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Abstract
A new spherically-symmetric solution for a gravitational field is found in the conformally-
unimodular metric. It is shown, that the surface of the black hole horizon in the standard
Schwarzschild metric can be squeezed to a point by converting coordinates to the
conformally-unimodular metric. In this new metric, there is no black hole horizon, while the
naked singularity corresponds to a point massive particle. The reason for the study of this
particular gauge (i.e., conformally-unimodular metric) is its relation to the vacuum energy
problem. That aims to relate it to other physical phenomena (including black holes), and one
could argue that they should be considered in this particular metric. That means the violation
of the gauge invariance of the general theory of relativity. As a result, the nonsingular
‘eicheons’4 appear as the non-point compact objects with different masses and structures. They
are a final product of the stellar collapse, with the masses exceeding the Tolman-Oppenheimer-
Volkoff limit.

Keywords: black holes, supermassive black holes, coordinate singularity, conformally-
unimodular metric, gauge invariance violation, vacuum energy

1. Introduction

One of the most intriguing objects in the theory of general
relativity (GR) is the ‘black hole’ (BH) [2, 3], which is a
result of the collapse of astrophysical objects with the masses
exceeding the Tolman-Volkov-Oppenheimer (TVO) limit
[4, 5]. The gravitational waves registered recently are con-
sidered as a result of the collision of massive BHs [6]. Direct
astrophysical observations also indicate the extremely com-
pact supermassive objects in the galactic cores [7] identified
with BH. However, such BH evidences should be considered
with caution because they suggest only a presence of some
compact massive astrophysical object possessing the BH

properties for an external observer, but with the wholly
unknown internal structure.

The strange properties of BH forced many researchers
(including A. Einstein [8]) to question the BH reality and
consider these objects as a pathological artifact of GR. Sev-
eral discouraging facts are well-known:

(1) The first issue is the presence of BH singularity with an
infinitely large density, which is physically questionable. In order
to avoid a singular state, the different modifications of GR have
been offered by taking into account torsion (see, for example,
[9]); space-time curvature limitations [10]; or considering the
gravitation as a physical tensor field which Requires gauge
invariance violation and non-zero graviton mass [11]; and, at
least, development of quantum theories gravity, e.g., loop
quantum gravity [12]. On the other hand, the BH singularity
could be justified because it is ‘dressed,’ i.e., surrounded by a
horizon, making it invisible for an outside observer (the so-called
‘cosmic censorship’ principle [13]). The BH singularity found
a treatment within the framework of GR (the concept of a
so-called ‘regular BH’ [14, 15]) through the modification of
the energy conditions on the stress-energy tensor of matter
[16, 17]. In particular, the impact of nonlinear electrodynamics
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and non-Abelian gauge fields on the BH formation and structure
were studied [18–20], and the limits of the BH ‘non-hair’ the-
orem were discussed [21].

(2) The physical status of the ‘event horizon’ itself could
also raise the questions. However, from GR, it is merely a
‘one-sided membrane’ (‘no-return horizon’) for the free-fall-
ing observer. Nevertheless, a fact of the event horizon exis-
tence is doubted both from classical and quantum viewpoints.
For example, the horizon formation relates to the stability of
ultra-compact states of a substance [5]. The existence of such
exotic stable phases (e.g., free-quark phase [22]) could
explain the phenomenon of ultra-compact objects but with the
size larger than the horizon. Then, the concept of the event
horizon, as well as the unlimited gravitational collapse, are
declared physically meaningless in the field formulation of
gravity with a massive graviton [11, 23, 24]. However, the
existence of ultra-compact objects, which are finely larger
than BH, is not disclaimed [25, 26]. A quantum view on the
horizon issue reveals an ‘information paradox,’ and a ‘non-
cloning’ of quantum states, as well as the thermodynamical
problems [27–30].

Assuming the modernization of GR in its relation with
the ‘no-BH’-hypothesis refers to the synthesis of gravity with
quantum mechanics. That raises the question: what is the
direction of such modernization? In this regard, one can recall
the known statement by D.I. Blochintsev: ‘Number of facts is
always enough, but fantasy is insufficient.’ [31].

