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entanglement-transfer protocol from low- to high-dimensional degrees of freedom. Quantum correlations
stored in two-dimensional degrees of freedom„such as the polarizations of entangled photons„can thus
be passed into high-dimensional information carriers via suitable local interactions and measurements.

We derive the general conditions under which such entanglement transfer is feasible. We then focus on
the case of states producible by discrete-time one-dimensional quantum walks (QW) [32…36]. These model
a natural type of interaction between hetero-dimensional systems, and are widely available in a variety of
physical systems. We study the conditions under which QW dynamics allow to transfer entanglement
between coin and walker degrees of freedom, and prove the feasibility of accumulating entanglement in the
high-dimensional system by repeatedly creating it and transfering it from the low-dimensional one. This
scheme constitutes a promising two-way interface to transfer reliably entanglement between different
information carriers [37…42].

A particularly suitable platform for the manipulation of high-dimensional systems, which has also been
successful in demonstrating control of the QW dynamics, is embodied by the orbital angular momentum
(OAM) of light. Recent experimental progress enabled by the growing capacity to prepare, manipulate and
measure OAM states are opening up the possibility to explore the richness of high-dimensional Hilbert
spaces for the sake of quantum information processing [43]. A protocol allowing to generate
high-dimensional OAM states using a simple dynamics such as the one offered by QWs would therefore be
a signi“cant step forward towards the provision ofon demandhigh-dimensional entangled states.

The remainder of this paper is organized as follows. In section2 we formalise the general conditions for
the occurrence of entanglement transfer and study their solutions. In section3 we overview the necessary
background on QWs and OAM, which is then used in section4, where the entanglement transfer protocol
is specialized to the context set by QWs. In section5 we study the possibility of accumulating entanglement
in one degree of freedom by repeated applications ofthe entanglement-transfer protocol. We conclude in
section7 by detailing a possible experimental implementation of the protocol in the framework of
OAM-based implementation of the QW dynamics.

2. Entanglement transfer via local projections

In this Section we address the challenge oftransferringentanglement across different degrees of freedom
using solely local projections. More precisely, we considerfour-partitestates|� � � H with H = H (1) � H (2)

andH (j) the Hilbert space of systemj = 1, 2, which we assume comprises two subsystems, labelled asM
(for main system) andA (for ancilla). We ask when, via local projections on the ancillary systems alone, it
is possible to transfer, or •focus•, the entanglement into the bipartitionH (1)

M � H (2)
M . We thus look for

conditions ensuring the existence of states|� � � H (1)
A and|� � � H (2)

A such that the entanglement of|� � in
the bipartitionH (1) � H (2) is preserved in the projected state� � , � |� � � H (1)

M � H (2)
M .

Note that such entanglement transfer is not always possible. It is therefore pivotal to “nd the conditions
making such protocol viable. It is worth noting that, when probabilistic operations are allowed (as in the
case of projections), even restricting to local operations, the amount of entanglement can be increased
[44…46]. Such process of effectiveentanglement distillationcomes, however, at the expense of lowered
success probabilities. We focus here on the case where we want to preserve, not enhance, the entanglement
in a given state. In this case, it is also possible to achieve entanglement transfer deterministically, when there
is a complete basis of projections each element of which achieves entanglement transfer.

We can break down the task at hand into two independent sub-problems, which we will refer to as
transferability conditions: on the one hand, transferring the entanglement fromH (1) � H (2) to H (1)

M � H (2),
and on the other hand, transferring the entanglement fromH (1)

M � H (2) to H (1)
M � H (2)

M . The achievability of
these two tasks will be referred to as TC1 and TC2, respectively. It is worth stressing that, while our
discussions will always focus on TC1, all results reported throughout the paper hold for TC2 upon replacing
any projection onto states inH (1)

A with analogous projections onto states inH (2)
A .

To frame the problem more precisely, consider a state|� � � H with Schmidt decomposition

|� � =
�

k

�
pk |uk� | vk� , (1)

where
�

k pk = 1, |uk� � H (1) and|vk� � H (2). To achieve TC1 we want a state|� � � H (1)
A such that the

corresponding projected state|� � � � H (1)
M � H (2) contains the same amount of entanglement, in the

bipartition H (1)
M � H (2), as that initially in|� � . In general, we have

|� � � =
1

�
pproj

�

k

�
pkqk |�uk� | vk� , (2)
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Figure 1. Pictorial representation of the “rst transferability procedure. Given a state which is entangled with respect to the
bipartition H (1) � H (2), we apply a local projection|� � which preserves the entanglement between the two spaces. Condition (c)
determines when such a projection exists.

where
�

qk |�uk� = � � |uk� � H (1) andpproj =
�

k pkqk. We distinguish between three different scenarios:

(a) If the states|�uk� are not orthogonal, then some information about whichk the state is in leaks through
the projection|� � , and some entanglement is thus degraded. This will be shown formally in
AppendixA.

