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Abstract
The generation and control of quantum correlations in high-dimensional systems is a major
challenge in the present landscape of quantum technologies. Achieving such non-classical
high-dimensional resources will potentially unlock enhanced capabilities for quantum
cryptography, communication and computation. We propose a protocol that is able to attain
entangled states of d-dimensional systems through a quantum-walk (QW)-based transfer &
accumulate mechanism involving coin and walker degrees of freedom. The choice of investigating
QW is motivated by their generality and versatility, complemented by their successful
implementation in several physical systems. Hence, given the cross-cutting role of QW across
quantum information, our protocol potentially represents a versatile general tool to control
high-dimensional entanglement generation in various experimental platforms. In particular, we
illustrate a possible photonic implementation where the information is encoded in the orbital
angular momentum and polarization degrees of freedom of single photons.

1. Introduction

Quantum entanglement underpins many of the advantages promised by the technological advances in
quantum information processors [1]. Despite considerable research efforts have been devoted to achieving
seamless generation and control of two-dimensional systems, it is known that two-dimensional
entanglement entails limitations in a variety of settings [2–4]. When higher-dimensional entanglement is
used—for example in the context of quantum communication [5]—higher channel capacities can be
achieved through superdense coding protocols [6–8]. Quantum cryptography protocols enhanced by
higher-dimensional entangled states achieve better performances in terms of key rates, noise resilience, and
security [9–21]. Significant benefits can also be achieved in quantum error correction [22–25] and
fault-tolerant quantum computation [26–29].

The potential benefits of high-dimensional entanglement have stimulated a significant effort towards its
generation, manipulation, and certification in various platforms including, in particular, optical systems
[30, 31]. Despite significant experimental advances, the implementation of such tasks remains demanding,
especially in light of the difficulties associated to controlling systems and transformations in large Hilbert
spaces.

In this paper, we show how to leverage controllable low-dimensional systems, together with special
quantum devices acting as interfaces between systems of different dimensions, to realize an effective
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entanglement-transfer protocol from low- to high-dimensional degrees of freedom. Quantum correlations
stored in two-dimensional degrees of freedom—such as the polarizations of entangled photons—can thus
be passed into high-dimensional information carriers via suitable local interactions and measurements.

We derive the general conditions under which such entanglement transfer is feasible. We then focus on
the case of states producible by discrete-time one-dimensional quantum walks (QW) [32–36]. These model
a natural type of interaction between hetero-dimensional systems, and are widely available in a variety of
physical systems. We study the conditions under which QW dynamics allow to transfer entanglement
between coin and walker degrees of freedom, and prove the feasibility of accumulating entanglement in the
high-dimensional system by repeatedly creating it and transfering it from the low-dimensional one. This
scheme constitutes a promising two-way interface to transfer reliably entanglement between different
information carriers [37–42].

A particularly suitable platform for the manipulation of high-dimensional systems, which has also been
successful in demonstrating control of the QW dynamics, is embodied by the orbital angular momentum
(OAM) of light. Recent experimental progress enabled by the growing capacity to prepare, manipulate and
measure OAM states are opening up the possibility to explore the richness of high-dimensional Hilbert
spaces for the sake of quantum information processing [43]. A protocol allowing to generate
high-dimensional OAM states using a simple dynamics such as the one offered by QWs would therefore be
a significant step forward towards the provision of on demand high-dimensional entangled states.

The remainder of this paper is organized as follows. In section 2 we formalise the general conditions for
the occurrence of entanglement transfer and study their solutions. In section 3 we overview the necessary
background on QWs and OAM, which is then used in section 4, where the entanglement transfer protocol
is specialized to the context set by QWs. In section 5 we study the possibility of accumulating entanglement
in one degree of freedom by repeated applications of the entanglement-transfer protocol. We conclude in
section 7 by detailing a possible experimental implementation of the protocol in the framework of
OAM-based implementation of the QW dynamics.

2. Entanglement transfer via local projections

In this Section we address the challenge of transferring entanglement across different degrees of freedom
using solely local projections. More precisely, we consider four-partite states |Ψ〉 ∈ H with H = H(1) ⊗H(2)

and H(j) the Hilbert space of system j = 1, 2, which we assume comprises two subsystems, labelled as M
(for main system) and A (for ancilla). We ask when, via local projections on the ancillary systems alone, it
is possible to transfer, or ‘focus’, the entanglement into the bipartition H(1)

M ⊗H(2)
M . We thus look for

conditions ensuring the existence of states |γ〉 ∈ H(1)
A and |δ〉 ∈ H(2)

A such that the entanglement of |Ψ〉 in
the bipartition H(1) ⊗H(2) is preserved in the projected state 〈γ, δ|Ψ〉 ∈ H(1)

M ⊗H(2)
M .

Note that such entanglement transfer is not always possible. It is therefore pivotal to find the conditions
making such protocol viable. It is worth noting that, when probabilistic operations are allowed (as in the
case of projections), even restricting to local operations, the amount of entanglement can be increased
[44–46]. Such process of effective entanglement distillation comes, however, at the expense of lowered
success probabilities. We focus here on the case where we want to preserve, not enhance, the entanglement
in a given state. In this case, it is also possible to achieve entanglement transfer deterministically, when there
is a complete basis of projections each element of which achieves entanglement transfer.

