
 

Journal Pre-proof

Propagation of waves in nonlocal-periodic systems

A.S. Rezaei , A. Carcaterra , S.V. Sorokin , A. Hvatov ,
F. Mezzani

PII: S0022-460X(21)00228-5
DOI: https://doi.org/10.1016/j.jsv.2021.116156
Reference: YJSVI 116156

To appear in: Journal of Sound and Vibration

Received date: 18 June 2020
Revised date: 25 March 2021
Accepted date: 19 April 2021

Please cite this article as: A.S. Rezaei , A. Carcaterra , S.V. Sorokin , A. Hvatov , F. Mezzani ,
Propagation of waves in nonlocal-periodic systems, Journal of Sound and Vibration (2021), doi:
https://doi.org/10.1016/j.jsv.2021.116156

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

https://doi.org/10.1016/j.jsv.2021.116156
https://doi.org/10.1016/j.jsv.2021.116156


1 
 

Propagation of waves in nonlocal-periodic systems  

A. S. Rezaei
a
, A. Carcaterra

a
, S. V. Sorokin

b
, A. Hvatov

c
, F. Mezzani

a
 

a
Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184, Rome, 

Italy 
b
Department of Mechanical and Manufacturing Engineering, Aalborg University, Fibigerstrade 16, 

9220, Aalborg, Denmark 
c
National Centre for Cognitive Research, ITMO University, 197101, 49 Kronverksky pr., St. 

Petersburg, Russia 
*
Corresponding author. amirsajjad.rezaei@uniroma1.it  

 

Abstract  

This paper is concerned with emergence of novel effects in wave propagation in one-

dimensional waveguides, when integrated with periodic nonlocalities. The nonlocalities are 

introduced by a connectivity superimposed to a conventional waveguide and depicted as a 

graph with trees and leaves, each with its own periodicity. Merging nonlocality and 

periodicity notions induces a distinction between homogenous and non-homogenous periodic 

configurations. Specifically, various unconventional phenomena linked to the presence of 

nonlocalities result in disruption of the energy transmission in such systems, disclosing new 

opportunities for vibration isolation applications. To demonstrate these effects, simple models 

of propagation of plane extension/compression waves in a uniform infinite rod equipped with 

co-axial spring-like elements is used. The homogenous case is analysed by a direct double, 

space and time, Fourier transform, leading to discussion of unusual dispersion effects, 

including vanishing and negative group velocity. In the non-homogeneous case, the canonical 

Floquet theory is used to identify stopbands and control their positions in the frequency 

domain. The results are compared with eigenfrequency analysis of unit periodicity cells and 

finite structures. Next, the forcing problem is considered and the insertion losses in a semi-

infinite rod with nonlocal spring effects are computed to corroborate predictions of Floquet 

theory, providing physical explanations of the obtained results. Finally, possibilities to 

employ the non-local interaction forces in an active control format to generate stopbands at 

arbitrarily low frequencies are highlighted.    
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1. Introduction 

The major rationale for conducting research on periodic configurations is the design of 

structures which provide broad stopbands especially in the low frequency range. In fact, 

Brillouin [1] indicated that periodic structures are capable of offering gaps in their band 

structure. Typically, such structures are remarkably demanding in terms of isolation 

technologies and transducer design; and the optimal design of these applications is contingent 
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upon low frequency band gaps. Various types of periodic structures are proposed by 

researchers to reach that end.  

A rich point of view on metamaterials is recently proposed, in which exclusive first 

neighbour interaction is challenged, allowing for nonlocal actions at a fixed or unlimited 

window. Under such circumstances, the nature of the system is deeply influenced, enabling 

the manipulation of travelling waves by properly tailoring the topology and the intensity of 

the interaction between distant points. Various means for distant interaction include magnetic 

inclusions and external spring-like elements, which can cause instant energy transmission 

across the system.  

Studies in nonlocal continuum mechanics revealed how introduction of long-range 

interactions may cause some strange wave propagation behaviours dissimilar to the 

corresponding response of conventional elastic solids [2,3]. For instance, Eringen’s nonlocal 

theory of elasticity [3–5] modifies the constitutive relation of a medium (with respect to the 

classical theory of elasticity) by considering an addition convolution terms, which describes 

the dependence of the state of stress on the deformation at the point along with the that of all 

other point within the domain, and subsequently the effect of this revision on the status of 

travelling wave in the corresponding media. Among other nonlocal formulations in 

continuum mechanics, Silling [6] introduced an integro-differential formalism called 

“Peridynamics”, which helps to avoid singularities in domain with discontinuity by 

considering a confined interaction region in the vicinity of each point. Peridynamics does not 

involve the strain and stress explicitly by an integral term in terms of deformation 

components unlike classical theory of elasticity and Eringen’s nonlocal theory.  

 

In the context of long-range systems, several contributions have been published in past few 

decades [7–11]. For instance, Kunin [12] provided the context for studying of one-

dimensional elastic media with microstructure such as ionic and non-ionic crystals. Several 

lattice models have been considered in his work, which take into account the effect of action 

in the distance between the non-adjacent points of such domains by means of simple elastic 

connectors (spring). Zingales [13] presented a model to investigate the wave propagation in 

finite one-dimensional mechanically based nonlocal elastic solids, showing correlations 

between this type of solids and the well-known Kroner-Eringen integral model. The discrete 

model presented Carpentieri et al. [14], which shares resemblance with that of Zingales [15] 

assumes a modified version for the stress-strain relation equipped with a particular 

attenuation function, which causes fractional derivatives to appear in the associated 

dynamics. To identify the existing propagation regimes in one-dimensional long-range 

systems, Carcaterra and co-authors [16–21] confirmed the existence of some unusual regimes 

such as negative and hypersonic group velocity, providing a general mapping of these effects, 

even in the presence of delay in nonlocal propagation. In the light of these points, 

introduction of nonlocalities seems promising to improve the design of acoustic 

metamaterials.  

A review of analyses for identifying the state of waves travelling through conventional 

continuous periodic structures, including beams, plates and cylindrical shells, is provided in 

the classical work by Mead [22]. Phononic crystals (PCs) are usually defined as artificial 

materials made of periodic arrangement of scatterers embedded in a matrix [23], and they 
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have been in the centre of attention for the past three decades [24–27]. However, large size 

phononic crystals are required to absorb real-life sound waves since they must be arranged 

spatially on the order of the matrix acoustic wavelength [28]. To overcome the limits of PCs, 

the acoustic metamaterials, which are composed of mechanical subunits embedded within 

thin-walled elements, are employed. In the literature, the effect of both geometrical 

parameters for placement of resonators in arrays, as well as the type of the resonator itself, on 

the wave transmission has been investigated comprehensively [29–31]. The possibility of 

designing materials with negative effective mechanical properties was then investigated and 

observed experimentally [32–34]. On the other hand, Floquet’s principle can be employed as 

a powerful tool to highlight the stopband formation mechanism in the band structure of 

various configurations such as periodic elastic compound rods (PECR), periodically 

corrugated elastic layers [35–37]. In a separate study, Hvatov and Sorokin [38] compared the 

eigenfrequency spectra of some finite compound structures with the results obtained from the 

plane wave analysis of their infinite counterpart and investigated the effect of the number of 

unit-cells on the spectrum.  