(b) If the states|�uk� are orthogonal, but the corresponding projection probabilitiesqk are uneven, then
again the entanglement in|� � � is smaller than that in|� � .

(c) If the states|�uk� are orthogonal,and qk = pproj for all k, thenprojecting onto|� � fully preserves the
initial entanglement.

Note that situation (c) is a necessary and suf“cient condition for entanglement transferability without
degradation, as if

�
�uj|�uk

�
= � jk andqk = pproj then equation (2) is the Schmidt decomposition of|� � � , and

therefore the Schmidt coef“cients of|� � � are (in the relevant bipartition) the same as those of|� � . On the
other hand, if (c) is not satis“ed, then the projection results in the degradation of some of the
entanglement, as shown in AppendixA.

Therefore, we achieve transferability if|� � is such that� � |uk� /
�

pproj are orthonormal vectors. An
equivalent„if less explicit„condition f or transferability is the requirement

�� (tr2(P� � )) = �� (tr2(P� )) , (3)

where�� (A) � � (A) \ { 0} and� (A) is the set of eigenvalues ofA, and we introduced the notation
P� � | � � � � |. This is anecessary and suf“cientcondition for transferability, as equation (3) is equivalent to
requesting that the Schmidt coef“cients of|� � � are the same as those of|� � . In “gure 1 we present a
pictorial description of what TC1 allows to achieve. It is worth noting that, while equation (3) is required to
fully transfer entanglement, it is still possible to transfersomedegree of entanglement if the vectors� � |uk�
are not fully orthogonal, or the projection probabilities are unequal.

This problem can be understood as a more restrictive version of entanglement swapping. Such protocol
[47] deals with a four-partite system comprising subsystemsAj with j = 1,. . . , 4, whose state is separable in
the bipartition (A1A2)-vs-(A3A4) but entangled in the bipartitionA1 Š A2 and A3 Š A4. The goal of
entanglement swapping is to achieve entanglement in the state of theA1 Š A4 compound by performing
projective measurements onA2 Š A3. This is possible for instance by implementing a Bell measurement
over the joint state ofA2 andA3. Clearly, the problem is analogous to ours, except that we only allowlocal
operations onA2 andA3. Notably, the use of a Bell measurement is not available in our setting.

3. Background on QW

Discrete-time QWs embody a widely studied type of interaction between a two-dimensional •coin• degree of
freedom, and a high-dimensional •walker• one [32…36]. Despite their simplicity, QWs allow to engineer
effectively a broad range of evolutions [48…51]. Recently, some of us demonstrated the potential of a
QW-based architecture to ”exibly implement quantum state engineering of a single OAM [52, 53], as well
as the machine-learning-enhanced classi“cation of hybrid polarization-OAM states of light [54]. A possible
physical embodiment of such QW dynamics uses polarization and OAM of single photons, playing the roles
of the coin and the walker degrees of freedom, respectively, with waveplates to implement the coin
operations and q-plates [55] to implement the controlled-shift. Stateengineering protocols leveraging QWs
in this setting were previously designed and demonstrated in references [52, 54, 56].

More precisely, QWs are de“ned in a bipartite coin…walker spaceH C � H W , whereH C(W) denotes the
coin (walker) space. We assume dim(H C) = 2. The evolution is de“ned by the repeated action of a unitary
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Figure 2. (a) QW-based entanglement transfer unit. The system is composed of two particles, 1 and 2, equipped with a
two-dimensional degree of freedom„the coin„and an additionald-dimensional degree of freedom, embodying the walker. The
entanglement transfer protocol requires a “rst operationEthat generates entanglement between the coins. Then we have two
localoperations„with respect to the 1-vs-2 bipartition and embodied by the walk operationsWC„that correlates the inner
degrees of freedoms of each particle and realizes the walker…coin dynamics. In the end, local measurements allow to transfer the
entanglement stored in the initial state to the reduced state of the walkers. Assuming initially maximally entangled states of the
coins, a single iteration of our protocol would be able to transfer one ebit of entanglement at most. By repeating the use of this
unit, high-dimensional entangled states can be generated in thed-dimensional walker degrees of freedom. Furthermore the
entanglement stored in such degrees of freedom can be retrieved by same operations and transferred back to the two-qubit state.
(b) Conceptual scheme for the transfer from a Bell state in the coin degree of freedom to the two walkers position space after QW
and local coin measurements. (c) Protocol iteration and entanglement accumulation in the high-dimensional space of the two
QW.

walk operationWC � S (C � I), which comprises the sequential action of acontrolled-shiftoperationS, and
acoin ”ippingoperationC. The coin ”ipping operation acts locally on the coin space, while the
controlled-shift changes the state of the walker conditionally to the state of the coin:

S �
�

k

(P	 � | k� � k| + P
 � | k + 1� � k|), (4)

where{|	� , |
�} form a basis forH C, {| k�} k� 0 spansH W .
The state space we are interested in consists of two pairs of QWs, so that the overall system of coins and

walkers lives in the four-partite spaceH � H (1) � H (2), with H (i) � H (i)
C � H (i)

W , andH (i)
C ,H (i)

W
accommodating coin and walker of theith party, respectively (i = 1, 2). Given|� � � H , we applyWC

locally onH (1) andH (2). This, in general, entangles each coin with the respective walker [57,58]. In the next
sections, we will describe how to use this QW dynamics to transfer entanglement from the two-coin
subspace to the two-walker one, using only local operations on the coins. In an optical setup, this process
will transfer the initial entanglement encoded in a polarization state to the two OAM degrees of freedom.
The process can be iterated to transfer more entanglement from the polarizations to the OAMs.

