimum (λ = λopt), while the blue curves represent the PRCs corresponding to the
other values of λ (the thickness of the line increases with λ). The black dots identify the
primary resonance condition. In a and b the yellow squares indicate the values of ηa
and ηd for β = 0; the cyan symbols represent the location of β1 (cyan diamond) and β2
(cyan circle). For this value of δ0 it is β1 = 0 and, consequently, the cyan diamond is
superimposed to the yellow square. Finally, in a the green triangle identifies the βc value,
for λ = λopt, such that ηa < ηa|β=0 for β > βc (horizontal green line). The vertical gray
band in a highlights the frequency interval in which the PRC of ηa corresponding to
λ = λopt (red curve) is below the PRC corresponding to the free flight condition (black
curve).
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the frequency range (highlighted with a vertical gray band) in which, despite the
occurrence of impact, the acceleration is lower than in the free flight condition, has
increased.

δ0 = δ0c By further reducing the gap, the condition in which β2 =
√

2 is reached
(Fig. 6.8). Due to the considered damping ratio ξ, the value of dimensionless gap
at which this condition occurs, calculated using the second of the Eqs. 6.3a and
denoted as δ0c, is slightly lower than δ∗0, δ0c ' 0.1915. Since 0 < δ0c < δ∗0, the
equation R(ξ, β) = δ0c admits only one solution, that is β2 (cyan circle) and impact
occurs already starting from β = 0. As it can be seen from Fig. 6.8, most of
the considerations made for δ∗0 (Fig. 6.7) apply also in this case. However, some
differences should be highlighted. Compared to δ∗0 , the increase in λ causes a slight
decrease also of the static displacement (yellow squares in Fig. 6.8b). Finally, for
this value of the dimensionless gap λH ' λc ' 1.8 and the minimum value of the
acceleration in resonance occurs again for λopt ' 1. In this condition η∗a < 1, no
hysteresis occurs (λ < λH) and, since βc = β2 =

√
2 (λopt < λc), the response of the

system is not altered for β >
√

2, compared to the free flight condition.

δ0 ' 0.066 Let’s now consider the value of the dimensionless gap at which β2 = 2,
that is δ0 ' 0.066. As it can be seen from Fig. 6.9, at this δ0 value, as λ increases,
more complex behaviors appear in the low frequency range. In particular, different
types of secondary resonances (with left hysteresis or of non-regular type), of a
different nature from those observed for greater values of δ0, appear and become
gradually evident, affecting increasingly larger frequency ranges as λ increases. At
these secondary resonances, more evident in the PRCs of ηa (Fig. 6.9a) and ηF
(Fig. 6.9c), both periodic, quasi-periodic and even chaotic solutions can be observed.
Furthermore, always at the secondary resonances, the number of impact between
the mass and each bumper, per forcing cycle, is found to increase as β decreases
and, for a given β value, as λ increases.

At this δ0 value, the reduction of the static displacement with increasing λ,
already observed for δ0 = δ0c, is more evident (Fig. 6.9b). Compared to δ0c, since in
this case β2 = 2 >

√
2, the occurrence of impact modifies, in any case and regardless

of λ, the response of the system also for β >
√

2, compared to the free flight condition.
The extend of the frequency range affected by such changes does not vary as long
as λ < λH ' 4.4 (no hysteresis), whereas it becomes gradually larger as λ increases
beyond λH.

The minimum value of the acceleration in resonance condition occurs for λopt ' 1.
In this condition, since λopt < λH no hysteresis occurs and furthermore βc ' 1.9.
At resonance, which occurs for βR ' 1.32, η∗a < 1 and, in addition to a substantial
reduction of the peak value of acceleration, a noticeable reduction of both the peak
value of the displacement and the static displacement is observed. Compared to
the previous considered δ0 value (Fig. 6.8), the amplitude of the frequency range in
which, despite the occurrence of impact, the acceleration is lower than in the free
flight condition (vertical gray band in Fig. 6.9a) is increased. However, also the
amplitude of the frequency range in which the displacement in presence of impact is
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Figure 6.8. Sections of the PRCs for ξ = 0.1, γ = 5, δ0 = δc ' 0.1915 (value of δ0 so
that β2 =

√
2) and for several values of the stiffness ratio λ (0.1 ≤ λ ≤ 100): a ηa; b

ηd; c ηF; d ηB. The black curves (in a and b) represent the free flight condition, the
red curves identify the PRCs corresponding to the λ value at which the envelope of
the maximum values of the acceleration shows a minimum (λ = λopt), while the blue
curves represent the PRCs corresponding to the other values of λ (the thickness of the
line increases with λ). The black dots identify the primary resonance condition. In a
and b the yellow squares indicate the values of ηa and ηd for β = 0. The cyan circles
represent the location of β2. Finally, in a the green triangle identifies the βc value, for
λ = λopt, such that ηa < ηa|β=0 for β > βc (horizontal green line). For this value of δ0
and for λ = λopt, it is βc = β2 (the green triangle is superimposed to the cyan circle).
The vertical gray band in a highlights the frequency interval in which the PRC of ηa
corresponding to λ = λopt (red curve) is below the PRC corresponding to the free flight
condition (black curve).



160 6. Optimal design of the bumpers based on the response scenarios

Figure 6.9. Sections of the PRCs for ξ = 0.1, γ = 5, δ0 ' 0.066 (value of δ0 so that β2 = 2)
and for several values of the stiffness ratio λ (0.1 ≤ λ ≤ 100): a ηa; b ηd; c ηF; d ηB.
The black curves (in a and b) represent the free flight condition, the red curves identify
the PRCs corresponding to the λ value at which the envelope of the maximum values
of the acceleration shows a minimum (λ = λopt), while the blue curves represent the
PRCs corresponding to the other values of λ (the thickness of the line increases with λ).
The black dots identify the primary resonance condition. In a and b the yellow squares
indicate the values of ηa and ηd for β = 0. The cyan circles represent the location
of β2. Finally, in a the green triangle identifies the βc value, for λ = λopt, such that
ηa < ηa|β=0 for β > βc (horizontal green line). The vertical gray band in a highlights
the frequency interval in which the PRC of ηa corresponding to λ = λopt (red curve) is
below the PRC corresponding to the free flight condition (black curve).
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greater than in the free flight is increased (Fig. 6.9b).

δ0 = 0 When the bumpers are initially positioned in contact with the mass, that
is when δ0 = 0, the situation returns to be quite smooth, as shown in Fig. 6.10,
although impact occurs for each β value (Sect. 6.3). Due to the occurrence of impact,
the behavior of the system is still nonlinear [251], although the PRCs do not show
neither jump phenomena nor hysteresis. As λ increases, the primary resonance
moves to higher frequency values, up to about 10 for λ = 100. The occurrence of
impact modifies, in any case and regardless of λ, the response of the system for each
β value and the PRCs, once exceeded the resonance (black dots), tend to the curve
corresponding to the free flight condition (black curve) for β →∞. This happens
also in the condition corresponding to the minimum value of the acceleration in
resonance, which still occurs for λopt ' 1. In this condition, significant reductions
of both the peak value of acceleration, the peak value of the displacement and the
static displacement of the mass, are observed. For λ = λopt (red curve), the primary
resonance occurs for βR '

√
2 and the acceleration of the mass becomes lower than

that of the ground for β > βc ' 2.3.

Discussion

The study of the evolution of the PRCs of the selected response quantities with
the stiffness ratio λ, for fixed values of both the damping ratios ξ and γ and the
dimensionless gap δ0, allowed to highlight the influence of δ0, λ and β on the
system (mass and bumpers) response. On the basis of the obtained results and the
considerations made by looking at fixed values of δ0, some preliminary conclusions
can be drawn.

Scenarios Starting from the free flight condition (δ0 = 1) and reducing the gap,
gradually more complex scenarios were observed, characterized by the occurrence
of primary hysteresis, secondary resonances of different types in the low frequency
range, periodic, quasi-periodic and chaotic responses, multiple impacts, to mention
a few. Some of these scenarios do not go in the desired direction thinking of control.
Consequently, the introduction of the obstacles does not always produce the desired
effects. However, by properly selecting the involved parameters, it would be possible
to guide the system response to reach specific objectives.

