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Abstract: This paper addresses the problem of describing the spread of COVID-19 by a mathematical
model introducing all the possible control actions as prevention (informative campaign, use of masks,
social distancing, vaccination) and medication. The model adopted is similar to SEIQR, with the
infected patients split into groups of asymptomatic subjects and isolated ones. This distinction is
particularly important in the current pandemic, due to the fundamental the role of asymptomatic
subjects in the virus diffusion. The influence of the control actions is considered in analysing the
model, from the calculus of the equilibrium points to the determination of the reproduction number.
This choice is motivated by the fact that the available organised data have been collected since from
the end of February 2020, and almost simultaneously containment measures, increasing in typology
and effectiveness, have been applied. The characteristics of COVID-19, not fully understood yet,
suggest an asymmetric diffusion among countries and among categories of subjects. Referring to
the Italian situation, the containment measures, as applied by the population, have been identified,
showing their relation with the government’s decisions; this allows the study of possible scenarios,
comparing the impact of different possible choices.

Keywords: epidemic ODE model; COVID-19 spread in Italy; system control and identification

1. Introduction

In this paper, the spread of COVID-19 is discussed with a particular focus on the
application of the containment measures, referring to the Italian situation.

Officially defined as a pandemic in March 2020, the disease induced by the SARS-CoV-
2 virus, called COVID-19, has influenced and changed human life all over the world [1].
Some of its peculiarities represent a complication in the identification of the epidemic
outbreaks; one of them is the significant number of asymptomatic subjects, able to infect
other people. An additional interesting characteristic of COVID-19 is the asymmetric
increase in the number of hospitalised patients with age; in fact, while for young people
the virus is almost harmless, for the elderly population, especially in association with
pre-existing pathologies, it is extremely dangerous; the mean age of patients dead in
Italy for COVID-19 is 81, counting more than 105 deaths and over than 3 million infected
patients [2–4]. Moreover, the reasons for the asymmetric increase in cases and case fatality
rate among countries are still not evident [5]; after a deep analysis of various factors that
could justify the differences among countries, it seems that the density of the population
plays an important role, suggesting a fast implementation of active control measures (as
quarantine, the tracking of infections and testing) and a low case fatality rate.

The virus spreads through individuals’ movements and the most effective containment
measure is the reduction in contacts among people, from mild public recommendations to
strict lockdowns, with the use of masks everywhere; no specific medication is available
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and in severe cases, oxygen support is required [1]. For a fast recognition of the infection
(and therefore to prevent the spread of the virus), suitable swab tests are performed on
subjects who are suspected to have had a dangerous contact or before entering the hospital
or starting some activities. For example, a swab test campaign has been promoted by some
Italian universities for their students [6].

Despite all the containment measures applied, three epidemic waves can be recognised
after a year of pandemic and to date, the most dangerous has been the second one, in
November 2020.

In a few months, some vaccines have become available and countries are trying to
immunise their population as quickly as possible; in fact, after some initial problems with
the supply of doses, the vaccination campaign has the ambition of immunising more than
70% of the European population by the end of next summer.

Since the beginning of the pandemic, many researchers have focused their works
on studying the evolution of the virus spread, trying to predict future trends in the num-
ber of infected patients, in order to adequately set up suitable containment measures.
Nevertheless, the unknown diffusion of asymptomatic subjects makes the challenge very
difficult [7,8]; a possible estimation of the number of non-diagnosed subjects has been
obtained by testing entire (small) communities, such as the case of the Italian city of Vo’,
one of the first studies of this kind [7], or by means of serological test campaign, as the
one conducted in Italy during the period May–July 2020 [9], which evidenced a significant
number of subjects (a mean value of 2.5% of the population, not equally distributed in
the country) that were infected by SARS-CoV-2 during the first months of the pandemic
without knowing.

Some papers have been devoted to the analysis of real data trying to determine
the modalities of the spread among nations, as in the early work [10], or in a homo-
geneous population [11–14]. In the latter paper, a quite rich model composed by eight
different classes is proposed: in addition to the usual susceptible (S), exposed (E), infec-
tious with symptoms (I) and recovered (R) compartments, there are also the groups of
pre-symptomatic infectious (A), the hospitalised (H), the quarantined susceptible (Sq), the
isolated exposed (Eq) and the isolated infected (Iq) compartments.

Due to the specificity of the virus, interesting works have focused on age-compartmental
models, as in [15], where the role of quarantined subjects is emphasised, referring in par-
ticular to residential care homes, or as in [16], in which the initial contagion step was
distinguished among age-classes.

Sometimes, previously studied models for other epidemic emergencies are adapted
to the specificity of COVID-19, like in [17], where a short time forecast is provided, on
the basis of the few data initially available. On the other hand, the current COVID-19
emergency has been the inspiration for a more general analysis as in [18], in which the
problem of how to face the next wave of infectious disease is studied by analysing the
global symmetries of the system under suitable time rescaling. It shows the importance of
controlling the arrival of the next wave when the number of infections grows linearly, i.e.,
during the period between waves.