4. Entanglement transfer through QW dynamics

In section2 we discussed the general problem of transferring entanglement by means of local projections.
Most notably we made no assumption on the inner structure of correlations inH (i) , nor we speci“ed the
dimensionality of the entanglement in the bipartitionH (1) � H (2). The framework and results set up so far
thus also apply to cases where some pre-available entanglement exists between the degrees of freedom of the
main systemsM •s.

In order to illustrate a physically motivated instance where TC1 is reached, we now focus on the
discrete-time QW dynamics, thus posingM � W andA � C with dim H (i)

C = 2, i.e. a QW with a
two-dimensional coin. While a schematic description of the formal entanglement-transfer scenario via QWs
is given in “gure2(a), the remainder of this section is structured as follows: in section4.1we consider states
in which H (1) andH (2) are only entangled through their coin spaces (as in “gure3). In section4.2we then
apply these results to the output states obtained from QW dynamics.

In passing, we would like to remark the inherent differences between the problem that we address here
and previous studies reporting the possibility to entangle the degrees of freedom of a multi-dimensional
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Figure 3. Like “gure1, but for states in which the entanglement is only due to pre-shared entanglement between the coins.
These are the types of states at the “rst entanglement accumulation step.

walker through its interaction with a coin [59, 60]. The core question of our work, indeed, is on the
possibility to meet the transferability conditions formulated, for a general dynamics, in section2 and
particularized to the case of QWs as a physically motivated illustrative case.

4.1. Entanglement transfer via two-dimensional coins
Consider a state|� � � H (1) � H (2) which is entangled only via its coin spaces (or more generally, a state
having rank 2), as in “gure3. The corresponding reduced state reads

� = p1Pu + p2Pv, p1 + p2 = 1, (5)

for a pair of orthonormal states{| u� , |v�} � H (1). As discussed in section2, to achieve maximal
entanglement transfer we need a projection onto a state|� � satisfying TC1, i.e. ful“ling equation (3). This is
equivalent to requiring� �u|�v� = 0 where� � |j� =

�
pproj

�
��j

�
(j = u,v). Explicitly, these amount to the

conditions
� � |trW (|u� � v|)� � = 0, (6)

and� � |trW (|u� � u|)� � = � � |trW (|v� � v|)� � = pproj. We show in AppendixB that it is always possible to “nd
a state|� � that preserves the orthogonality. To satisfy condition TC1, one then only has to verify that the
projection probabilities are equal.

4.2. Entanglement transfer with coined QWs
We now apply the results of the previous section to the speci“c quantum states resulting from coined QWs.
As in section4.1, we “rst assume that the overall state is entangled with respect to the bipartition
H (1) � H (2) only via its coin spaces (see “gure3). We thus take the initial full state of the form

|� � =
�

p1 |	 , 1� � |	 , 1� +
�

p2 |
 , 1� � |
 , 1� , (7)

for some coef“cientsp1,p2 � 0 with p1 + p2 = 1. Focussing onH (1), we thus see that the initial states upon
which the QW operates are|	 , 1� and|
 , 1� .

A single QW step with coin operationCamounts to the evolution

|	 , 1� � | � 	 ,1� � c11 |	 , 1� + c21 |
 , 2� ,

|
 , 1� � | � 
 ,1� � c12 |	 , 1� + c22 |
 , 2� ,
(8)

wherecij are the entries of the unitary matrix representingC. By projecting onto
|� � � � 	 |	� + � 
 |
� (� 	 ,
 � C) and imposing� � 	 ,1|� 
 ,1� = 0, we get

|� 	 |2c�
11c12 + |� 
 |2c�

21c22 = 0, (9)

which is satis“ed for|� � = (|	� + ei� |
� )/
�

2 for any� � R. The corresponding projection probabilities are
both equal to 1/ 2, as follows from

2|� � |� 	 ,1�|
2 = |c11|2 + |c21|2 = 1,

2|� � |� 
 ,1�|
2 = |c12|2 + |c22|2 = 1.

(10)

We conclude that TC1 is always achievable for this class of states. Remarkably, the freedom in the choice of
the phase� means that projections onto|±� = (|	� ± |
� )/

�
2 (as well as any other orthonormal basis of

balanced states) are suitable to achieve entanglement transfer. This results in an overall transfer success
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