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Abstract: Energy harvesting from the environment is an important aspect of many technologies.
The scale of energy capturing and storage can involve the power range from mWatt up to MWatt,
depending on the used devices and the considered environments (from ambient acoustic and
vibration to ocean wave motion, or wind). In this paper, the wind turbine energy harvesting
problem is approached as an optimal control problem, where the objective function is the absorption
of an amount of energy in a given time interval by a fluid-flow environment, that should be
maximized. The interest relies on outlining general control models of fluid-flow-based extraction
plants and identifying an optimum strategy for the regulation of an electrical machine to obtain
a maximum-efficiency process for the related energy storage. The mathematical tools are found
in the light of optimal control theory, where solutions to the fundamental equations are in the
frame of Variational Control (the basis of the Pontryagin optimal control theory). A special problem,
named Optimally Controlled Betz’s Machine OCBM-optimal control steady wind turbine, is solved
in closed form, and it is shown that, in the simpler steady case, it reproduces the maximum efficiency
machine developed in Betz’s theory.

Keywords: variational feedback control; wind turbine; optimal control; steady wind turbine

1. Introduction

The problem of energy extraction from an environmental source is certainly one of the key
problems in the history of technology. This issue has set the basis of thermal engines and the related
thermodynamic theory since the 17th century and recalls the notion of engine efficiency that reaches
its highest point in the statement of the Carnot’s theorem. In this frame, one recognizes that, from a
heat source, which is a bath of vibrating particles in disordered motion, one can extract only a given
fraction of that energy in a usable form. The efficiency of engines has been investigated for the last two
centuries and still represents an important challenge in engineering. Engine efficiency does not only
attract the interest of engineers, but is spread in other scientific fields. Indeed, recent is the work of the
physicists Curzon and Ahlborn [1] about the notion of efficiency at maximum power. This concept
moves the investigation from the point of view of the overall Carnot maximum efficiency, reached in
reversible conditions, i.e., at zero power, towards the analysis of the efficiency at maximum power.
This point of view meets the real interest of building up engines that produce the highest possible
power in irreversible conditions, and [1] provides a very simple and elegant efficiency expression.
The concept of efficiency at maximum power can be applied to any energy source. Indeed, in the
theory of wind turbines, developed by Betz [2] in the 1930s, the maximum efficiency of a windmill that
extracts energy from a steady wind flow has been investigated, unveiling the existence of a limit to the
maximum extractable power, analogously with the thermodynamic efficiency approached by Carnot.
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Moreover, it suggests the power extracted by a fluid flow exhibits the maximum only to a specific
regime of the turbine. This last point is relevant in the frame of the existence of optimal regimes that
can be continuously tracked by an optimal control theory approach [3–8].

Many countries, especially in Europe, are facing a significant transformation process of energy
production. The carbonized power energy sources era is moving towards renewable and sustainable
power energy sources in order to feed the always increasing demand [9]. The increasing awareness
about this topic has been further confirmed by the European Union itself through the so-called 2030
climate & energy targets, calling for 40% less greenhouse gas emission with respect to the level reached
in 1990, 32% more energy production from renewable sources, and 32.5% less energy demand through
the enhancement of energy efficiency by the 2030 [10]. Wind energy, among others, is playing a
significant role, thanks to its high performance, high availability and quickly decreasing costs [9,11].
Currently, wind power production is dominated by onshore wind farms. However, the documented
decline of the availability of onshore sites [12], together with the dwindling fossil fuel supplies and
greenhouse gas emissions reduction targets, are reasons for the increasing development of offshore
wind farms [13]. The technological innovation is not only devoted to creating larger rotors, higher hub
heights [14] and old wind farms revamping [15–17], but also to integrate control strategies and
artificial intelligence for constantly assessing the performance of the turbines, a key element in the cost
reduction [18–22].

The present work is framed in the context of the maximization of energy harvesting and it
introduces a new optimal control strategy for the energy harvest able to overcome the performance
of the steady wind turbine applied to wind turbines. Indeed, the elements of an optimal control
approach that generalizes the Betz’s optimal problem to an unsteady wind flow are investigated.
This strategy, named optimally controlled Betz’s machine (OCBM), is a feedback control that belongs to
the class of variational feedback control (VFC) recently developed by the authors [23–27]. The proposed
technique discloses the chance to solve Pontryagin equations through indirect methods [28–30],
i.e., without discretizing unknown variables, which are defined by nonlinear dynamic programming
when direct methods are applied. The system of equations describing a simplified unsteady wind flow
turbine model is hence solved through the indirect method for a Betz optimal machine and analytical
solutions are obtained. By applying the perturbation theory, a performance comparison between the
OCBM and the steady wind turbine is provided. Finally, the paper shows numerical simulations to
validate the analytical results for different wind conditions, such as harmonic oscillations, wind gusts,
and random fluctuations.

2. A Generalized Model for an Optimal Unsteady Wind Machine

The formulation of the problem leading to an optimally controlled unsteady wind machine
is outlined.

First, Betz’s theory is resumed to highlight its structure to develop a more general model that
removes some of the hypotheses used in the original optimization process. The key point is the
Betz’s formulation does not determine the actual speed of the propeller, since the force balance of
the propeller is not considered, and does not involve the resistance force and the inertia effects on
the rotor. This implies that the analysis leaves unknown one of the physical key quantities of the
problem, the propeller speed, since, as explained in the next section, the original Betz’s theory uses
more variables than equations. In fact, the optimality conditions express considering the generated
power as a function of the speed ratio (the one between the speed of the inflow and the speed of
the flow leaving the propeller). However, to state an optimal control problem for the wind machine,
we need to remove the steady state hypothesis, and we need to introduce explicitly the force balance of
the propeller, emphasizing here the role of the resistant torque due to the coupled electrical machine.