Frequency ranges Starting from δ0 = 1 and decreasing δ0, the amplitude of
the frequency interval in which impact will surely occur, due to only geometric
considerations (β1 ≤ β ≤ β2, under the black curve shown in Fig. 6.11, which is
the PRC of ηd in free flight condition), increases. For the considered system and
parameters, impact does not occur for β < β1 (on the left of the ascending branch
of the black curve in Fig. 6.11), with β1 becoming zero when δ0 reaches the value δ∗0 .
Furthermore, due to the hardening caused by the impact, when λ > λH (occurrence
of hysteresis), where λH depends on δ0, impact can occur also for β2 < β < β3, where
β3 denotes the frequency at which, during the forward sweep (increasing forcing
frequency), the downward jump occurs. In Fig. 6.11 the blue curves represent the



162 6. Optimal design of the bumpers based on the response scenarios

Figure 6.10. Sections of the PRCs for ξ = 0.1, γ = 5, δ0 = 0 and for several values of the
stiffness ratio λ (0.1 ≤ λ ≤ 100): a ηa; b ηd; c ηF; d ηB. The black curves (in a and b)
represent the free flight condition, the red curves identify the PRCs corresponding to
the λ value at which the envelope of the maximum values of the acceleration shows a
minimum (λ = λopt), while the blue curves represent the PRCs corresponding to the
other values of λ (the thickness of the line increases with λ). The black dots identify the
primary resonance condition. In a and b the yellow squares indicate the values of ηa
and ηd for β = 0. Finally, in a the green triangle identifies the βc value, for λ = λopt,
such that ηa < ηa|β=0 for β > βc (horizontal green line). The vertical gray band in a
highlights the frequency interval in which the PRC of ηa corresponding to λ = λopt (red
curve) is below the PRC corresponding to the free flight condition (black curve).
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locus of the β3 values for different stiffness ratios (the thickness of the lines increases
with λ). In the two limit cases, namely δ0 = 1 (free flight condition, absence of
impact) and δ0 = 0 (bumpers initially in contact with the mass, occurrence of impact
for each β value) hysteresis never occurs, regardless of λ. For 0 < δ0 < 1, if the
horizontal line δ0 = constant intersects one of the blue curves, it means that for that
pair δ0−λ the jump phenomenon, and thus the hysteresis, will occur. It can be seen
that the amplitude of the frequency range associated with the hysteresis (between
the descending branch of the black curve and one of the blue curves) increases, for a
given δ0, as λ increases (increasing thickness of the blue line) and, for a given λ, as
δ0 decreases.

Figure 6.11. PRC of ηd in free flight condition (black curve) for ξ = 0.1 together with the
envelopes of the downward jumps frequencies (β3, blue lines) for γ = 5 and several λ
values. The thickness of the line increases with λ.

From the same figure, it is also possible to see if, for the considered values
of δ0 and λ, due to the occurrence of impact, the response of the system will be
modified, compared to the free flight condition, also for β >

√
2 (vertical dashed

line). Three gap ranges can be identified. For δ0 > 0.67 (above the upper horizontal
green line) the occurrence of impact will modify the response of the system only
in the frequency range β <

√
2, for each considered λ value, with 0 < λ ≤ 100,

since β3 is always lower than
√

2 (all the blue curves are to the left of the vertical
dotted line β =

√
2). It is worth noting that the threshold value of the dimensionless

gap δ0 = 0.67 depends on the maximum value of the stiffness ratio considered in
the analysis (λmax = 100 in this study) and it increases as λmax increases. For
δ0 < δ0c (below the lower horizontal green line), where δ0c ' 0.1915 is the value of
the dimensionless gap at which β2 =

√
2, the response will be modified in any case,

regardless of λ, not only for 0 ≤ β <
√

2, but also for β >
√

2. The extend of the
frequency range beyond

√
2, affected by the occurrence of impact, becomes gradually

larger as λ increases. For δ0c ≤ δ0 ≤ 0.67 (between the two horizontal green lines),
the response will be modified also for β >

√
2 only if λ > λc. For each dimensionless

gap within this range, the corresponding λc value is that associated with the blue
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curve which, for the considered δ0 value, intersects the vertical dashed line β =
√

2.
It can be observed that λc, starting from λc = λmax = 100 for δ0 ' 0.67, decreases
as δ0 decreases.

Resonance condition For a given δ0 value, the increase in the stiffness ratio λ
causes a gradually more pronounced bending of the PRCs, with the increase in the
resonant frequency and the occurrence of the jump phenomena and the hysteresis, for
λ > λH(δ0). As concerns the values of the selected response quantities in resonance
condition (η∗i , i = a, d, F, B), it was observed that, compared to the free flight
condition, the increase in λ causes an increasing reduction of the displacement of the
mass and of the deformation of the bumpers, while the acceleration of the mass and
the contact force, after a first increase, for very small values of λ, decrease, reach
a minimum and then start to grow again. Regarding the static displacement, it
decreases, as λ increases, only if 0 ≤ δ0 < δ∗0 .

By extending the range of investigation to other values of the dimensionless gap,
for 0 ≤ δ0 ≤ 1 and 0.05 ≤ λ ≤ 100, always assuming ξ = 0.1 and γ = 5, the contour
maps shown in Fig. 6.12 were obtained. In particular, in Figs. 6.12a-d the contour
maps of the maximum values of the excursion of the absolute acceleration of the
mass (η∗a), the relative displacement of the mass (η∗d), the contact force (η∗F) and
the deformation of the bumpers (η∗B) respectively, are represented. Fig. 6.12e and
Fig. 6.12f, instead, correspond to the resonant frequency βR and the excursion of
the static displacement ηd,st respectively. The use of logarithmic scale for the λ axis
allows to see better the evolution of the selected quantities in the range of small
stiffness ratios.

From Fig. 6.12a it can be observed that, in most cases (λ − δ0 pairs), the
occurrence of the impact against the obstacles causes an increase of the peak value
of the acceleration compared to the free flight condition (η∗a > 1). For large values
of λ η∗a can reach values up to 5. However, for small values of λ (λ < 20) and for
δ0 < 0.4, the peak value of the acceleration, despite the occurrence of impact, can be
lower than in free flight condition (η∗a < 1. The contour level corresponding to η∗a = 1
is highlighted with a thick black line. For each δ0 value, it is possible to identify the
value of λ at which the envelope of the maximum values of the acceleration shows a
minimum. The locus of the λ values corresponding to this condition (denoted as
λopt) is represented with a thick red curve. By focusing the attention on the range
0 ≤ δ0 ≤ 0.4, at which, through the introduction of the obstacles it is possible to
obtain a reduction of the acceleration, compared to the free flight condition (η∗a < 1),
it can be observed that the minimum occurs, regardless of δ0, for λopt ' 1.

The thick blue line represents the locus of the values of λ, denoted as λH, beyond
which, for a given δ0 value, the jump phenomena, and thus the hysteresis, occur. It
can be observed that while in the two limit cases (δ0 = 1 and δ0 = 0), the hysteresis
never occurs, for 0 < δ0 < 1, λH decreases as δ0 decreases, reaching the lower values
(λH ' 1.4) for 0.3 < δ0 < 0.5, then it starts to increase again as δ0 further decreases.
It can be noted that, for each δ0 value, λopt < λH (the red curve is always to the left
of the blue curve), meaning that in the condition corresponding to the minimum
peak value of the acceleration of the mass, the hysteresis never occurs.

