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A potential dramatic effect of long-term disability due to stroke is the inability to return

to work. An accurate prognosis and the identification of the parameters inflating the

possibility of return to work after neurorehabilitation are crucial. Many factors may

influence it, such as mobility and, in particular, walking ability. In this pilot study, two

emerging technologies have been combined with the aim of developing a prognostic

tool for identifying patients able to return to work: a wearable inertial measurement unit

for gait analysis and an artificial neural network (ANN). Compared with more conventional

statistics, the ANN showed a higher accuracy in identifying patients with respect to

healthy subjects (90.9 vs. 75.8%) and also in identifying the subjects unable to return to

work (93.9 vs. 81.8%). In this last analysis, the duration of double support phase resulted

the most important input of the ANN. The potentiality of the ANN, developed also in other

fields such as marketing on social networks, could allow a powerful support for clinicians

that today should manage a large amount of instrumentally recorded parameters in

patients with stroke.

Keywords: neurorehabiliation, long-term disability, occupational medicine, psychometrics, walking, artificial

intelligence, machine learning

INTRODUCTION

In a complex and fast-changing environment in which a growing amount of data is everyday
collected, there is a need to find patterns and connections to make better decisions at every turn.
Artificial neural networks (ANNs) are increasingly being used with these purposes. An artificial
neural network is a machine learning algorithm inspired on the brain biological neural networks,
with an artificial intelligence inspired by the human one (1). Among all the artificial intelligences,
ANNs are a type of model for machine learning widely used, for example, in social networks to
define customer profiles and discover their preferences, hence optimizing marketing campaigns.

In the scientific healthcare field, there is a growing amount of electronic data, deriving from
sensors and electronic clinical sheets, that may favor a medical outcome analysis, for example,
for predicting the length of a hospital stay or the risk of fall associated to a walking patient.
However, given the wide amount of data, there is a need for automatic analysis that could have the
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ability to discover complex relationships in the data and generate
accurate performing predictive models. In this field, ANNs are
becoming relatively competitive to prognostic regressions and
other conventional statistical models (2).

An artificial neural network is a non-linear data
computational model consisting of input and output layers
plus one or more hidden layers. The connections between
neurons in each layer have associated weights, which are
iteratively adjusted by the training algorithm to minimize error
and provide accurate predictions (3).

For patients with stroke, artificial neural networks have been
used as models for screening (4), risk identification (5), or as a
prognostic tool (6). Lee and colleagues were pioneers in using an
ANN with an accuracy of about 80% in identifying movement
disorders from spatial parameters obtained by video analysis of
gait (7). Scheffer and Cloete had the intuition of the potentialities
of combining two emerging technologies: an artificial neural
network and inertial motion capture (8). In their study, the ANN
was able to correctly classify patients with stroke in 99.4% of
cases with respect to healthy subjects starting from the data of an
inertial measurement unit (IMU). So, they suggested the usability
of the ANN and IMU for planning gait rehabilitation therapy
and monitoring its outcomes in stroke. For years, gait analysis
was performed using complex stereophotogrammetric systems
requiring large economic and temporal resources, whereas now
there is a wide diffusion of more simply (despite less informative)
wireless inertial sensors that allow to compute the spatiotemporal
parameters of gait and trunk kinematics during walking (9–
11). Among the information provided by IMUs, the upright gait
stability has been associated to the risk of fall (12), and walking
speed resulted an important prognostic factor of functional
recovery (13), community mobility, and quality of life in patients
with stroke (14).

We have recently highlighted that in subjects in which stroke
occurred in their working age, the long-term disability affects
the possibility to return to work (RTW) and, in turn, the quality
of life after discharge from a rehabilitation hospital (15). In
fact, psychological and economic problems can be related to
the impossibility to return to work after stroke, as it occurs in
about 80% of workers suddenly impaired by stroke (16). This
is a dramatic percentage, especially considering that the mean
age of stroke onset is decreasing, and, in Western countries,
the retirement age is increasing, leading to an increment of the
incidence of stroke during the working age (17). The return
to work may depend on many several cognitive and motor
factors, strictly intertwined with each other; among these is the
independence in daily living activities including walking (15).

The aim of this pilot study was to use an ANN for analyzing
the data of a wireless inertial system for gait assessment to
evaluate the possibility to return to work after stroke.