The key fact indicating a possible path in the forest of the
alternative gravity theories is the vacuum energy problem. In
GR, any spatially uniform energy density (including that of
zero-point fluctuations of the quantum fields) causes the
expansion of the Universe. Using the Planck level of UV-
cutoff results in the Planckian vacuum energy density
r ~ Mvac p

4 [32], which leads to the Universe expanding with
the Planckian rate [33]. In this sense, the vacuum energy
problem is an observational fact [34].

One of the possible solutions is to build a theory of
gravity, allowing an arbitrarily reference level of energy
density. One such theory has long been known. That is the
unimodular gravity [35–39], which admits an arbitrary cos-
mological constant. However, under using of the comoving
momentums cutoff, the vacuum energy density scales with
time as radiation [34], but not as the cosmological constant.

Recently, another theory has been suggested [40], which
considers the Friedmann equation defined up to some arbi-
trary constant. This constant corresponds to the invisible
radiation and, thus, can compensate the vacuum energy. In
this case, one could ask why the k-cutoff of comoving
momentums is used instead of, for instance, a cutoff of
physical momentums related to =p k a (a is the Universe
scale factor)? The answer could be that it is relatively simple
to construct a theory with the k-cutoff, but it is challenging to
introduce the p-cutoff fundamentally. For instance, merely
considering gravity on a lattice gives rather fundamental
theory with comoving momentums restricted by the period of
a lattice.

The next noteworthy fact of GR is the absence of a
vacuum state, which is invariant relative to the general

transformation of coordinates. It indicates the violation of
gauge invariance at a quantum level5, but one could assume
that the gauge invariance should be broken at the classical
level in GR, as well. In particular, the five-vector theory of
gravity (FVT) [40] assumes the gauge invariance violation in
GR by constraining the class of all possible metrics in varying
the standard Einstein-Hilbert action. A question arises, how
the classical Schwarzschild solution looks in this class of
metrics? The purpose of this work is to elucidate the nature of
compact astrophysical objects in this limited class of con-
formally-unimodular metrics.

2. Violation of gauge invariance in a framework
of FVT

The observational fact, that the bulk of vacuum energy den-
sity does not affect the expansion of the Universe, points out a
gravity theory, in which the reference level of energy density
could be chosen arbitrarily. Such a theory arises if one varies
the standard Einstein-Hilbert action over not all possible
space-time metrics gμν, but over some class of conformally-
unimodular metrics6 [40]
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where { }h=m xx , , η is conformal time, γij is a spatial metric,
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where g̃ g= aij ij
2 is a matrix with the unit determinant.

The interval (1) is similar formally to the ADM one [41],
but with the lapse function N changed by the expression
- ¶ P1 m

m, where Pm is a three-dimensional (relatively rota-
tions) vector, and ¶m is a conventional particular derivative.

The starting point is the standard Einstein-Hilbert action
[42]
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´ - kg1.065 10 8 is the reduced Planck mass. The variation of
(3) over vectors P, N and 3-metric7 γij leads to the FVT

5 As was found, most of the symmetries in nature are violated. The
exception is the color symmetry of the quantum chromodynamics.
6 In this gauge, a space-time metric is presented as a product of a common
multiplier by a 4-dimensional matrix with a determinant equal to −1,
including a 3-dimensional spatial block with unit determinant.
7 Three dimensional spatial metric tensor can be written as the three-vectors
triad. Thus 5-vectors appear in theory.

2

Phys. Scr. 95 (2020) 085009 S L Cherkas and V L Kalashnikov



equations:
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where the energy momentum tensor =mn
d
d mn

T Sm

g
is introduced.

The last equation (4) is weaker than the corresponding
Hamiltonian constraint of GR. On the other hand, the
restrictions ( · )  =P 0, ( · )  =N 0 on the Lagrange
multipliers arise in FVT. Using the gauge · =N 0 pro-
vides the Hamiltonian constraint fulfillment up to some
constant [40].