To make the approach clearer, two different schemes are used, the ones in Figures 1 and 2,
respectively. Figure 1 shows the scheme of the physical device in which are represented the inflow
section (area A), the propeller section (area AS), the final section (area A’). The propeller is nothing
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more than a moving surface that is in contact with the fluid current through the blades and connected
by its shaft to an electrical device that continuously absorbs the power generated by the fluid flow.
Figure 2 is a more essential and schematic representation of the phenomenon investigated in Figure 1
in which, independently of the real configuration of the turbine, only the basics physical facts are
represented. In this scheme, the air flow is impinging the moving mass m, that is the analogous of the
inertia effect of the rotor, and the damper c is the dissipator that is a very schematic and elemental
representation of the electrical machinery. The velocity of the mass is the equivalent of the angular
speed of the turbine and the mass m an equivalent of the rotor moment of inertia.
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For example, with reference to Figure 1, expressing the stagnation pressure as p = 1
2ρ(V −Vs)

2,
where V is the inflow velocity and Vs the velocity of the propeller, using the propeller disk area As and
a pressure coefficient C, the force applied to the propeller is as:

Fe = pAsC =
1
2
ρAsC(V −Vs)

2

For the turbine propeller, the dynamic equation reads:

m
.

Vs = Fe − c
.

Vs

where m
.

Vs is the propeller inertia force and c
.

Vs is the electrical machine resistant force (assumed
simply proportional to the propeller speed), and c is the control parameter. In fact, the force c

.
Vs has
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a twofold role. On one hand, it introduces a force opposed to the wind motor force, the presence of
which, together with the inertia force of the propeller, produces an additional differential equation that
closes the balance between the number of variables and the number of equations used in the model
(see next section). On the other hand, the modulation of the resistance force, through the parameter
c, due to the presence of the electrical machine, is responsible for the actual speed of the propeller.
For this reason, this force directly controls the instant power the device is extracting from the inflow.
The optimal control problem is formulated in terms of the regulation of this propeller resistance force
in a way the total energy extracted by the wind unsteady machine is maximum, during a suitable
interval of observation of the phenomenon.

2.1. Resume and Comparison with the Betz’s Theory

A fluid flow of speed V(t) and density ρ transports the power 0.5ρV(t)3A through the section of
area A, as in Figure 1. The problem posed by the classical Betz’s theory relies on the identification of
the conditions that maximize the power energy extraction from that flow.

It is instructive to resume the standard Betz’s theory, since we are interested to put it in the
simplest form to be treated as an optimal control theory problem.

The Betz’s theory introduces three fundamental velocities: the inflow velocity V, passing through
a section area A, the velocity Vs of the propeller solid surface, passing through the propeller disk area
As, and the velocity V′ leaving the propeller disk and passing through a section area A′ The velocity V
is assigned, the others two speeds are instead unknowns of the problem. Similarly, the section area As

is given, while A and A’ are unknowns.
Several simplification hypotheses are introduced in the original Betz’s theory, and namely: (i) the

flow is incompressible (the flow speed is largely subsonic), (ii) the velocity of the flow is purely axial
(no radial flow speed), (iii) absence of internal mechanisms of flow dissipation, (iv) vanishing hub-shaft
size, (v) steady state flow conditions.

Note that in the Betz’s theory, the involved physical quantities are V, Vs, V’, A, As, A’ and the
force Fe the flow exerts on the propeller. These seven variables are not independent each other, since in
the classical theory of the Betz’s wind turbine, four fundamental relationships are used. Namely:

(i) two mass-balance equations, VA = VsAs and VsAs = V′A′ expressing the equivalence of the
mass rates through the three considered sections;

(ii) the momentum balance, to determine the force Fe =
dm
dt (V −V′) = ρAsVs(V −V′) applied to the

propeller disk;
(iii) the power balance, expressing the equivalence between the shaft power FeVs = ρAsV2

s (V −V′),
and the kinetic energy rate of the flow when passing through the propeller disk, expressed by
.
E = 1

2
dm
dt

(
V2
−V

′2
)
= 1

2ρAsVs
(
V2
−V

′2
)
, that finally produces Vs =

1
2 (V + V′).

These are four equations, in terms of the five unknowns Vs, V’, A, A’, Fe, since V and As are
assigned a priori, and the quantities of interest can be determined, except one. In the present approach,
we introduce the additional force balance of the propeller, closing the equations system for the model,
imposing the equilibrium between the wind force, the resistance force of the electrical machine, and the
inertia force of the rotor.

The analysis of the best performance of the wind machine is simply determined by the power
expression. Under steady conditions, since the force, in the Betz’s theory, is Fe = ρAsVs(V −V′), and since
Vs = 1

2 (V + V′), then Fe = 2ρAsVs(V −Vs) and the power finally is P = FeVs = 2ρAsVs
2(V −Vs).

Its maximum is obtained for dP
dVs

= 0, that simply produces Vs =
2
3 V, that substituted back into the

power expression provides Pmax = 16
27

1
2ρAsVs

3, that is about 60% of the power 1
2ρAsVs

3 carried by
the inflow.

The principle for this steady optimization is essentially the same, whatever the approximation
used for the propeller force. For example, in the present model using the static pressure, one has
Fe =

1
2ρAsC(V −Vs)

2, the power is P = FeVs =
1
2ρAsCVs(V −Vs)

2, and its maximum is for dP
dVs

= 0,
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that simply produces Vs =
1
3 V and for the maximum power it follows Pmax = 4

27 C 1
2ρAsVs

3, that is a
fraction 4

27 C of the available inflow power 1
2ρAsVs

3 captured by the wind machine. To make the static
pressure model of the force and the Betz’s theory equivalent, under the profile of the maximum power,
it is sufficient to set 4

27 C = 16
27 , i.e., C = 4.

This analysis suggests that, independently of the model selected to represent the wind turbine,
it exists an optimal working condition, in correspondence of which the produced power is maximum.
This analysis, however, refers to steady state conditions and neglects the dynamic of the wind turbine
rotor. Thus, one could seek to continuously optimize the wind power modifying the resistant torque
exerted by the electrical machine under the action of an unsteady wind.