As already noted in the cited papers, the model structure that appears suitable to
describe the COVID-19 evolution inside a population is the SEIR one (referring to the
four classes of subjects in which the population is partitioned: Susceptible–Exposed–Infected–
Removed), enriched with the classes specific for this emergency, like the asymptomatic
individuals and the quarantined ones.

All the proposed models must consider the containment measures applied since the
beginning of the pandemic, including social distancing, the use of masks, medication, the
swab test, informative campaigns and the vaccination. In [19], the importance of using
masks is studied, even in the case of non-totally effective protection; it models both the
inward and outward efficiency of the mask, disaggregating the population variables into
those that do and do not use masks. The results show how the use of masks decreases the
effective transmission rate, especially with other interventions, such as social distancing
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and hygienic measures. In particular, social distancing and informative campaigns are
discussed in [20,21]. The social distancing measure is modelled by means of a nonlinear
function influencing the contact rate; numerical simulations show the impact of this specific
containment measure on the virus spread. The importance of general awareness in regard
to the dangers of COVID-19 infection was investigated in [21], in which the impact of the
media campaign is studied, along with the rapid testing; the class of susceptible individuals
is partitioned depending on the careful application of preventive behaviours, and the test
campaign was modelled by improving the transfer of subjects from the asymptomatic (and
dangerous) condition to the infected diagnosed one.

The identification of the model is therefore influenced by these actions, the conse-
quences of the governments’ choices and of personal behaviours; as previously mentioned,
the strict lockdown is the most effective action to contain the spread. Nevertheless, it cannot
be the solution for long periods, for both social and economic reasons; therefore, there
have been attempts to propose proper and balanced containment measures, depending
on the evolution of the pandemic [22]. It is worth noting that awareness of the impact of
the containment measures can also modify people’s behaviours and therefore the trend of
pandemic itself.

In this paper, starting from the model proposed in [23], the problem of identifying the
applied containment measures is faced, studying the model under the realistic condition
of the implementation of these actions since the very beginning of the health emergency.
The consequence is the possibility of identifying the restrictions as they were really applied
by the population and by the healthcare system, observing on one hand an increase in the
awareness of people in the application of social distancing (also depending on the specific
period under study) and, on the other hand, a general improvement in the capability of
the sanitary system to face the emergency. This identification, corresponding to a sort of
transducer of the government’s measures, is useful when one wants to predict what would
happen by applying the same kind of control measures already applied or a combination
of them.

The paper is organised as follows; in the second section, the mathematical model
was recalled and studied, determining the equilibrium points, the effective reproduction
number and discussing the identification of the containment measures by proposing a
suitable cost index. In the numerical results section, after showing the effectiveness of the
identification procedure as well as the fitting ability, interesting scenarios are studied.

2. Materials and Methods

In this section, the mathematical model proposed in [23] is enriched with the introduction
of the possible control actions, the test campaign, the quarantine, the medication and the
vaccination, as shown in Section 2.1. The model is studied in Sections 2.2 and 2.3, determining
the equilibrium points and proposing a stability analysis, calculating the expression of
the basic reproduction number and studying its relation with the equilibrium points. In
Section 2.4, the identification of the applied containment measures is proposed.

2.1. The Mathematical Model Proposed and Introduction of the Containment Measures

In the model adopted and briefly recalled in this subsection, all the typologies of
controls that can be put in place for containing the spread of COVID-19 and for the
reduction of its mortality are introduced. The state space dimension is kept as low as
possible to maintain the simplicity and immediacy of a SEIR model, but including those
classes specific to the main characteristics of COVID-19, thus allowing to determine the
effects of the controls introduced. The six-dimensional system proposed is:



Symmetry 2021, 13, 890 4 of 21

Ṡ = B− β(1− u2)SIu + bnQ + cnu5Q− au1S− dSS− vu6S (1)

Ė = β(1− u2)SIu − au1E− kE− dEE (2)

İu = kE− au1 Iu − h1 Iu − h2 Iu − dIu Iu (3)

İd = h1 Iu + h1(1− n)Q + c(1− n)u5Q− (γ + ηu3)Id

− dId(1− u4)Id (4)

Q̇ = au1(S + E + Iu)− bnQ− h1(1− n)Q− cu5Q− dQQ (5)

Ṙ = h2 Iu + (γ + ηu3)Id − dRR + vu6S (6)

where:

• S is the class of susceptible individuals;
• E is the class of infected patients in the incubation phase; they cannot infect other

subjects;
• Iu is the class of the infected patients without symptoms; they are infective and then

are responsible for the disease spread. They can remain asymptomatic for all the
illness course or can start to have some symptoms;

• Id is the class including the diagnosed infected patients which are isolated and then can-
not transmit the virus even if infective. Patients in this class are the ones that can receive
medical treatment both for the infection and for secondary diseases or complications;

• Q is the class of the suspected infected individuals which are temporarily isolated and
tested for positivity of the SARS-CoV-2, or simply quarantined for security reasons;

• R is the class of the recovered individuals, the ones which healed spontaneously or
after therapy, which are supposedly no longer infected.

