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in Neuroblastoma A  C

Mario Capasso1,2,3, Vito Alessandro Lasorsa1,2, Flora Cimmino1,2, Marianna Avitabile1,2, Sueva Cantalupo3,
Annalaura Montella1,2, Biagio De Angelis4, Martina Morini5, Carmen de Torres6,†, Aurora Castellano4,
Franco Locatelli4,7, and Achille Iolascon1,2

ABSTRACT
◥

The contribution of coding mutations to oncogenesis has been
largely clarified, whereas little is known about somatic mutations
in noncoding DNA and their role in driving tumors remains
controversial. Here, we used an alternative approach to interpret
the functional significance of noncoding somatic mutations in
promoting tumorigenesis. Noncoding somatic mutations of 151
neuroblastomas were integrated with ENCODE data to locate
somatic mutations in regulatory elements specifically active in
neuroblastoma cells, nonspecifically active in neuroblastoma cells,
and nonactive. Within these types of elements, transcription
factors (TF) were identified whose binding sites were enriched or
depleted in mutations. For these TFs, a gene expression signature
was built to assess their implication in neuroblastoma. DNA- and
RNA-sequencing data were integrated to assess the effects of
those mutations on mRNA levels. The pathogenicity of mutations
was significantly higher in transcription factor binding site (TFBS)
of regulatory elements specifically active in neuroblastoma cells,

as compared with the others. Within these elements, there were 18
over-representedTFs involvedmainly in cell-cycle phase transitions
and 15 under-represented TFs primarily regulating cell differenti-
ation. A gene expression signature based on over-represented TFs
correlated with poor survival and unfavorable prognostic markers.
Moreover, recurrent mutations in TFBS of over-represented TFs
such as EZH2 affected MCF2L and ADP-ribosylhydrolase like 1
expression, among the others. We propose a novel approach to
study the involvement of regulatory variants in neuroblastoma that
could be extended to other cancers and provide further evidence
that alterations of gene expression may have relevant effects in
neuroblastoma development.

Significance: These findings propose a novel approach to study
regulatory variants in neuroblastoma and suggest that noncoding
somatic mutations have relevant implications in neuroblastoma
development.

Introduction
As most high-throughput sequencing studies of cancer focused

mainly on the protein-coding part of the genome, the role of somatic
mutations in regulatory regions [i.e., transcription factor binding site
(TFBS)] remains underestimated. The most recent literature clearly
demonstrates that altered transcriptional regulatory circuits play

relevant roles in cancer development (1). For instance, a reanalysis
of sequencing data from 493 tumors found somatic mutations in
TFBSs under positive selection, consistent with the fact that these loci
regulate important cancer cell functions (2). Another recent study has
demonstrated that noncodingmutations can affect the gene expression
of target genes in a large number of tumors (3). Promoter mutations
can either create ETS-binding sites activating transcription of onco-
genes such as TERT (4) or disrupt the same binding sites disabling
transcription of tumor suppressors such as SDHD (5).

Despite these recent advances, it remains a challenge to establish the
pathogenic repercussions of noncoding variants in cancer develop-
ment. First, noncoding variants can alter a number of functions
including transcriptional and posttranscriptional regulation. Second,
noncoding regions accumulate mutations at higher rates than coding
regions because of a weaker selective pressure (5). As a result,
distinguishing driver noncoding mutations from passengers becomes
a difficult statistical and computational task. Third, it is challenging to
computationally predict whether a noncoding variant affects gene
expression or mRNA stability because the logic involved in regulatory
element function has not yet been fully elucidated. In this respect, data
from ENCODE and Roadmap projects, which map regulatory ele-
ments in several tissues and cell lines can facilitate functional inter-
pretation of noncoding somatic mutations.

Neuroblastoma is the most common pediatric, extracranial solid
tumor of neural crest origin accounting for the 8%–10% of all pediatric
cancers. Despite decades of international efforts to improve the
outcome, long-term survivors of high-risk neuroblastoma are
about 30% (6). Genomic and transcriptomic biomarkers, including
MYCN amplification, chromosomal aberrations, and gene expression
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signatures are used to stratify patients into different risk groups (6–8).
Next-generation sequencing studies of neuroblastoma have documen-
ted low somatic mutation rates and few recurrently mutated genes.
Indeed, only mutations inALK, ATRX, and TERT have been identified
as themost frequent genetic abnormalities (9–12). Recent studies have
shown that disease-associated genomic variation is commonly located
in regulatory elements in the human population (13). Our genome-
wide association studies using DNA from nondisease cells (blood)
have revealed that many genetic variants that are associated with
neuroblastoma susceptibility lie in noncoding regions of the
genome (14–16). Functional investigations have shown that the cancer
genes LMO1 (17), BARD1 (16), LIN28B (18), whose expression is
affected by risk variants, play a role in neuroblastoma tumorigenesis.
Importantly, despite considerable efforts, the molecular events that
drive neuroblastoma initiation and progression are still largely
unknown. Therefore, a better knowledge of the alterations that shape
neuroblastoma genomes and transcriptomes becomes necessary to
understand its etiology. Detailed genomic information leading to new
drug targets is also the starting point to developmore effective and less
toxic treatments (19).