Finally, the thick green curve represents the locus of the values of λ, denoted as
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Figure 6.12. Contour maps of: a η∗a ; b η∗d; c η∗F; d η∗B; e βR; f ηd,st for ξ = 0.1,
γ = 5, 0.05 ≤ λ ≤ 100 and 0 ≤ δ0 ≤ 1. The black curve highlights the contour level
corresponding to a unit value of η∗a . The red, blue and green curves represent the values
of λopt, λH and λc respectively, for each δ0 value.
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λc, beyond which, for a given δ0 value, the occurrence of impact causes a modification
of the system response, compared to the free flight condition, also for β >

√
2. It can

be observed this curve tends to an asymptotic value as λ increases. For δ0 & 0.67,
since there are no intersections between the green curve and the horizontal line
corresponding to a constant gap (λc > λmax = 100), the response will be modified,
due to the occurrence of impact, only in the frequency range β <

√
2. On the

contrary, for δ0 < δ0c ' 0.1915 the response will be modified also for β >
√

2
regardless of λ. For δ0c ≤ δ0 . 0.67, the isolation frequency range will be modified,
compared to the free flight condition, only if λ > λc (on the right of the green curve).

The curves corresponding to η∗a = 1 (black curve), λopt (red curve), λH (blue
curve) and λc (green curve) were reported in all the contour maps in Fig. 6.12.

As concerns the peak value of the excursion of the relative displacement of the
mass (Fig. 6.12b) , it is always lower than in the free flight condition (η∗d < 1). It
decreases as δ0 decreases, for a given λ value, and decreases as λ increases, for a
given δ0 value. In the latter case, the extent of the reduction decreases as λ increases
(the contour lines tend to become horizontal).

The contour map of the peak value of the excursion of the contact force (Fig. 6.12c)
is quite similar to that of the acceleration. η∗F increases with λ, for a given δ0 value.
For a given value of λ, for example λ = 10, as δ0 decreases, η∗F increases, reaches a
maximum and then starts to decrease.

As concerns the peak value of the excursion of the deformation of the bumpers
(Fig. 6.12d) , it decreases with λ, for a given δ0 value, becoming particularly small
for large values of the stiffness ratio. For a given value of λ, for example λ = 10, as
δ0 decreases, η∗B increases, reaches a maximum and then starts to decrease.

As concerns the resonant frequency (Fig. 6.12e) it varies between 0.99 and about
10, and the greater values are reached for quite small dimensionless gaps and large
values of the stiffness ratio. It increases with λ, for a given δ0 value, and it increases
as δ0 decreases, for a given λ value.

Finally, regarding the excursion of the static displacement of the mass, Fig. 6.12f
shows that for δ∗0 ≤ δ0 ≤ 1 it remains equal to 0.199 independently of δ0 and λ,
whereas for 0 ≤ δ0 < δ∗0 the static displacement decreases as δ0 decreases, for a given
λ value, and as λ increases, for a given δ0 value. In the latter case, the extent of the
reduction decreases as λ increases (the contour lines tend to become horizontal).

The case λ = λopt Let’s now focus the attention on the condition corresponding,
for each δ0 value, to the minimum value of the acceleration of the mass in resonance
condition (λ = λopt, red curve in Fig. 6.12). From Fig. 6.13a it can be observed that,
starting from the free flight condition (δ0 = 1) and decreasing δ0, the peak value
of the normalized excursion of the absolute acceleration of the mass η∗a (red curve),
starting from a unit value for δ0 = 1 increases, reaches a maximum for δ0 ' 0.8
(η∗a ' 1.27) and then starts to decrease, becoming again equal to 1 for δ0 ' 0.4
(vertical dashed line) and lower than 1 for 0 ≤ δ0 < 0.4. The minimum value is
reached for δ0 = 0, where η∗a ' 0.41.
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Figure 6.13. Trends with the dimensionless gap δ0 of: a values of the system response at
resonance (η∗i , i = a, d, F, B) and static displacement of the mass (ηd,st); b frequency
ratios (βR and βc), for ξ = 0.1, γ = 5 and λ = λopt(δ0).

The peak value of the normalized excursion of the relative displacement of the
mass η∗d (blue curve), starting from a unit value for δ0 = 1, decreases as δ0 decreases,
reaching the minimum value for δ0 = 0, where η∗d ' 0.15. As concerns the excursion
of the static displacement (light blue curve), it does not vary, remaining equal to
2ξ

√
1− ξ2 ' 0.199, as long as δ∗0 < δ0 ≤ 1, whereas for 0 ≤ δ0 < δ∗0, it starts to

decrease as δ0 decreases, reaching the value ηd,st ' 0.09 for δ0 = 0.
The peak value of the normalized excursion of the contact force η∗F (magenta

curve), starting from zero for δ0 = 1 (absence of impact), increases, reaches a
maximum for δ0 ' 0.45 (η∗F ' 0.5) and then starts to decrease, reaching the value
η∗F ' 0.28 for δ0 = 0. In the gap range of interest (0 ≤ δ0 ≤ 0.4, highlighted with a
light gray band) η∗F decreases as δ0 decreases.

The peak value of the normalized excursion of the deformation of the bumpers η∗B
(orange curve), starting from zero for δ0 = 1 (absence of impact), increases, reaches
a maximum for δ0 ' 0.15 (η∗B ' 0.17) and then starts to decrease, reaching the value
η∗B ' η∗d ' 0.15 (the deformation of the bumpers and the displacement of the mass
are comparable) for δ0 = 0. In the gap range of interest (0 ≤ δ0 ≤ 0.4, highlighted
with a light gray band) η∗B tends to a more or less constant value as δ0 decreases.

From Fig. 6.13b it can be observed that, always for λ = λopt, the resonant
frequency ratio βR (black curve), starting from βR ' 0.99 (horizontal dashed line)
for δ0 = 1, increases as δ0 decreases, reaching the value βR ' 1.47 for δ0 = 0. As
concerns the β value beyond which the absolute acceleration of the mass is lower than
the ground acceleration (βc, green curve), it is equal to

√
2 as long as δ0c ≤ δ0 ≤ 1

(the isolation frequency interval is the same as in the linear case), then it starts to
increase, reaching the value βc ' 2.37 for δ0 = 0. Consequently, for 0 ≤ δ0 < δ0c,
as δ0 decreases, the occurrence of impact causes a greater reduction of the interval
isolation frequency interval, compared to the linear case.
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Based on these considerations, although the reduction of the gap allows to
reduce the peak value of the response of the system in resonance condition and,
for 0 ≤ δ0 < δ∗0, also the static displacement, very small values of δ0 involve an
increasing modification of the system response in the frequency range of interest for
the isolation in the linear case (β >

√
2). Consequently, it would be preferable not

to reach too low values of δ0 in order not to alter, or alter to a limited extent, the
system response, accepting higher peak values for acceleration, displacement and
static displacement of the mass, contact force and deformation of the bumpers.

Other considerations By comparing, at the same frequency, the PRCs of ηa
and ηd for λ = λopt with those corresponding to the free flight condition, other
interesting considerations have emerged. In general, in the condition corresponding
to the minimum value of the acceleration in resonance condition (λ = λopt), and for
β1 ≤ β ≤ β2, the displacement is lower compared to the free flight condition, except
for a small frequency interval, just before β2, where the occurrence of impact causes
a slight increase of the displacement. As concerns the acceleration, for 0 ≤ δ0 < 0.4,
there is a frequency range, within β1 ≤ β ≤ β2 (highlighted in Figs. 6.6-6.10 with a
vertical gray band), in which, the acceleration of the mass, despite the occurrence of
impact, is lower compared to the free flight condition. As δ0 decreases, the amplitude
of this frequency range increases. Consequently, if the comparison with the free
flight condition is made at the same frequency, and not referring to the resonance
condition, contrary to what one would expect, the introduction of the obstacle does
not always reduce the displacement and does not always increase the acceleration.

6.4.1 Mechanical justification of the condition corresponding to
the minimum peak acceleration

From the results of the parametric analysis it was observed that, for each investigated
δ0 value, and for ξ = 0.1 and γ = 5, as λ increases, while the envelopes of the
maximum values of the displacement of the mass η∗d and of the deformation of the
bumpers η∗B decrease, the envelopes of the peak values of the absolute acceleration
of the mass η∗a and of the contact force η∗F show a minimum. At this condition,
in addition to the occurrence of the minimum of η∗a and η∗F (although the latter is
however greater than in the free flight condition, where impact does not occur), also
a reduction of the peak value of both the relative displacement of the mass and of
the deformation of the bumpers (although the latter is however greater than in the
free flight condition, where impact does not occur) was observed. Furthermore, to
this is also added the reduction of the static displacement for 0 ≤ δ0 < δ∗0 .