We can break down the task at hand into two independent sub-problems, which we will refer to as
transferability conditions: on the one hand, transferring the entanglement from H(1) ⊗H(2) to H(1)

M ⊗H(2),
and on the other hand, transferring the entanglement from H(1)

M ⊗H(2) to H(1)
M ⊗H(2)

M . The achievability of
these two tasks will be referred to as TC1 and TC2, respectively. It is worth stressing that, while our
discussions will always focus on TC1, all results reported throughout the paper hold for TC2 upon replacing
any projection onto states in H(1)

A with analogous projections onto states in H(2)
A .

To frame the problem more precisely, consider a state |Ψ〉 ∈ H with Schmidt decomposition

|Ψ〉 =
∑

k

√
pk |uk〉 |vk〉 , (1)

where
∑

k pk = 1, |uk〉 ∈ H(1) and |vk〉 ∈ H(2). To achieve TC1 we want a state |γ〉 ∈ H(1)
A such that the

corresponding projected state |Ψγ〉 ∈ H(1)
M ⊗H(2) contains the same amount of entanglement, in the

bipartition H(1)
M ⊗H(2), as that initially in |Ψ〉. In general, we have

|Ψγ〉 =
1

√
pproj

∑
k

√
pkqk |ũk〉 |vk〉 , (2)
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Figure 1. Pictorial representation of the first transferability procedure. Given a state which is entangled with respect to the
bipartition H(1) ⊗H(2), we apply a local projection |γ〉 which preserves the entanglement between the two spaces. Condition (c)
determines when such a projection exists.

where
√

qk |ũk〉 = 〈γ|uk〉 ∈ H(1) and pproj =
∑

k pkqk. We distinguish between three different scenarios:

(a) If the states |ũk〉 are not orthogonal, then some information about which k the state is in leaks through
the projection |γ〉, and some entanglement is thus degraded. This will be shown formally in
Appendix A.

(b) If the states |ũk〉 are orthogonal, but the corresponding projection probabilities qk are uneven, then
again the entanglement in |Ψγ〉 is smaller than that in |Ψ〉.

(c) If the states |ũk〉 are orthogonal, and qk = pproj for all k, then projecting onto |γ〉 fully preserves the
initial entanglement.

Note that situation (c) is a necessary and sufficient condition for entanglement transferability without
degradation, as if

〈
ũj|ũk

〉
= δjk and qk = pproj then equation (2) is the Schmidt decomposition of |Ψγ〉, and

therefore the Schmidt coefficients of |Ψγ〉 are (in the relevant bipartition) the same as those of |Ψ〉. On the
other hand, if (c) is not satisfied, then the projection results in the degradation of some of the
entanglement, as shown in Appendix A.

Therefore, we achieve transferability if |γ〉 is such that 〈γ|uk〉 /
√

pproj are orthonormal vectors. An
equivalent—if less explicit—condition for transferability is the requirement

σ̃(tr2(PΨγ )) = σ̃ (tr2(PΨ)) , (3)

where σ̃(A) ≡ σ(A) \ {0} and σ(A) is the set of eigenvalues of A, and we introduced the notation
Pψ ≡ |ψ〉 〈ψ|. This is a necessary and sufficient condition for transferability, as equation (3) is equivalent to
requesting that the Schmidt coefficients of |Ψγ〉 are the same as those of |Ψ〉. In figure 1 we present a
pictorial description of what TC1 allows to achieve. It is worth noting that, while equation (3) is required to
fully transfer entanglement, it is still possible to transfer some degree of entanglement if the vectors 〈γ|uk〉
are not fully orthogonal, or the projection probabilities are unequal.

This problem can be understood as a more restrictive version of entanglement swapping. Such protocol
[47] deals with a four-partite system comprising subsystems Aj with j = 1, . . . , 4, whose state is separable in
the bipartition (A1A2)-vs-(A3A4) but entangled in the bipartition A1 − A2 and A3 − A4. The goal of
entanglement swapping is to achieve entanglement in the state of the A1 − A4 compound by performing
projective measurements on A2 − A3. This is possible for instance by implementing a Bell measurement
over the joint state of A2 and A3. Clearly, the problem is analogous to ours, except that we only allow local
operations on A2 and A3. Notably, the use of a Bell measurement is not available in our setting.

3. Background on QW

Discrete-time QWs embody a widely studied type of interaction between a two-dimensional ‘coin’ degree of
freedom, and a high-dimensional ‘walker’ one [32–36]. Despite their simplicity, QWs allow to engineer
effectively a broad range of evolutions [48–51]. Recently, some of us demonstrated the potential of a
QW-based architecture to flexibly implement quantum state engineering of a single OAM [52, 53], as well
as the machine-learning-enhanced classification of hybrid polarization-OAM states of light [54]. A possible
physical embodiment of such QW dynamics uses polarization and OAM of single photons, playing the roles
of the coin and the walker degrees of freedom, respectively, with waveplates to implement the coin
operations and q-plates [55] to implement the controlled-shift. State engineering protocols leveraging QWs
in this setting were previously designed and demonstrated in references [52, 54, 56].