Certainly, the fundamental studies of Eringen [5] and Kunin [12] inspired the authors to 

attack the objective (manipulation of wave path) by introducing nonlocalities to systems. 

Along this line, adopting mathematical tools, which provide the possibility of defining 

particular interaction regions for each part of the systems, similar to Peridynamics approach 

[6], seem to be an efficient choice.  

However, to the best of authors’ knowledge, so far, no wave analysis is performed for 

combining the effects of periodicity and nonlocality on the performance of acoustic 

metamaterials; this represents the novel contribution of the present work.  

Moreover, novel is the study of the systematic topology of the long-range connectivity, 

represented through a graph structure with a double characteristic periodicity, of the trees and 

the leaves, respectively, leading to distinguish between homogenous and non-homogenous 

distribution of nonlocalities. The first type is described by an equation of motion with 

constant coefficients but with periodically spatial-delayed terms. The second type is 

characterised by an equation of motion with periodic coefficients. 

The effects of both types of systems are studied using the simple model of propagation of 

plane dilatation/compression waves in an otherwise uniform rod. First, several cases of the 

long-range homogenous periodic and long-range homogenous structure, where the 

distribution of nonlocalities are the same for each point of the system, are considered, and the 

corresponding propagation effects are captured by a direct double Fourier transform and the 

study of the associated dispersion relationship. Analytical results are feasible because of the 

type of considered long-range connectors, disclosing the most important wave propagation 

effects of both the long-range connectivity and related (leaf-) periodicity. Next, the case of 

non-homogeneous periodicity is studied, then the periodic positioning of nonlocalities on 

repeating rod elements generates a conventional periodic configuration. The working 

mechanism of these nonlocalities is further inspected by examining energy flux and insertion 

losses in a semi-infinite waveguide, which includes a “periodic insert” of the same nature. 

Note that all anomalies reported throughout the paper are indeed concerned with disruption of 

the energy transmission in the systems under studying.  
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The paper is structured as follows. In section 2, a formal distinction between nonlocal 

homogenous and non-homogeneous periodicity is introduced following the introduction of 

the graph-periodicity concept. In section 3, the concepts of nonlocal interactions and long-

range forces of the first type are illustrated in four examples of progressive complexity and 

the arising phenomena have been underlined. The analysis suggests the possibility of 

achieving wave-stopping at particular frequencies as well as backward energy transmission in 

certain frequency ranges. In section 4, a mathematical formulation for the second type of 

long-range periodicity is presented, where the periodicity is induced by nonlocalities 

embedded in a conventional waveguide. The results given in this section demonstrate the 

generation of stopbands, without the conventional impedance mismatch, and purely related to 

the long-range periodicity. Section 5 addresses the possibility of pulling the gaps to the very 

low frequencies by redesigning the system through active control elements. A detailed 

analysis of insertion losses in the semi-infinite rod containing a specific number of periodic 

cells, described in the previous sections, is provided in section 6. An important ‘nonlocality-

induced’ phenomenon is highlighted in section 7, where the interaction between the spring-

born force and that carried along the segments is studied. Finally, the concluding remarks are 

given in section 8.  

 

2. Long-range graph-periodicity: non-homogenous and homogenous cases  

Notions of long-range interactions and periodicity, when suitably combined, lead to an 

interesting distinction between two different ways of building up long-range connectivity 

templates, enriching both the scenarios of nonlocal elasticity and periodic systems. This 

distinction is important for the present investigation, enlightening a physical difference 

together with the related different mathematical approaches to the corresponding problems.  

A classical periodic system shows, in general, a modular structure, where the characteristic 

module sequentially replicates itself along the system. This produces, as a mathematical 

counterpart, a differential equation of motion with periodic coefficients that characterize a 

conventional and genuine periodicity. We show ahead that a wider scenario discloses through 

the concept of graph-periodicity leading to some forms of periodicity even in the presence of 

constant coefficients.  

The focus is on a conventional infinite waveguide, described for simplicity by the standard 

wave equation   
   

   
   

   

   
 , with  (   ),  ,   and   being the longitudinal 

displacement, mass density, Young’s modulus, and the cross-section area, respectively. An 

additional archetypal long-range connectivity is superimposed, connecting, by a suitable 

long-range set of connectors, i.e. equivalent springs and in different possible fashions, distant 

points of the host waveguide. Note that in the models provided in the following sections 

(based on this concept), the nonlocalities are modelled by simple mechanical component 

(elastic links), which are similar to those presented in Ref. [12,14,15]. 

For a given superimposed connectivity   on a conventional waveguide, we can introduce its 

formal description through the symbol   (                             ). The graph 

   specifies the set of connectors applied to the waveguide. Namely, the graph has a tree at 
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   connected to each of the selected points            on its right, and to each of the points 

                on its left, that are the leaves of   .   and   are generally different, and 

the end points of leaves not necessarily equally spaced. In case the leaves are equally spaced, 

the spacing   is named the period of the leaves and the related connectivity leaf-periodic (see 

Fig. 1).  

 

 

Fig. 1: Sketch illustrating the graph-periodicity concept 

The superposition of more connectivity graphs     with different trees positions    , for 

           generates a new long-range connectivity graph  : 

      
                 (1) 

If the trees are equally spaced, the spacing   is the period of the trees, distinct from the 

period of the leaves   and the connectivity is tree-periodic (in some cases    ).   

The combination of tree-periodicity and leaf-periodicity leads to discuss several interesting 

cases, some of them considered in the present paper. 

A connectivity   that is tree-periodic (independently of the leaf periodicity) produces a 

structure that is periodic in a genuine-conventional sense, i.e. its equation of motion has 

periodic coefficients. In fact, the connectivity   applies only to specifically selected points 

along the waveguide, and we call for this reason the structure long-range non-homogenous 

periodic and its connectivity        , a case analysed in this paper. 