With reference to the range of δ0 values of greatest interest in this study, that
is 0 ≤ δ0 ≤ 0.4, at which it is possible to obtain a reduction not only of the
displacement, but also of the acceleration of the mass, compared to the free flight
condition (η∗a < 1), it was found that, regardless of δ0, the minimum peak value of
acceleration occurs at a stiffness value λopt ' 1. Based on this observation, the aim
of this section is to try to give a mechanical justification to why, for ξ = 0.1 and
γ = 5, a unit value of the stiffness ratio λ is preferable to the others.
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In the following figures, referring to the value of the dimensionless gap corre-
sponding to β2 = 2, that is δ0 ' 0.066, a comparison between different values of
stiffness ratio λ is carried out, in terms of force-displacement cycles (Fig. 6.14) and
time histories (Fig. 6.15) in resonance condition, that is for β = βR(λ). In particular,
in addition to the free flight condition, three values of λ were considered, namely the
one that corresponds, for the selected δ0 value, to the minimum of η∗a (λ = 1), and
two other values of λ, one lower and the other greater than 1, respectively λ = 0.1
and λ = 5.

In Fig. 6.14 the comparison between the different λ values is made in terms of
force-displacement cycles in resonance condition. In particular, Fig. 6.14a refers to
the mass (inertia force fI vs. relative displacement q of the mass), whereas Fig. 6.14b
refers to the bumpers (contact force fj vs. position dj of the bumper, j = R, L). The
position of the extremity of the bumper, measured from the side of the mass at time
τ = 0, is related to its deformation qj through the expression dj(τ) = qj(τ) + δ0j
(j = R, L). Starting from zero initial condition, the thin lines represent the transient
response, while the cycles at steady-state are highlighted with thicker lines. The
gray curve refers to the free flight condition, the blue curve to λ = 0.1, the red curve
to λ = 1 and the black curve to λ = 5. The two black dashed vertical lines represent
the initial position of the bumpers (initial gap δ0).

Figure 6.14. Force-displacement cycles (ξ = 0.1, γ = 5, δ0 ' 0.066) in resonance condition
(β = βR(λ)), without obstacles (free flight, NB, gray line), and for three values of the
stiffness ratio, namely λ = 0.1 (blue line), λ = 1 (red line) and λ = 5 (black line): a
mass; b bumpers. Starting from zero initial conditions, the thin lines represent the
transient response, while the thick lines highlight the cycle at steady-state.

In Fig. 6.15 the comparison is made in terms of time histories, considering the first
10 cycles and starting from zero initial conditions. The first column (Figs. 6.15a,d,g)
refers to λ = 0.1, the second (Figs. 6.15b,e,h) to λ = 1 and the third (Figs. 6.15c,f,i)
to λ = 5. In Figs. 6.15a-c the gray line and the black line represent the position d(τ)
of the mass (which is nothing more than its displacement relative to the ground
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d(τ) = q(τ)) in free flight condition (gray line) and after the introduction of the
obstacles (black line). The red and blue lines represent the position of the extremity
of the right and left bumper respectively, denoted as dj(τ) (j = R, L). In Figs. 6.15d-f
the gray line and the black line represent the absolute acceleration α(τ) of the mass
in free flight condition (gray line) and after the introduction of the obstacles (black
line). Finally, Figs. 6.15g-i show the time histories of the contact forces fj(τ) (j = R,
L) between the mass and the right (red line) and left (blue line) bumper respectively.

From Fig. 6.14a it can be observed that, compared to the free flight condition (gray
curve), the introduction of gradually stiffer obstacles (increasing λ), keeping fixed
the gap δ0, results in gradually increasing reduction of the maximum displacement
of the mass, while the peak value of the inertia force (and thus of the absolute
acceleration of the mass) shows a minimum for λ = 1 (red curve) and than starts to
increase. As concerns the bumpers (Fig. 6.14b), the increase in λ causes a reduction
of the deformation of the bumpers, while the peak value of the contact force shows
a minimum for λ = 1 and than starts to increase. Furthermore, it can be noted
that, compared to λ = 1 (red cycle) and λ = 5 (black cycle), for λ = 0.1 (blue
cycle), as time goes by, the distance between the mass and the bumpers (gap)
gradually increases, reaching, at steady-state, a value greater than the initial one
(δ0,fin ' 0.34 > δ0, represented with blue dotted vertical lines in Figs. 6.14a,b).

� As it can be seen from Fig. 6.15a, for λ = 0.1, the mass impacts the bumper before
the complete recovery of its deformation, causing the impact to occur, for each forcing
cycle, for a value of the gap gradually greater than the initial one (horizontal dashed
lines), reaching the final value of about 0.34 at the steady-state. This behavior is
due to the relatively large value of the relaxation time of the bumpers, that is the
time the bumper needs to completely recover its deformation, which depends on its
dissipative capabilities. It is defined as:

τrj = ω
Cj
Kj

= 2ξ γj
λj

(j = R, L) (6.4)

For a fully elastic material (γj = 0) τrj = 0 (j = R, L), and so the recovery is
instantaneous, whereas a fully viscous material (λj = 0) τrj →∞ (j = R, L) remains
deformed after the detachment, without recovering its deformation. In presence of
both elastic and viscous components, the relaxation time is finite and depends on
the dissipative capability of the material.

For ξ = 0.1, γ = 5 and λ = 0.1 it is τrj = 10 (j = R, L). The bumper does not
have enough time to completely recover its deformation, and thus to dissipate all the
stored energy during the contact, before the mass impacts it again. Consequently,
when impact occurs again it has a residual deformation, which cause the actual gap
to be greater than the initial one (δ0).

� For λ = 5 (Fig. 6.15c), on the contrary, the bumper quickly recovers the deforma-
tion after the detachment from the mass (τrj = 0.2, j = R, L) and it remains, for a
certain time, in the undeformed configuration until the mass impacts it again.

� For λ = 1 (Fig. 6.15b), instead, the mass impacts the bumper practically at
the moment when it has finished recovering all its deformation. Consequently, the
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Figure 6.15. Time histories referring to the first ten cycles and starting from zero initial
conditions, for ξ = 0.1, γ = 5, δ0 ' 0.066. Position of the mass (black line) and the
bumpers (red line for the right bumper BR and blue line for the left bumper BL): a
λ = 0.1 and βR ' 1.1; b λ = 1 and βR ' 1.32; c λ = 5 and βR ' 1.85. Absolute
acceleration of the mass (black line): d λ = 0.1 and βR ' 1.1; e λ = 1 and βR ' 1.32; f
λ = 5 and βR ' 1.85. Contact force between the mass and the bumpers (red line for
the right bumper BR and blue line for the left bumper BL): g λ = 0.1 and βR ' 1.1;
h λ = 1 and βR ' 1.32; i λ = 5 and βR ' 1.85. In a-f the gray line represents the
response (position and absolute acceleration) of the mass in free flight condition (without
obstacles).
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bumper has enough time to recover and, at the same time, it does not remain
inactive. For ξ = 0.1 and γ = 5, this value of λ corresponds to an approximately
unit value of the relaxation time (τrj = 1, j = R, L).

From the time histories of the absolute acceleration of the mass (Figs. 6.15d-f)
it is possible to observe the spikes due to the occurrence of impact. Furthermore,
as concerns the amplitude of the acceleration after the introduction of the obstacle
(black curve), it can be noted that for λ = 0.1 (Fig. 6.15d) it is comparable with
that corresponding to the free flight condition, while for the other two values of
stiffness ratio, it is lower. In particular, for λ = 1, the reduction is greater, as already
observed by looking at the force-displacement cycles (Fig. 6.14a).