More precisely, QWs are defined in a bipartite coin–walker space HC ⊗HW , where HC(W) denotes the
coin (walker) space. We assume dim(HC) = 2. The evolution is defined by the repeated action of a unitary

3
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Figure 2. (a) QW-based entanglement transfer unit. The system is composed of two particles, 1 and 2, equipped with a
two-dimensional degree of freedom—the coin—and an additional d-dimensional degree of freedom, embodying the walker. The
entanglement transfer protocol requires a first operation E that generates entanglement between the coins. Then we have two
local operations—with respect to the 1-vs-2 bipartition and embodied by the walk operations WC —that correlates the inner
degrees of freedoms of each particle and realizes the walker–coin dynamics. In the end, local measurements allow to transfer the
entanglement stored in the initial state to the reduced state of the walkers. Assuming initially maximally entangled states of the
coins, a single iteration of our protocol would be able to transfer one ebit of entanglement at most. By repeating the use of this
unit, high-dimensional entangled states can be generated in the d-dimensional walker degrees of freedom. Furthermore the
entanglement stored in such degrees of freedom can be retrieved by same operations and transferred back to the two-qubit state.
(b) Conceptual scheme for the transfer from a Bell state in the coin degree of freedom to the two walkers position space after QW
and local coin measurements. (c) Protocol iteration and entanglement accumulation in the high-dimensional space of the two
QW.

walk operation WC ≡ S(C ⊗ I), which comprises the sequential action of a controlled-shift operation S, and
a coin flipping operation C. The coin flipping operation acts locally on the coin space, while the
controlled-shift changes the state of the walker conditionally to the state of the coin:

S ≡
∑

k

(P↑ ⊗ |k〉 〈k|+ P↓ ⊗ |k + 1〉 〈k|), (4)

where {|↑〉 , |↓〉} form a basis for HC , {|k〉}k�0 spans HW .
The state space we are interested in consists of two pairs of QWs, so that the overall system of coins and

walkers lives in the four-partite space H ≡ H(1) ⊗H(2), with H(i) ≡ H(i)
C ⊗ H(i)

W , and H(i)
C ,H(i)

W
accommodating coin and walker of the ith party, respectively (i = 1, 2). Given |Ψ〉 ∈ H, we apply WC
locally on H(1) and H(2). This, in general, entangles each coin with the respective walker [57,58]. In the next
sections, we will describe how to use this QW dynamics to transfer entanglement from the two-coin
subspace to the two-walker one, using only local operations on the coins. In an optical setup, this process
will transfer the initial entanglement encoded in a polarization state to the two OAM degrees of freedom.
The process can be iterated to transfer more entanglement from the polarizations to the OAMs.

4. Entanglement transfer through QW dynamics

In section 2 we discussed the general problem of transferring entanglement by means of local projections.
Most notably we made no assumption on the inner structure of correlations in H(i), nor we specified the
dimensionality of the entanglement in the bipartition H(1) ⊗H(2). The framework and results set up so far
thus also apply to cases where some pre-available entanglement exists between the degrees of freedom of the
main systems M’s.

In order to illustrate a physically motivated instance where TC1 is reached, we now focus on the
discrete-time QW dynamics, thus posing M ≡ W and A ≡ C with dim H(i)

C = 2, i.e. a QW with a
two-dimensional coin. While a schematic description of the formal entanglement-transfer scenario via QWs
is given in figure 2(a), the remainder of this section is structured as follows: in section 4.1 we consider states
in which H(1) and H(2) are only entangled through their coin spaces (as in figure 3). In section 4.2 we then
apply these results to the output states obtained from QW dynamics.

In passing, we would like to remark the inherent differences between the problem that we address here
and previous studies reporting the possibility to entangle the degrees of freedom of a multi-dimensional
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Figure 3. Like figure 1, but for states in which the entanglement is only due to pre-shared entanglement between the coins.
These are the types of states at the first entanglement accumulation step.

walker through its interaction with a coin [59, 60]. The core question of our work, indeed, is on the
possibility to meet the transferability conditions formulated, for a general dynamics, in section 2 and
particularized to the case of QWs as a physically motivated illustrative case.

4.1. Entanglement transfer via two-dimensional coins
Consider a state |Ψ〉 ∈ H(1) ⊗H(2) which is entangled only via its coin spaces (or more generally, a state
having rank 2), as in figure 3. The corresponding reduced state reads

ρ = p1Pu + p2Pv , p1 + p2 = 1, (5)

for a pair of orthonormal states {|u〉 , |v〉} ∈ H(1). As discussed in section 2, to achieve maximal
entanglement transfer we need a projection onto a state |γ〉 satisfying TC1, i.e. fulfiling equation (3). This is
equivalent to requiring 〈ũ|ṽ〉 = 0 where 〈γ|j〉 = √

pproj

∣∣̃j〉 (j = u, v). Explicitly, these amount to the
conditions

〈γ|trW(|u〉 〈v|)〉 γ = 0, (6)

and 〈γ|trW(|u〉 〈u|)〉 γ = 〈γ|trW (|v〉 〈v|)〉 γ = pproj. We show in Appendix B that it is always possible to find
a state |γ〉 that preserves the orthogonality. To satisfy condition TC1, one then only has to verify that the
projection probabilities are equal.

4.2. Entanglement transfer with coined QWs
We now apply the results of the previous section to the specific quantum states resulting from coined QWs.
As in section 4.1, we first assume that the overall state is entangled with respect to the bipartition
H(1) ⊗H(2) only via its coin spaces (see figure 3). We thus take the initial full state of the form

|Ψ〉 = √
p1 |↑, 1〉 ⊗ |↑, 1〉+√

p2 |↓, 1〉 ⊗ |↓, 1〉 , (7)

for some coefficients p1, p2 � 0 with p1 + p2 = 1. Focussing on H(1), we thus see that the initial states upon
which the QW operates are |↑, 1〉 and |↓, 1〉.