3. A spherically symmetric static gravitational field

The spherically symmetric metrics belonging to the class (1)
reads as:
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where ∣ ∣= xr and a=a exp , λ are the functions of η, r. The
matrix g̃ij with the unit determinant is expressed through
λ(η, r). Thus, for the spherically symmetric case, the
equations (4) take the form
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where prime denotes differentiation over η. Equation (6) is the
Hamiltonian constraint, but it includes an arbitrary constant
now. If this constant equals zero, one returns to GR.
Equation (7) follows from the momentum constraint. The
expressions (8), (9) are the equations of motion.

Differentiation of the constraints over time η results in
the following equations

( ) ( )¢ = ¶ l- 
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e r
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3
, 10r2

4 2

( )¢ = ¶ , 11r

which are satisfied if the equations of motion (8), (9) are
fulfilled, and, besides, the following equations for the energy
density and pressure are enforced:

( ) ( ) ( )r r a r a¢ + + ¢ = ¶ + + ¶ =p p p3 0, 0. 12r r

In GR, the equations (12) arise from the Bianchi iden-
tities resulting in =m

mnD T 0. In the FVT case, the relations
(12) arise from the requirement of the constraints conserva-
tion in the time (10), (11). Generally, the equations (10), (11)
satisfy not only = 0, = 0, as in GR, but weaker con-
ditions = const, = 0, as reflected in equation (6). A
constant on the right hand side of equation (6) compensates
the bulk of the vacuum energy, and, after the compensation
(if it is exact), the equations become the same as in GR. All
this take a place in the conformo-unimodular metric (5), in
which we will find the Schwarzschild solution, assuming the
time derivatives, as well as pressure and density equal to zero
in equations (6–9). Expressing the derivatives l¶r r, , a¶r r,

from equations (8), (9) and substituting them into (6) under
the const=0, one finds
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To obtain a solution of the equations (8), (9), (13), let us make
the following substitution

(( ) ) ( )l a= + - ae r rln 1 , 14g
2

where the Schwarzschild radius is introduced for the sake of
dimensionless of the expressions under logarithm.

As a result, equation (13) takes the form:
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where -f 1 is the inverse function of
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and r0 is an integration constant. The function f (a), which
maps an interval (0, 1) into , is mutually single-valued
function shown in figure 1. Using (16), (17) and the rules of
the differentiation of the inverse function allows calculating
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Substitution of equations (18), (19), (20), (21) into
equations (6), (7), (8), (9) demonstrates that the lasts are
satisfied at p=ρ=0 , and const=0 . Thus, equations (14),
(16), (17) are the exact spherically-symmetric static solution
of the Einstein equations in vacuum. From the physical
viewpoint, it appears that const in equation (5) compensates a
vacuum energy of quantum fields.

The function α is not singular everywhere, as it is shown
in figure 2(a), whereas the function λ, describing the devia-
tion of conformally-unimodular metric geometry from the
Schwarzschild one, is singular only at r=0.

Let us compare the solution (14), (16) with the canonical
Schwarzschild one which is [42]
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For this aim, we rewrite the interval (5) in the spherical
coordinates
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The solutions (22) and (23) of the Einstein equations
should be interrelated by the transformation of coordinates
t=η, R=R (r), which gives another way to deduce
equations (14), (15). Actually, equating the coefficients at
dt2=dη2, qd 2 and q fdsin2 2, as well as the radial terms in the
intervals (22), (23) gives the equations
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The relations (24), (25) result in the expressions (14) and
( ) ( )= - a -R r r e1g

2 1, which give (15) after substitution in
(26). As is shown in figure 2(b), the solutions (14), (16)
describe only a part of the external space +rg of the
Schwarzschild solution by virtue of ( ) R r rlimr g0 .
Figure 3 illustrates this fact in the following way. Let there is
a space filled with the Schwarzschild BHs. Then, by inverse
coordinates transformation having the form r (R) in the
vicinity of each hole, one can squeeze holes into the nodes
r=0 and consider that point particle is placed in each node.
The space-time obtained in such a way will represent a
single causally connected region. That corresponds to the
existence of impenetrable surface at R(0)>rg in the metric
(22). This situation resembles that in theory with massive
graviton, where the physical singularity corresponds to
R=rg [24, 26].

In contrast to a regular BH concept admitting a horizon
without a singularity [16–20], the conformally unimodular
gauge changes the terminology completely. Namely, all its
solutions have no horizon without requiring any exotic states
of matter.