If the connectivity is tree-periodic and leaf-periodic, we can generate a long-range 

homogeneous periodic structure through      
   
   

       , that has a continuous 

distribution of trees. In fact, this means that the same connectivity applies identically to any 

point at x (the trees becoming infinitely dense), therefore producing homogeneity, and the 

presence of constant coefficients in the equation of motion (not periodic anymore). However, 

although in this way the tree-periodicity disappears, the leaf-periodicity still holds. Therefore, 

we have a constant coefficients equation of motion, but still characterized by a residual leaf-

periodicity, that is an intriguing new concept investigated in the present paper.  
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If the leaves are non-periodic,      
   
   

         produces simply a long-range 

homogenous connectivity without elements of periodicity, that is another case investigated in 

the present paper. Here        refers to the tree in a non-homogenous configuration.  

The case      
   

       
        produce finally a continuous distribution of trees and 

leaves, periodicity is absent, and again a simply a long-range homogenous connectivity is 

defined, also analysed in the present paper. 

Let us illustrate, by elemental examples, the equations of motion related to the previously 

introduced graph-periodicity. 

The modified waveguide equation, when including the presence of the long-range elastic 

links, becomes: 

  
   

   
   

   

   
  (   )          (2) 

Let us consider, as a first example, a periodic-tree and periodic-leaf connectivity, with an 

infinite number of trees along the waveguide, each with N leaves. The single-tree 

connectivity   , with its tree at     is associated to the operator   (   )     ∑  (    
    

  )[ (   )   (      )] with   being the stiffness of elastic connectors (see Fig. 1). 

Simple consideration, including serially repeated trees, shows the long-range term 

      (   ) reads: 

      (   )    ∑ ∑  (    )[ (   )   (      )]  
    

  
      (3) 

The nature of the equation   
   

   
   

   

   
       (   )    is differential, with periodic 

coefficients: the differential part is   
   

   
   

   

   
, the periodic coefficients are   (  

  ), and: 

 (   )   (      )                 (4) 

This is an example of long-range non-homogenous periodicity. The most acknowledged 

method for periodic coefficients equations is the Floquet theorem. 

However, as seen through the graph-periodicity concept, one can conceive a different way of 

using the same connectivity template that is not selective, i.e. does not involve only special 

points along the waveguide (as those at        as in the previous case) but it applies 

serially and homogenously to each point x of the structure (that means   becomes infinitely 

small). Hence, the name long-range homogeneous periodicity. In this case, the equation of 

motion does not exhibit periodic coefficients anymore. In fact: 

    (   )    ∑ [ (   )   (      )] 
         (5) 

This operator shows a different nature with respect to the form (3) previously presented. 

Using the form (5), Eq. (2) becomes a differential-delay equation with constant coefficients, 

i.e.   
   

   
   

   

   
  ∑  (   )   (      ) 

      . Although a periodically delayed 
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term appears as ∑  (      ) 
    , the coefficients are constant. In this case the Floquet 

theorem, the typical tool for genuine periodic structures, can be skipped and replaced by a 

simpler direct double Fourier transform of the equation of motion. Note that in the models 

provided in the following sections (based on this concept), the nonlocalities are modelled by 

simple mechanical component (elastic links), which are similar to those presented in Ref. 

[14,15]. 

More precisely, the first tree-periodicity case requires, because of the non-homogenous 

nature of the structure, a piecewise solution, each part living within any module of the 

system, i.e.: 

 ( )(   )  ( ( )      ( )      )          [       ]    (6) 

Different solutions satisfy continuity conditions at the module’s boundaries, i.e. at  

           , and the Floquet’s theory finds the non-trivial solutions for the unknown 

coefficients  ( ). A set of eigenvalues follows for the wavenumbers, and their nature 

establishes the chance of propagating waves or inhibiting them (stopband effects).  

The second case, with homogenous nature, due to the constant coefficients, permits a direct 

double Fourier transform, space and time, with a continuous solution along the entire 

waveguide (no need to express a piecewise solution as for periodic coefficients): 

 (   )  ∫ ∫  (   )
  

  

  

  
                   (7) 

Its substitution into the equation of motion produces the dispersion relationship  ( ) and its 

nature determines the chance of wave propagation or its inhibition, and additionally the group 

velocity behaviour of the waveguide is determined. 

Although the two methods do not admit any mathematical interchange, and each type needs 

its own technique, on the physical ground, the interpretation of the results of the two methods 

are comparable. In fact, they both rely of the nature of the complex wavenumber (whatever 

its mathematical origin, i.e. the eigenvalues analysis or the dispersion relationship), as an 

indicator of the kind of waves established along the waveguide.  

For both the different kinds of periodicity, some transition effects are expected when the 

wavelength   becomes much smaller than  , and/or of   i.e      , and/or       

where the wave energy remains trapped into the periodic inclusions, conferring to the system 

properties of energy propagation disruption in some frequency range. 

To synthesize, different types of long-range configuration discussed above as well as their 

associated characteristics are collected into Table 1. 

 Table 1: Different types of long-range configurations based on graph-periodicity concept 

Type Characteristics Equation property Solution method 

non-homogenous 
periodic/ 
tree-periodic 

Constant   Differential equation 
with periodic 
coefficients 

Floquet theorem 

homogenous periodic/     & Differential equation Spatiotemporal Fourier 

                  



8 
 

leaf periodic Constant   with constant 
coefficients 

transform 

homogenous     & 
variable   or L   

Differential and 
integral-differential 
equations with 
constant coefficients 

Spatiotemporal Fourier 
transform 

 

In both cases, namely homogenous and non-homogenous periodicity, peculiar wave 

propagation effects emerge that include band gaps, wave stopping, negative group velocity 

and instabilities that amount to a rather rich scenario investigated in detail in the next 

sections.  

Under the physical point of view, one can include the long-range nonlocalities in two 

different ways. The first uses solid elastic connectors, linking different sections of the 

conventional waveguide. This kind of connectivity leads to genuine periodic structures. An 

example of realization of this kind of connectivity is shown in Fig. 2. The internal core is the 

conventional waveguide, and an external shell supports the superimposed elastic links. The 

external shell connects to the core through a set of bulkheads (the flexural deformation and 

mass of which is negligible). Longitudinal traction and compression forces of the shell load 

the internal waveguide through the bulkheads (inertia effects of the shell are negligible in 

comparison with those of the core-waveguide). This structure, for example, can implement 

the configurations investigated in Fig. 12 and Fig. 17, that are cases of tree-periodic systems. 