At the value of the stiffness ratio corresponding to the minimum of the peak
value of the acceleration, also a minimum of the peak value of the contact force
corresponds, as shown in Fig. 6.15h.

Based on these considerations, it would seem that, for a given δ0 value, for
0 ≤ δ0 ≤ 0.4, and for ξ = 0.1 and γ = 5, when the stiffness ratio is such that the
relaxation time is close to unity (τrj ' 1, j = R, L), the maximum value of the
acceleration of the mass η∗a reaches a minimum. This is probably due to the fact
that the bumpers are fully exploited, meaning with this that they have enough
time to recover their deformation by dissipating energy and, on the other, they do
not remain inactive because impact practically occurs immediately after recovery.
Consequently, for ξ = 0.1, γ = 5 and 0 ≤ δ0 ≤ 0.4, the condition τrj ' 1 (j = R,
L) can be reasonably assumed as representative of the condition which corresponds
to the minimum value of the acceleration of the mass in resonance condition. This
allows to reduce the number of parameters which characterize the obstacles (position
δ0, and mechanical properties γ and λ), since two of them (γ and λ) are related to
each other through the relationship:

γj
λj
' 1

2ξ (j = R, L) (6.5)

6.4.2 Further investigations

For each δ0 value, theoretically there would be infinite λ-γ pairs that satisfy the
relationship 6.5. It would therefore be interesting to understand if, among these
pairs, there is one preferable to the others. For this purpose, as an example, in
Fig. 6.16, is illustrated, assuming ξ = 0.1 and γ/λ = 5, the evolution of the PRCs
with λ for δ0 ' 0.066, that is the value of the dimensionless gap corresponding to
β2 = 2. The meaning of colors and symbols is the same as in Figs. 6.5-6.10. The
represented PRCs correspond to the free flight condition (black curve) and to the
λ-γ pairs: (0.1, 0.5), (1, 5), (2, 10), (5, 25) and (10, 50). It can be observed that,
although each PRC shown in Fig. 6.16 corresponds to a λ-γ pair which satisfies
the relationship 6.5, the response of the system can vary significantly changing the
values of λ and γ (such that γ/λ = 5).
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Figure 6.16. Sections of the PRCs for ξ = 0.1, γ/λ = 5, δ0 ' 0.066 (value of δ0 so that
β2 = 2) and for several values of the stiffness ratio λ (0.1 ≤ λ ≤ 10): a ηa; b ηd; c
ηF; d ηB. The black curves (in a and b) represent the free flight condition, the red
curves identify the PRCs corresponding to the λ value at which the envelope of the
maximum values of the acceleration shows a minimum (λ = λopt), while the blue curves
represent the PRCs corresponding to the other values of λ (the thickness of the line
increases with λ). The black dots identify the primary resonance condition. In a and b
the yellow squares indicate the values of ηa and ηd for β = 0. The cyan circles represent
the location of β2. Finally, in a the green triangle identifies the βc value, for λ = λopt,
such that ηa < ηa|β=0 for β > βc (horizontal green line). The vertical gray band in a
highlights the frequency interval in which the PRC of ηa corresponding to λ = λopt (red
curve) is below the PRC corresponding to the free flight condition (black curve).
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As concerns the trend of the maximum values of the response, highlighted with
black dots, similar considerations to those made for γ = 5 (Fig. 6.9) apply. The
resonant frequency increases with λ (and thus with γ) and then, for large values of λ
and γ, it remains almost constant (βR ' 1.8). For small values of λ the peak value
of the acceleration of the mass (Fig. 6.16a) first decreases, reaches a minimum (lower
than one) and then starts to increase again, reaching values greater than one. The
peak values of both the displacement of the mass (Fig. 6.16b) and of the deformation
of the bumpers (Fig. 6.16d) decrease as λ (and thus γ) increases. As concerns the
peak value of the contact force, it increases with λ (and thus with γ) (Fig. 6.16c).
The static displacement of the mass (yellow squares in Fig. 6.16b) decreases with λ
(and thus with γ).

Compared to the case where γ is kept fixed (Fig. 6.9), no secondary resonances
were observed. As for γ = 5, also when γ/λ = 5, it is possible to identify a value
of λ, beyond which the jump phenomena, and thus the hysteresis, occur. For this
δ0 value it is λH ' 2.6. Furthermore, as already observed for γ = 5, also in this
case, since δ0 < δ0c, the introduction of the obstacles, modifies, regardless of λ, the
response of the system also in the frequency range β >

√
2 and the reduction of the

isolation frequency interval, compared to the linear case, increases as λ increases.

It is worth noting that, although each PRC shown in Fig. 6.16 corresponds
to a λ-γ pair which satisfies the relationship 6.5, it is possible to identify a pair
which can be considered preferable to the others. This is the λ-γ pair at which
the peak value of the acceleration shows a minimum, that is λopt ' 1 and γopt ' 5
(thick red curve in Fig. 6.16a). In this situation, in addition to the reduction of the
peak acceleration, which is also lower than the free flight condition (η∗a < 1), also a
significant reduction of both the peak value of the displacement of the mass, and of
the static displacement, was observed. Furthermore, the acceleration becomes lower
than that of the ground for β > βc ' 1.9 (green triangle in Fig. 6.16a).

In Fig. 6.17 the comparison between three of the considered λ-γ pairs is made in
terms of force-displacement cycles at steady-state resonance condition, referring to
the mass (Fig. 6.17a) and to the bumpers (Fig. 6.17b) respectively. In particular, in
addition to the gray curve, which in Fig. 6.17a represents the free flight condition,
the blue, red and black curves refer to the λ-γ pairs (0.5, 2.5), (1, 5) and (2, 10)
respectively. This figure is qualitatively similar to Fig. 6.14, in which all the curves
are characterized by the same value of γ. The difference is that in Fig. 6.17 each
curve corresponds to a λ-γ pair which satisfies the relationship γ/λ = 5 (τr = 1).
Despite this, for λ = λopt = 1 and γ = γopt = 5 (red curve), the maximum inertia
force (and thus the maximum absolute acceleration of the mass), shows a minimum.
Compared to Fig. 6.14b, instead, for this λ-γ pair the maximum contact force does
not show a minimum. As concerns the displacement of the mass and the deformation
of the bumpers, the considerations made for γ = 5 apply also in this case.

By repeating the analysis also for other values of δ0, in the range 0 ≤ δ0 ≤ 1 and
for 0.01 ≤ λ ≤ 10, always assuming ξ = 0.1 and γ/λ = 5, the contour maps shown
in Fig. 6.18 were obtained. In particular, in Figs. 6.18a-d the contour maps of the
peak values of the absolute acceleration of the mass (η∗a), the relative displacement
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Figure 6.17. Force-displacement cycles (ξ = 0.1, γ/λ = 5, δ0 ' 0.066) in steady-state
resonance condition (β = βR(λ)), without obstacles (free flight, NB, gray line), and for
λ = 0.5, γ = 2.5 (blue line), λ = 1, γ = 5 (red line) and λ = 2, γ = 10 (black line): a
mass; b bumpers.

of the mass (η∗d), the contact force (η∗F) and the deformation of the bumpers (η∗B)
respectively, are represented. Fig. 6.18e and Fig. 6.18f, instead, show the contour
maps of the resonant frequency βR and of the excursion of the static displacement
ηd,st respectively. The use of logarithmic scale for the λ axis allows to see better the
evolution of the selected quantities in the range of small stiffness ratios.

From Fig. 6.18a it can be observed that, in most cases (λ − δ0 pairs), the
occurrence of the impact against the obstacle causes an increase of the peak value
of the acceleration compared to the free flight condition (η∗a > 1). However, for
small values of λ (λ < 10) and for δ0 < 0.8 the peak value of the acceleration,
despite the occurrence of impact, can be lower than in free flight condition (η∗a < 1).
The contour level corresponding to η∗a = 1 is highlighted with a thick black line.
For each δ0 value in the range 0 ≤ δ0 < 0.8, it is possible to identify the λ-γ pair
corresponding to the minimum peak value of the acceleration. The locus of the λ
values corresponding to this condition (λopt) is represented with a thick red curve.
It can be observed that the minimum occurs for gradually smaller values of λ as δ0
increases. For δ0 ≥ 0.8, instead, the peak value of the acceleration is always greater
than in free flight condition (η∗a > 1) and it increases with λ.