A single QW step with coin operation C amounts to the evolution

|↑, 1〉 → |Ψ↑,1〉 ≡ c11 |↑, 1〉+ c21 |↓, 2〉 ,

|↓, 1〉 → |Ψ↓,1〉 ≡ c12 |↑, 1〉+ c22 |↓, 2〉 ,
(8)

where cij are the entries of the unitary matrix representing C. By projecting onto
|γ〉 ≡ γ↑ |↑〉+ γ↓ |↓〉 (γ↑,↓ ∈ C) and imposing 〈Ψ↑,1|Ψ↓,1〉 = 0, we get

|γ↑|2c∗11c12 + |γ↓|2c∗21c22 = 0, (9)

which is satisfied for |γ〉 = (|↑〉+ eiφ |↓〉)/
√

2 for any φ ∈ R. The corresponding projection probabilities are
both equal to 1/2, as follows from

2|〈γ|Ψ↑,1〉|2 = |c11|2 + |c21|2 = 1,

2|〈γ|Ψ↓,1〉|2 = |c12|2 + |c22|2 = 1.
(10)

We conclude that TC1 is always achievable for this class of states. Remarkably, the freedom in the choice of
the phase φ means that projections onto |±〉 = (|↑〉 ± |↓〉)/

√
2 (as well as any other orthonormal basis of

balanced states) are suitable to achieve entanglement transfer. This results in an overall transfer success

5
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Figure 4. Final overlap and projection probabilities for the different possible projections |γ〉 = cos(θ) |0〉+ sin(θ)eiφ |1〉,
computed on the output of a Hadamard (a) or random QW (b) with 4 steps. For the random QW, a random coin is used at each
step. In each case, we consider the input states |↑, 1〉 and |↓, 1〉, and verify the satisfiability of TC1 on the corresponding outputs.
We first plot the squared overlap O ≡ ‖ 〈Ψ↑|γ〉 〈γ|Ψ↓〉 ‖2 for all possible |γ〉, where |Ψ↑〉 , |Ψ↓〉 denote the output states. We find
that there are two orthogonal projections |γ1〉 , |γ2〉 such that this quantity is zero, represented in the figure with black dots. As
discussed in section 2, the vanishing overlap is only a necessary, not sufficient condition. To achieve TC1, we also require the
projection probabilities being equal, i.e. p↑ = p↓ where ps = ‖ 〈Ψs|γ〉 ‖2, s ∈ {↑, ↓}. We represent (θ,φ) for which this condition
is satisfied with the magenta region bounded by dashed black lines. More precisely, the magenta region outlines the set of (θ,φ)
such that the entropy of the projections probabilities, S((p↑ , p↓)), is larger than 0.693 (remembering that −ln 2  0.6931). It is
worth noting that, while it is not in general true that p↑ + p↓ = 1 for an arbitrary unitary evolution, this is always the case for
QWs, which allows us to quantify how close p↑ and p↓ via the corresponding entropy. As clear from the figure, in these two cases,
TC1 cannot be achieved for any |γ〉, as the two necessary conditions cannot be simultaneously satisfied.

probability of 1: measuring in the |±〉 basis, both of the possible outcomes achieve TC1, albeit with different
post-projection states.

Consider now the state after multiple QW steps. The final reduced state on H(1) is a mixture of |Ψ↑〉 and
|Ψ↓〉, where

|Ψs〉 = cos(θs) |↑,Ψs,↑〉+ sin(θs) |↓,Ψs,↓〉 , (11)

with θs and
∣∣Ψs,p

〉
depending on the number of steps and choice of coin operators, and s, p ∈ {↑, ↓}. To

assess the achievability of TC1 we consider, as in section 4.1, the matrix M ≡ trW(|Ψ↑〉 〈Ψ↓|). This has the
form

M =

(
cos(θ↑) cos(θ↓)O↑↑ cos(θ↑) sin(θ↓)O↓↑
cos(θ↓) sin(θ↑)O↑↓ sin(θ↑) sin(θ↓)O↓↓

)
. (12)

with Osp ≡
〈
Ψ↓s|Ψ↑p

〉
. Such M is not in general Hermitian, nor normal. Consequently, while it is always

possible to find a state |γ〉 upon which to perform a projection, the corresponding projection probabilities
are not in general equal, as shown in figure 4. It is worth stressing that this does not imply the impossibility
of accumulating entanglement using these types of QWs. Rather, this result tells us that this is only possible
via entanglement distillation, and thus there cannot be a deterministic protocol achieving such entanglement
transfer. In other words, figure 4 shows that, in such cases, there is no projection preserving entanglement
in the residual space H(1)

W ⊗H(2). Nonetheless, there might still be a |δ〉 ∈ H(2)
C such that the second

projection recovers the original amount of entanglement, but this can only be done probabilistically, as
shown in references [44, 46]. To further highlight this point, we provide in figure 5 numerical results
regarding the possibility of probabilistic entanglement transfer when both projections are considered. In
these cases, probabilistic entanglement transfer is possible despite TC1 and TC2 are not satisfied.

There are nonetheless QW dynamics in which TC1 is achievable. For example, consider a QW in which
the coin is always taken to be identity: C = I at all steps. Then, after n steps, the evolution amounts to

|↑, 1〉 → |↑, 1〉 , |↓, 1〉 → |↓, n〉 , (13)

where |k〉 denotes the kth walker position. The matrix M is thus in this case easily seen to be M = 0,
implying that the orthogonality requirement is always satisfied, making TC1 achievable as long as the
projection probabilities are equal. This constraint is satisfied by any balanced projection of the form
|γ〉 = (|↑〉+ eiφ |↓〉)/

√
2, φ ∈ R.