MATERIALS AND METHODS

Participants
Thirty-three subjects were enrolled in this study, all of them
in working age (between 18 and 66 years), 17 healthy subjects
and 16 patients with a diagnosis of stroke in chronic phase (7

with left hemiparesis and 9 with right hemiparesis). Exclusion
criteria included cognitive impairments with Mini-Mental State
Examination < 24, severe unilateral spatial neglect, and severe
comorbidities. The age of patients ranged between 21 and 66
years old (mean age: 54.6 ± 13.7 years), whereas that of healthy
subjects ranged between 22 and 63 years old (mean age: 45.7 ±

13.4 years, not significantly different from that of patients, p >

0.05). Ten patients did not return to work at the moment of the
evaluation. Independent Local Ethical Committee approved the
study, and all the participants signed the informed consent.

Gait Analysis
Gait data were acquired by means of a wearable inertial
measurement unit endowed with a triaxial accelerometer, a
triaxial gyroscope, and a magnetometer (G-Walk, BTS, Padua).
The device was placed at the level of the sacral vertebras S1–
S2 embedded into an ergonomic waist belt. This wearable IMU
was connected to a portable computer via Bluetooth. The sample
frequency of recording was 100Hz. Subjects were asked to walk
along a linear pathway of 10m from a starting to a stop line.
During walking, the IMU recorded lower trunk accelerations and
angular velocities (respectively, along and around the anterior–
posterior, laterolateral, and craniocaudal body axis), estimating
from these signals the gait temporal and angular parameters.
Given the information about the path length, the IMU software
also computed the walking speed and step lengths (18). The
temporal variables extracted by the IMU and acquired by the
ANN were as follows: the cadence of steps, the stance, the swing,
the single support, and the first and second double support gait
phases. The trunk kinematics variables extracted by the IMU and
acquired by the ANNwere as follows: the range ofmotion (ROM)
of the trunk tilt, obliquity, and rotation (also definable as trunk
rotations around the latero-lateral, antero-posterior, and cranio-
caudal axes, respectively, or as pitch, roll, and yaw). Despite from
a theoretical point of view right and left strides are equal in a
reliable walk, the measured parameters often do not, so for all the
above parameters, but cadence, we computed the absolute mean
value between left and right strides and their differences.

Artificial Neural Network
We designed an artificial neural network working on the basis
of a multilayer perceptron procedure. The ANN was formed
by four layers: the input layer from which the above listed 17
variables extracted by the IMU software were entered, 2 hidden
layers of 5 elements each, and a final output layer (Figure 1).
The architecture of our ANN was that of a feedforward neural
network (FFNN), with data moving in only one direction, from
the input nodes through the two hidden layers to the output
nodes (3). The activation functions for all units in the hidden
layers and that for the output layer were both a hyperbolic
tangent. The chosen computational procedure was based on an
online training (details: initial learning = 1.2; lower learning =

0.001, learning epochs = 10, momentum = 0.9 interval center =
0, interval offset = ±0.5, memsize = 1,000, steps without error
= 1, error change = 0.0001, error ratio = 0.001). The ANN was
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FIGURE 1 | Schematic representation of the combination of Inertial Measurement Unit (IMU, measuring triaxial acceleration a, and triaxial angular speed ω) and its

software with the feedforward neural network formed by an input layer (M stands for mean values between right and left strides, and D for their difference, DS 1 and 2

for first and second double support phases; support is the phase with only one foot on the ground), two hidden layers, and an output layer (which represents the

identification of patients in the first analysis and the identification of patients who did not return to work in the second analysis).

developed using the IBM SPSS Neural Networks module of IBM
SPSS Statistic, version 23.

Firstly, we tested this ANN on its capacity to identify patients
with respect to age-matched healthy subjects. Then, we tested
the ANN on the identification of patients who did not return
to work on the entire sample (patients and healthy subjects) and
finally on their identification only among patients. It means that
the dependent variable was categorical, and the ANN worked
to classify cases into the best category based on the input
predictors. We choose to test an ANN standing alone, without
the need of demographical or clinical conditions of subjects used
as covariates; so our ANN worked without covariates, and all the
inputs were possible predictor factors. Because the computation
of speed and step lengths by the IMU software needed the
manual input about the definition of the walked distance, these
parameters were not taken into account, since we were basing
our ANN only on parameters automatically estimated by the
wearable device.

Statistical Analysis
Data were reported in terms of means and standard deviations
for the three groups of subjects (healthy subjects, patients who
returned, and those who did not return to work). A preliminary

analysis of variance was performed, followed by Tukey’s post-
hoc analysis, to highlight gait parameters significantly different
among the three groups.

The performances of our feedforward neural network (FFNN)
were compared with those of a forward stepwise logistic
regression (FSLR), typically used for identifying the prognostic
factors of patients with stroke. The normalized importance of
input factors evaluated by the FFNN (with 100% as the most
possible value) was compared with the p-value of those input
factors evaluated by logistic regression (with p < 0.05 for a
statistically significant result: some variables could enter into the
model of logistic regression despite a value of p > 0.05 because, if
removed, the effect was <0.05).