The thick blue line represents the locus of the values of λ, denoted as λH, beyond
which, for a given δ0 value, the jump phenomena, and thus the hysteresis, occur. It
can be observed that while in the two limit cases (δ0 = 1 and δ0 = 0), the hysteresis
never occurs, for 0 < δ0 < 1, λH decreases as δ0 decreases, reaching the lower
values (λH ' 1) for 0.3 < δ0 < 0.5, then it starts to increase again as δ0 further
decreases. It can be noted that, for each δ0 value, λopt < λH, meaning that in the
condition corresponding to the minimum peak value of the acceleration of the mass
the hysteresis never occurs.
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Figure 6.18. Contour maps of: a η∗a ; b η∗d; c η∗F; d η∗B; e βR; f ηd,st for ξ = 0.1, γ/λ = 5,
0.01 ≤ λ ≤ 10 and 0 ≤ δ0 ≤ 1. The black curve highlights the contour level corresponding
to a unit value of η∗a . The red, blue and green curves represent the values of λopt, λH
and λc respectively, for each δ0 value.
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Finally, the thick green curve represents the locus of the values of λ, denoted as
λc, beyond which, for a given δ0 value, the occurrence of impact causes a modification
of the system response, compared to the free flight condition, also for β >

√
2. It

can be observed this curve tends to an asymptotic value as λ increases. For δ0 & 0.3
(above the upper dashed horizontal line), since there are no intersections between
the green curve and the horizontal line corresponding to a constant gap (λc > 10),
the response will be modified, due to the occurrence of impact, only in the frequency
range β <

√
2. On the contrary, for δ0 < δ0c ' 0.1915 (below the lower dashed

horizontal line) the response will be modified also for β >
√

2 regardless of λ. For
δ0c ≤ δ0 . 0.3 (between the two dashed horizontal lines), the isolation frequency
range will be modified, compared to the free flight condition, only if λ > λc (on
the right of the green curve). It is worth noting that, compared to the case γ = 5
(Fig. 6.12), the green curve is much flatter and the threshold value of the gap has
been lowered from about 0.67 to about 0.3. Consequently, the gap range in which
the isolation frequency interval is not modified, compared to the linear case (absence
of intersections between the green curve and the horizontal line δ0 = constant), has
significantly expanded.

The curves corresponding to η∗a = 1 (black curve), λopt (red curve), λH (blue
curve) and λc (green curve) were reported in all the contour maps in Fig. 6.18.

As concerns the peak value of the excursion of the relative displacement of the
mass (Fig. 6.18b) , it is always lower than in the free flight condition (η∗d < 1). It
decreases as δ0 decreases, for a given λ value, and decreases as λ increases, for a
given δ0 value. In the latter case, the extent of the reduction decreases as λ increases
(the contour lines tend to become horizontal).

From Fig. 6.18c it can be observed that the peak value of the excursion of the
contact force η∗F increases with λ, for a given δ0 value. For a given value of λ, for
example λ = 2, as δ0 decreases, η∗F increases, reaches a maximum and then starts to
decrease.

As concerns the peak value of the excursion of deformation of the bumpers
(Fig. 6.18d) , it decreases with λ, for a given δ0 value, becoming particularly small
for large values of the stiffness ratio. For a given value of λ, for example λ = 2, as
δ0 decreases, η∗B increases, reaches a maximum and then starts to decrease.

As concerns the resonant frequency (Fig. 6.18e) it varies between 0.99 and about
4, and the greater values are reached for quite small dimensionless gaps. It increases
with λ, for a given δ0, and it increases as δ0 decreases, for a given λ value.

Finally, regarding the excursion of the static displacement of the mass, Fig. 6.18f
shows that for δ∗0 ≤ δ0 ≤ 1 it remains equal to 0.199 independently of δ0 and λ,
whereas for 0 ≤ δ0 < δ∗0 the static displacement decreases as δ0 decreases, for a given
λ value, and as λ increases, for a given δ0 value. In the latter case, the extent of the
reduction decreases as λ increases (the contour lines tend to become horizontal).
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The case λ = λopt

Let’s now focus the attention on the condition corresponding to the minimum
peak value of the acceleration of the mass (λ = λopt(δ0)), at which furthermore no
hysteresis occurs (λopt < λH). In this condition, the trends of the characteristic
values of β with the dimensionless gap δ0 are shown in Fig. 6.19a. In particular,
the β1 and β2 values are represented with a red and a blue line respectively, the
black line corresponds to the resonant frequency βR, while the green line refers to
βc. While the values of β1 and β2 depend only on ξ and δ0 (Sect. 6.3), βR and βc
also depend on λ and γ. This figure allows to highlight some aspects related to the
β values, not observable in the contour maps (Fig. 6.18).

From Fig. 6.19a it can be observed that βR (black curve), starting from βR =
βRd ' 0.99 for δ0 = 1 (free fight condition), increases as δ0 decreases, reaching its
maximum value (βR ' 1.7) for δ0 = 0. This can be seen also from Figs. 6.19b-e, in
which, for some selected values of δ0, the PRCs of ηa (upper row) and ηd (lower row)
are shown, considering both the free flight condition (black curve) and the condition
corresponding to the minimum peak value of the acceleration (red curve). In these
figures, the resonances are highlighted with black dots.

As concerns β1 (red curve in Fig. 6.19a) and β2 (blue curve in Fig. 6.19a), that
is the frequencies which delimit the interval in which impact surely occurs due
to geometric reasons, they coincide (β1 = β2 = βRd ' 0.99) for δ0 = 1 (free fight
condition) and then increasingly diverge as δ0 decreases, with β1 < βRd and β2 > βRd.
For δ0 ≤ δ∗0 ' 0.199, impact occurs immediately (β1 = 0). For 0 ≤ δ0 < δ∗0 impact
still occurs from β = 0, but, compared to the case δ0 = δ∗0 , the equation R(ξ, β) = δ0
admits only one solution (β2, blue curve). Finally, when the bumpers are initially
in contact with the mass (δ0 = 0), impact occurs for each β value (the equation
R(ξ, β) = δ0 does not admit roots). Since λopt < λH, impact will not occur for
β < β1 nor for β > β2. In Figs. 6.19b-e these frequency values are represented
respectively with a cyan diamond and a cyan circle. These two symbols are both
visible for δ0 = 0.3 (first column, Fig. 6.19b), whereas only β2 (cyan circle) appears
for δ0 = δ0c ' 0.1915 (second column, Fig. 6.19c) and for δ0 = 0.03 (third column,
Fig. 6.19d). For δ0 = 0 (fourth column, Fig. 6.19e), neither is present.

Referring now to the frequency value beyond which, when impact occurs, the
amplitude of the acceleration of the mass becomes lower than the amplitude of the
ground acceleration, denoted as βc and represented with a green line in Fig. 6.19a
(and with a green triangle in the PRCs, Figs. 6.19b-e), it is possible to identify two
gap ranges, namely δ0c < δ0 ≤ 1 and 0 < δ0 < δ0c.