In this work, we propose an alternative method to verify the
potential pathogenic consequence of noncoding variants in neuro-
blastoma using whole-genome sequencing (WGS) data from 151
tumors. First, we tested whether the predicted functional impact of
somatic variants in TFBS is a feature of a specific cancer tissue. Second,
we tested whether there is an enrichment of somatic mutations in
DNA-binding sites for TFs involved in tumorigenesis. Third, we
verified whether recurrent somatic mutations in TFBS are associated
with changes in mRNA levels.

Overall, our analysis strategy allowed us to find mutated binding
sites for TFs that may have key functions in neuroblastoma initiation.
Moreover, for some of these mutated sites, we identified candidate
target genes whose deregulation may contribute to neuroblastoma
development.

Materials and Methods
Samples collection

Neuroblastoma tumor DNA (primary tumors) and matched germ-
line DNA (from peripheral blood) were obtained from the IRCCS
Istituto Giannina Gaslini (Genova, Italy), Ospedale Pediatrico Bam-
bino Ges�u (Rome, Italy), and Hospital Sant Joan de D�eu, (Barcelona,
Spain). Primary tumor samples were verified to have >75% viable
tumor cell content by histopathology assessment. This study was
approved by the Ethics Committee of the Ospedale Bambino Ges�u
of Rome (protocol no. 20757 of the April 9, 2019). Informed written
consent was obtained from the subjects.

DNA extraction from peripheral blood and primary tumor
tissues

DNA from peripheral blood (PB) was extracted with QIAamp
DNA Mini Kit (Qiagen) according to manufacturer's instructions.
DNA fromprimary tumor tissueswas extractedwithMasterPureDNA
Purification Kit (Epicentre) according to manufacturer's protocol.

DNA quantification and library preparation for sequencing
DNA quality was monitored on 1% agarose gels. Its purity was

checked using the NanoPhotometer spectrophotometer (IMPLEN).
DNA concentration was measured using Qubit DNA Assay Kit in
Qubit 2.0 Flurometer (Life Technologies). A total of 1.0 mg of DNA per
sample was used as input material for library preparation. Sequencing

libraries were generated using Truseq Nano DNA HT Sample Prep-
aration Kit (Illumina) following manufacturer's recommendations.
Genomic DNA was sonicated to a size of 350 bp, and then fragments
were end-polished, A-tailed, and ligated with the full-length adapter
for Illumina sequencing with further PCR amplification. At last, PCR
products were purified (AMPure XP system) and libraries were
analyzed for size distribution using the DNA Nano 6000 Assay Kit
of Agilent Bioanalyzer 2100 system (Agilent Technologies) and quan-
tified using real-time PCR.

Somatic mutations detection
In-house WGS data

WGS of 14 normal-primary neuroblastoma sample pairs was
performed on an Illumina HiSeq1500 platform. The paired-end
sequencing produced 150-bp long reads. Alignment files were
obtained by mapping reads versus GRCh37/hg19 reference genome
assembly. Somatic SNVs and INDELs were detected withMuTect (20)
and Strelka (21), respectively.

Publicly available WGS data (Target)
We obtained access to WGS and RNA-seq data of neuroblastoma

from the Target project (accession no.: phs000218.v21.p7; project
ID: #14831; ref. 12) and included, in our analysis, 137 primary
neuroblastoma for which somatic variants were available. The
functional annotation of somatic variant calls was performed with
ANNOVAR (22) and FunSeq2 (23).

RNA-seq data were available for 161 samples in the form of
processed fragments per kilobase of exon model per million reads
mapped (FPKM). Eighty-nine neuroblastoma samples had bothWGS
and gene expression data.

Somatic variants selection criteria
Somatic variants of the in-house andTarget data sets were processed

as follows. From raw variant calls, we first eliminated those that did not
pass MuTect or Strelka quality. As reported in ref. 24, we required that
the read count of the variant site in the tumor had to be significantly
higher than the normal (P� 0.05 by two-sided Fisher exact test). Then,
we discarded somatic variants falling in genomic duplicated regions.
Finally, we filtered out common polymorphisms (minor allele fre-
quency >1%) by using allele frequencies of 1,000 Genomes Project,
ExAC and gnomAD databases.

We generated three lists of somatic variants based on DNA regu-
latory activity. Using ENCODE v3 data, we defined active regulatory
elements as genomic regions characterized by the presence of both
DNase hypersensitive sites (DHS) and TFBS (Fig. 1A).

We built the first somatic variant set in “nontissue-specific and
active TFBS” (ntsa-TFBS) by selecting those variants falling in DHS of
125 cell lines and TFBSs of 161 TFs tested in 91 cell lines.