2.2. Unsteady Optimal Control Model

A fluid flow of speed V(t) and density ρ transports the power 0.5ρV(t)3A through section A, as in
Figure 1. The power device, i.e., the wind turbine blade, is assumed to consist of an active moving
surface of characteristic area S and inertia m (for any given shape, e.g., blade, piston, etc. and any
motion, i.e., linear or rotational, m can represent either a mass or an inertia moment), as represented in
the dummy model in Figure 2. The motion of the power device is partially induced by the action due to
the pressure p(t) or the torque, which is expressed by p(t)SC, where C is the pressure coefficient, and by
the action of the electrical generator, according to Fe(t) = c(t)Vs(t): applied to the moving surface by
the electrical machine converting mechanical energy into electrical, this action is proportional to the
velocity of surface Vs(t) through a regulation/control parameter of the electrical machine c(t) function
of time.

The mobile surface has the characteristic speed Vs(t) (indicating either a linear or rotational speed).
Note that the form Fe(t) = c(t)Vs(t) for the electrical force is reasonable as long as the moving element
of the machine is an electrical circuit, in which the current interacts through the Lorentz force with a
magnetic field, applied by the static part of the electrical device, the intensity of which can be controlled
by c(t). Additionally, Vs(t) is a quantity monitored by a sensor, an information that can be eventually
used in the effort to regulate the electrical machine through c(t). OCBM-optimally controlled steady
wind turbine problem consists in determining how the regulation law of the electrical machine c(t)
should be designed to maximize the energy E extracted from the flow. Note that this approach can be
considered a universal prototype model to be applied to different energy control applications.

The mobile surface dynamics is described by:

m
.

Vs(t) = sign(V(t) −Vs(t))p(t)SC− Fe(t) (1)

where the sign(.) function is used to include the wind force direction. Assuming the flow pressure p
against S expressed by:

p(t) =
1
2
ρ[V(t) −Vs(t)]

2 (2)

the following:

m
.

Vs(t) − sign(V(t) −Vs(t))
1
2
ρSC[V(t) −Vs(t)]

2 + c(t)Vs(t) = 0

with Vs(0) = Vs0

(3)

represents the device dynamics.
The instant power produced by the electrical machine is:

Pe(t) = Fe(t)VS(t) = c(t)V2
S(t) (4)

The electrical energy E the device produces, in each time interval T, is:
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E[c(t), VS(t)] =
∫ T

0
Pe(t)dt =

∫ T

0
c(t)V2

S(t)dt (5)

The energy E becomes a functional depending on two unknown functions: the control action c(t),
and the mobile surface speed Vs(t). The problem of maximizing the extracted energy E is, in this way,
translated into the optimal definition of these two functions. The OCBM problem can be stated in a
strict mathematical form as:

max
{
E[c(t), Vs(t)] =

∫ T
0 c(t)Vs(t)

2dt
}

subjected to the constraint

m
.

Vs(t) − sign(V(t) −Vs(t))
1
2
ρSC[V(t) −Vs(t)]

2 + c(t)Vs(t) = 0

with Vs(0) = Vs0

(6)

This problem can be conveniently rewritten in a compact form introducing the restraint represented
by the device dynamics, by using the time-dependent Lagrange multiplier λ(t):

max
{
Ẽ
[
c, Vs,

.
Vs,λ(t)

]
=

∫ T
0 P̃e(t)dt

}
P̃e(t) = c(t)Vs(t)

2 + λ(t)
[
m

.
Vs(t) − sign(V(t) −Vs(t)) 1

2ρSC[V(t) −Vs(t)]
2 + c(t)Vs(t)

] (7)

2.3. The Euler-Lagrange Equations and Their Solution

As stated in the previous section, the problem has been formulated using the Pontryagin optimal
control technique [30–32] and the functional Ẽ

[
c, Vs,

.
Vs,λ

]
depends on the three unknown functions

c, Vs,λ. Variation of the functional yields:

δẼ =
∫ T

0

(
∂P̃e
∂Vs
−

d
dt
∂P̃e

∂
.

Vs

)
δVs +

∂P̃e
∂c δc + ∂P̃e

∂λ δλ dt = 0

∂P̃e

∂
.

Vs
δVs

∣∣∣∣∣∣∣∣∣
T

0

= 0
(8)

The Euler–Lagrange equations associated to this problem define a system of three nonlinear
equations:

2cVs + λ(V −Vs)ρSCsign(V −Vs) + λ 1
2 (V −Vs)

2ρSCsign′ (V −Vs) −
.
λm + λc = 0

Vs
2 + λVs = 0

m
.

Vs − sign(V −Vs)
1
2ρSC(V −Vs)

2 + cVs = 0
δVs(0) = 0
λ(T)δVs(T) = 0

(9)

where sign′(V −Vs) =
∂sign(V−Vs)

∂Vs
= 2δ(V −Vs) = 0 ∀ V , Vs and δ() is the Delta function.

Some considerations can be deduced before tackling the solution to this problem. The first
transversality condition δVs(0) = 0 is always satisfied for any assigned initial conditions Vs0. Since no
final-time condition can be prescribed on the speed (the differential equation in Vs is of first order,
and admits only one initial condition), it follows necessarily δVs(T) , 0. Eventually, for the solution of
the system of Equation (9) to be a stationary point for Ẽ, the solution itself must satisfy also the final
condition λ(T) = 0.