The parameters introduced in (1)–(6) have been extensively described in [23]. The death
rates in each class are denoted by the d∗ terms. The constant rate B of new incoming individ-
uals was only added in the susceptible class, considering the negligible time of permanence
in the other classes with respect to the population growth. Parameter β is the contact rate.
The parameters k, h1, h2 and γ denote the natural transition rates between classes; b and
c are related to the results of the tests on the suspected cases in Q. More precisely, b is
the rate of return from quarantine of the supposedly healthy people, while c denotes the
rate of transition from Q to the class corresponding to the results of the test, healthy with
probability n = S(t)

S(t)+E(t)+Iu(t)
(test negative), or infected for the remaining 1− n, defined

according to the average time required for the tests.
As far as the control actions ui, i = 1, . . . , 6, are concerned with reducing the spread of the

virus and to take care of medical issues, respectively, the following functions are introduced:

• u1, with an efficacy coefficient a, which denotes the action aiming to stimulate or force
a test campaign on the population, even without any suspect of infection. The goal is
to recognise infected individuals as early as possible to reduce the contact rates;

• u2 models the isolation indications, aiming to reduce the interaction with other people.
This isolation acts on the factor β for the part responsible of the frequency of individual
contacts; it is bounded between zero and one, with u2 = 1 corresponding to an ideal
total individual isolation;

• u3 represents the therapy action devoted directly to counteract the virus by means of
antiviral drugs; the associated coefficient η denotes the effectiveness of the therapy;

• u4 is the therapy action aiming at reducing the side-effects, typically the induced
cardio–respiratory diseases. Its effect is introduced as a direct contribution to reduce
the mortality rate and it is bounded between zero and one, corresponding, respectively,
to no therapy and to the desirable condition of all individuals kept alive during the
course of the infection;
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• u5 models all the constraints (medical, political and economical) influencing the tests
policy and the consequent effects;

• u6 regards the vaccination strategy, possible since the end of 2020. The coefficient v
denotes the efficiency of the vaccination, depending on the individual response and
on the type of vaccine used.

2.2. Model Analysis

In this section, the qualitative analysis of the system behaviour is proposed, choosing
to include the control actions ui, i = 1, . . . , 6; the reason for this is that it can be assumed
that there is a lack of any containment measure only in the very first period of the epidemic,
until January 2020, when nobody, at least in Europe, was sufficiently aware of the danger
of the situation.

Aiming at the unified analysis in which all potentially active control actions are
naturally included in the system evolution, the following positions are assumed:

• ā(t) = au1(t)
• β̄(t) = β(1− u2(t))
• η̄(t) = ηu3(t)
• γ̄(t) = γ + ηu3(t)
• d̄Id(t) = dId(1− u4(t))
• c̄(t) = cu5(t)
• v̄(t) = vu6(t)

Moreover, for the sake of simplicity in the formulation, the following non-negative
functions are introduced:

• m1(t) = ā(t) + dS + v̄(t)
• m2(t) = ā(t) + k + dE
• m3(t) = ā(t) + h1 + h2 + dIu(t)
• m4(t) = bn + c̄(t)n
• m5(t) = bn + h1(1− n) + c̄(t) + d̄Q(t)
• m6(t) = dS + v̄(t)

The model analysis was performed, as usual, by assuming constant controls ui, which
correspond to constant values for mi; the equilibrium points are determined by equating the
second members of the Equations (1)–(6) to zero, that is, by using the notations introduced
above, by solving the system:

0 = B− β̄SIu + m4Q−m1S (7)

0 = β̄SIu −m2E (8)

0 = kE−m3 Iu (9)

0 = h1 Iu + (h1 + c̄)(1− n)Q− γ̄Id − d̄Id Id (10)

0 = ā(S + E + Iu)−m5Q (11)

0 = h2 Iu + γ̄Id − dRR + v̄S (12)

Observing that in absence of infection, n = 1 (being equal to 1 the probability of
having negative COVID-19 test), it is easily verified that the disease-free equilibrium (DFE),
always present, is given by

Pe
1 =

(
Se

1 Ee
1 Ie

u1 Ie
d1 Qe

1 Re
1
)T

=
(

Bm5
m4m6+d̄Qm1

0 0 0 Bā
m4m6+d̄Qm1

Bv̄m5
dR(m4m6+d̄Qm1)

)T
(13)

once the solution with E = Id = Iu = 0 is taken. Note that, as will be used later, when
n = 1, the following identity holds m4m6 + d̄Qm1 = m1m5 − ām4.