Then, we obtained the second set of somatic variants in “tissue-
specific and active TFBS” (tsa-TFBS) by keeping variants falling in
DHS of the SK-N-SH neuroblastoma cell line and TFBSs. Here, we
excluded theDHS data from the SK-N-BE(2)C neuroblastoma cell line
(included in ENCODE v3), and considered only SK-N-SH DHS data
for three main reasons. First, SK-N-BE(2)C is characterized byMYCN
amplification (whereas SK-N-SH does not) that can have effects on
chromatin structure (25). Therefore, we discarded SK-N-BE(2)C to
reduce the effects ofMYCN as possible confounder. Second, the DHS
data from SK-N-SH cell line were obtained after treatment with all
trans-retinoic acid (ATRA) for 48 hours (ENCODE protocol). As
reported previously, short-term ATRA treatment promotes growth
control and initial induction of differentiation towards neuronal
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phenotype (26). Therefore, the SK-N-SH epigenome, in terms of
chromatin accessibility, should resemble that of neurons at very early
stages of neuroblastoma development. Third, SK-N-SH shared a lower
number of DHSs with other cell lines than SK-N-BE(2)C. The tissue
specificity of the SK-N-SH DHSs was assessed as follows. We calcu-
lated the number of DHSs regions for each cell line of the ENCODE v3
catalog. Then, we extracted SK-N-SH DHSs and determined the
number of these regions that overlapped with the other cell lines.

Finally, for each cell line, we obtained the percentage of DHS regions
shared with SK-N-SH by dividing the number of common regions by
the number of initial DHSs. The same procedure was applied to assess
the tissue specificity of the SK-N-BE(2)C DHSs. As reported in
Supplementary Fig. S1A, on average, the other 124 cell lines shared
only the 23.64% of DHSs with SK-N-SH, whereas the 37.48% with
SK-N-BE(2)C. We also used the Jaccard statistics (27) of the Bedtools
software (28) to measure the similarity of DHSs profiles between

Figure 1.

Description of somatic variants in TFBS and results from
mutational enrichment analysis. A, Schematic explana-
tion of the three variant selection strategies. ntsa-TFBS
(nontissue-specific and active TFBS) included variants
falling in DHS and TFBS ENCODE v3. tsa-TFBS (tissue-
specific and active TFBS) comprised variants falling in
DHS of the SK-N-SH neuroblastoma cell line and TFBSs
of the ENCODE v3. na-TFBS (nonactive TFBS) enclosed
variants falling in candidate inactive regulatory
elements characterized by TFBSs but not by any DHS
of the ENCODE v3. B, Box plot showing the median
values of noncoding regulatory variants per sample. C,
Box plot showing the median values of TFBSs per
variant. D and E, Box plots showing the median values
of CADD and FunSeq2 pathogenicity scores of somatic
variants. F,Bar plot showing the log2-fold change of TFs
in tsa-TFBS.G,Box plot showing themedian expression
values of the over-represented TFs (red) and under-
represented TFs (green) in 498 tumors (GSE62564). H,
Dot plot showing the GO biological processes enriched
in the lists of over-represented TFs (left) and under-
represented TFs (right). Dot color scale is dependent on
the enrichment ratio,whereasdot sizes are proportional
to the log10 FDR. Statistical significance was calculated
with Mann–Whitney test in B, C, D, E, and G. Fisher
exact test and Benjamini–Hotchberg (FDR) correction
was used in F. Hypergeometric test and Benjamini–
Hotchberg (FDR) correction was used in H. � , P < 0.01;
��� , P < 0.0001.
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SK-N-SH, SK-N-BE(2)C, and eachof the other cell lines of theENCODE
catalog. The Jaccard value ranges from 0 (no similarity) to 1 (completely
identical). Our results indicated that the SK-N-SH and SK-N-BE(2)C
DHSs profiles are quite distant (their Jaccard score was about 0.43).
Furthermore, themedian Jaccard score in thepairwise comparisonswith
the other cell lines was about 0.27 and 0.30 for the SK-N-SH and the
SK-N-BE(2)C, respectively (Supplementary Fig. S1B). This last result
confirmed that SK-N-SH DHSs were more tissue specific than
SK-N-BE(2)C DHSs (P ¼ 7.54 � 10�11; Mann–Whitney test).

Finally, we obtained the third set of somatic variants in “nonactive
TFBS” (na-TFBS) by including those variants falling in inactive
regulatory elements characterized by only TFBSs.

From ntsa-TFBS variants, we subtracted those exclusive of
SK-N-SH regulatory elements. From all three sets, were further
excluded somatic variants in exons, UTRs, and splice junctions of
protein-coding and ncRNA genes.

Mutational enrichment
We compared the ratio of the number of mutations in active

binding sites of single TF to the total number mutations in all active
binding sites of all TFs and that of the total of active binding sites of
the same TF to all active binding sites of all TFs using a Fisher exact test.
Weperformed this test for all TFs andcorrected the resultingP values for
multiple testing (FDR) using the Benjamini–Hochberg procedure. The
threshold for the log2 of fold enrichment was set at �0.2. The TFs that
showed a positive or negative fold enrichment were indicated as either
over-represented (or)TF or under-represented (ur)TF, respectively.

We performed this enrichment analysis separately for the three
variant selections (tsa-TFBS, ntsa-TFBS, and na-TFBS) in the two
datasets under study (in-house and Target). Then, for each variant
selection, we merged the two lists (in-house and Target) to get
common significantly orTF and urTFs. Finally, we used these lists of
TFs to perform a Gene Ontology (GO) and search for enriched
Biological Processes by using the WebGestalt tool (29).