� For δ0c < δ0 ≤ 1 (see also Fig. 6.19b, corresponding to δ0 = 0.3), βc =
√

2, meaning
that, in the presence of obstacles, the frequency interval in which ηa < ηa|β=0
(highlighted in green) is the same as in the linear case (free flight condition) and,
furthermore, β2 <

√
2. Consequently:

• for 0 ≤ β < β1 impact does not occur and thus the system behaves like a linear
system; furthermore, ηa > ηa|β=0

• for β1 ≤ β ≤ β2 impact surely occurs and it is still ηa > ηa|β=0
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Figure 6.19. a Trends of the characteristic β values (β1: red line, β2: blue line, βR: black
line, βc: green line) with the dimensionless gap δ0 in the condition corresponding to the
minimum peak value of the acceleration of the mass (ξ = 0.1, γ/λ = 5 and λ = λopt).
The colored areas represent different situations which can occur in the nonlinear system
when β >

√
2, compared to the free flight condition, as shown also in the lower part

of the figure (b-e), where for selected values of δ0, the PRCs of ηa (upper row) and
ηd (lower row) referring to both the free flight condition (black line) and the condition
corresponding to the minimum peak value of the acceleration (red line) are represented.
The colored symbols represent the location of the characteristic β values (β1: cyan
diamond, β2: cyan circle, βR: black circles, βc: green triangle) and the yellow squares
represent the values of ηa and ηd for β = 0.
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• for β2 < β < βc impact does not occur (since λopt < λH) and thus the system
behaves like a linear system; but it is still ηa > ηa|β=0

• for β ≥ βc impact does not occur and thus the system behaves like a linear
system; furthermore, ηa < ηa|β=0 (this frequency interval is highlighted with a
green area in Fig. 6.19a and with an horizontal green line in Fig. 6.19b).

� For δ0 = δ0c (see also Fig. 6.19c), it is β2 = βc =
√

2 (the blue and the green
curves in Fig. 6.19a intersect, and the cyan circle and the green triangle in Fig. 6.19c
overlap). Consequently:

• for 0 ≤ β <
√

2 impact surely occurs and it is ηa > ηa|β=0

• for β ≥
√

2 impact does not occur (since λopt < λH) and thus the system
behaves like a linear system; furthermore, ηa < ηa|β=0 (this frequency interval
is highlighted with a green area in Fig. 6.19a and with an horizontal green line
in Fig. 6.19c).

� For 0 < δ0 < δ0c (see also Fig. 6.19d, corresponding to δ0 = 0.03), βc >
√

2 and,
furthermore, β2 > βc. Consequently:

• for 0 ≤ β < βc impact surely occurs. Compared to the linear case (free flight),
when impact occurs, for

√
2 ≤ β < βc, it is ηa > ηa|β=0. The amplitude of

this frequency interval, highlighted with a yellow area in Fig. 6.19a and with
an horizontal yellow line in Fig. 6.19d, increases as δ0 decreases

• for βc < β ≤ β2 impact still occurs but now it is ηa < ηa|β=0, meaning that,
the amplitude of the acceleration of the mass is lower than the amplitude of
the ground acceleration, but it is still greater than the acceleration in free
flight condition. The amplitude of this frequency interval, highlighted with a
magenta area in Fig. 6.19a and with an horizontal magenta line in Fig. 6.19d,
increases as δ0 decreases

• for β > β2 impact does not occur (since λopt < λH) and it is ηa < ηa|β=0,
and thus the system behaves like a linear system (this frequency interval is
highlighted with a green area in Fig. 6.19a and with an horizontal green line
in Fig. 6.19d).

� For δ0 = 0 (see also Fig. 6.19e), impact occurs for each β value and βc reaches its
maximum value (βc ' 3). Consequently:

• for 0 ≤ β < βc impact surely occurs. Compared to the linear case (free flight),
when impact occurs, for

√
2 ≤ β < βc (frequency interval highlighted in yellow),

it is ηa > ηa|β=0

• for β ≥ βc impact still occurs but now it is ηa < ηa|β=0, meaning that, the
amplitude of the acceleration of the mass is lower than the amplitude of the
ground acceleration, but it is still greater than the acceleration in free flight
condition (frequency interval highlighted in magenta).



6.5 Closing remarks 181

By comparing the PRCs in free flight condition (black curves) and those associated
with the occurrence of impact (red curve) at the same frequency, it can be observed
that in some frequency ranges the response (both displacements and accelerations),
when impact occurs, is lower then in free flight condition, in other instead is greater.

Based on these considerations, although, at δ0 = 0 we have the lowest peak values
of acceleration, displacement and the lowest values of static displacement (yellow
dots), this gap value is characterized by the increased erosion of the frequency range
in which isolation occurs in the linear case (the extent of the erosion is highlighted
in yellow in Fig. 6.19) and furthermore, for β > βc, the response is always greater
than in the free flight condition.

In order to limit the erosion of the isolation frequency range, compared to the
linear case, it would be appropriate to consider higher (but not too much) values of
δ0, accepting higher peaks values of both the acceleration and the displacement of the
mass, the contact force, the deformation of the bumpers and the static displacement.

6.5 Closing remarks

In this chapter, the effect of the introduction of deformable and dissipative obstacles
(bumpers), to limit the displacement of a base-isolated SDOF system, compared to
the free flight condition, was investigated through numerical parametric analyses.
The study of the nonlinear dynamic behavior of the system is necessary to get some
indications on how to guide the system response in order to reach specific objectives.

The selected response quantities are the absolute acceleration and the relative
displacement of the mass, the contact force and the deformation of the bumpers.
In addition to these, some considerations regarding the resonant frequency and the
static displacement of the mass were also made.

By fixing the damping ratio and the dissipative capabilities of the bumpers, the
results showed that the occurrence of the impact against the bumpers can significantly
modify the system response, depending on the values of the dimensionless gap and
of the stiffness ratio, both for β <

√
2 and β >

√
2. In particular, while the peak

value of the displacement of the mass is always reduced compared to the free flight
condition, the peak value of the acceleration in general is increased, except for small
values of both the stiffness ratio and the dimensionless gap, for which the peak
acceleration can be lower compared to the free flight condition.

Referring to these ranges of parameters, it was observed that, for each value of
the dimensionless gap, it is possible to identify a condition preferable to the others
at which the envelope of the values of the acceleration in resonance condition shows
a minimum. This occurs, regardless of the dimensionless gap, when the stiffness
ratio and the damping ratio, which define the mechanical properties of the bumpers,
are such that the relaxation time is about 1. In this condition the bumpers, on
the one hand, have enough time to recover their deformation, after the detachment
from the mass, by dissipating energy and, on the other, they do not remain inactive
because impact practically occurs immediately after recovery. In the condition
corresponding to the minimum value of the acceleration in resonance neither jumps
nor hysteresis occur, and in addition to the minimum value of the acceleration in
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resonance condition, also a significant reduction of the displacement was observed.
To this is also added the reduction of the static displacement for small gaps.

Furthermore, for a given gap, among all the pairs of stiffness ratio and damping
ratio that correspond to a unitary relaxation time, it is possible to identify one at
which the maximum acceleration in resonance shows again a minimum.

In general, the results showed that, with reference to the condition corresponding
to the minimum value of the acceleration in resonance, the smaller the gap, the
greater the reduction of the peak values of both the displacement and the acceleration
of the mass and of the static displacement, compared to the free flight condition.

However, it would be preferable not to reach too low values of gap in order not
to alter, or alter to a limited extent, the system response for β >

√
2, that is in the

frequency interval of interest for the isolation in the linear case, accepting higher
values in resonance.

In conclusion, the obtained results showed that the occurrence of impact, de-
pending on the values of the parameters, can modify the system response, compared
to the free flight condition, both for β <

√
2 and β >

√
2. By properly selecting

the parameters which characterize the obstacles, it is possible to effectively reduce
not only the response (displacements and accelerations) in resonance condition,
compared to the absence of obstacles, but also the static displacement, maintaining
unaltered the frequency interval of interest for the isolation (β >

√
2).

With regard to the future developments of this work, there is the intention to
extend the study considering other types of excitation (earthquakes, white noise,
impulsive force). Furthermore, it would be interesting to confirm the obtained results
through experimental tests.
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Chapter 7

Conclusions

The subject of this Ph.D. thesis was inspired by the practical problem of large
horizontal seismic-induced displacements in base-isolated structures, which, on the
one hand, can damage the isolation system itself, and on the other, can lead to
pounding with surrounding moat walls or adjacent structures, if the available seismic
gap is not sufficient. This thesis starts from the theoretical and experimental
exploratory study conducted by Andreaus, De Angelis et al. It aims to investigate
in a more targeted and circumscribed way some of the aspects emerged from this
exploratory study.