To find the solution, investigated for V(t) > 0, the second part of Equation (9), λ(t) = −Vs(t),
is substituted in the other two, returning:
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 m
.

Vs − sign(V −Vs)ρSCVs(V −Vs) + cVs = 0

m
.

Vs − sign(V −Vs)
1
2
ρSC(V −Vs)

2 + cVs = 0
(10)

A further simplification can be obtained by eliminating the control variable c from the previous
equations, obtaining Vs(t) = 1

3 V(t). Eventually, the control variable is recovered, and the final optimal
solution of the Euler-Lagrange equations, i.e., the desired solution to the OCBM problem, marked by
the star exponent, is determined:

c∗ =
2
3
ρSCVsign(V −Vs) −

m
.

V
V

V∗s =
V
3

λ∗ = −
V
3

with initial– f inal con f itions Vs(0) = Vs0, λ(T) = 0

(11)

The control action can be directly piloted in terms of the measured quantity Vs leading to the
control system:

c
(
Vs,

.
Vs

)
= 2ρCSVs(t) −

m
.

Vs(t)
Vs(t)

(12)

Note that the condition λ(T) = 0 would imply Vs(T) = 0, since λ(t) = −Vs(t). For an arbitrarily
prescribed choice of T, this condition in general fails. Let assume the wind turbine works in the time
interval tstart = 0, when the wind starts blowing, and tstop = T, large enough to ensure that the wind
had stopped, producing V(T) = 0. Clearly, the control logic operates in the same interval and the
transversality condition λ(T) = 0 is consequently satisfied.

The nonlinear variational control Equation (12) has a clear physical interpretation. In steady
condition, the electrical resistant force Fe = cVs =

2
9ρCSV2 depends on the wind speed: the higher the

wind speed, the higher the resistant force, in a way the optimal speed of the moving surface follows

the wind speed: Vs(t) = 1
3 V(t). When the wind speed suddenly increases, the term −m

.
V(t)

V(t) produces a
smaller c(t), reducing the electrical resistance force, thus promoting a quick acceleration of the moving
surface and a prompt increase of the power. When the wind speed stabilizes at its highest value,
and

.
V(t) drops down, the electrical force progressively rises to a higher final value according to the

wind speed increase.
Note this kind of control can be performed by acquiring the control signals V and its derivative

from a wind speed meter. However, the electrical machine regulation can be controlled also by acquiring
directly the speed signal from the wind turbine shaft, since, in an ideal case, the dynamics of the system
produces V = 3Vs.

2.4. Local Maximum and Directional Derivatives

At first, a Hessian analysis of (7) is carried out so to check whether the obtained optimal
trajectories present an absolute maximum or minimum, a local maximum or minimum, or a saddle
point. The solution is analyzed for V > Vs > 0 and the cost function Ẽ can be expressed as function of
VS,

.
VS, V, by substituting the control Equation (12):

Ẽ =

T∫
0

P̃e
(
VS,

.
VS, V

)
dτ =

T∫
0

−mVS
.

VS +
1
2
ρSC(V −VS)VSdτ (13)

By calculating the second gradient in terms of the rotor speed and its acceleration into the
Hessian matrix and substituting the optimal trajectories of Equation (11) still into the Hessian matrix,
one obtains:
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H
(
V∗s ,

.
V∗s

)
=

[
−12ρSCV∗s −m
−m 0

]
(14)

The examination of the determinant demonstrates the obtained trajectory belongs to a saddle
point, since DetH = −m2 < 0. The Hessian analysis does not clarify whether the application control
logic of Equation (12) enables the achievement of the maximum extracted power. Therefore, it is more
helpful to analyse the optimal trend of the extracted power P̃e obtained by Equation (13), in terms of
the rotor speed Vs and the acceleration/deceleration

.
Vs, which are normalized with respect to their

design value:

Vs =
Vs

Vsmax

.
Vs =

.
Vs

.
Vsmax

(15)

where Vsmax and
.

Vsmax are the maximum rotor speed and acceleration respectively and so doing
Vs ∈ [0; 1] and

.
Vs ∈ [−1; 1]. Figure 3 shows how the power trend P̃e

(
Vs,

.
Vs

)
changes for a fixed wind

speed V. In this case, V is set to the maximum normalized rotor speed, namely V = 1. It is apparent
how for a generic data set related to the turbine parameters m,ρ, S, C, the extracted power is maximum
only if the rotor seed reaches one third, as in Equation (11), condition that corresponds to the red
dashed line, which identifies the maximum of P̃e

(
V∗s,

.
V∗s

)
. This is further confirmed by the derivative

along
.

Vs for V = 3Vs, i.e.,
∂P̃e

(
Vs,

.
Vs

)
∂

.
Vs

= −mVs that vanishes only for a vanishing wind speed V = 0.
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Similar considerations can be deduced by varying the wind speed and selecting a specific
dimensionless rotor acceleration

.
Vs, as shown in Figure 4. It is apparent how, regardless of the value of

the rotor acceleration, for each value of the wind speed, the maximum values of P̃e, M, M1, M2, M3 occur
for a rotor velocity such that the optimal condition V∗s =

V
3 is observed. The law describing the trend

of the maximum points is defined by the nonlinear control Equation (12).
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2.5. Betz and OCBM Power and Efficiency Analysis

This section portrays a comparison between the performance of the new control system and that
of a classical Betz’s machine, not equipped with a regulation system. In both cases, the actual power is
evaluated starting from the assumptions of non-stationary wind conditions. The case of a randomly
blowing wind, whose speed V(t) is a random variable is considered. Of this flow, the expected value V
and the standard deviation E

{
V2

}
, where E{·} is the expected value operator, are assumed to be known.