Gene expression analysis, samples clustering, and survival
analysis

R2: Genomics Analysis and Visualization Platform (http://r2.amc.
nl) was used to query transcriptomic data of 498 neuroblastoma
samples (GSE62564). We used the k-means clustering algorithm to
divide samples in two groups based on significantly enriched orTFs
and urTFs expression levels. Then, multivariate Cox proportional
regression analysis was performed to assess the independence of
K-means grouping from the other risk factors as reported in ref. 30.
HRs and 95% confidence interval (CI) for survival were calculated. The
overall survival (OS) and the event-free survival (EFS) probabilities
were calculated by using the Kaplan–Meier method. The log-rank test
statistical significance was set at 5%.

Variant clusterization, gene expression correlation, and
chromatin interactions

We used the Target samples with somatic variants and gene
expression data (n ¼ 89) to search for clusters of somatic variants
within the enriched tsa-TFBSs. With variants clustered within 300bp
to each other, we identified the nearest protein-coding genes excluding
pseudogenes, hypervariable genes (Immunoglobulins and T-cell
receptors), and ncRNA genes. We also searched for candidate targets
by examining public HiC sequencing data obtained on the neuroblas-
toma cell line SK-N-DZ and hosted at the 3D-genome Interaction
Viewer (31). In brief, we used the genomic coordinates of mutated tsa-
TFBSs with clustered variants to obtain candidate interacting genes

showing the bias-removed interaction frequency greater than 2-fold of
background signal. Subsequently, we compared the expression levels of
these genes between mutated and non-mutated samples. t test was used
to determine the statistical differences between the groups. The statistical
significance threshold was set at P < 0.05 after FDR correction.

All the analyses were performed within the R environment for
statistical computing (www.r-project.org).

Availability of data and materials
The WGS datasets generated and analyzed during this study are

available from the corresponding author on reasonable request. Public
data and data repositories are referenced within the manuscript.

Results
WGS data

Todetect somaticallymutated, activeTFBSs and study the functions of
their respective TFs, we analyzed 14 primary neuroblastoma whole
genomes (Supplementary Table S1) and used public data from theTarget
neuroblastoma project encompassing 137 whole genomes. The sequenc-
ing and the bioinformatics analysis pipeline produced high quality and
reliable variant calls (Supplementary Fig. S2A–S2C). We applied strin-
gent filtering criteria to discard false positives, common polymorphisms,
genomic duplications, and coding regions from somatic variant calls of
both datasets. After filtering, we obtained 19,750 (median¼ 1,410.7 per
sample) and 282,312 (median¼ 2,060.7 per sample) somatic variants for
the in-house and target datasets, respectively (Supplementary Fig. S3A).
In agreementwith previous reports, on average, we selected 0.47 and 0.68
somatic variants per megabase for the in-house and target datasets,
respectively (Supplementary Fig. S3B; ref. 24).

Noncoding somatic variants show high pathogenic scores in
neuroblastoma-active TFBS

We selected three different types of variants (ntsa-TFBS, tsa-TFBS,
and na-TFBS) based on their position in regulatoryDNA elements (see
Materials and Methods and Fig. 1A). The median number of variants
in tsa-TFBS category was significantly lower as compared with the
other two categories in both datasets (P < 0.05; Mann–Whitney
test; Fig. 1B). As depicted in Fig. 1C, somatic variants in tsa-TFBS
altered, on average, a significantly higher number of binding sites
compared with ntsa-TFBS and na-TFBS (P < 0.0001; Mann–Whitney
test). Moreover, the median of pathogenic scores, estimated by
CADD (32) and FunSeq2 (23) (Fig. 1D and E), was significantly
higher in tsa-TFBS than the others (P < 0.0001; Mann–Whitney test).

Enrichment analysis identifies orTFs and urTFs in
neuroblastoma-active TFBS

To determine whether particular TFs harbored more somatic var-
iants than the expected in their binding sites, we performed an
enrichment analysis in which the ENCODE catalogue of TFBS was
our reference (see Materials and Methods; Supplementary Table S2).
When we analyzed somatic mutations belonging to tsa-TFBS category,
we found (Fig. 1F) 18 orTFs and15urTFswhereas the analysis basedon
somatic mutations belonging to ntsa-TFBS and na-TFBS categories
returned a lower number of significantly enriched TFs (Supplementary
Figs. S4A and S4B). Furthermore, we used the RNA-seq data from 498
neuroblastoma samples (GSE62564) to assess the expression levels
orTFs and urTFs. We found that orTFs expression was significantly
higher than urTFs as reported in Fig. 1G (P¼ 2.278� 10�136; Mann–
Whitney test). Together, these data indicate that somatic variants of
tsa-TFBS fell in TF-binding sites specifically active in neuroblastoma.
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orTFs in mutated TFBS active in neuroblastoma are enriched in
cell cycle and gene regulation processes