In principle, using the Dirac delta function and writing
the density energy in equation (6) as ( ) ( )( )r d= a-x xe 3 3 [40],
one could consider the solutions (14), (15) as corresponding
to the δ-source, but such a consideration is rather formal
because the equations of gravity are nonlinear, whereas the
product of generalized functions cannot be defined correctly
[43]. Some additional definition of the structure of the Dirac
delta function is required to overcome this difficulty [44]. For
instance, one could consider a physical model of delta-func-
tion in the form of a sphere of constant density, with the
radius approaching zero along with the density tending to
infinity.

Figure 1. Plot of the function f (a) defined by equation (17).
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4. Compact objects of the constant density

4.1. Uniform compact object in the Schwarzschild metric

The well-known Tolmen-Oppenheimer-Volkov equation
(TOV) [5], which defines the maximal mass of a stable
neutron star, written in the Schwarzschild type metric

( ) ( ) ( )= - - Wds B R dt A R dR R d , 272 2 2 2
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Although an ideal incompressible fluid seemed to be not
existing in nature, an approximation of constant density [45]
allows describing the general features of the compact physical
objects. In this case ( ) r= p R R4

3
3, the solution of

equation (28) takes the form
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where Rf is the radius of an object. As it is seen from the formula

(29), pressure turns to infinity at r= -R M R4 9p f
2 2 , that

points to some limitations on the size of the object. A condition
of pressure finiteness yields r <M R4 9p f

2 2, i.e., the size of an
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4.2. Shell compact object in the Schwarzschild metric

Let us consider a more complex model of astrophysical object
consisting of two immiscible and incompressible liquids with
the densities ρ1 and ρ2. It is the simplest prototype for the
neutron star with a non-uniform internal structure [46, 47].

Then, the function ( ) R is written as
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When ρ1 is close to zero and ρ2=ρ, the function (30)
becomes

Figure 2. (a) ‘Gravitational potentials’ describing the metric (5). Solid and dashed lines correspond to α (r), and λ (r), respectively. The
dashed-doted line is the Newtonian potential j = -

r

r2
g . (b) Coordinate transformation R(r) mapping the metric (5), (23) to the canonical

Schwarzschild form (22) for the different integration constant values r0 in the expression (16). Solid and dashed lines correspond to r0=0
and =r r3 g0 , respectively. The level of R=rg is marked by the gray horizontal line.

Figure 3. ‘Squeezing’ of the BHs of Schwarzschild horizons into the nodes with point masses.
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The analytical solution of (28) for pressure with this ( ) R is
still cumbersome, however calculation shows softer condition
for the pressure finiteness, which is shown in figure 4. For a
sufficiently thin shell Rf approaches to rg.

4.3. Compact object in the conformally-unimodular metric

4.3.1. Object of a star class. Modern observations of ultra-
compact BH-like objects, formed as a result of collapse of
massive stars, give the maximum estimation of their masses of
order of = ¸m m15 36 [48, 49]. Let us consider the constant
density objects in the metric (27) related by the coordinate
transformation ( ) ( ( ) ( ))a l= -R r r rexp with the metrics (14).
A quantity rf denoting boundary of a matter in conformally-
unimodular metric corresponds to Rf=R(rf) in metric of (23),
while Ri=R(0). Because the horizon is absent in this metric,
nothing prevents rf to be smaller then rg. The functions α(r), λ(r),
p(r) are defined by the equations (6)–(9) within a sphere occupied
by matter. The boundary conditions at r=rf are given by linkage
with the Schwarzschild solution (14), (16).

After solving of equations (6)–(9), the mass of an object
can be recovered

⎜ ⎟⎛
⎝

⎞
⎠

( )

( )( ( ) ( ))ò

p
r

pr
a l

= -

= - +a l-

m R R

e r
d

dr
r

d

dr
r dr

4

3

4 1 , 32

f i

r
r r

3 3

0

3 2
f

which determines the Schwarzschild radius =
p

rg
m

M

3

2 p
2 ,

appearing in the formulas (14) and (16).
Let us first discuss compact objects in the metric (5), (23)

where the matter occupies a sphere with the size less or an
order of the Schwarzschild radius (see figure 5), (a), (b). As
could be expected, the potential α, which was finite in the
case of a point source, remains finite. The potential λ, which
was infinite in the point where the point-like source was

located, becomes finite inside a uniformly mass distribution
within a ball.