Accordingly, the wind time history is assumed to be decomposed into an average term V and small
fluctuations εV1(t) about it:

V(t) = V + εV1(t) (16)

For the random perturbation ε, the expected value and the standard deviation σε are:

E{ε} = 0
E
{
ε2

}
= σ2

ε
(17)

Equation (16), V2(t) = V
2
+ ε2V2

1(t) + ε2VV1(t), using Equation (17), produces:

E
{
V2(t)

}
= V

2
+ σ2

εV
2
1(t) (18)

In the following paragraphs, the power of both methods is evaluated in the case of non-stationary
wind, according to Equation (4), with an appropriate choice for the control action parameter c.
This coefficient has already been defined in Equation (12) for the OCBM machine but has not yet been
defined for the steady wind turbine.

2.5.1. The Steady Wind Turbine Power

The steady wind turbine theory considers a steady problem [2], i.e., a constant wind speed V,
and produces the maximum power for

Vs =
1
3

V (19)
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In stationary conditions, namely constant rotor speed Vs and constant control action parameter
cBetz, the power is simply:

P̂Betz = cBetzV
2
s (20)

As previously mentioned, to calculate the actual power in non-stationary conditions, it is first
necessary to evaluate cBetz. It is sufficient to recall the dynamics of the system as in Equation (3),

for V > Vs and applying the stationary condition for which
.

Vs = 0, and the condition of maximum
Betz power (19), leading to:

cBetz =
2
3
ρSCV (21)

At this point, the unsteady conditions can be introduced. Accordingly, the expected value of the
classical Steady wind turbine power can be calculated, based on Equation (4):

E{PBetz} = cBetzE
{
V2

s

}
=

2
3
ρSCVE

{
V2

s

}
(22)

The only unknown term is E
{
V2

s

}
, which can be deduced from the dynamic system Equation (3),

including the wind speed perturbation Equation (16). This implies the solution Vs must be not only
function of V, but it should also account for its own fluctuation εV1(t), namely:

Vs(t, ε) (23)

Expanding the rotor speed Vs(t, ε) in Taylor series up to the first order in terms of ε:

Vs(t) = Vs0(t) + εVs1(t) (24)

and substituting the expansions for both velocities, i.e., Equations (16) and (24), into the Equation of
motion (3), still in the case of V(t) > Vs(t), the rotor dynamic becomes:

m
.

Vs0 + m
.

Vs1ε +cVs0 + cVs1ε

=
1
2
ρCS

(
V

2
+ 2εVV1 + ε2V2

1 − 2VVs0 − 2εV1Vs0 + V2
s0 − 2εVVs1

−2ε2V1Vs1 + 2εVs0Vs1 + ε2V2
s1

) (25)

By expressing the dependence on ε, and ordering with respect to its first two increasing powers,
the cascade of equations is:

O
(
ε0

)
: m

.
Vs0 + cVs0 =

1
2
ρCS

(
V

2
− 2VVs0 + V2

s0

)
O
(
ε1

)
: m

.
Vs1 + cVs1 =

1
2
ρCS

(
2VV1 − 2V1Vs0 − 2VVs1 + 2Vs0Vs1

) (26)

For t→ T , the first of Equations (26) tends to the stationary solution; indeed, excluding nonphysical
solutions for Vs > V and for a constant regulation c = cBetz, Vs0 = Vs =

V
3 .

Note that this first result already highlights an important feature of the expected Betz power:
substituting in Equation (22), the series perturbation Equation (24) yields to:

E{PBetz} = P̂Betz +
2
3
ρCSVσ2

εV
2
s1 (27)

Eventually, the time average expressed by 〈·〉 symbol returns:

〈E{PBetz}〉 = P̂Betz +
2
3
ρCSVσ2

ε

〈
V2

s1

〉
(28)
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Equation (28) unveils the double nature of the power PBetz, which is composed of a stationary
contribution, already defined in Equation (20), and a term linked instead to the fluctuations, according
to the assumptions related to the velocities of the wind and the rotor. To investigate how this fluctuating
term varies, a frequency analysis is applied so to evaluate Vs1.

Substituting Vs0 into the second of Equation (26), the fluctuation relation is obtained:

m
.

Vs1 +
4
3
ρCpSVVs1 =

2
3
ρCSVV1 (29)

By Fourier transforming Equation (29), Vs1(ω) is easily deduced:

Vs1(ω) =
2
3ρCSV(

4
3ρCpSV + iωm

)V1(ω) (30)

To return into the time domain, a harmonic wind perturbation V1(t) = V1(ω)eiωt is considered.
As the rotor speed must be of the same nature, Vs1(t) = Vs1(ω)eiωt. The problem of the evaluation of
the time average of the expected power 〈E{PBetz}〉 is solved by simply considering only the real part
Vs1(t) = Re

{
Vs1(ω)eiωt

}
and substituting Equation (30) into Equation (28):

〈E{PBetz}〉 = P̂Betz +
2
3
ρCSVσ2

ε

1
2

(
2
3ρCSVV1(ω)

)2(
4
3ρCSV

)2
+ (ωm)2

(31)

2.5.2. The OCBM Power

As for the Betz case, the aim of this section is the evaluation of the time average of the expected
power 〈E{POCBM}〉. The procedure results simplified with respect to the steady wind turbine case,
as the expected OCBM power has already been calculated and the relation between the wind speed
and the rotor speed defined. Indeed, the calculus of the maximum power P∗e to be extracted from the
system, solution of the general problem posed in Equation (6), returns the optimal solution V∗s =

V
3

and the optimal regulation c∗, as in Equation (12). It follows:

E{POCBM} =
2
27
ρCSE

{
V3

}
− E

m
.