To assess biological processes related to orTFs and urTFs, we
performed a GO enrichment analysis. The results showed two distinct
groups of biological processes characterizing orTFs and urTFs, respec-
tively. Indeed, we found that orTFs were highly significantly enriched
in biological processes belonging to cell-cycle phase transitions, cova-
lent chromatin modification, gene silencing, and others (Fig. 1H). In
contrast, urTFs were enriched in processes involved in cell differen-
tiation, cell fate commitment, stem cell differentiation, among the
others (Fig. 1H). Of note, we did not find any significant GO terms
for orTFs and urTFs of the other variant categories ntsa-TFBS and
na-TFBS.

orTFs- and urTFs-based gene signatures show opposite ability
to predict unfavorable outcome

We also asked whether the expression of orTFs and urTFs could
correlate with neuroblastoma patient's survival. We used a well-
annotated RNA-seq dataset (GSE62564, n ¼ 498). We performed
k-means clustering of samples based on expression levels of orTFs and
urTFs, separately. For orTFs, the clustering algorithm distinguished
two groups of samples characterized by low (group 0) and high (group
1) expression levels as reported in Fig. 2A (see also Supplementary
Fig. S5A; P ¼ 5.495 � 10�35; Mann–Whitney test). The group 1
strongly correlated with markers of neuroblastoma aggressiveness
(Fig. 2B) such as theMYCN amplification (P ¼ 2.4 � 10�29; x2 test),
the INSS stage 4 (P¼ 1.27� 10�29; x2 test), and the high-risk tumors
(P ¼ 1.5 � 10�51; x2 test). Furthermore, group 1 patients showed
inferior OS and EFS as compared with the group 0 (Fig. 2C; P < 2.0�
10�16; log-rank test). We confirmed the prognostic significance of
k-means grouping based on orTFs by multivariate Cox proportional
regression analysis (Supplementary Table S3). Indeed, the orTF-based
gene signature resulted to be a prognostic factor independently from
other known clinical markers (MYCN amplification, INSS stage, and
age at diagnosis). In contrast, the k-means clustering of samples
based on the urTFs gene expression returned opposite results. Two
markedly separated groups characterized by low (group 0) and high
(group 1) expression levels were identified (Fig. 2D; Supplementary
Fig. S5B; P ¼ 4.471 � 10�38; Mann–Whitney test). Here, the group
1, characterized by high expression levels of urTFs, correlated with
favorable markers as depicted in Fig. 2E (MYCN-amplified vs.
MYCN-nonamplified, P ¼ 3.4 � 10�04; stage 4 vs. non-stage 4
tumors, P ¼ 0.035; high-risk vs. non-high-risk tumors, P ¼ 6.5 �
10�03; x2 test) and better survival probabilities (Fig. 2F).

Recurrent mutations within orTF-binding sites can affect the
expression of target genes

Consequently, we wanted to detect possible mutational hotspots in
orTF binding sites and evaluate whether these recurrent regulatory
variants could affect the expression of Target genes. To address this
issue, we selected from the Target neuroblastoma cohort, those samples
with both somatic mutations and gene expression data available (n ¼
89).We found three variants (in two samples) nearby the telomeric end
of chromosome 13q. The variants clustered within a binding site of
EZH2 located 18,076 bp downstream the gene ADP-Ribosylhydrolase
Like 1 (ADPRHL1; Fig. 3A). HiC data of the SK-N-DZ neuroblastoma
cell line confirmed the interactions between the mutated regulatory
region and ADPRHL1 and indicated significant interactions also with
MCF.2 Cell Line Derived Transforming Sequence Like (MCF2L)
located 435,000 bp apart (see Supplementary Table S4; Supplementary
Figs. S6A–S6D). Of note, the presence of the variants significantly

reduced the expression of both genes (Fig. 3B and C) when we
compared mutated and wild-type samples (P ¼ 3.35 � 10�03 for
ADPRHL1, P ¼ 3.97 � 10�18 for MCF2L; t test). Consistent with the
repressive role of EZH2, we observed an inverse, although weak,
correlation between the gene expression of EZH2 and its targets in
the gene expression dataset (GSE62564; Fig. 3D and E). Nevertheless,
the low expression of ADPRHL1 andMCF2L correlated with poor OS
and EFS (P < 1.00� 10�07; log-rank test, Fig. 3F andG). Furthermore,
the expression of both genes inversely correlated with the unfavorable
neuroblastoma prognostic markers such as stage 4, high-risk, and
MYCN amplification (P < 1.00� 10�03; Mann–Whitney test, Fig. 3H
and I).

We found a second cluster of somatic variants (three variants in
three samples) nearby the transcription starting site ofCTTNBP2 gene
(cortactin binding protein 2) on chromosome 7q. In particular, two
variants were immediately upstream the transcription starting site,
whereas the other one was within the first intron. As shown in Fig. 4A,
these variants fell in the binding sites of six orTFs (RBBP5, EZH2,
SIN3A, POLR2A, TAF1, E2F1). Here, HiC data of the SK-N-DZ
neuroblastoma cell line indicated long-range interactions between
the regulatory region and ASZ1 and WNT2 (Supplementary
Table S4) that did not show significant changes in gene expression
between mutated and wild-type samples. A motif analysis with the R-
Bioconductor package “motifbreakeR” showed that two of these
variants weakly altered the binding motif of SIN3A and TAF1
(Fig. 4B). Also, in this case, the CTTNBP2 gene expression in the
mutated samples was significantly reduced compared with wild-
type (Fig. 4C; P ¼ 8.86 � 10�07; t-test). Pairwise Pearson correla-
tions between CTTNBP2 and each of the six TFs (summarized
in Fig. 4D) indicated that CTTNBP2 expression was directly
dependent on POLR2A, and inversely correlated with E2F1 and
RBBP5 expression levels. Low mRNA levels of CTTNBP2 correlated
with a poor survival (Fig. 4E) and unfavorable clinical parameters
such as stage 4, high-risk, and MYCN amplification (Fig. 4F; P <
0.05; Mann–Whitney test).