Symmetry 2021, 13, 890 6 of 21

A second equilibrium point:

Pe
2 =

(
Se

2 Ee
2 Ie

u2 Ie
d2 Qe

2 Re
2
)T (14)

the endemic one, can be found in (7)–(12). In particular, from (9) and (8), it can be obtained that:

Se
2 =

m2m3

kβ̄
(15)

Ee
2 =

m3

k
Ie
u2 (16)

By substituting in (11), it results:

Qe
2 =

ām2m3

kβ
+

ā
m5

(
m3

k
+ 1)Ie

u2 (17)

and Ie
d2 is obtained, as function of Qe

2, from (10):

Ie
d2 =

1
γ̄ + d̄Id

(h1 Ie
u2 + (1− n)(h1 + c̄)Qe

2) (18)

All these quantities, with the exception of Se
2, definitely depend on Ie

u2, and are well defined
once Ie

u2 is defined. Its expression is obtained from (7) by

Ie
u2 =

ām2m3m4 + kβ̄m5B−m1m2m3m5

β̄(β̄m2m3m5k− ām3m4 − ākm4)
(19)

This solution can be accepted only if positive; by substituting the definitions of mi,
i = 1, . . . , 5, it can be easily shown that the denominator is always positive, whereas the
sign of the numerator depends on the condition:

β̄kBm5

m2m3(m1m5 − ām4)
− 1 =

β̄kPe
1

m2m3
− 1 = R− 1 > 0 (20)

The meaning of the herein defined expressionR will be discussed in the next subsection,
when determining the Effective Reproduction Number [24].

As far as the analysis of the stability property of Pe
1 is concerned, the following result

can be stated.

Proposition 1. The disease-free equilibrium point Pe
1 is asymptotically stable if and only if:

R− 1 =
β̄kBm5

m2m3(m1m5 − ām4)
− 1 < 0 (21)

In fact, by writing the Jacobian of the controlled system (1)–(6) and using the intro-
duced notations with the mi quantities, it is obtained that:

J =



−m1 0 −β̄Se
1 0 m4 0

0 −m2 β̄Se
1 0 0 0

0 k −m3 0 0 0
0 0 h1 −(γ̄ + d̄Id) (1− n)(h1 + c̄) 0
ā ā ā 0 −m5 0
v̄ 0 h1 γ̄ 0 −dR

 (22)
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Due to the special structure of the Jacobian J, its characteristic equation evaluated in Pe
1

has two negative roots, −dR and −(γ̄ + d̄Id), found considering the sixth and the fourth
columns; the other roots are obtained from the four degrees polynomial:

P(λ) = λ4 + N3λ3 + N2λ2 + N1λ + N0 (23)

whose coefficients Ni, i = 0, . . . , 3 contain the defined quantityR previously introduced:

N3 = m1 + m2 + m3 + m5 (24)

N2 = m2m3(1−R) + (m2 + m3)(m1 + m5) + m1m5 − ām4 (25)

N1 = m2m3(1−R)(m1 + m5) + (m2 + m3)(m1m5 − ām4) (26)

N0 = m2m3(1−R)(m1m5 − ām4) (27)

To study the sign of the real part of the roots of the P(λ), Routh’s arguments are used [25];
first of all, it can be noted that, since mi > 0, i = 1, . . . , 6, it results that the sign of the Ni is
the same as 1−R, as it can be easily shown by substituting the definitions of mi, i = 1, 4, 5
in m1m5 − ām4, always positive. By applying Routh’s rule to P(λ), the sign of the two
quantities must be studied:

N3N2 − N1 N1(N2N3 − N1)− N2
3 N0 (28)

From the definitions (24)–(27), and substituting the expressions of mi, i = 1, . . . , 6, it can be
deduced that they are positive if 1−R > 0. Therefore, it is possible to conclude that in this
case, the disease-free equilibrium is stable. When the second equilibrium point exists, see
condition (20), the point Pe

1 becomes unstable.

2.3. The Effective Reproduction Number

As already stated, the model analysis is performed assuming constant controls, thus
obtaining the equilibrium points that depend on those values of the containment measures.
In the contest of coping with the pandemic, these actions are generally kept constant for a
period of at least two weeks, to be able to see their effects and provide suitable adjustments
of the containment measurements, if needed. In this sense, both Pe

1 and Pe
2 (when the latter

equilibrium point exists) depend on the applied controls, and therefore, on the period
during which the chosen actions are applied. The DFE, Pe

1 , in particular, has a special
meaning; if a population is in that condition by means of the (constant) control actions
introduced during a specific period and for the model parameters, and if the quantity 1−R
is positive, then the evolution of the population will remain near Pe

1 , without allowing
the spread of the epidemic. Referring to COVID-19 (and therefore assuming fixed model
parameters) and to the definition of R, a suitable application of social distancing (thus
acting on β̄), of swab tests and quarantine (thus acting on ā and c̄), medication (acting on
γ̄) and vaccination (control v̄) would lead the population to the DFE.

The quantity R introduced in (20) is related to the effective reproduction number, the
actual average number of secondary cases per primary case at calendar time t [26]. More
precisely, this indicator, when evaluated in absence of any control action (i.e., at the
beginning of the epidemic), is the well-knownR0, the basic reproduction number that can be
estimated from data or by using the next-generation matrix approach [24,27].