VV
9

 (32)

Applying the decomposition Equation (16) and time averaging, as for the Betz case, the last term
〈E{POCBM}〉 is obtained:

〈E{POCBM}〉 = P̂Betz +
1
9
ρCS σ2

εVV1(ω)
2 (33)

where the
〈
E
{ .
VV

}
= 0

〉
.

2.5.3. Steady wind Turbine and OCBM Comparison

The two analytical expressions in Equation (31) and (33) define the characteristic power extraction
of the two methods, underlying how the intrinsic difference stands only in the fluctuation term,
whilst the average term follows the stationary behavior. Based on this consideration, the following
analysis focuses on the fluctuating component V1(ω) of the wind speed, in order to not only provide
the conditions in which it is better to apply the OCBM controller rather than the steady wind turbine,
but also an estimation of the amount of increased energy storage.

The optimal control problem solved for the OCBM machine automatically states greater energy
storage than through the Steady wind turbine:

P̃OCBM > P̃Betz (34)
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where the ∼ apex is introduced to represent the respective power fluctuation 〈E{P}〉.
Recalling

P̃OCBM =
1
9
ρCS σ2

εVV1(ω)
2

P̃Betz =
2
3
ρCSVσ2

ε

1
2

(2
3
ρCSVV1(ω)

)2

(4
3
ρCSV

)2
+ (ωm)2

(35)

The solution of Equation (34) gives the following inequality:

4
9

(
ρCSV

)2
+ (ωm)2 > 0 (36)

and it is easy to notice how the relation Equation (36) is always satisfied since ω > 0 and V > 0,
namely the combined contribution of the fluctuations and of the optimal active control produces
performances of the OCBM control always superior with respect to the Steady wind turbine.

To evaluate these increased performances, the relative produced energy Erel is considered:

Erel =
EOCBM − EBetz

EBetz
(37)

By substituting into Equation (37) the expression of the two energy sources as in Equation (31)
and (33), the nondimensional form of Erel is obtained:

Erel =

(4
9
η+ χ

)
3
2σ

2
ε(16

9
ξη+ ξχ+ η2σ2

ε

) (38)

with:

η =

(
ρCpSL

m

)2

; χ =

(
ωL

V

)2

; ξ =

(
V

V1(ω)

)2

(39)

The nondimensional parameter η provides a measure of the machine technical properties; indeed,
it is the ratio between inertial forces and the inertia due to the wind action. On the other hand,
the nondimensional parameters χ and ξ are purely related to the wind properties: they compare the
frequency of oscillations and their amplitude with respect to the average wind speed, respectively.
The two plots in Figure 5 present the variation of the trend of the relative energy gain with ξ, in the
presence of harmonic, stationary wind disturbances: Figure 5a shows the different curves varying with
χ, Figure 5b with η. In both plots, it is apparent how the higher the amplitude of the wind oscillations
V1(ω)� V, i.e., the lower the ξ, the higher the energy gain. This is explained by the intrinsic feature of
the OCBM machine, intentionally designed so to follow the wind fluctuations. Moreover, in Figure 5a
to the increase of the fluctuation frequency corresponds the increase of energy gain, instead in Figure 5b
the reduction of η, namely when a large dimensions rotor is chosen, engenders a higher energy gain.
A slender rotor is intrinsically more reactive and would autonomously adjust its dynamics according
to the fluctuations, with no need for any active control and consequently no sensible energy gain.
On the other hand, a heavier rotor, because of its higher inertia, needs the activation of the control to
efficiently chase the wind oscillations.

The results confirm what was analytically observed, as the OCBM always generates a larger
amount of energy with respect to the optimal steady wind turbine, especially with the increase of the
wind fluctuations. The control logic driving the OCBM depends on the optimal parameter c∗, which,
modulated in time, varies assuming both positive and negative values. This implies the OCBM to
either absorb or require energy, respectively. This variation, according to Equation (12), ensures the
overall produced energy is still much larger than the contribution provided by the steady wind turbine.
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Figure 5. Energy gain of the OCBM with respect to the optimal Steady wind turbine, varying with χ in
figure (a) and η in (b).

2.6. Numerical Solutions

In this section, numerical simulations are performed for different types of wind excitations,
confirming the reliability of the analytical results and the better achieved performances of the OCBM
control with respect to the Betz one. The results are evaluated in terms of the nondimensional parameter
ξ, for given machine properties (see Table 1), i.e., fixed η. The considered wind excitations are:
(i) stationary wind flow with harmonic fluctuation, (ii) non-stationary wind in the shape of gust,
and (iii) random wind flow.

Table 1. Machine properties.

Wind Turbine Parameters

Mass m [kg] 3.5× 105

Surface S [m2] 150
Efficiency coefficient C 0.5
Air density ρ [kg/m3] 1.2
Rotor Diameter L [m] 80
η 4.2 × 10−4

Note the expression for ξ as in Equation (39) is legitimate for harmonic fluctuations only, i.e., for a
stationary wind flow, because of the impossibility to define the exact value for V1(ω). To overcome
this hypothesis, also accounting for non-stationary wind conditions, a new expression for ξ needs to
be introduced:

ξ =

(
V
σV1

)2

(40)
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where σV1 is the integral of the wind power spectral density:

σ2
V1

=

∫ fmax

0
GV1( f )d f (41)

and GV1( f ) represents the one-side power spectral density of V1(t) in a frequency bandwidth f up to
the maximum frequency fmax of the wind content. Given Equation (37), high values of ξ represent
stationary wind conditions, whereas low values correspond to high gust wind. The selection of fmax

sets, not only the value of ξ, but also of χ.
In performing the numerical simulations, there is a further aspect not to be neglected: Equation (12),

solution of the optimal control problem, does not respect the causality law, since
.