6
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Figure 5. (a) Log-negativity N of the output state after four-step Hadamard QW and coin projections along
|γ〉 = cos θ |↑〉+ eiφ sin θ |↓〉, with θ ∈ [0,π/2] and φ ∈ [0, 2π]. States with maximum entanglement N = 1 are found for
values of θ and φ identified by the red spots in the figure. In this scenario, such states are generated with probability p, reported in
panel (b) the probability of transfer is p = 0.43 (see the red spots highlighted in the map). This estimate takes into account that
the projections on

∣
∣γ⊥〉 produce states with the same log-negativity.

5. Entanglement accumulation

Here we investigate whether the entanglement transfer procedure can be applied iteratively, accumulating
more and more entanglement into the state of the walkers’ degrees of freedom. For this purpose, after each
successful entanglement transfer stage, which produces a state of the form

(|γ1〉 ⊗ |γ2〉)C ⊗ |Ψ〉W , (14)

we apply an operation restoring the entanglement between the coins, thus producing a state of the form
|Ψ〉W ⊗ |Φ〉C , with |Φ〉 ∈ H(1)

C ⊗ H(2)
C some entangled state—usually a maximally entangled one. The QW

evolution is then used to correlate each coin and walker degree of freedom locally, in order to make
transferring the entanglement via local projections possible.

Suppose one round of entanglement transfer was executed successfully. We therefore have entanglement
in the bipartition H(1)

W ⊗H(2)
W , while the coin spaces are separated. Can we perform another round of QW

evolutions to transfer even more entanglement to the walkers?
Let us consider, as an example, the case where |Ψ〉W has entanglement dimension 2, and the full state

has the form
|Ψ〉 = |↑↑〉C ⊗ (|ψ1ψ2〉+ |ψ2ψ1〉)W/

√
2, (15)

for some walker states |ψi〉 with
〈
ψi|ψj

〉
= δij. Restoring the entanglement between the coins we get

|Ψ′〉 = (|↑↑〉+ |↓↓〉)C ⊗ (|ψ1ψ2〉+ |ψ2ψ1〉)W/2. (16)

Let us, as in section 2, focus on the transferability in H(1). The reduced state ρ(1) ≡ tr2 PΨ′ has the form

ρ(1) = (P↑ + P↓)C ⊗ (Pψ1 + Pψ2 )W/4. (17)

A QW evolution WS then gives P[WS |↑,ψ1〉] + P[WS |↑,ψ2〉] + P[WS |↓,ψ1〉] + P[WS |↓,ψ2〉] =
PΨ1 + PΨ2 + PΨ3 + PΨ4 , where

〈
Ψi|Ψj

〉
= δij, and thus WSρ

(1)W†
S has rank 4. Achieving entanglement

transfer now entails finding |γ〉 ∈ H(1)
C such that

〈Ψi|Pγ ⊗ IW〉Ψj = δijpproj. (18)

Each successive entanglement transfer iteration involves a doubling of the number of orthogonal states to
preserve, as follows from observing that if A has rank r and B has rank r′, then A ⊗ B has rank rr′.

Consider now a QW in which each coin operation is the identity: C = I. We will show that, with this
particular type of dynamics, we can accumulate arbitrary amounts of entanglement into the walkers’
degrees of freedom, using the coins as mediators. The unitary evolution corresponding to n steps with
C = I is WS ,n = Sn with S the controlled-shift operation. The action on the basis states is then

Sn = P↑ ⊗ I + P↓ ⊗ E
n
+, (19)
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Figure 6. (a) Trends of N for QWs with C = I (purple) and Hadamard QWs (green) in the entanglement accumulation
protocol. The numbers near the markers specify the number of QW steps needed to store the entanglement in the walkers
subspaces. The first case corresponds to the deterministic optimal transfer described in the main text, in which one ebit is
transferred at each iteration. In the Hadamard QWs this optimal transfer it is not achievable after the first iteration. (b)
Accumulation probability for the two cases.

where E+ ≡
∑

k |k + 1〉 〈k| is the operation shifting the walker’s position, and En
+ is thus the operator

moving the walker n positions forward. Consider an initial state

(|↑, ↑〉+ |↓, ↓〉)C ⊗ |Ψ〉W (20)

with |Ψ〉W an entangled state of the walkers in which the difference between final and initial occupied
positions is 
 ∈ N (for example, if

√
2|Ψ〉W = |1, 1〉+ |3, 3〉, then 
 = 2). If |Ψ〉W has rank r, the reduced

state on H(1) has the form

tr2(PΨ) =
1

2
(P↑ + P↓) ⊗

r∑
k=1

pkPψk
(21)

for some set of orthonormal states {|ψk〉}k ⊂ H(1)
W . Evolving through S
+1, we get

tr2(PΨ) → 1

2

(
P↑ ⊗

r∑
k=1

pkPψk
+ P↓ ⊗

r∑
k=1

pkPψ′
k

)
, (22)

with
〈
ψ′

j |ψ′
k

〉
= δjk and

〈
ψ′

j |ψk

〉
= 0. Then, any balanced projection |γ〉 = 1√

2
(|↑〉+ eiφ |↓〉) achieves TC1,

which means that the entanglement can be transferred deterministically from coins to walkers.
In light of these findings, we can now propose the following explicit protocol, which allows to

accumulate deterministically entanglement into the walkers degrees of freedom using the coins as
mediators. Starting from the state (|↑, ↑〉+ |↓, ↓〉)/