The problem was studied, both experimentally and numerically, considering a
Single-Degree-Of-Freedom (SDOF) system with two-sided symmetric deformable
and dissipative constraints (bumpers), excited at the base by a step-wise forward
and backward sine-sweep signal. With the aim of mitigating the response of the
system, thinking both of displacements and accelerations, as a first step, extensive
parametric experimental and numerical analyses were carried out to investigate the
influence of the fundamental parameters which characterize the problem on the
system response. The continuous interaction between experimental and numerical
investigations is one of the elements characterizing the study conducted during the
doctoral course.

Shaking table tests were carried out on a small-scale physical model, using a rich
sensor apparatus (accelerometers, displacement transducers, impact load cells), and
considering three values of peak table acceleration A, different gap amplitudes G,
and four bumpers B. In particular a number of gap amplitudes, going from large to
small positive up to negative, were investigated. Furthermore, the selected bumpers
allowed to investigate different types of obstacle, ranging from very soft to quite
rigid. Starting from the experimental results, some of the scenarios which can occur
in the system response, varying the considered parameters (A, G, B), were identified
and described. These scenarios were classified based on the characteristics of the
forward and backward Pseudo-Resonance Curves (PRCs) of normalized excursion of
absolute acceleration and relative displacement of the mass, assuming as reference
case the absence of bumpers (free flight condition). The identified scenarios were
subsequently investigated in more detail resorting to phase portraits, Fourier spectra
and time histories in steady-state condition.
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The experimental investigations have been joined by numerical analyses per-
formed considering a relatively simple model and using a Matlab code, specifically
created for this purpose, which made it possible to carry out extensive parametric in-
vestigations. In the numerical model, described in terms of dimensionless parameters,
both the damper and the bumpers where modeled with a viscoelastic law, retaining
the other sources of nonlinearity, namely the existence of clearances, the unilaterality
of the contact and the occurrence of impact, which causes abrupt changes of stiffness
and damping at the contact time. This model was therefore defined as Simplified
Nonlinear Model (SNM) and its parameters were identified based on the experimental
data. The adoption of a soft impact model allowed to describe the deformation and
the recovery of the bumpers, otherwise not observable by resorting to the coefficient
of restitution. The introduction of suitable dimensionless parameters (δ0, λ and γ)
allowed to generalize the results, releasing them from the values assumed by the
individual involved physical quantities (A, G, B). Due to the adopted normalization,
the effect of the input was taken into account indirectly through the damping ratio
and the dimensionless gap. Despite its relative simplicity, the SNM has proven to
be able to reproduce satisfactorily the experimental results. For this reason, it was
used to deepen the study of the scenarios extending the range of investigation, thus
considering values of the parameters not investigated in the experimental tests.

A study on the role played by the damping ratio, which, due to the adopted
normalization, influences both the response and the input, allowed to make prelim-
inary considerations that guided further numerical in-depth investigations on the
response scenarios. The numerical study, despite the relative simplicity of the model,
allowed to highlight the existence of a wide variety of behaviors and phenomena.
Decreasing the dimensionless gap, gradually more complex and varied scenarios,
characterized by the presence of the primary resonance with right hysteresis and also
by the occurrence of different types of secondary resonances in the low frequency
range (with right or left hysteresis or of non-regular type), affecting gradually wider
frequency ranges, were observed. Each scenario was investigated resorting to phase
portraits and Fourier spectra and, in some cases, further analyses varying the initial
conditions, with the construction of basins of attraction, were carried out. Within
each scenario, homogeneous frequency intervals, characterized by similar features in
terms of number (single solution, coexisting solutions or pair of solutions) and types
of limit cycles (periodic, quasi-periodic or chaotic), were identified. The occurrence
of the (primary and secondary) grazing phenomenon, and its relationship with some
of the observed scenarios, was also highlighted.

The most complex scenarios were noticed for values of the gap smaller than
those considered in the experimental tests. For this reason, in order to investigate
the possibility to experimentally regain these complex scenarios, a new campaign
of experimental tests was designed. The new tests investigated in particular small
positive, null and negative values of the gap between mass and bumpers. The
negative gaps were realized by slightly compressing the bumpers against the mass,
causing an initial pre-strain/pre-stress state in the shock absorbers. For positive
values of the gap, the experimental results confirmed the numerical predictions, with
gradually more complex scenarios, characterized by the occurrence of secondary
resonances in the low frequency range, as the gap decreases. At the secondary
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resonances, the occurrence of internal loops, intersecting the obstacles, in both the
force-displacement cycles and the phase portraits, was observed. Decreasing the
frequency ratio, the number of internal loops increases, and consequently also the
number of impacts per forcing cycle between the mass and the bumpers. At the
approximatively zero-gap configuration the situation returns to be smooth, without
jumps and hysteresis, although the behavior is still nonlinear. Moving from positive
to small negative gaps, through the zero-gap configuration, a transition from a
hardening-like (primary resonance with right hysteresis) to a softening-like (primary
resonance with left hysteresis) behavior was observed. While for positive gaps, the
stiffness change is caused by the occurrence of impact between the mass and one
of the two bumpers, in a dual manner, for small negative gaps, it is caused by the
detachment from one of the bumpers. Further increases in the absolute value of the
negative gap, beyond a certain threshold value, since the mass cannot detach from
the bumpers during its motion, lead only to an increase in the initial pre-stress and
pre-strain state of the bumpers, without significantly affecting the mass (acceleration
and displacement) response.

The study of the scenarios enabled to highlight interesting aspects related to
the nonlinear non-smooth response of the vibro-impact SDOF system. At the same
time, it made it possible to make considerations about vibration control. The
intimate link between the study of the nonlinear response and the control problem is
another aspect that characterizes this Ph.D. thesis. Numerical parametric analyses,
carried out varying the bumpers’ parameters (position and mechanical properties),
allowed to investigate the effect of the introduction of the obstacles, compared
to the free flight condition, and to highlight possible issues associated with the
occurrence of impact. The results of the analyses showed that, by properly selecting
the parameters which characterize the obstacles (δ0, λ and γ), it is possible to guide
the system’s response in order to reach specific objectives, avoiding some scenarios
and favouring others, and thus exploiting the occurrence of impact with beneficial
effects. It was found that, for a given value of the gap, by choosing the stiffness
and damping properties of the bumpers (λ and γ) such that the relaxation time
is about 1 (that is γ/λ ' 1/(2ξ)), it is possible to minimize the peak value of the
absolute acceleration of the mass, compared to other combinations of the obstacles’
mechanical properties. Furthermore, this choice allows to avoid the jump phenomena,
and thus the hysteresis (multistability). The results also showed that, by decreasing
the dimensionless gap, in addition to reducing the mass displacement, it is also
possible to mitigate its acceleration, compared to the free flight condition. To this is
also added the reduction of the static displacement for small gaps. Gradually smaller
gap values however cause a greater reduction of the frequency band of isolation,
compared to the linear case. Consequently, in order not to alter, or alter to a limited
extent, this frequency range, it would be preferable not to reach too small values of
the gap, accepting higher values of the response in resonance.



186 7. Conclusions

Future developments The results obtained in this Ph.D. thesis provide the start-
ing point for possible future developments. First of all the study could be extended,
both experimentally and numerically, taking into account also the earthquake exci-
tation. The SNM model has the potential to provide more interesting information,
and therefore it can still be used to conduct further insights related to issues arising
during the doctoral course. It would be interesting to investigate, for example,
the influence of damping. Subsequently, to fully capture, both qualitatively and
quantitatively, the response of the system, the numerical model, already satisfactory
in this simplified form, could be improved, including also the nonlinearities associ-
ated with the behavior of the damper and the bumpers. Finally, starting from the
results obtained with the SDOF system, the transition to a Multi-Degree-Of-Freedom
(MDOF) system could be addressed, in order to investigate also the effect of the
deformation of the structure and of higher modes on the system response when
impact occurs.
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