The third cluster of somatic variants (two variants in two samples,
Supplementary Table S4) was within the first intron of lymphocyte-
specific protein 1 (LSP1, F-actin binding and cytoskeleton associated
protein) on chromosome 11p. As shown in Fig. 5A, these variants
could alter the binding site of POLR2A. We assessed that the gene
expression in the mutated samples was significantly reduced com-
pared with wild-type (Fig. 5B; P ¼ 2.48 � 10�03; t-test). Pearson
correlation (Fig. 5C) indicated that LSP1 expression was directly
dependent on POLR2A. Survival analysis based on LSP1 expression
showed that both OS and EFS were significantly influenced when
the gene expression was lower than the median (Fig. 5D). Fur-
thermore, the expression of LSP1 inversely correlated with the
markers of neuroblastoma aggressiveness such as stage 4, high-risk,
and MYCN amplification (Fig. 5E; P < 0.01; Mann–Whitney test).
Interestingly, we found an inverse correlation between ALK and
LSP1 expression levels (r ¼�0.188, P ¼ 2.35 � 10�05) in the cohort
of 498 neuroblastoma samples as previously observed in white
blood cells and thymocytes (33).

This third cluster of variants also showed significant long-range
interactions (Supplementary Table S4) with the tyrosine hydroxylase
(TH) gene. In this case, its expression in the mutated samples was
significantly increased compared with wild-type (P¼ 9.14� 10�06; T
test; Supplementary Fig. S7A). Pearson correlation (Supplementary
Fig. S7B) indicated that TH expression was directly dependent on
POLR2A. Tumors with high TH expression exhibited a poor survival
(Supplementary Fig. S7C). Furthermore, high TH expression inversely
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correlated with the markers of neuroblastoma aggressiveness
(Supplementary Fig. S7D; P < 0.05; Mann–Whitney test).

Discussion
Emerging evidence suggests that noncoding somatic mutations can

promote cancer development by affecting the functions of DNA

regulatory elements and, as a consequence, the normal transcriptional
program (1–3). Despite these recent advances, it remains a challenge to
establish the pathogenic role of noncoding variants in cancer devel-
opment. In this work, we have demonstrated that mutated tissue-
specific and active regulatory elements are enriched in binding sites of
TFs that might have a role in the development and progression of
neuroblastoma.

Figure 2.

Results of the k-means clustering of neuroblastoma
samples (n¼ 498, GSE62564). The clustering was based
on the expression levels of over-represented (A–C) and
under-represented TFs (D–F). A, Box plot showing the
median expression levels of group0 (n¼ 269) andgroup
1 (n ¼ 229). B, Clinical features of neuroblastoma sam-
ples in group 0 and group 1 based on orTFs. C, EFS (top)
and OS (bottom) probabilities of neuroblastoma sam-
ples in group 0 and group 1. D, Box plot showing the
median expression levels of group 0 (n ¼ 378) and
group 1 (n ¼ 120). E, Clinical features of neuroblastoma
samples in group 0 and group 1 based on urTFs. F, EFS
(top) and OS (bottom) probabilities of neuroblastoma
samples in group 0 and group 1. A and D, Mann–Whitney
test; B and E, chi-square test; C and F, log-rank test.
��� , P < 0.0001.
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Figure 3.

ADPRHL1 andMCFL1 deregulation by somatic regulatory variants.A, From top to bottom, the plot tracks show theADPRHL1 gene, the clustered somatic variants, the
binding site of EZH2, the track for H3K27ac histonemodifications in SK-N-SH neuroblastoma cell line (GSE90683), and the ENCODE track of DHS signal in the SK-N-
SHneuroblastoma cell line. As reported in Supplementary Table S4, although the nearby geneDCUN1D2 showed significant interactionswith themutated locus, it did
not show significant changes in gene expression. B, ADPRHL1 expression in the mutated (n ¼ 2) and wild-type samples (n ¼ 96) of Target project. C, MCF2L
expression in the mutated (n ¼ 2) and wild-type samples (n ¼ 87) of Target project. D, ADPRHL1 versus EZH2 expression correlation. E, MCF2L versus EZH2
expression correlation. F, EFS and OS based on ADPRHL1 median expression in the GSE62564 data set. G, EFS and OS based on MCF2L median expression in the
GSE62564 data set. H, ADPRHL1 expression by clinical features. From left to right, INSS stage, risk group, and MYCN amplification. I, MCF2L expression by clinical
features. From left to right, INSS stage, risk group, and MYCN amplification. Two genes correlation coefficients in D and E were calculated with Pearson method.
Statistical significance was calculated with Mann–Whitney test in B, C, D, E, H, and I. Log-rank test was used in F and G. �� , P < 0.001; ��� , P < 0.0001.
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Figure 4.