Vs is not observable;
numerically, this issue is solved by considering

.
Vs recorded at previous time instants. This implies

Vs does not exactly follow at each time instant the optimal condition Vs =
V
3 , analytically obtained.

Moreover, to prevent the rotor to turn in the opposite direction, a saturation condition over the control
action c is introduced:

i f Vs ≤ Vthreshold with Vthreshold > 0
c = cBetz

else

c = 2ρCSVs −
m

.
Vs

Vs

(42)

Table 2 reports the applied conditions for each simulated case and summarizes how the increase of
gust, that is decreasing ξ, produces the increase of relative energy storage evaluated with Equation (37),
using the values obtained by the numerical simulations. Note that the wind speed average is evaluated
over the entire simulation time, that amounts to about 5 h for each simulation, except for the random
test which lasts almost 60 h.

Table 2. Wind settings and comparison between Betz and OCBM energy stored.

Case Studies V [m/s] ξ Erel [%]

Harmonic fluctuations 15 3.5 12%
Gust wind 2.4 0.5 38%
Random wind 1.6 1.2 14%

Each case of Table 2 is discussed in the figures from Figures 6–8, where the optimal control label
represents the OCBM numerical solution of the system Equation (3) applying the c(t) control variable
calculated in Equation (21). Instead, the Betz label indicates the passive solution obtained by using the
parameter cBetz (12) evaluated through the Betz theory.

The first analyzed case, for high values of ξ, applies an input wind of V = 15 m
s , harmonic

fluctuations V1 = ±8 m
s , with 0.033 Hz frequency, as shown in Figure 6a. Figure 6b reports the wind

signal Fourier transform, highlighting the sinusoidal component of the wind fluctuations. Figure 6c
depicts the comparison between the instant power, which is constant in the Betz case, being the passive
control design, and the OCBM case. It appears the power is fluctuating, taking both positive and
negative values. In fact, the system we are proposing of an active type and the electrical machine
can work as a generator or as a motor; however, the net energy is always positive and larger than
the one produced by the classical Betz machine. Note that Vs(t) follows the wind fluctuations and
finds its optimum value for V

Vs
� 3, as in Figure 6d. Note how the discussed control system is of an

active type. Therefore, the negative values of the instant power are physically meaningful, disclosing
situations in which the rotor needs to be accelerated, as long as the overall energy stored remains
positive, as demonstrated in Figure 6e. It shows the energy stored during the simulations unveiling a
sensible, even though still limited, increase of energy storage of the OCBM with respect to the Betz
case: The relative energy storage surplus, as reported in Table 2, amounts to 12%.
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Figure 6. Comparison between the OCBM optimal control and Steady wind turbine for harmonic
fluctuations: (a) the zoom of the wind speed fluctuation; (b) the wind speed Fourier transform; (c) the
instant power, (d) the speed ratio; (e) the energy storage.

Figure 7 is related to the second study case of Table 2 in which the wind parameters are tuned so
to perform a wind shape closer to a gust: a wind speed ratio ξ = 0.5 is obtained with an average wind
speed of 2.4 m

s over the 5 h of simulation time; the fluctuations σV1 = 3.4 m
s are evaluated by the integral

of the power spectral density, in Figure 7b, up to fmax = 3 Hz.
As shown in Figure 7a, the gust is confined within a time window of about 2 h: starting from a rest

condition, the wind abruptly increases to settle at an average wind speed of 10 m
s , to drop back down at

rest again. In the presence of gust conditions, the OCBM produces noticeably enhanced performances
with respect to the steady wind turbine, as confirmed by the following figures. Indeed, Figure 7c
shows the variation of the power in time: the quick variations of the OCBM case disclose the improved
attitude to follow the wind fluctuations; accordingly, also the outcome average value of the power
is much larger. This is further underlined by the comparison between the wind speeds in Figure 7d:
after a sudden increase due to the inertia of the rotor, which starts from a null velocity, the OCBM
promptly returns to the optimal condition that the steady wind turbine is not able to achieve. Figure 7e
concludes with the comparison of the energy storage surplus and the evident overall gain of the OCBM.

Energies 2020, 13, x FOR PEER REVIEW 16 of 21 

 

 
(e) 

Figure 6. Comparison between the OCBM optimal control and Steady wind turbine for harmonic 
fluctuations: (a) the zoom of the wind speed fluctuation; (b) the wind speed Fourier transform; (c) the 
instant power, (d) the speed ratio; (e) the energy storage. 

Figure 7 is related to the second study case of Table 2 in which the wind parameters are tuned 
so to perform a wind shape closer to a gust: a wind speed ratio 𝜉𝜉 = 0.5 is obtained with an average 
wind speed of 2.4𝑚𝑚

𝑠𝑠
 over the 5 h of simulation time; the fluctuations 𝜎𝜎𝑉𝑉1 = 3.4𝑚𝑚

𝑠𝑠
 are evaluated by the 

integral of the power spectral density, in Figure 7b, up to 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 3𝐻𝐻𝐻𝐻. 
As shown in Figure 7a, the gust is confined within a time window of about 2 h: starting from a 

rest condition, the wind abruptly increases to settle at an average wind speed of 10 𝑚𝑚
𝑠𝑠

, to drop back 
down at rest again. In the presence of gust conditions, the OCBM produces noticeably enhanced 
performances with respect to the steady wind turbine, as confirmed by the following figures. Indeed, 
Figure 7c shows the variation of the power in time: the quick variations of the OCBM case disclose 
the improved attitude to follow the wind fluctuations; accordingly, also the outcome average value 
of the power is much larger. This is further underlined by the comparison between the wind speeds 
in Figure 7d: after a sudden increase due to the inertia of the rotor, which starts from a null velocity, 
the OCBM promptly returns to the optimal condition that the steady wind turbine is not able to 
achieve. Figure 7e concludes with the comparison of the energy storage surplus and the evident 
overall gain of the OCBM. 