The introduction of the containment measures aims to reduce the incidence of the
epidemic; in this case, the effective reproduction number is an indicator of the epidemic
evolution and of the effectiveness of the applied control actions. Generally, it is determined
from data, that by using a statistical approach [28], or by adapting the previously cited next-
generation matrix approach, as proposed in [24,29,30]. The difference between the methods
proposed in the above-cited papers relies on the points in which the next-generation matrix
is evaluated; according to the approach in [30], the reproduction number will be herein
evaluated by using the disease-free equilibrium (13), which includes the vaccination, when
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possible, and the tests campaign, with all controls assumed constant when theR evaluation
is performed.

The computation starts by considering in the dynamics (1)–(6) the classes directly
involved in the spread of infection, E, Iu, Id and Q, and therefore only the Equations (2)–(5).
By using the notations with the mi, i = 1, . . . , 6 quantities, the reduced system (2)–(5)
may be written and enhance the contributions due the infection, F , and the ones due to
changing the health condition, V :

Ė
İu
İd
Q̇

 =


βSIu

0
0
0

−


m2E
−kE + m3 Iu

−h1 Iu − [(h1 + c̄)(1− n)Q] + (γ̄ + d̄Id)Id
−ā(S + E + Iu) + m5Q

 = F − V (29)

The variations of these vectors with respect to the variables E, Iu, Id and Q, evaluated in
the disease-free equilibrium, yield the matrices F and V, respectively:

F =
∂F

∂(E, Iu, Id, Q)

∣∣∣∣
P1

e

=

0 β̄S1
e 0 0

0 0 0 0
0 0 0 0

 (30)

and:

V =
∂V

∂(E, Iu, Id, Q)

∣∣∣∣
P1

e

=


m2 0 0 0
−k m3 0 0
0 −h1 γ̄ + dId 0
−ā −ā 0 m5

 (31)

Under these positions, the effective reproduction number is given by the dominant
eigenvalue of the matrix FV−1, given in this case by its {(1, 1)} element; its computation

easily yields the same expression defined in (20),R =
β̄kPe

1
m2m3

.
Therefore, also in the proposed approach that includes the control actions, it can be

deduced that if the effective the reproduction number R is smaller than 1, there exists a
unique equilibrium point, the disease-free equilibrium one that is stable; otherwise, the
equilibrium points are two and the disease-free one is no longer stable.

2.4. Containment Measures Identification

The approach adopted in this paper was to consider the model evolution influenced
by the application of the containment measures since the very beginning of the analysis;
this is reasonable as the data only started to be collected at the end of February 2020 with
the introduction of measures of increasing severity [1]. All the actions ui, i = 1, . . . , 6, are
assumed between 0 and 1. Note that for the controls, the value 0 corresponds to the absence
of any action, whereas 1 represents the maximum effort. The controls are multiplied by
factors representing the effectiveness of the control; therefore, the identification of the
containment measures is obtained once the evolutions of the quantities ā(t), β̄(t), γ̄(t),
d̄Id(t), c̄(t) and v̄(t) are determined. Note that the meaning of the evolution of β̄ is opposite
with respect to the corresponding one of u2: when the control u2(t) is maximum (ideally
equal to 1), the quantity β̄ has its minimum value (corresponding to the absence of contacts);
similar consideration holds for the control u4(t) and the quantity d̄Id(t).

The data that will be used for identification regard the Italian situation; they were
downloaded from the Civil Protection website [2]. More precisely, there are considered:

• The number of newly diagnosed infections IN
real(t) obtained considering the sum of

the variation of the number of infected patients, of the recovered and the deaths
between two consecutive days; IN

model(t) is the corresponding quantity evaluated from
the model;

• The number of positive patients Ireal corresponding to the Id ones of this model;
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• The number of subjects officially recovered Rreal from COVID-19, corresponding to:

RId(t) = (γ + ηu3(t))Id(t) (32)

• The number of patients deceased from direct effects of the virus—Dreal—corresponding
to the following function obtained from the model:

D(t) = dId(1− u4(t))Id(t) (33)

• The number of subjects vaccinated with the two doses Vreal(t) corresponding to the
quantity V(t) = v̄S(t) of the model.

The following cost index is proposed, aiming to fit the available real data, by minimiz-
ing the errors between measured quantities and the corresponding outputs of the model:

J (ā, β̄, γ̄, d̄Id , c̄, v̄) =
∫ t f

t0

[w1(IN
real(t)− IN

model(t))
2

+ w2(Ireal(t)− Id(t))2 + w3(Rreal(t)− RId(t))
2

+ w4(Dreal(t)− D(t))2 + w5(Vreal(t)−V(t))2]dt (34)

where the parameters wi, i = 1, . . . , 5, weight the relevance of each term in the optimisa-
tion procedure.