CTTNBP2 deregulation by somatic regulatory variants. A, From top to bottom, the plot tracks show the CTTNBP2 gene, the clustered somatic variants, the binding
sites of six orTFs, the track for H3K27ac histone modifications in SK-N-SH neuroblastoma cell line (GSE90683), and the ENCODE track of DHS signal in the SK-N-SH
neuroblastoma cell line.B, SIN3A and TAF1 bindingmotifs alteration.C,CTTNBP2 expression in themutated (n¼ 3) andwild-type samples (n¼ 86) of Target project.
D,Volcano plot summarizing the gene expression Pearson correlations betweenCTTNBP2 and each of the six TFs reported inA. The gray dashed linemarks the cutoff
for statistical significance. E, EFS and OS results according to CTTNBP2 median expression. F, CTTNBP2 expression by clinical features. From top to bottom-right,
INSS stage, risk group, andMYCN amplification. Statistical significance was calculated with Mann–Whitney test inC,D, and F. Log-rank test was used in E. � , P <0.05;
� , P < 0.01; �� , P < 0.001; ��� , P < 0.0001.
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By using available chromatin characteristics and epigenomic
data, we set up three different approaches to determine active
TFBSs in neuroblastoma tumors and select the variants that fell
within. Our results showed that, despite their limited number,
somatic variants occurring in TFBSs active in neuroblastoma were

characterized by higher pathogenicity than those occurring in
TFBSs localized outside or within open chromatin regions defined
by ENCODE project in 125 cell lines. Furthermore, the median
number of binding sites altered by each variant was higher in tsa-
TFBS than the others. In addition, the enrichment analysis of

Figure 5.

LSP1 deregulation by somatic regulatory variants.A, From top to bottom, the plot tracks show the LSP1 gene, the clustered somatic variants, the binding site of EZH2,
the track for H3K27ac histonemodifications in SK-N-SH neuroblastoma cell line (GSE90683), and the ENCODE track of DHS signal in the SK-N-SH neuroblastoma cell
line.B, LSP1 expression in themutated (n¼2) andwild-type samples (n¼87) of Target project.C,Pearson correlation of LSP1 versusPOLR2Agene expressions.D,OS
and EFS results according to LSP1 median expression. E, LSP1 expression by clinical features. From top to bottom right, INSS stage, risk group, and MYCN
amplification. Statistical significance was calculated with Mann–Whitney test in B, C, and E. Log-rank test was used in D. � , P < 0.01; �� , P < 0.001; ��� , P < 0.0001.
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mutated binding sites in ntsa-TFBSs or in na-TFBSs returned small
sets of TFs that were not significantly enriched in any GO terms.
These results provide evidence that each tumor may have a specific
profile of pathogenic mutations, which may change according to the
tissue specificity of the DNA regulatory elements.

In this first part of our work, we observed that certain TFs (orTF) of
active regulatory regions (tsa-TFBS) had their binding sites mutated
more often than the expected. GOanalysis suggested their involvement
in promoting cell-cycle phase transitions, covalent chromatin mod-
ification, and gene silencing. Some of them are known to play key roles
in tumor development. For example, retinoblastoma-binding protein 5
(RBBP5), part of the MLL1/MLL complex, is involved in H3 “Lys-4”
methylation at key developmental loci. In embryonic stem cells, it plays
a crucial role in the differentiation potential, particularly along the
neural lineage. RBBP5 takes part in large complexes involved in nearly
all steps of tumor development including transcriptional activation of
key oncogenes, cell proliferation, survival, initiation and progression,
invasion, and metastasis (34). Several small molecules and drugs have
been tested to targetMLL1 complexes in cancer (35, 36). Furthermore,
PHF8 is a histone lysine demethylase acting as a transcription acti-
vator. It is involved in cell-cycle progression where it controls G1–S
transition (37). It promotes oncogenesis and tumor progression in a
number of cancer types including prostate cancer (38), breast can-
cer (39), and others. MYC-Associated Zinc Finger Protein 9 (MAZ)
has dual roles in transcription initiation and termination (40). It
transactivates numerous oncogenes (MYC, HRAS, PPARG, TSG101,
VEGF, CAV1, and PTHR1) and transrepresses others (NOS3, MYB,
and TERT). Clinical evidence has revealed thatMAZ is overexpressed
in prostate (41) and breast cancer (42). In vitro experiments have
shown that MAZ knockdown suppresses prostate and breast cancer
cell proliferation, implying thatMAZ functions as a promoter in cancer
development and cell proliferation. EZH2 is a member of the poly-
comb repressive complex 2 involved inmaintaining the transcriptional
repressive programs over cell generations. Recent studies have shown
that the suppression of EZH2 inhibited neuroblastoma growth in vitro
and in vivo and repressed neuronal differentiation (43, 44). Several
EZH2 inhibitors have been developed for cancer therapy (45). The TF
E2F1, a key cell-cycle regulator, targets genes encoding proteins that
regulate cell-cycle progression through the G1–S transition as well as
proteins important in DNA repair and apoptosis (46–48). Additional
experimental studies are needed to determine the role of these TFs in
neuroblastoma development and progression.