  

(a) (b) 
 

0 1 2 3 4 5 6

Time [hours]

0

1

2

3

4

5

6

7

En
er

gy
 [J

]

10 8

Betz

Optimal Control

0 2 4 6
Time [h]

0

2

4

6

8

10

12

V 
[m

/s
]

Wind

0 1 2 3

f [Hz]

10 -10

10 -5

10 0

W
in

d 
sp

ee
d 

P
S

D
 [m

2
/s

2
/H

z]

Figure 7. Cont.



Energies 2020, 13, 4913 17 of 20
Energies 2020, 13, x FOR PEER REVIEW 17 of 21 

 

 
(c) 

 
(d) 

 
(e) 

Figure 7. Comparison between the OCBM optimal control and Steady wind turbine for a wind gust: 
(a) the trend of the wind speed; (b) the wind speed power spectral density (PSD); (c) the instant power, 
(d) the speed ratio; (e) the energy storage. 

The previous results have been produced with no constraints applied to the actuation forces and 
on velocity and acceleration of the rotor. Here, because of the highly unsteady wind profile, which is 
characterized by random fluctuations and provides a realistic model for the wind input, reported in 
Figure 8a, the control parameter 𝑐𝑐 is saturated such that the maximum acceleration of the rotor does 
not overcome 8𝑒𝑒−2𝑔𝑔 force. In Figure 8b, the related power spectral density is displayed once again 
up to 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 3𝐻𝐻𝐻𝐻, as the further frequency content has a negligible contribution, and generates 𝜎𝜎𝑉𝑉1 =
1.4 𝑚𝑚

𝑠𝑠
. The energy gain in Figure 8c confirms the more efficient performances of the OCBM, driven by 

the optimal logic control and the stronger the gust, the larger the amount of absorbed energy: during 

0 1 2 3 4 5 6
Time [h]

0

1

2

3

4

5

6

V
s/V

Betz

Optimal Control

0 1 2 3 4 5 6

Time [hours]

0

0.5

1

1.5

2

2.5

3

En
er

gy
 [J

]

10 7

Betz

Optimal Control

Figure 7. Comparison between the OCBM optimal control and Steady wind turbine for a wind gust:
(a) the trend of the wind speed; (b) the wind speed power spectral density (PSD); (c) the instant power,
(d) the speed ratio; (e) the energy storage.

The previous results have been produced with no constraints applied to the actuation forces and
on velocity and acceleration of the rotor. Here, because of the highly unsteady wind profile, which is
characterized by random fluctuations and provides a realistic model for the wind input, reported in
Figure 8a, the control parameter c is saturated such that the maximum acceleration of the rotor does not
overcome 8e−2g force. In Figure 8b, the related power spectral density is displayed once again up to
fmax = 3 Hz, as the further frequency content has a negligible contribution, and generates σV1 = 1.4 m

s .
The energy gain in Figure 8c confirms the more efficient performances of the OCBM, driven by the
optimal logic control and the stronger the gust, the larger the amount of absorbed energy: during
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strong variations of the wind, as for instance the one occurring at the 15th hour, the increase of energy
storage extraction produced by the OCBM appears much larger than the Betz one.
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(a) the trend of the wind speed; (b) the wind speed power spectral density (PSD); (c) the energy storage.

In a nutshell, the presented cases confirm the reliability of the analytical results. A sensible increase
of stored energy is observed with the increase of nonstationary wind conditions, characteristic of highly
perturbed wind. This is achievable by the OCBM control thanks to its ability to chase fluctuations.

3. Conclusions

This paper investigates the problem of energy harvesting from a wind turbine. The introduced
optimum control strategy has the intent to maximize the amount of energy absorption, identifying the
optimal law for the regulation of an electrical machine so to obtain a maximum-efficiency process for
the related energy storage. The proposed control strategy, based on the Euler–Lagrangian approach
and belonging to the variational feedback control class, is defined even with an objective function
characterized by the absence of an absolute maximum point and by the presence of a saddle point.
Nevertheless, the obtained wind turbine control law, named OCBM, shows how to optimally store
the energy, overcoming the well-known method for steady optimization of the wind turbine (by the
Betz’s theory). The OCBM machine maximizes the energy extraction in unsteady wind conditions by
optimally following the wind oscillations, with best performances in the presence of strong and sudden
gusts of wind. Numerical simulations compare Betz machine performances and the OCBM ones
based on three nondimensional parameters accounting for machine properties and wind conditions.
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These simulations, performed for different wind excitations, from harmonic to random fluctuations,
confirm the analytical results.
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Nomenclature

ρ: fluid density Pe, P̃e: instant power produced by the electrical machine
V: inflow velocity E, Ẽ: electrical energy produced by the device
A: section at the entrance of the propeller δ: delta function
Vs: velocity of the propeller solid surface c*: optimal control parameter
As: propeller disk area V*

s: optimal velocity
V’: velocity at the exit of the propeller H: Hessian matrix
A’: section at the exit of the propeller Vs: normalized rotor speed
C: pressure coefficient

.
Vs: normalized rotor acceleration

λ: Lagrange multiplier V : expected value of V
T: time interval ε: random perturbation
Fe: force applied to the propeller σε: standard deviation
c: control parameter V1: fluctuation term of the rotor speed
p: flow pressure Erel: relative produced energy
m: mass or inertia moment of the dummy model η, χ, ξ: nondimensional parameters
S: characteristic area of the dummy model
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