All the available information will be used to improve the numerical identification of
the quantities ā, β̄, γ̄, d̄Id , c̄, v̄. For example, it is well known that the vaccination campaign
only started in January 2021; therefore, in the first period, it could be assumed v̄ = 0.
Another possible simplification regards the relation between the two controls u3 and u4.
In Equation (4), the two contributions related to healing and to death are assumed to be
separated since they correspond to different therapy actions. Nevertheless, in some ways,
they refer to the same kind of resources, referring to the medication aspects; therefore,
for the sake of simplification, to better match the real data available, it can be reasonably
assumed that there is a relation among u3 and u4:

γ̄(t) = γ + ηu3(t) = h3u4(t) (35)

where parameter h3 is related to the rate of healing for infected patients. This implies that a
simplified choice for the cost index (34) can be assumed, leading to the identification of
ā, β̄, γ̄, c̄ up to the end of December 2020, with the addition of v̄ starting from January 2021.

3. Numerical Results

In the model introduced in Section 2, the parameters can be distinguished on the
basis of their dependence on the characteristics of the considered population or of those of
SARS-CoV-2. Difficulties in this system identification arise from different causes. One is
related to the real data collection; especially during the first period of the pandemic, when
the data were not collected as a consistent modality, not even in the same nation. Moreover,
the importance of retrieving some information was not evident since the beginning of the
emergency; also, the official communication of the updated numbers of infected patients
or of dead subjects was in some cases delayed, thus producing unexpected spikes, hardly
predictable, in the corresponding data evolution. Another difficulty in the identification is
related to the non-measurability of the important category on asymptomatic subjects (the
ones modelled in the Iu class) and consequently, of the total removed ones in R.

Moreover, it is worth stressing what inspired the approach of this work: that is, the
presence of control actions since the very beginning of data collection. During the period
considered, of March 2020–April 2021, different and complementary containment measures
were adopted by all governments all over the world, without coordination among nations,
at least at the very beginning.
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In the following, the main containment measures at the Italian national level are
summarised, indicating the period of application:

• From 23 February 2020 to 8 March 2020: introduction of increasing measures aimed at
containing the diffusion in the north of Italy;

• From 9 March 2020 to 25 April 2020: strict lockdown in the entire nation; all the
“non-essential” activities were suspended, distanced learning was introduced for both
schools and universities, and whenever possible, smart working was introduced.
It was possible to leave home only for emergencies. This period was called “Phase 1”;

• From 26 April 2020 to 10 June 2020: almost all activities started again, but it was not
possible to travel between regions. This period is “Phase 2”;

• From 11 June 2020 to 12 October 2020: it was the period with less restrictions, even
with the suggestion of preserving cautions; it was also allowed to travel, always
respecting social distancing; this was the “Phase 3”;

• From 13 October 2020 to 2 November 2020: introduction of increasing containment
measures common to all the nation with restaurants closed at 18:00 and a mandatory
use of masks also outside closed places;

• From 3 November 2020 to 21 December 2020: a curfew from 10 p.m. to 5 a.m. was
introduced; moreover, a classification mechanism was adopted, classifying each
region into three classes indicated by colours (yellow, orange, red) depending on
the diffusion of the virus and on the sanitary situation at territorial level. Briefly
speaking, in this phase of colours, the red condition corresponds to a strict lockdown,
with restriction in personal mobility also inside the cities; in the orange situation, it
was not possible to move among regions with bars and restaurant open only for take-
away. In the yellow regions, bars and restaurants were open until 18:00; teaching was
allowed at schools/universities with restrictions on the number of students allowed
in classrooms;

• From 22 December 2020 to 6 January 2021: the strategy based on the colours was
reinforced; all of Italy was at the orange level, but these became red on the day before
and after the 25 and 31 December and 6 January, respectively;

• From 7 January 2021 to 30 April 2021: the strategy with colours during the period 3
November–12 December was adopted with reinforced rules, making it more difficult
to pass from a higher danger level, red and orange, to the lower one, orange and
yellow, respectively.

This representation of the control actions applied by the Italian Government, as well
as their time scheduling, is of course simplified; the consistency of the evolutions of the
control actions identified will be discussed considering the real control actions.

As mentioned previously, some model parameters could be chosen on the basis of
medical information or related to the characteristics of the population, as can be seen in
Table 1 for the numerical values of the fixed model parameters and the corresponding
references. Note that the values referring to the medical characteristics of the disease must be
considered mean values, also depending on the generally healthy condition of the patient.

Table 1. Numerical values of the fixed model parameters.