√
2 ⊗ |1, 1〉 ∈ H, we apply the conditional shift

operation to both QWs and then measure both coins in the basis |±〉. The possible states after the
projection are then (|1, 1〉 ± |2, 2〉)/

√
2, where the sign is + if the two coins are found in the same state, and

− otherwise. Restoring the entanglement between the coins, we then re-apply the QW evolution, now for
two steps, and project again in the basis |±〉, resulting in an output state of the form

1

2
[(|1, 1〉 ± |2, 2〉) ± (|3, 3〉 ± |4, 4〉)]. (23)

This procedure can be iterated to accumulate more and more entanglement in H(1)
W ⊗H(2)

W . At the nth
iteration, we evolve both systems through 2n QW steps with C = I, that is, through the unitary S2n ⊗ S2n

,
and then project onto the |±〉 basis, resulting in a maximally entangled state of the form

2−n/2
2n∑

k=1

(−)σk |k, k〉 , (24)

with (−)σk ∈ {1,−1} for all k. In figure 6 we report the trend of the deterministic transfer and
accumulation described above. Notice that this goal cannot always be achieved, as for example in the case of
the Hadamard QW reported in the figure. Here it is not possible to transfer one-ebit of entanglement per
iteration, not even probabilistically.

8
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6. Entanglement retrieval

The arguments of section 2 do not make assumptions on the dimensions of H(i)
C and H(i)

W . This means that
they can be used not only to study the transfer of entanglement from coins to positions, but also the other
way around. For example, if the initial reduced state on H(1) is [P↑ ⊗ (P1 + P2)]/2, with |1〉 , |2〉 a pair of
orthonormal walker’s states, then applying a Hadamard operation to the coin, and two steps of QW
evolution with C = I, we obtain the state

1

4
[P↑ ⊗ (P1 + P2) + P↓ ⊗ (P3 + P4)]. (25)

Then, measuring in the Hadamard four-dimensional basis—i.e., the basis formed by the columns of the
4 × 4 Hadamard matrix—we achieve TC1.

7. Experimental proposals

QWs have been previously demonstrated in a number of experimental platforms [61–65], including
photonics [49, 66–74], cold atoms in optical lattices [75, 76] and superconducting devices [77, 78]. Both
discrete- and continuous-time QWs have been implemented in the latter settings, providing promising
scenarios for both the transfer and the retrieval of entanglement illustrated above.

The use of an optical platform offers advantages in terms of demonstrated control of the preparation of
the initial state of the coins, quality of the walker–coin dynamics, and number of high-quality iterations.
Here we thus focus on the description of the entanglement transfer and accumulation protocol in such
platforms, encoding coin and walker degrees of freedom in circular polarization and OAM degrees of
freedom of single photons.

To implement the entanglement transfer protocol we start with two polarization-entangled photons,
which can be generated via single-photon sources based on parametric down-conversion. Each photon of
the pair evolves through a QW evolution in the polarization and OAM degrees of freedom, and is then
projected on a specific polarization state. The coin operators are realized through suitable sets of waveplates.
The shift operator, involving an interaction between OAM and polarization, is naturally implemented by
the inhomogeneous and birefringent devices known as q-plates [55, 56]. Projective measurements on the
coins are realized using waveplates and polarizing beamsplitters.

The entanglement accumulation stage also requires a way to ‘reload’ the entanglement into the photons’
polarization without affecting their OAMs. As discussed in section 5, the first entanglement transfer
procedure results in one of the states

|++〉 ⊗ (|1, 1〉 ± |2, 2〉)/
√

2, (26)

where |1〉 and |2〉 label OAM states, while |+〉 are diagonal polarization states. It is straightforward to show
that the action of a polarizing beam-splitter combined with two half-waveplates can restore, with
probability 1/2, the entangled state in polarization needed to achieve accumulation. Expressing the state of
equation (26) in terms of creation operators a† and b† of the two photons, we have:

1√
2

(
a†+,1b†+,1 ± a†+,2b†+,2

)
|vac〉 , (27)

with |vac〉 the vacuum state. The two photons are injected in the input ports, labelled by {a, b}, of a
polarizing beam-splitter, after a polarization rotation made by two half-waveplates of angles θa and θb

respectively. The creation operators after the overall transformation become

a†+,1/2 → cos θaa†+,1/2 + i sin θab†−,1/2

b†+,1/2 → cos θbb†+,1/2 + i sin θba†−,1/2.
(28)

Substituting such expression in equation (27) and choosing the orientation of the two half-waveplates
θa = θb = π/4 we obtain that the output state is composed by two terms. The first term corresponds to the
two photons exiting from different output ports of the polarizing beam-splitter, while the second term
corresponds to the case where the photons exit from the same port. The first part of this state embodies the
resource needed for the protocol accumulation, and has the following form:(

|++〉 ± |−−〉
)

√
2

⊗
(
|1, 1〉 ∓ |2, 2〉

)
√

2
. (29)

9
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We can discard the second term where two photons exit from the same port by post-selecting two-fold
coincidences between single-photon detectors at the end of the second iteration. It is worth noting that the
probabilistic generation of the second maximally entangled state is due to the choice of encoding qubits in
photons. However, we remark that we could also consider the state produced by the projection |−−〉 after
the first operation. Indeed, this projection produces states with the same symmetry properties. In this way it
is possible to double the probability of generating states with more entanglement. The operation described
before to restore the entanglement in the polarization that involves two-photon interference and
post-selection works only for two iterations of the protocol. The limitations on the number of iterations
that is possible to implement in this scenario for the accumulation of entanglement could be bypassed,
potentially, by implementing a two-photon operation that, rather than relying on post-selection, makes uses
of the non-linearity induced by a neutral atom operating in regime of electromagnetically induced
transparency and mediating the effective photon–photon interaction [79].