The internal structure of a compact object in the metric
(27) is defined by the internal Ri and external Rf radii, while
there is only single external radius rf in the metric (23), and,
besides, there is an additional parameter r0 in the external
Schwarzschild solution (14), (16). Thus, the meaning of this
additional parameter r0 becomes clear. Namely, it defines the
internal structure of an object. It is not surprising that partial
information about the pseudo-BH structure is contained in the
Schwarzschild external solution in the form of parameter r0
because no real BH in the conformally-unimodular metric
exists.

Certainly, the pressure P(R), { }ÎR R R,i f obtained by
the solution of the TOV equation matches the pressure
recovered from equations (8), (9), (12) in the parametric form
p(r), R (r), r ä {0, rf} as it is shown in figure 6.

4.3.2. Supermassive object. Recently, the existence of
supermassive compact objects in galaxy nuclei was
confirmed, and their masses were estimated as =m

´ m6.5 109 [7]. Assuming the existence of some maximal
density in nature r Mpmax

4, after conversion to the units
-M rp g

2 2, results in r r= = ´ -M r3.4 10 p g0 max
95 2 2. For the

conformally-unimodular metric, the size of this object turns
out to be very small and, as calculations show, the potentials
λ and α inside a ball can be estimated by taking expressions
(14), (16) for empty space (i.e., the boundary conditions affect
α(r) stronger than the ‘structure’ of an object). Moreover, one

Figure 4. Minimum possible outer radius =R Rf min in dependence
on the thickness of a shell in the Schwarzschild metric (27).

Figure 5. (a) A compact object of uncompressible fluid
(r = -M r0.43 p g0

2 2) with the radius =r r2f g in the conformally-
unimodular metric (23) looks as a shell (b) with the boundaries

( )= =R R r0 1.34i g and ( )= =R R r r1.52f f g in the Schwarzschild
type metric (27). (c), (d) Low density object r = ´5.01170

- -M r10 p g
10 2 2 looks as a solid ball » =R r r1000f f g in both metrics

if parameter r0 in (16) equals = -r 96.750 .

6

Phys. Scr. 95 (2020) 085009 S L Cherkas and V L Kalashnikov



has at a small r/rg
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

( )
( )a » +

-
r a r

r r

r k r
ln

6
, 33

g
0 0

3
0
3

3
0

because the value of a tends to some constant a0 at r 0.
The parameters a0(r0) and k(r0) are the functions of r0. The
expression (33) has been derived by the expansion of the
function ( )f a into Taylor’s series at the point a0 up to the first
order in -a a0. After this expansion finding of the inverse
function f (−1) becomes elementary. The value of a0 is a root

of the equation ( ) - =f a 0r

r6 g

0
3

3 and ( )= ¢k f a0 . Further, as

an example, r0=0 will be considered, when a0≈0.54,
and k=25.2.

The calculation of mass using (32) yields

( )
( )p

r»
-

m
a

k a
r

4

3 1
, 34f0

0

0
2 4

3

giving the estimation for » ´ = ´-r r2.6 10 1.5f g
32

-M10 p
16 1. The radius of a boundary surface in the Schwarzs-

child metric can be approximated from (24), (33)

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )»
- +

R r
r

a1

, 35
g

r

r k0 6

2

g

3

3

which gives ( )= »R R r0 1.4i g.
As was already mentioned, it is possible to ‘approach’

closer to the Schwarzschild radius if to take another value of
parameter r0. The thickness of surface D = - »R R Rf i

( )



dR r

dr r rf

» ´ » ´- - -r M7.5 10 4.3 10g p
97 49 1. So small

thickness Δ R of surface results from the hugeness of its area.
The second equation of (12), using (33) and setting boundary
condition ( ) =p r 0f allow estimating the pressure

( ) ( )r»
-

+
p r

r r

r a k r6
. 36

f

g

3 3

3
0

3 0

The maximum of the pressure is » -p M r0.07 p g
2 2, i.e., it is

much lower than the density ρ0 , due to low potential gradient

α (r) inside an ‘eicheon’ given by equation (33), or from the
extremely small surface thickness Δ R in the terms of the
TOV approach. This situation is analogous that in theory with
massive graviton, where impenetrable surface exists before rg
[24, 26] in the metric of (27) type. Since the real astrophysical
objects must have the radii > rg, this lifts the issue of the BH
singularity in [24, 26].