However, these cases show a connection only between pairs of sections of the conventional 

waveguide. In fact, more general cases of long-range connectivity, in which each section of 

the conventional waveguide connects to a large (or potentially infinite) number of other 

sections, as for the cases investigated in Fig. 4 and Fig. 9, is difficult to implement by solid 

elastic connectors. In such cases, use of magnets inserted into the conventional waveguide, 

permits long-range magnetic interactions, including coupling forces among all the sections, 

where the magnets are located. This arrangement is represented in Fig. 3. 

 

Fig. 2: A mechanical model for realization of a long-range tree-periodic structure 
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Fig. 3: A mechanical model for realization of a long-range leaf-periodic structure 

 

3. Nonlocal homogenous periodic waveguides  

In this section, effects of classical nonlocalities in propagation of the plane wave of axial 

deformation in a rod are discussed. Several arrangements of long-range operators acting as 

spring-like links are considered. In each case, the instantaneously transmitted force is 

proportional to the difference between the displacements of the ends of a link.  

With reference to the graph-periodic concept introduced in the previous section, in section 

3.1 we analyse the case of long-range homogenous-periodic structure, characterized by a 

periodicity of the leaves, while the periodicity of the trees is lost because they continuously 

distribute (P tends to zero). Two examples consider both constant and variable stiffness of the 

connectors.  

In section 3.2, the leaf-periodicity is lost making leaves non-equally spaced or continuously 

distributed. In those cases, we have simply a long-range homogenous structure. 

 

 

3.1. Open interaction region  

To begin with, a very simple case is considered. The behaviour of a homogenous-periodic 

waveguide with long-range interaction is presented, where the leaves are not confined to the 

tree vicinity, but they extend arbitrarily far, ideally even at infinite distance. The leaf-period 

is L, while the tree-periodicity disappears, since P tends to zero.  

The long-range forces are produced by springs of the same stiffness  , which connect any 

point   to its counterparts located at the distances   , as shown in Fig. 4. Here,   is an 

arbitrary length and   being an integer multiplier.  
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Fig. 4: Homogeneous-periodic waveguide with equally spaced nonlocalities  

The resulting equation of motion is:  

  
   (   )

   
   

   (   )

   
  ∑ [ (   )   (      )] 

        (8) 

and   is an arbitrary integer number.  

Standard space-time Fourier transform of Eq. (8), yields the dispersion relation, which is 

written in the nondimensional form as: 

       ̂ ∑ [      ] 
             (9) 

Here,      and     √    are the nondimensional wavenumber and the 

nondimensional frequency, in the order given.          is a nondimensional parameter, 

which scales the stiffness of the springs, and, therefore, intensity of long-range forces, to the 

stiffness of a rod. To highlight the nonlocality-induced phenomena in the response of the 

system, phase velocity         and group velocity          against the 

nondimensional wavenumber   are displayed in Fig. 5 and Fig. 6, respectively.  

Based on Fig. 5, by integrating the conventional waveguide with spring-like links, the 

corresponding value for phase velocity associated with travelling waves of very long 

wavelength (   ) is rather high though the velocity drops sharply as   increases, and 

eventually tends to unity at      (D’Alembert waveguide’s response). This implies that 

introduction of spring-like links influences the phase velocity response substantially in the 

low wavenumber band. Besides, systems with larger   provide higher values of   , when the 

wavenumber tends to zero.  

Regarding the group velocity response, considerable fluctuations in the speed of wave 

envelope with respect to that of the D’Alembert waveguide (marked in red) are observed in 

Fig. 6. The curves reveal the possibility of achieving wave-stopping and negative group 

velocity. Wave-stopping, i.e. zero group velocity, implies that the energy is forced to stop 

travelling across the domain at certain wavenumbers/frequencies. Furthermore, the model 

allows for backward moving energy propagation within the certain wavenumber/frequency 

bands with the extremes determined by the wave-stopping wavenumbers/frequencies.  
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Fig. 5: Phase velocity curves for the homogenous periodic waveguide with equally spaced 

nonlocalities of same stiffness (   ) 

 

Fig. 6: Group velocity curves for the homogenous periodic waveguide with equally spaced 

nonlocalities of same stiffness (   ) 

Looking at Fig. 6, it appears that wave-stopping and negative group velocity emerge only if 

the value of the   is above a critical value,      , where     depends on  . This point is 

clearly demonstrated in Fig. 7, where the variation of group velocity plotted for systems 

characterised by different value of   (   ). Based on the figure, the amplitude of peaks 

increases as   rises, providing the possibility of achieving more wavenumber bandwidth 

within which the group velocity turns negative. For instance, only two bandwidths with such 

feature are evident for a waveguide with      in the plotted range while a system with 

    yields fourteen similar bandwidths. In fact, the peaks become more pronounced for any 

super critical value of   (          ), leading to higher number of bandwidths with such 

characteristics (zero/negative group velocity).  

 

Fig. 7: Group velocity curves for the homogenous periodic waveguide with equally spaced 

nonlocalities of different stiffness (   ) 
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Note that Eq. (9), is meaningful only for a finite N. In fact, 
   

   
∑ [      ] 
      . 

However, if we introduce a variable stiffness decreasing with  , for example    | |, the 

dispersion relation takes the form:  

       ∑
[      ]

 | |
 
             (10) 

The assumption regarding the stiffness of elastic connectors (monotonically decreasing by 

distance) corresponds to physical systems since usually the intensity long-range forces is 

proportionally stronger when the non-adjacent parts of a system are closer to one another. 

As   tends to infinity, the above equation reduces to the following simple form:  

        (  
 

       
)          (11) 

with the corresponding group velocity in a closed form:  

   
     ( )          (   (  )      ( ))

(     ( )   )
 
  √     ( )(      )           

       (12) 

characterized by the nondimensional parameter  . For N  , the group velocity (12) is 

plotted in Fig. 8, together with the cases for         . Note how the group velocity 

rapidly converges to the case    , for which,          .  

 

Fig. 8: Group velocity curves for the homogenous periodic waveguide with equally spaced 

nonlocalities of different stiffness (   ) 

 

3.2. Confined interaction region  

In this example, a system in which the connection points (ends points of the leaves) are not 

equally spaced is considered, and the distance between two consecutive connectors is 

           
| |. This means both the tree-periodicity and the leaf-periodicity are lost, and 

the investigated system is simply long-range homogeneous, following the theory exposed in 

section 2. This leads to an interaction window of a finite length   , as    , as shown in 

Fig. 9. Moreover, the stiffness is decreasing as    | |.  
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The equation of motion becomes:  

  
   (   )

   
 

  
   (   )

   
 ∑

 

 | |
[ (   )   (  

   | |

 | |  
   )] 

     

                                      ∑
 

 | |
[ (   )   (  

 | |  

 | |  
   )] 

       (13) 

 
Fig. 9: Long-range homogenous waveguide with unequally spaced nonlocalities 

The dispersion relation corresponding to Eq. (13) is:  

       ∑

[   

  (   | |)

 | |  ]

 | |
 
      ∑

[   

  ( | |  )

 | |  ]

 | |
 
        (14) 

and the group velocity curves associated to this case is represented in Fig. 10. 