Parameter Value Reference

k 1
4 [1,31]

h1
1
5 [31]

h2
1

21 [3]

h3
1

40 [32]

B 1.69× 103 [9]

dS = dE = dQ = dIu = dR 2.81× 10−5 [9]

b 1
14 [3]
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The other parameters of the model can be identified by minimising the cost
index (34) or a simplified version, if (35) is assumed, thus yielding the evolutions of
ā(t), β̄(t), γ̄(t) , c̄(t), v̄(t) and indirectly, of d̄Id(t). The corresponding non-controlled con-
stant values a, β, γ, c and dId(t) can be deduced, if needed, from the first values of the
quantities with the bar sign, recalling that the controls ui, i = 1, . . . , 6 are assumed between
0 and 1. By using the @Matlab software and the function fmincon, the fitting between real
data and the model output was performed. The minimisation of the cost index during
the period February–December 2020 was obtained, after a trial and error procedure, with
the following choice of the weights: w1 = 0.4, wi = 0.2, i = 2, 3, 4, with w5 = 0, being the
vaccination campaign not started at that time; from January 2021, the weights are chosen
as equal to w1 = 0.4, w2 = 0.2, w3 = w4 = 0.15, w5 = 0.1. In Figures 1–3, the evolutions
of the diagnosed infected patients, of the recovered individuals and of the dead subjects
are shown along with the corresponding real data; a good fit can be appreciated, in some
way overcoming the not completely satisfactory data collection of the first period of the
pandemic; in particular, in Figure 1, the three waves of pandemic can be noted, in April
2020, in November 2020 and March 2021. In Figures 4–8, the identified control actions are
shown; in each figures the dotted vertical lines correspond to the significant changes in the
adoption of the containment measures previously recalled. Particularly interesting is the
evolution of β̄(t) = β(1− u2(t)) in Figure 4: a general decrease in the evolution of β̄ can be
noted until July, due to the effects of the strict lockdown of Phase 1; then, an increase can
be noted until the middle of October, with the re-opening of schools and of many activities.
New increasing containment measures were then applied with the “phase of colours” start-
ing in November, thus obtaining a decrease in the values of β̄ until March. The evolutions
of ā and c̄ are quite similar, as shown in Figures 5 and 6, corresponding to an increase in
the capability of isolating subjects for a quarantine period and the improvements in the
swab testing, respectively, with two decreasing periods in June 2020 and December 2020.
As far as the γ̄ evolution is concerned as desirable, it has been increasing since the very
beginning of the pandemic, showing a general resilience capability in the sanitary system,
as shown in Figure 7. The vaccination action, represented by v̄, only started in January
2021; its evolution, to date over less than three months, shows an oscillatory increase until
the middle of February, and then an increasing trend, as shown in Figure 8. To evaluate
the goodness of the identification step, the evolutions of the percentage of the normalised
errors, in absolute values, indicated, respectively, with Error 1, Error 2 and Error 3, between
the real numbers of diagnosed infected patients, of recovered individuals and of deaths and
the corresponding quantities obtained from the model, are shown in Figures 9–11. Note
that, after the first few days of the identification period, the maximum error was always
less than 5% and in general, after July, less than 3%. The identification of the evolutions
β̄, ā, c̄, γ̄ is important since it allows to determine a connection between the decisions
about the containment measures and how they have been applied by the population; for
example, the strict lockdown of Phase 1 was not applied by the population as an on–off
control: it required some weeks to adapt to the new condition. Therefore, on the basis of
this consideration, it is possible to study some scenarios determining what could have
happened if different choices were made. Five scenarios are considered:

• Scenario 1: Instead of the applied containment measures (phase of colours), the
adoption of the strict lockdown was assumed, starting in November 6; the trends of
Id(t), RId(t) and D(t) were obtained using the evolution of the β̄ identified during the
lockdown period (Figure 4);

• Scenario 2: Instead of ending the strict lockdown at the beginning of May 2020, it is
hypothesised that there was an extension until 13 May;

• Scenario 3: Same as Scenario 2, but with the extension of the strict lockdown until
31 May;

• Scenario 4: Regards the vaccination campaign associated with different containment
measures from 14 March 2021; in this scenario, it is assumed that the strict lockdown
associated with the higher vaccination effort was already applied at the end of January;
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• Scenario 5: Same as Scenario 4, but the containment measures applied were those of
November 2020 (phase of colours).

Figure 1. Infected patients Id(t) estimated from the model versus the corresponding real data.

Figure 2. Recovered subjects RId (t) estimated from the model versus the corresponding real data.

Figure 3. Deceased patients D(t) estimated from the model versus the corresponding real data.
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Figure 4. Reconstructed evolution of β̄(t) = β(1− u2(t)).

Figure 5. Reconstructed evolution of ā related to the control action u1(t).

Figure 6. Reconstructed evolution of c̄(t) corresponding to the control action u5(t).
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Figure 7. Reconstructed evolution of γ̄ regarding the control action u3(t) and u4(t) according to the simplification in (35).

Figure 8. Reconstructed evolution of v̄ corresponding to the control action u6(t).

Figure 9. Error 1 = |Ireal(t)−Id(t)|
Ireal(t)

.
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Figure 10. Error 2 =
|Rreal(t)−RId (t)|

Rreal(t)
.

Figure 11. Error 3 = |Dreal(t)−D(t)|
Dreal(t)

.