4.4. Low density objects

Low density objects (recall, for example, that the Sun radius
is »R r236 000f g) illustrated in figures 5, (c), (d), which
represents a solid ball in the Schwarzschild metric (27).
Although they are not related to the compact objects but could
be considered for the completeness of the picture. It turns out
to be that, in this case, the value of parameter r0 in external
metric (16) is fixed by the requirement r=0 when R=0. As
is shown in figure 7, the condition of R=0 at r=0 meets
only if r0=−96.75 for a non-compact object of the radius of
rf=1000rg. Then the value of R(r) becomes almost the same
with the r, as it is shown in figure 7. Thus, one may conclude
that the ‘friable’ objects can also be described consistently in
the conformally-unimodular metric.

In this context, it is interesting to imagine a low density
object, but with an empty core surrounded by a firm ‘artificial
surface’ composed from an incompressible liquid, for
instance. Such an object can also be described in the con-
formally-unimodular metric, with the r-coordinate running
from 0 to rf and r0 should have a small negative value, that
corresponds to an internal cavity in the Schwarzschild
coordinates.

The difference between the ‘friable’ and compact dense
objects is, that for the first one, internal cavity in the
Schwarzschild metric could eliminate an by taking a larger
value of r0 in the metric (23). In contrast, for a dense object,
the cavity in the Schwarzschild metric cannot be eliminated in
any way.

Figure 6. The pressure obtained by solving the TOV equation
(points) and the equations (6), (7), (8), (9) (solid curve). The values
of parameters correspond to figures 5(a), (b).

Figure 7. Dependence of R(r) for a ball of » =R r r1000f f g filled
with the ‘friable’ matter at different values of the parameter r0 in the
external metric: = -r 1200 (dashed line), −96.75 (solid), −70
(dash-dotted). Density of matter is of r » ´ - -M r5 10 p g0

10 2 2.
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5. Objects made of dust

Let’s consider the motion of a sample dust particle in the
metric (23) in the neighborhood of r=0, where

(( ) )
( )

a l a» = + - » +aconst e r r const r, ln 1 ln .

37
g

2

The radial geodesics satisfy the equation

̈ ̈ ( )h = + =r r r0, 2 0, 382

where a dot denotes a derivative over the proper time s. The
solution of equation (38)

( ) ( ( )) ( )h h h= - -r r r v3 39in in in
2 3 1 3

shows that the sample particle, placed initially at the point rin,
η=ηin and having the speed v directed towards center,
reaches the point r=0 for the finite time.

Qualitatively, the formation of objects with the equation
of state of the dust type, i.e., having very low pressure, can be
imagined as the radial falling of the dust particles in the
‘eicheon’ field. As a result, dust particles are accumulated in
the vicinity of r<rg, where the gradient of potential α is
negligible, i.e., the gravitational field is absent. In this con-
formally-unimodular metric, ‘eicheon’ is similar to a trap
because a particle needs to overcome the region of large
potential to escape from such a trap. This picture is quite
similar to those discussed in [10].

On the other hand, in the Schwarzschild type metric (27),
a layer, where the dust particles are accumulated, is very thin.
The thickness is determined by the residual pressure if to
consider that some small pressure is still present. This picture
resembles a a very thin surface discussed in [11, 25, 26, 50],
where it originates from the non-zero mass of graviton.

6. Conclusion

We considered the conformally-unimodular gauge, which was
chosen for the sake of avoiding the problem of vacuum
energy. A requirement that the bulk vacuum energy
r ~ Mvac p

4 does not influence the curvature of space-time
leads to the gauge invariance violation and restricts the class
of the possible metrics. That results in the absence of BH and
the appearance of ‘eiheons’ instead. All the compact real
astrophysical objects in this class of the metrics look like solid
balls of different sizes without any singular surfaces (‘hor-
izons’). If such the compact objects rf�rg are considered in
the Schwarzschild metric, they look like a matter layer dis-
tributed over the impenetrable spherical shell with a radius
greater than the Schwarzschild one.