 

Fig. 10: Group velocity curves for the long-range homogenous waveguide with spacing 

           
| | and stiffness    | |. (    ) 

Although an explicit formula may not be extracted, the figure demonstrates the convergence 

of the curves as    . A critical value of   for large N is      , and below this threshold 

wave-stopping and negative group velocity can be observed. 

Finally, the case of a continuous distribution of connectors remains with the definition of the 

kernel  ( ) as:  
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   (   )

   
   

   (   )

   
  ∫  (   )

 

  
[ ( )   ( )]     (15) 

The integral description of the long-range forces, replacing the summation of the previous 

examples, implies the existence of all possible interactions between the point   and other 

points fallen within the window  ( ). Similar cases are available in the literature [16–19], 

investigating the plane-wave response of systems with confined regions of interaction. 

Assuming  ( )  [      (  ) ]  | | with      , the above equation takes the form:  

  
   (   )

   
   

   (   )

   
 

    

(   )((   )    )
 ( )    

[     (  )]

 | |
  ( )  (16) 

where   denotes the convolution operation. Since the area below the function  ( ) is finite, 

Eq. (16) describes a homogeneous-periodic waveguide with confined interaction region. 

Introducing the nondimensional parameters    √      ,       ,             and 

        , the corresponding nondimensional dispersion relation is:  

      
  

    
 

   (        )

(   (   ) )(   (   ) )(     )
     (17) 

Both wave-stopping and negative group velocity phenomena are apparent in the response of 

this case as well, as shown in Fig. 11. Note that the negative group velocity band widens as   

increases. 

 

Fig. 11: Group velocity curves for the homogeneous-periodic waveguide with continuous 

connectivity  

The examples presented in this section demonstrate the theoretical possibilities to control 

transmission of vibro-acoustic energy in waveguides using long-range interactions by means 

of adjusting frequencies, at which group velocity is not positive, to the prescribed ranges. 

These results path the way for innovative concepts of design of acoustic metamaterials. 

Recent advances in additive manufacturing suggest that the challenging task of implementing 

nonlocal links, which impose the long-range forces as described in this section, may be 

accomplished in a not too distant future.  
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However, at present, it is entirely feasible to introduce long-range forces between selected 

fixed stations in a waveguide.  

 

4. Nonlocal non-homogenous periodic waveguides 

Plane wave propagation of axial deformation in a uniform rod equipped with periodic long-

range connectors, acting as spring-like links, is considered (see Fig. 12). This type of 

periodicity has been identified in section 2 as the long-range non-homogeneous one. In the 

graph-periodicity classification, this can be seen as a tree-periodic structure of period   and 

leaf-periodic with same period, with only two leaves each tree (   ).  

As first glance, it may be perceived as a yet another example of a waveguide composed of 

periodic mass-spring elements, which mimic nonlocal interactions, see, among many others, 

[29–31,35,39–43]. However, the distinctive feature of the periodic waveguide shown in Fig. 

12 is the absence of inertial elements connected to the springs. Then, in contrast to all 

abovementioned references, periodic attachments do not introduce additional degrees of 

freedom as compared with a uniform continuous waveguide. On the other hand, 

instantaneous force transmission thoroughly substantiated in section 3 is considered here in a 

different setup, than in the previous sections. To the best of our knowledge, no detailed 

studies of the effects generated by the co-existence of conventional energy transmission in a 

periodic continuous waveguide and its instantaneous transfer by non-inertial long-range 

operators between fixed equally spaced stations in the same waveguide have been reported in 

the literature. This and subsequent sections of the paper fill in this gap.   

The method of analysis used for this kind of systems is based on the Floquet theorem and is 

different with respect the direct method of double Fourier transform used for homogeneous 

periodicity.      

Same notations as those in the previous sections are used for the mechanical and geometrical 

characteristics of the system. Note that, in this section,   represents the length of non-

deformed springs, which is the same as the length of the rod segments.  

 

Fig. 12: A uniform rod with periodic nonlocalities 
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As already mentioned, the functionality of the spring elements in this structure differs from 

the classical periodic configurations, where springs are assembled in various configurations 

with discrete masses to compose a waveguide [39–43] or resonators attached to a unit-cell 

[29–31].  

Although the equation of motion in Newtonian form for this structure is given in section 2, a 

variational principle is more practical for the identification of the interfacial and periodicity 

conditions. We apply Hamilton’s principle      for the action integral in the canonical 

form: 

  ∫ (   )
  

  
            (18) 

The total elastic energy   stored in a rod (see Fig. 12) and its kinetic energy   are given by: 
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where    and    are the axial displacements corresponding to segments number one and two, 

respectively. 

The governing equation of motion for longitudinal waves for each segment, based on the 

Hamilton’s principle, is:  

{

    (   )

   
 

 

  
    (   )

   
   [   ]

    (   )

   
 

 

  
    (   )

   
   [    ]

       (20) 

Here,        is the speed of the sound.  

This textbook wave equation is an obvious simplification of Eq. (8) in absence of 

continuously distributed long-range forces. The effect of nonlocalities (or ‘springs’, as 

sketched in Fig. 12) within the framework defined by Eq. (19) is taken into account not in the 

governing differential equation as in previous section, but in the matching relations, extracted 

from stationarity conditions for the action integral (18), as: 

                    (21a)  

  
   

  
 
 
   

   

  
 
 
  [  (   )    (   )]   [  (   )    (    )]        (21b) 

Now the periodicity conditions for a unit-cell should be formulated. As generally recognised, 

the choice of such a cell is not unique. However, once a symmetric periodicity cell is 

considered, positions of pass- and stopbands coincide with its eigenfrequencies for fixed-

fixed and free-free boundary conditions [38]. Thus, we formulate periodicity conditions for a 

periodicity-cell ‘chopped’ from       to        in a waveguide (see Fig. 12): 
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                          (22a) 

   

  
 
   
   

   

  
 
    

          (22b) 

where   is a nondimensional parameter related to the canonical Bloch parameter    as 

      . This choice enables a more straightforward discussion of the results than by 

interpreting them in terms of   . Indeed, for | |   , a wave/energy transmission is 

observed. In opposite, for any value such that | |   , stopbands occur in the dynamic 

response of the structure and the energy transmission is terminated.  