8. Conclusions

We have addressed the generation of high-dimensional entangled states through a protocol of entanglement
transfer from a low-dimensional resources. We have identified general transfer conditions that, if met,
guarantee the successful pouring of any entanglement initially contained in the state of the resource to the
high-dimensional receiver. This has then allowed us to draw a specific analysis aimed at the dynamics
entailed by a QW, where low-dimensional resources and high-dimensional receivers are naturally embodied
by coin and walker degrees of freedom respectively. While characterizing the performance of the
entanglement transfer scheme, we have been able to design schemes for entanglement accumulation and
retrieval, thus drawing a complete picture for the manipulation of entanglement through a
hetero-dimensional interface of great experimental potential. Indeed, the QW-based protocols addressed
and studies in this paper are fully amenable to an implementation making use of polarization and OAM
encoding. The scenario set by our schemes sets a promising framework for the use of low-dimensional
entanglement as a resource to achieve otherwise complex entangled structures and states that can be
experimentally synthesised and exploited.
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Appendix A. Entanglement decreases if orthogonality is not preserved

Let us show that if
〈

ũj|ũk

〉
�= δjk then the Schmidt coefficients must change upon projection. Indeed, in this

case, |Ψγ〉 has the form |Ψγ〉 =
∑

k

√
p̃k |ũk〉 |vk〉 where

〈
vj|vk

〉
= δjk and

∑
kp̃k = 1. Denoting with Ψγ the

matrix whose vectorization is |Ψγ〉, this Schmidt decomposition amounts to the singular value
decomposition Ψγ = U

√
DV†, with D = diag (p̃1, . . . , p̃n), V the unitary matrix whose columns are |vk〉,

and U the (non-unitary) matrix with columns |ũk〉. Then

ΨγΨ
†
γ = UDU† =

∑
k

p̃kPũk
, (A1)

10
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where Pũk
= |ũk〉 〈ũk| are in general non-orthogonal rank-1 projectors. Let us then prove that if a matrix is

a convex combination of rank-1 projections, then it always majorizes the vector of coefficients of the convex
combination. In our case, this translates to

∑
kp̃kPũk

� p̃.
Let Pk be rank-1 projections, pk � 0 coefficients such that

∑n
k=1 pk = 1, and A ≡

∑n
k=1 pkPk. We want

to prove that A � p, where p = (pk)n
k=1 is the vector of coefficients, and the majorization relation is defined

on Hermitian matrices via the corresponding vector of eigenvalues, that is, A � p ⇐⇒ σ(A) � p where
σ(A) is the vector of eigenvalues of A. If A has dimension larger than n, we define λ(A) as the vector of the
n largest eigenvalues, in order to make the majorization relation well-defined. Without loss of generality, let
us assume that the pk are in decreasing order: p1 � p2 � · · · � pn. Define the partial sums A
 ≡

∑

k=1 pkPk,

so that A = An. Observe that A
 � Ar whenever 
 � r. Because rank(Pk) = 1 for all k, we must also have
rank(A
) � 
. Denoting with λ↓

j (A) the jth largest eigenvalue of A, this implies that


∑
k=1

λ↓
k (A
) = tr(A
) =


∑
k=1

pk. (A2)

Using A = An � A
 for all 1 � 
 < n, we thus conclude that


∑
k=1

λ↓
k(A) �


∑
k=1

λ↓
k(A
) =


∑
k=1

pk ≡

∑

k=1

p↓k , (A3)

that is, λ(A) � p, which is the definition of A � p.

Assuming |ũk〉 are orthogonal, then the Schmidt coefficients of |Ψγ〉 are
√

p̃k = p−1/2
proj

√
pkqk.

Appendix B. Finding projections preserving orthogonality

We prove in this section that, for any state of the form |Ψ〉 = √
p1 |u, u′〉+√

p2 |v, v′〉, with
〈u|v〉 = 〈u′|v′〉 = 0, there is some |γ〉 such that the post-projected states are orthogonal, i.e. such that
〈ũ|ṽ〉 = 0 where

√
pu |ũ〉 = 〈γ|u〉 and

√
pv |ṽ〉 = 〈γ|v〉.

Here, |Ψ〉 ∈ H(1) ⊗H(2), |u〉 , |v〉 ∈ H(1), and |u′〉 , |v′〉 ∈ H(2). Moreover, H(1) = H(1)
C ⊗ H(1)

W , and
|γ〉 ∈ H(1)

C . Note that here we assume dim(H(1)
C ) = 2, while the only requirement on H(1)

W and H(2) is that
their dimension must be larger than 2, in order to accommodate |Ψ〉.