In contrast, urTFs (TFs with binding sites mutatedmore rarely than
the expected) were involved in cell differentiation and cell fate
commitment. Among these factors we found key regulators of cell
proliferation and differentiation. FOS and JUN form the AP-1 com-
plex, which is implicated in regulation of cell proliferation, differen-
tiation, and transformation (49). In neuroblastoma, the AP-1 complex
is involved in conferring NCC-like identity to tumor cells (50). FOXA1
and FOXA2 are transcription factors involved in embryonic develop-
ment, establishment of tissue-specific gene expression, and regulation
of gene expression in differentiated tissues. They are thought to act as
pioneer factors opening the compacted chromatin for other
proteins (51).

Having established the importance of enriched TFs, we asked
whether their expression levels (over- and under-represented TFs,
separately) could influence neuroblastoma patient's prognosis. We
used RNA-seq and clinical annotation data of 498 neuroblastoma
tumors to answer this question. First, we found that the expression
value of orTFs was significantly higher than that of urTFs. This result
pointed to key biological implications for orTFs in neuroblastoma

development. Then, we clustered the 498 neuroblastomas based on
orTFs and urTFs expression, separately. In each case, the K-means
clustering algorithm identified two distinct groups. For orTFs, the
group 1 included samples characterized by high gene expression and
low survival probabilities. In contrast, group 0 included samples with
low expression of these TFs and with higher survival rates. Moreover,
group 1 significantly associated with stage 4, MYCN amplified and
high-risk clinical features. Conversely, the clustering of samples based
on urTFs expression, returned opposite, but less significant, results.
Indeed, in this case, patients included in group 0 were characterized by
worse prognosis and unfavorable clinical markers. We interpret these
results by assuming that TFs enriched in active mutated binding sites
might form a signature reflecting the activity of key pathways in
neuroblastoma. In addition, further clinical studies could assess the
prognostic value of this signature formore refined patient stratification
in risk groups.

In a subsequent step, we searched for possible mutational hot
spots that could influence the expression of candidate target genes.
Overall, we identified three clusters of variants with significant
changes of target gene expression between mutated and wild-type
samples. Here, it should be pointed out that the small set of initial
variants in tsa-TFBSs limited our search for clusters that contained
no more than three variants in three different samples. However, we
found that the expression of four candidate target genes
(ADPRHL1, MCF2L, CTTNBP2, and LSP1) was significantly
reduced in mutated samples compared with wild-type. We observed
that the reduced expression of ADPRHL1, MCF2L, and LSP1
negatively influenced both OS and EFS of patients with neuroblas-
toma and significantly correlated with clinical and biological mar-
kers of aggressive disease.

ADPRHL1 is a protein ADP-ribosylhydrolase that reverses the
action of ADP-ribosyltransferases. So far, this gene has been little
studied: it has been indicated as potential prognostic marker of uveal
melanoma (52) and seems to play a relevant role during
cardiogenesis (53).

MCF2L encodes a guanine nucleotide exchange factor that interacts
specifically with the GTP-bound Rac1 and plays a role in the Rho/Rac
signaling pathways (54). Beyond its role in regulating breast cancer cell
migration, MCFL2 is suggested to participate in axonal transport in
neurons and is highly expressed in brain (55).

LSP1, an F-actin binding protein regulating transendothelial
migration of white blood cells, is involved in ERK/MAPK path-
ways (56). Downregulation of LSP1 has been reported to be a risk
factor for liver tumor and to promote its development and metas-
tasis (57, 58). Of interest, in white blood cells and thymocytes, LSP1
expression was inversely correlated with anaplastic lymphoma
kinase (ALK; ref. 33), which is the most common, somatically
mutated gene in sporadic neuroblastoma and is the major suscep-
tibility gene to familial neuroblastoma (59). Accordingly, we
observed this inverse correlation between LSP1 and ALK also in
498 neuroblastoma samples.

TH encodes an enzyme with important roles in the physiology of
adrenergic neurons. High levels of THmRNA in peripheral blood and
bone marrow of patients with neuroblastoma at diagnosis can predict
poor prognosis (60). Our survival analysis using TH expression in
neuroblastoma tumors showed opposite results.

Further functional investigations are needed to elucidate the func-
tional effect of this cluster of noncoding variants.

So far, no study has investigated the role of the above-reported genes
in neuroblastoma. Thus, for the importance of their interactors and the
pathways they are involved in, they are noteworthy and could be
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considered for further studies to better understand and deconvolute
molecular events of neuroblastoma initiation.

Conclusions
To conclude, our study proposes a novel approach to verify the

potential pathogenic consequence of regulatory variants in neuroblas-
toma that could be extended to other cancers. Overall, we demon-
strated the existence of a direct link between TFBS within active
regulatory elements and somatic mutations. Moreover, we provide
further evidence that alteration of gene expression regulatory circuits
can have relevant implications in neuroblastoma development.
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