In order to reduce the number of involved parameters in this problem, the system of equations 

(21) and (22) is converted into the nondimensional form as: 

 ̂     ̂              (23a) 

  ̂ 

  
 
 
 
  ̂ 

  
 
 
  [ ̂     ̂   ]   [ ̂     ̂   ]             (23b) 

 ̂         ̂                 (23c) 

  ̂ 

  
 
   
   

  ̂ 

  
 
   
          (23d) 

where       and  ̂       (     ) and the nondimensional stiffness is        . For 

each segment of the periodic rod, the displacement field  ̂ (   ), the general solution of Eq. 

(20), has the canonical form: 

 ̂ (   )     
           

                       (24) 

Here,       . Substitution of this solution ansatz in the system of Eqs. (22) yields a 

system of four linear homogeneous algebraic equations with respect to the amplitudes of the 

right- and left-going waves in each segment. The condition of existence of its nontrivial 

solution is  

    ( )               (25) 

with  

 ( )  
   [     ( )          ( ) ]

          ( ) 
        (26) 

The discriminant function (  ) of the quadratic equation (25) is given by:  

    
      ( ) (  (      ( ) )       ( ) )

(         ( ) )  
      (27) 

If this function is positive, the roots of equation (25) are real-valued and the frequency   falls 

into a stopband. If this function is negative, roots are complex conjugate and the frequency   

belongs to a pass band. This discriminant is a function of two nondimensional parameters, 

stiffness and frequency, and the areas marked in Fig. 13 in red are those of stopbands and the 

light brown areas correspond to the pass bands. The borders between these regions are 
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defined by the condition     . To meet this condition, three different solutions for Eq. 

(27) are available and clearly, the trivial solution, shown in yellow, is not of interest. The 

second set of solutions requires    ( ) to be zero, yielding     , with   being a natural 

number, which are distinctly shown in the figure with black solid lines. Eventually, the blue 

curves are associated with the third solution        (   )  . As a side note, we observe 

the hardly surprising similarity of the diagram in Fig. 13 to the canonical Ince-Strutt diagram, 

which describes properties of solutions of Mathieu equation and distinguishes stable and 

unstable ones.     

The analysis of free vibrations of a unit-cell with free ends yields eigenfrequencies defined by 

the third solution and by the condition    ( )   . The second solution      perfectly 

matches the eigenfrequencies of the same unit-cell with both ends fixed. Obviously, the set of 

eigenfrequencies       is shared by the unit-cells with fixed-fixed and free-free boundary 

conditions. Therefore, these frequencies define the gaps of the zero width [35].  

 

 Fig. 13: Pass- and stopbands regions in the ‘frequency-stiffness’ plane: stopbands (red), 

passbands (light brown)  

For consistency, frequency dependence of roots of the characteristic equation (25) is shown 

in Fig. 14 for three values of the stiffness parameter marked as horizontal lines in Fig. 12. As 

well-known from numerous papers, in passbands | | = 1while the elliptic-like curves present 

purely real roots of the characteristic equation,       , which define stopbands. The 

frequency, at which the stopband emerges, remains unchanged for different values of   , as 

reported earlier by Fig. 13. The shape of standing wave at any boundary between pass- and 

stop-bands coincides with the eigenmode of vibration of a symmetric unit cell with either 

free-free or fixed-fixed boundary conditions. The eigenmodes of such a unit cell with free-

free boundary conditions are such that the spring elements remain undeformed. Therefore, in 

this case neither eigenmodes nor eigenfrequencies are influenced by the magnitude of the 

stiffness parameter. Consequently, location of one border of any stopband is not dependent 
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on stiffness. An increase in stiffness makes stopband broader, as seen from both Fig. 13 and 

Fig. 14.  

The phenomenon of cancellation of wave transmission has been demonstrated for the 

structures in the previous section; however, the current system provides a frequency band for 

achieving wave-stopping while the configurations are only capable of producing individual 

frequencies at which the phenomenon occurs.  

 

Fig. 14: Band structure for uniform waveguide with nonlocalities  

Inspection of Eq. (27) suggests that    becomes singular when its denominator vanishes, 

producing:  

    
 

    ( ) 
          (28) 

This implies that one root of Eq. (25) tends to infinity and the other tends to zero. Thus, an 

infinitely large attenuation may be attained at a set of excitation frequencies for a given value 

of  , a much desirable effect for vibro-isolation purposes. Note that this effect is unique to 

this specific kind of periodicity since it is induced as a result of periodic distribution of 

springs along the host structure. In the absence of these springs, the denominator of    

simply collapses into  , and no similar effect emerges.   
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Fig. 15: Critical stiffness as a function of frequency 

Fig. 15 shows the plot of   yielded by Eq. (28), provided over a wide range of 

nondimensional stiffness. The infinite attenuation effect appears within regularly separated 

bandwidths. At lower frequencies, this ‘complete’, or ‘ideal’ attenuation may be obtained by 

deploying springs of relatively small stiffness, while this effect is more difficult to reach 

when the frequency increases, requiring higher spring stiffness. The minimum stiffness, 

which delivers infinite attenuation, is easily found by equating the first derivative of 

denominator of Eq. (25) to zero giving    (  )       The first root is          with the 

corresponding nondimensional stiffness        . This point is brought up again in section 

7, where the working mechanism of such configuration is investigated from an energy 

transfer point of view.  

On balance, it is concluded that disruption of the energy transfer may be achieved using the 

instantaneous long-range forces between a priori selected fixed stations in a waveguide. 

Unlike the case considered in the previous section, the underlying physical mechanism 

employed here is the Bragg’s destructive interference of waves, the ‘trademark’ of periodic 

waveguides.  

 

5. Negative stiffness and low frequency stopbands 

The desirable influence of stationed nonlocalities on the stopbands in terms of broadening 

stop bands and stronger attenuation wherein, especially at low frequencies, has been 

demonstrated in the previous section. However, the principle demand to pull the first 

stopband to the lowest possible frequencies has not been met neither using impedance 

mismatch [35] nor using the long-range interactions. Hence, an alternative view at the 

physics of the system is requested to accomplish this very highly demanding task. So far, the 

analysis has been limited to the physically meaningful positive values of the stiffness for the 

springs. Now the stiffness   in Eq. (27) is allowed to attain negative values. Given that the 

rod segment and the springs can be considered as parallel springs, the analysis of the 

discriminant function is conducted over a particular stiffness range (        ) in Fig. 16 

in order to assure the lack of occurrence of instability in the system. The figure shows the 

possibility of pulling the stopbands to low frequencies given a proper negative value for 

stiffness. Additionally, the inspection of Bloch parameter    in this case suggest no 

particular abnormality with respect to the systems characterized by positive values of  . Note 

that some contributions in the context of acoustics metamaterials [44–46] demonstrated the 

instability within certain thresholds while considering negative effective stiffness for their 

corresponding systems though such effect have not been recognised in the present study. 