In Scenario 1 (Figures 12–14), it is evident that there is fast decrease in the number of
infected patients in Figure 12, and deaths in Figure 14; obviously, the number of recovered
subjects also decreases, as shown in Figure 13, having less patients to heal. Therefore, the
adoption of a strict lockdown starting in 6 November 2020 implies a more efficient measure
in contrasting the virus spread with respect to milder actions, avoiding many victims, more
than 9000. In general, the choice of the containment strategy takes into account different
goals and constraints, including social and economic requirements, that in this paper are
not considered (Figures 12–14).
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Figure 12. Scenario 1: evolution of Id(t) versus the corresponding real data.

Figure 13. Scenario 1: evolution of the RId (t)) versus the corresponding real data.

Figure 14. Scenario 1: evolution of the D(t)) versus the corresponding real data.
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Scenarios 2 and 3 are studied together, as shown in Figures 15–17; they regard the
decision of ending the strict lockdown of Phase 1 not at the beginning of May 2020 (as
really happened) but in the middle and at the end of May, respectively. It can be noted that,
also with an extension of only two weeks of Phase 1 restrictions, the peak of the second
COVID-19 wave would have been sensibly lower also with respect to the peak of the first
wave. The number of deceased patients remains almost constant in these scenarios, sensibly
lower when compared with the real evolution. The results are evident especially in the
Scenario 3, if the Phase 1 would have been extended until the end of May. These scenarios
confirm the importance of stabilising the infection curves at low levels before re-opening;
for example, in Australia, the current approach is even to apply the strict lockdown also
with a few dozen cases. Due to the high contagiousness of SARS-CoV-2, it was observed
that the increase in the general trend of infected patients was faster than the decrease due
the containment measures and to lower the curve requires stronger effort as the number of
infected patients is higher.

Scenarios 4 and 5 regard the management of the vaccination phase, Figures 18–20; all
governments are trying to accelerate the vaccination campaign, in the meantime limiting
the spread of virus to avoid the development of new variants. In some cases, such as in
the UK, the vaccination campaign was associated with a strict lockdown obtaining a rapid
decrease in the number of infected patients and deaths. In Scenario 4, a fast decrease in the
number of infected patients can be noted, whereas the application of the phase of colour
containment measures, shown in Scenario 5, yields a less evident decrease in the infections,
Figure 18. In particular, the simulation results in Figures 18–20 were compared with the real
data representing what is currently happening; it can be observed that the currently applied
containment measures allowed a decrease in the number of new infections, slower than in the
simulated scenarios, probably also for the new unknown variants of the virus. Nevertheless,
it must be stressed that, as seen, any new action or behaviour influences the evolution of the
spread, and in particular, the number of infected patients. The increased number of infected
patients implies an increased number of deaths, as can be seen in Figure 20.

From the analysis of these scenarios, it can be confirmed that a severe reduction in
mobility strongly reduces the infection; the effects are even more evident when the contact
reduction is associated with a fast vaccination campaign; nevertheless, social and economic
considerations are influencing, as expected, the decisions about containment measures,
often in contrast with the suggestion of epidemiologists.

Figure 15. Scenarios 2 and 3: evolution of Id(t) in the two scenarios versus the corresponding real data.
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Figure 16. Scenarios 2 and 3: evolution of the RId (t)) in the two scenarios versus the corresponding real data.

Figure 17. Scenarios 2 and 3: evolution of the D(t)) in the two scenarios versus the corresponding real data.

Figure 18. Scenarios 4 and 5: evolution of Id(t) in the two scenarios versus the corresponding real data.
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Figure 19. Scenarios 4 and 5: evolution of the RId (t)) in the two scenarios versus the corresponding real data.

Figure 20. Scenarios 4 and 5: evolution of the D(t) in the two scenarios versus the corresponding real data.

4. Conclusions

The reduction in the impact of COVID-19 in terms of the number of infected patients
and deaths depends on the choice of containment measures, from the strict lockdown to
vaccination, possibly applied in a coordinated way. Mathematical modelling allows to
describe the epidemic spread, introducing all the controls available until now. In this paper,
referring to the Italian pandemic conditions, taking into account some of the peculiarities
of COVID-19, a suitably enriched SEIR model is proposed, including the effective control
actions available to date. Considering the real data regarding the number of infected
patients, deaths and vaccinated subjects, the main result of the paper consists in the
identification of the applied control actions, enabling a direct correlation between the
government’s decisions, as they were really applied by the population, and the numerical
evolution of the functions representing the control actions. By means of this identification,
the estimated effects of the containment measures, associated to the different periods
of the pandemic, could be used to study the possible scenarios, in order to understand
the effects of different choices, and their impact, also suggesting time scheduling and
severity. In particular, the advantages of strict measures have been evidenced, such as
those of the lockdown, that, while difficult for the population and the economy, could have
accelerated the reduction in the spread. The importance of studying the possible scenarios
depending on different control actions relies on the consideration that in a globalised world,
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a pandemic is not an exception and mutatis mutandis, the experience of facing COVID-
19 should be useful in similar situations. Future developments regard the possibility of
studying the effects of re-infection after vaccination and/or after being infected and healed;
the proposed model and approach could be useful to determine the best control actions,
also considering the new information about the available vaccines, the duration of the
immunity, and specific medication.
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