Define M ≡ trW (|u〉 〈v|) ∈ Lin(H(1)
C ). Note that this is a 2 × 2 traceless matrix, as follows from

〈u|v〉 = 0. Our objective is then to find |γ〉 such that 〈γ|M〉 γ = 0. For the purpose, we consider different
scenarios:

(a) If M is normal, then
M = λ(|v1〉 〈v1| − |v2〉 〈v2|), (B1)

for some λ ∈ C and
〈
vi|vj

〉
= δij. Then,

√
2 |γφ〉 = |v1〉+ eiφ |v2〉 , φ ∈ R. (B2)

are all suitable projections such that 〈γφ|M〉 γφ = 0. Note that this also implies that we can find
orthogonal states that both correspond to valid projections.

(b) Consider now a generic 2 × 2 M. Given a two-dimensional M with tr(M) = 0, provided M �= 0, we
must always have M2 = −det(M)I. This follows from observing that the eigenvalues of M are
±
√
− det M, and therefore (M +

√
− det M)(M −

√
− det M) = 0 Writing its singular value

decomposition as M = UDV†, this implies that UDV†UDV† = −det(M)I, and therefore

DV†U = − det(M)(V†U)†D−1. (B3)

If D = d1P1 + d2P2 and V†U = |1〉 〈w1|+ |2〉 〈w2|, then

d1 |1〉 〈w1|+ d2 |2〉 〈w2|

= −eiφ(d2 |w1〉 〈1|+ d1 |w2〉 〈2|),
(B4)

where det(M) = |det(M)| eiφ and we observed that |det(M)| = d1d2. There are then two possibilities:
either d1 = d2, which implies M is normal, and this case was covered above, or d1 �= d2, which implies
by the uniqueness of the singular value decomposition that |w1〉 = |2〉 and |w2〉 = |1〉 up to phases.
Consequently, we would have

M = d1 |u1〉 〈v1|+ d2 |u2〉 〈v2| , (B5)
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where
〈

ui|uj

〉
=

〈
vi|vj

〉
= δij and 〈u1|v2〉 = 〈u2|v1〉 = 0. We can then use |γ〉 = |vi〉 as suitable

projections, as 〈vi|M〉 vi = 0.

Appendix C. Entanglement transfer toy examples

We give in this section a few toy examples showcasing the use of the results presented in appendices A and
B.

C.1. Example with different projection probabilities
Suppose

2 |u〉 ≡
(√

2 |↑〉 ⊗ |2〉+ |↓〉 ⊗ (|1〉+ |2〉)
)

,

2 |v〉 ≡
(
|↑〉 ⊗ (|1〉+ |2〉) −

√
2 |↓〉 ⊗ |2〉

)
.

(C1)

Then, M = 1
2
√

2

(
1 −

√
2√

2 −1

)
. The singular values of M are

√
2 |γ±〉 = |↑〉 ± |↓〉, which are therefore also

the projections that maintain the orthogonality. The corresponding projection probabilities are

pu
± = | 〈γ±|u〉 |2 = (2 ±

√
2)/4,

pv± = | 〈γ±|v〉 |2 = (2 ∓
√

2)/4.
(C2)

and the projected states read √
pu
± |ũ±〉 ≡ 〈γ±|u〉 ,

√
pv± |ṽ±〉 ≡ 〈γ±|v〉 . (C3)

It follows that, despite |γ±〉 preserving the orthogonality of |u〉 , |v〉, the two states correspond to different
projection probabilities, and therefore entanglement is necessarily degraded. More explicitly, using |γ+〉 as
an example, the corresponding projection probabilities are pu

+ = (2 +
√

2)/4 and pv+ = (2 −
√

2)/4. This
means that if we have an entangled state of the form

|Ψ〉 = √
p1 |u〉 ⊗ |0〉+√

p2 |v〉 ⊗ |1〉 , (C4)

where |0〉 , |1〉 is an arbitrary pair of orthonormal states in an auxiliary space, then projecting onto |γ+〉
gives the state

N−1/2(
√

p1pu
+ |ũ+〉 ⊗ |0〉+

√
p2pv+ |ṽ+〉 ⊗ |1〉), (C5)

with probability N ≡ p1pu
+ + p2pv+. Clearly, because pu

+ �= pv+, the Schmidt coefficients of this states are
different, and thus the state is less entangled.

C.2. Example with same projection probabilities
Suppose

2 |u〉 =
√

2 |↑〉 ⊗ |2〉+ |↓〉 ⊗ (|1〉+ |2〉),

2 |v〉 = |↑〉 ⊗ (|1〉 − |2〉) +
√

2 |↓〉 ⊗ |1〉 .
(C6)

Then, M = 1
2
√

2

(
−1 0
0 1

)
is normal with eigenvectors |λ+〉 = |↑〉, |λ−〉 = |↓〉. It follows that any balanced

state of the form
√

2 |γφ〉 = |↑〉+ eiφ |↓〉 preserves the orthogonality of |u〉 , |v〉. Correspondingly, we have

2
√

2 eiφ 〈γφ|u〉 = |1〉+ (
√

2 eiφ + 1) |2〉 ,

2
√

2 eiφ 〈γφ|v〉 = (
√

2 + eiφ) |1〉 − eiφ |2〉 ,
(C7)

with probabilities

pu
φ = pvφ =

1

4
(2 +

√
2 cos φ). (C8)

It follows that any |γφ〉 achieves entanglement transfer. Moreover, we can choose two orthogonal states, e.g.
|γ0〉 and |γπ〉, so that entanglement transfer is achieved deterministically.
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