Although the negative values of stiffness are not compatible with conventional springs, 

devices exhibiting such a behaviour are very well-known and broadly used in vibration 

control, with an electro-magnetic system being an obvious example. Another possibility is an 

active control system, in which piezo elements are used to generate forces proportional to the 

instant difference in displacements of control points and acting in the requested direction. 
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Note that technicalities of practical implementation of this concept (and review of numerous 

publications on devices featuring negative stiffness) are not dwelled here. We just 

demonstrate the effect, which can be obtained by these means for the system we deal with.  

 

Fig. 16: Pass- and stopbands regions in the ‘frequency-negative stiffness’ plane: stopbands 

(red), passbands (light brown) 

To conclude this section, we highlight the main similarity and the main differences between 

performances of an infinite periodic waveguide shown in Fig.12 and a conventional periodic 

waveguide, which features impedance mismatch between its constituents. Positions of the 

‘seed’ frequencies, at which stop bands emerge as soon as an arbitrarily small impedance 

mismatch or a non-local operator is introduced, are the same - provided, of course, that the 

constituents of periodicity cells are of the same length. However, an infinitely large 

attenuation at the discrete set of frequencies, feasible due to non-locality (see Eq. (28) and 

Fig.15), cannot be produced by any realistic impedance mismatch. The second important 

difference is that the negative stiffness, unlike the conventional impedance mismatch, is 

capable to pull the stopband to an arbitrarily low frequency range.   

 

6. Analysis of insertion losses  

So far, our analysis has been confined to solution of problems in free wave propagation for 

nonlocal homogeneous and nonhomogeneous periodic waveguides. Further insights into their 

behaviour come from solutions of the forcing problem. Its standard formulation is associated 

with calculations of Insertion Losses (IL).  

The insertion loss in dB is given by [47]: 

                        (29) 

Here,    is the energy flux (EF) in a semi-infinite uniform D’Alembert waveguide (i.e., with 

the springs removed) and    denotes the EF in the same semi-infinite waveguide equipped 
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with an insert (i.e., with the non-local operators) in the same excitation conditions, as 

illustrated in Fig. 17. The EF averaged over a period of motion for a dilatation time-harmonic 

wave in a one-dimensional waveguide is [48]: 

 ( )   
 

 
  [  ( ) ( )]        (30) 

where   ( ) and  ( ) are the axial force and the conjugate of the axial velocity, 

respectively.  

 

Fig. 17: Semi-infinite rod with the insert  

Let us first consider a semi-infinite uniform waveguide with two long-range operators as 

shown in Fig. 17. Then the semi-infinite segment obeys Sommerfeld radiation condition and 

supports outgoing travelling wave, while pairs of direct and reflected waves are generated in 

segments 1 and 2. The amplitudes of these five waves are determined by using the following 

conditions: 

 ̂  
  ̂ 

  
    [ ̂     ̂   ]          (31a)     

 ̂     ̂              (31b) 

  ̂ 

  
   

  ̂ 

  
    [ ̂     ̂   ]   [ ̂     ̂   ]       (31c) 

 ̂     ̂              (31d) 

  ̂ 

  
   

  ̂ 

  
    [ ̂     ̂   ]          (31e) 

Here,  ̂      . Solving the above system fully characterizes the wave motion in the 

system. As already shown by various studies, insertion loss    at the frequencies inside the 

stopbands is significantly higher with respect to those within pass bands. In fact, insertion 

loss is a mean to distinguish passbands from the stopbands, and its increase corresponds to 

the magnitude of   within stopbands.  

Fig. 18 compares the insertion loss as in Eq. (29) for three different cases, i.e. two, three and 

four unit-cells. Based on the figure, the peaks are located around stopbands already predicted 

by the Floquet analysis. Indeed, the loss at stopband frequencies is notably large, which 

virtually verifies the performance of the infinite structure presented beforehand (see Fig. 14). 
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Furthermore, it is apparent how the higher the number of unit-cells, the larger the amplitude 

of peaks around the stopband frequencies. It is worth mentioning that for a limited number of 

unit-cells, the bandwidth of the peaks does not precisely determine the bandwidth of the 

associated stopbands. Eventually, the plot suggests the existence of points at which the 

insertion loss becomes null for all the curves. These points have been defined as shared 

points. Furthermore, each curve presents other points of null insertion loss, but those are 

strictly related to the number of the unit-cells in the insert. The discussion that follows is 

devoted to the physical interpretation of all these points of zero insertion loss. 

 

 

Fig. 18: Insertion loss for a semi-infinite uniform waveguide with nonlocalities (     ) 

In the above figure, regardless of the number of unit-cells in the insert, there are shared points 

at which the insert is fully transparent, i.e.     . In Ref. [38], it is shown how the 

eigenfrequencies associated to the free-free unit-cell of a periodic structure are related to 

borders of stopbands. The eigenfrequency equations of the associated stopband are 

   ( )    and       (   )      Since the shared points occur exactly at these 

eigenfrequencies, it is clear how there is a one-to-one correspondence between shared points 

and borders of these stopbands. In addition to the shared points, there are other points on each 

curve, where     . These zeros correspond to eigenfrequencies of the corresponding insert 

with both ends free. To further explain the correspondence between shared points and 

stopbands, Fig. 19 reports the single case of three unit-cells. 
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Fig. 19: Red curve: insertion losses for the three/component periodic structure (     ), 

Magenta lines: Eigenfrequency equation of a unit-cell with free ends, Green curves: Unique 

eigenfrequency equations associated with the free-free insert with three unit-cells.  

Fig. 19 presents the case of a semi-infinite structure with an insert composed of three unit-

cells to highlight the above comments. The global behaviour is partially determined by the 

collective characteristics of the insert, and by the intrinsic properties of the single unit-cell 

(see Fig. 17). Indeed, the figure shows, more than the trend of the insertion loss    (red solid 

curve), the eigenfrequencies of the insert, green dashed curves, and the eigenfrequencies of 

the unit-cell, magenta dot-dashed curves, all with respect to the nondimensional frequency. 

The behaviour of the insert is expressed by two separate equations, namely        ( )  

     ( )    and        ( )          ( )   : the green curves and; since the 

insert changes according to the number of unit-cells, it carries the information regarding the 

zeros related to the specific structure. These zeros belong to the pass band frequencies, since 

they fall outside the major peaks, as shown in Fig. 18. It is worth mentioning that the zeros 

corresponding to the magenta curve are the shared points, identical to those exhibited in Fig. 