We have considered only spherically symmetric solutions
in the framework of the FVT, and see a further generalization
of the presented model by taking into account the ‘Eicheon’
spinning and its ‘non-hair’ properties. Preliminary results
concerning Kerr solution is sketched in the appendix.

Appendix. The Kerr’s solution into the conformally-
unimodular metric

Whereas the static and spherically symmetric ‘eicheon’ was
above considered, the real astrophysical objects are spinning
in nature. As it is well-known, the rotating BH has a region
outside the Schwazshcild sphere known as the ergosphere [3],
which plays a fundamental role in such phenomena as the
Lense-Thirring (or frame-dragging) effect [51], the particle
acceleration around a rotating black hole, and the Penrose
process (i.e., the energy extraction from a rotating black
hole) [52].

Therefore it is interesting to express the Kerr solution in
the unimodular metric. The Kerr solution in the form of
Boyer-Lindquist is written as [3, 53]:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

q

q q f

q f

= -
Ã

-
Ã

- +
- Ã

- + +
Ã

+
Ã

ds
R r

dt
R r R a

dR d

a R
R r a

d

r R a
d dt

1

sin sin

2
sin ,

A.1

g

g

g

g

2
2

2
2

2 2
2 2 2

2 2
2

2
2 2 2

2
2

where qÃ = +R a cos2 2 2 2 .
To proceed with the unimodular metric, let’s firstly to do

the transformation to a new radial coordinate r considering
R as a function R(r, z), where, q=z r cos . Writing =dR

( )q q q¶ + ¶ -Rdr R dr r dcos sinr z , one comes to

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ( ))

( )

q

q q f

q f

q q q

= -
Ã

- Ã

- + +
Ã

+
Ã

-
Ã ¶ + ¶ -

+ -

ds
R r

dt d

a R
R r a

d

r R a
d dt

dr R R dr d r

a R R r

1

sin sin

2
sin

cos sin
.

A.2

g

g

g

r z

g

2
2

2 2 2

2 2
2

2
2 2 2

2
2

2 2

2 2

Then let us proceed with the isotopic coordinates
{ }=x x y z, ,

q f

q f
q

= +

= +
=

x a r

y a r
z r

sin cos ,

sin sin ,
cos ,

2 2

2 2

by writing

∣ ∣
( )q =

x
z

arccos , A.3

( )f =
y

x
arctan , A.4

( ) ( )= - + + -x xr a a z a
1

2
4 . A.52 2 2 2 2 2 2

This leads to the following expression
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( ) ( )
( )( )( )
( · ) ( · ) ( )

= + +
+

+ ´ + ´

xJ xx
xx xJ Jx

J x x x x J

ds g dt g d g d

g d d

g d g dt d , A.6

tt
2 2

1
2

2
2

3

4
2

5

where { }=J 0, 0, 1 is an unit vector in the direction of the
BH spin, gi are functions of ∣ ∣x , z2, since r is expressed
through ∣ ∣x and z through (A.5). As a result, one has:

Vectors N and P appearing in (1) are =P 0 and
/g = - ´N x Jg 25 . The FVT theory implies the restriction

( · )  =N 0 to vector N because it is a Lagrange multiplier
when the class of the metrics is restricted by (1). This
restriction is evidently satisfied here by virtue of · =N 0.

The corresponding 3-metric tensor γμν is

( )( )

( ) ( )
( )

g = Ä + Ä + Ä + Ä

+ ´ Ä ´

J J x x x J J x Jx

J x J x

g g
g

g

2

,

A.7

1 2
3

4

Transformation properties of the basic vectors are given
in a table 1. The metric tensor considered (A.7) is parity and
time reversal conserved quantity. In principle, P-, T- and PT-
symmetries are violated in a nature, but here we restrict
ourself only parity and time-reversal invariant case con-
sidering the transformation of only radial coordinate R(r, z).

Conformally unimodular metric (1) requires that the
coefficient under dt2 in the third degree has to equal the
determinant of the spatial metric (A.7). This gives the equation
for the function R(r, z) in the form of

From this point, the time variable becomes a conformal time
t=η of equation (1). To obtain solution of equation (A.8),
first, it is convenient to consider the equation containing an

arbitrary function G

( ) ( )¶ + ¶ =R
z

r
R G r z, , A.9r z

which has the formal solution

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )ò x x x= +R r z G

z

r
d S

z

r
, , , A.10

r

0

where ( ) ( ) ( )∣q q qº = S R r rcos , cos r 0 is an arbitrary
function determining the boundary condition at r=0. Thus,
the final integral equation takes the form

Table 1. Parity and time-reversal symmetry of the basic vectors.

x J ´J x

P- − + −
T- + − −
PT- − − +

( )(( )(( ) ) )
( )( ) ( )

( )( ( ) ( )( ) )
( )( ) ( )

( )(( ) (( ) ) ( ))
( )( ) ( )

( ( ) ( ) )
( ) ( )( )

( )( )

= -
+

=-
+ - + ¶ + ¶ - + +

- + - + +

=-
+ - + + + - ¶

- + - + +

=
+ - ¶ + ¶ + ¶ + - -

- + - -

=-
+ + - + +

+ - +

=-
+ +

g
r r R

r R a z

g
r R a z r z a z r R a rz R r r R r R a r

r z a rz r r R R a

g
r r R a z z r R R a r r z R

r z a z r r R R a

g
r r R a z r z R a z r R a rz R r r zR zR a z

z r z a z r r R R a

g
r a r z R a r r z R r R a z

a r r z r R a z

g
ar r R

a r r R a z
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,

,

2
,

,

2
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2 2 2 2

1

2 2 2 2 2 2 2 2 4 2 2 8 8 2 2 8

2 2 2 2 5 2 2 2

2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 4 2 2 2

3

2 2 2 2 2 2 2 2 4 2 3 2 2

2 2 2 2 4 2 2 2

4

2 2 2 2 2 2 2 2 2 4 4 2
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2
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( )( ) ( ( ) )
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( )¶ + ¶ =
+ + - - +
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2 2 4 2 2 1 2 2 2 2 3 2
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r g g

g0

2 2 2 2 2 1 2 2 2 3 2

2 2 2 2 4 2 2 2 2 2 2 4 1 2
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where it is implied that the function R in the integrating
expression has arguments ( )x x qR , cos . Equation (A.11)
allows a numerical solution obtained iteratively in the form of
the Neumann series. The zero-order approximation is = R
and implies that R does not depend on r. Values in the
fractional degrees in the integrating expression should be
positive. This restricts ( )q , namely, + - > a r 0g

2 2 ,
and ( ) q- + >  r a cos 0g

2 2 , where last inequality corre-
sponds to the ergosphere.

It means returning to a procedure discussed for the
Schwarzschild solution when one chooses an arbitrary surface

( )q that surrounds the ergosphere and then shirks this
surface into a point by the coordinate transformation

( )qR r r, cos which satisfies the integral equation (A.11). In
figure A1, the results of numerical solution are shown, where

( ) ( ( ))q q= + r 3 2 cos 8g
4 and a=0.49 rg are taken as an

example.
A point-like object is the idealization of the real compact

astrophysical object. The real object is made of real matter
with the interaction properties, including parity and time-
reversal symmetry. Although such a real entity can be for-
mally described as a point, its physical properties preserve
and contribute to the characteristics of such a point-like
object. In this sense, the parity and time-reversal symmetry
conservation/nonconservation are kinds of eicheon ‘hairs’

[21]. Eicheon acquires ‘hairs’ because horizon disappears,
which violates conditions of the Robinson theorem.

For a>rg/2, the singularity is naked even in the gauge
(A.1), which could give rise to the concept of a ‘BH electron’
[54, 55]. It seems that the conformally unimodular gauge is
even more suitable for such interpretations, because, besides
the naked singularity, there exists no ergosphere, and, possi-
bly, no closed time-like geodesics. To obtain an ‘elementary
eicheon’, one could choose the surface ( )q exactly along
ergosphere.
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