18, due to the presence of the unit-cell in each insert.  

 

7. Analysis of Energy Flux Partition  

As pointed out in section 4, the distinctive feature of a nonlocal nonhomogeneous periodic 

waveguide is the co-existence of the energy transport in its conventional ‘continuous’ path 

and the instantaneous energy transfer by non-inertial long-range operators.  As seen from 

equation (30a), the driving time-harmonic force  ̂ at     is balanced by two components: a 

force in the segment 1 and a nonlocal force in the spring. This is illustrated in Fig. 17 and 

now in Fig. 20 as a textbook setup ‘springs in parallel’ for a single insert in a semi-infinite 

waveguide. However, since we consider an open system with the energy leakage to the far 

field, the division of the external force to two components entails similar energy partition, as 

sketched in Fig. 20. 
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Fig. 20: The energy transmission partition in the semi-infinite uniform rod with nonlocalities  

The force acquired by the segment 1 at     generates the conventional energy transmission 

across the segments by a travelling wave at the finite speed   in the amount    (see Fig. 20). 

Since the material losses are excluded, this energy is conveyed in full to the end of insert. 

This is the action of a primary source, well known in acoustics. The non-inertial springs 

transmit their part of a driving force instantaneously to the right end of the first cell, so do all 

the other springs till the end of last cell. Then the instantaneous “spring-borne” force acts at 

the right end of the insert as a secondary source. Naturally, the interaction between these 

sources may be either constructive or destructive. Such a secondary source cannot exist in the 

conventional periodic compound rods, and it induces appreciable changes in the energy flux. 

Indeed, while in conventional periodic structures with no material losses energy flux does not 

depended upon the distance  , here it experiences a jump at the interface between the insert 

and the semi-infinite segment, see Fig. 20. In Ref. [40], the similar effect is called ‘tunnelling 

power flow’, which, however, is customarily understood in a different sense [49]. To assess 

the interaction between the primary and the secondary source, the energy flux    injected into 

the rod at    , where the external force is applied, and the energy flux     (i.e. in the far 

field) in the semi-infinite segment are compared: 

                                   (32) 

where EFP, in dB, stands for energy flux partition. It is straightforward, using the 

mathematical induction method, to prove that, in contrast to insertion losses, this 

characteristic is independent upon the number of unit-cells in the periodic insert and is 

defined by the elementary formula:  

            
 

       ( )
                   (33) 

This function is plotted in Fig. 21 for      . As long as    , the constructive 

interference takes place as the secondary source cooperates with the primary source and adds 

to the energy flowing through the rod from    . Indeed, negative values of EFP are 

produced whenever       . At the frequency    ,       , implying no energy 

injection produced by the force transmitted via springs and a constant energy flux along the 

whole structure. Recalling Eq. (30), this condition occurs, when the spring force is shifted by 

    with respect to the complex conjugate of the velocity. When   becomes larger than  , 

the inequality sign swaps:       , see Fig. 21. Thus, positive values of     imply that the 
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secondary source opposes the energy transmission to the far field, i.e. destructive interference 

takes place. Transitions between constructive and destructive interference occur frequency-

wise every    At each ‘switching frequency’      (           ), with   being a 

positive integer, the force imposed by the end spring does not contribute in the energy flux.   

 

Fig. 21: Energy flow partition (     ) 

Note how Eq. (33) recalls Eq. (26), where EFP turns to infinity at the set of frequencies 

defined by Eq. (26), given a large enough value of  . The chosen value of the stiffness, 

namely 

      does not correspond to any of the crossings of the curves shown in Fig. 15, and 

thereby no infinite attenuation occurs. However, a different choice of Z (larger values) would 

imply no energy can be transferred to the far field at these frequencies. 

For clarity, it should be emphasised that quantity Energy Flux Partition introduced and 

analysed in this section is completely different from the insertion losses dealt with in section 

6, despite that both involve the energy flux in a far field for a waveguide with an insert. In IL, 

this energy flux is referred to the energy flux in a uniform waveguide, so that IL strongly 

depend upon the number of periodicity cells. In EFP the reference is the amount of energy 

which travels with the conventional speed c in the rod from the point    , where the 

external force is applied, to the end on the periodic insert. This quantity does not depend upon 

the number of periodicity cells in an insert. 

 

 

8. Concluding remarks 

The wave propagation in a conventional rod (canonical D’Alembert waveguide) integrated 

with nonlocalities, which provide long-range interactions, is investigated. The combination of 

the concepts of nonlocality and periodicity leads to identify a rather general notion named 

graph-periodicity. As a corollary, two different kinds of long-range periodicity emerge: 

homogeneous, and non-homogenous, or genuine periodicity. First, the wave propagation in 

four homogeneous waveguides is analysed using nonlocal interactions. This type of 

periodicity implies the tree-periodicity disappears, in that any arbitrary point in a waveguide 

is linked to a set of other points located within an open or confined interaction region. The 
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possibility of stopping the energy flow at individual frequencies, provided that the 

nonlocalities are sufficiently stiff, is demonstrated. Furthermore, it is revealed that the 

backward energy transmission is met within certain frequency bands with their boundaries 

being the wave-stopping frequencies. Next, the canonical Floquet theory is used to obtain 

explicit formulas defining location of pass- and stopbands for the genuine periodic waveguide 

with non-homogeneous long-range interactions between fixed stations along its length. 

Stopbands are generated without the conventional impedance mismatch. The set of 

frequencies, at which the band gaps emerge, is independent upon the stiffness of the external 

elastic links. This set coincides with the eigenfrequencies of a unit periodicity cell. An 

excellent agreement is observed between the results extracted from preceding analysis and 

those from computing insertion losses in the semi-infinite uniform rod equipped with a 

periodic insert having a variable number of unit periodicity cells. The physical explanation of 

frequency-dependence of insertion losses is based on the adopted model of instantaneous 

long-range interactions, which implies the generation of a secondary source at the end of the 

periodic insert. Finally, the model predicts the ultra-low-frequency band gaps, which may 

even emerge from zero, for a specific negative value of stiffness. In this situation, the long-

range interaction may be thought of as a result of active control. As for the future work, 

besides the obvious experimental demonstration, investigating the transient response by 

solving the Cauchy problem for the forcing of rod with limited number of unit-cells and non-

reflecting boundary could be of the interest. The overall results concluded throughout the 

paper suggests that the implementation of nonlocalities into a conventional waveguide can 

cause disruption in the energy transmission across the domain. 
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