The performances were tested in terms of accuracy (the
percentages of correct identifications, given by the sum of true
positive and true negative divided by the sample size), sensitivity
(the percentages of correct identifications of positive cases:
subjects correctly identified as cases on the total number of
cases), and specificity (the percentage of correct identification of
true negatives: subjects correctly identified as non-case on the
total number of non-cases). In the first analysis (identification
of patients), we defined the patients as cases and the healthy
subjects as non-cases. In the second analysis (identification of not
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working subjects), all healthy subjects and patients who returned
to work were non-cases, whereas patients who did not return
to work were cases. Then, in the third analysis (identification
of not working patients), only patients’ data were analyzed with
those who did not return to work classified as cases and those
who returned to work as non-cases. The odds ratio and relevant
95% confidence interval (CI95%) were computed for the FSLR,
whereas the receiver operating characteristic (ROC) curve was
computed for the FFNN and the relevant area under the curve
was evaluated. For all the statistics, the IBM SPSS Statistic,
version 23, was used.

RESULTS

The gait parameters estimated by the IMU are reported in
Table 1. Significant differences were found for cadence and the
mean percentage values of gait phases among the three groups
of subjects. Post-hoc analyses showed that these parameters
were significantly different in the group of patients who did
not return to work, but not in those who returned to work,
with respect to healthy subjects. The trunk obliquity ROM
resulted significantly lower in patients who did not return
to work and more asymmetric in patients who returned
to work.

The first analysis tested the capacity of the FFNN to identify
the patients with stroke gait with respect to the healthy subjects.
The FFNN showed an accuracy of 90.9%, a sensitivity of 93.8%,
and a specificity of 88.2% in the identification of patients with
stroke. The area under the ROC curve was 0.930. The most
important parameters for the FFNN resulted the trunk obliquity

ROM (100%) followed by the percentage duration of stance phase
(99.6%). When the same investigation was performed using the
FSLR, the accuracy in patient identification was 75.8% with a
sensitivity of 68.8% and a specificity of 82.4%. The variables
entered into the model of the FSLR were the same as those of
the FFNN: the trunk obliquity ROM (OR = 0.717, p = 0.010,
CI95% = 0.56–0.92) and the percentage duration of the stance
phase (OR = 1.547, p = 0.088, CI95% = 0.94–2.55). The latter
one had a not statistically significant effect (p = 0.088), but if
removed by the model, this effect was significant (p = 0.016).
These results and those of the further analyses are reported in
Table 2.

The second analysis was focused on the capacity of the FFNN
to identify the patients who did not return to work with respect to
the entire sample. The accuracy of the FFNN in this identification
was 90.9%, resulting from a specificity of 91.3% and a sensitivity
of 90%. In fact, the FFNN had only two false positive cases
and one false negative case. The area under the ROC curve
was 0.978. The variables that mostly contributed to the FFNN
were the percentage duration of the first double support phase
(100%) and trunk rotation ROM (88.6%). The logistic regression
showed an accuracy of 81.8% in this investigation. The variables
entered into the model were the cadence (at the first step of
regression) and the percentage duration of the swing phase (at
the second step). The former entered into the model in the first
step and showed a significant effect (p = 0.017, OR = 0.87,
CI95% = 0.78–0.98), whereas the latter entered into the model
in the second step, but with a not significant effect (p = 0.054,
OR = 0.449, CI95% = 0.20–1.01). It should be specified that
despite the effect of percentage duration of the swing phase being

TABLE 1 | Means ± standard deviations of gait parameters estimated by the inertial measurement unit for healthy subjects, patients who returned to work and patients

unable to return to work.

Type of variable Gait parameter Healthy subjects Patients returned

to work

Patients not returned

to work

p-value

Mean values of gait Cadence (steps/min) 114 ± 9 109 ± 10 97 ± 12 <0.001

parameters Stance phase (%) 60.7 ± 1.7 60.6 ± 2.5 64.2 ± 3.8 0.005

Swing phase (%) 39.9 ± 1.7 39.4 ± 2.5 36.8 ± 2.2 0.009

1st double support (%) 10.7 ± 1.7 10.6 ± 2.3 13.1 ± 2.3 0.015

2nd double support (%) 10.8 ± 1.7 10.6 ± 2.6 13.2 ± 2.2 0.013

Single support phase (%) 39.2 ± 1.7 39.5 ± 2.6 37.0 ± 2.3 0.022

Tilt ROM (degrees) 6.3 ± 2.1 6.0 ± 1.6 5.6 ± 2.1 0.728

Obliquity ROM (degrees) 14.5 ± 4.5 9.9 ± 5.4 7.9 ± 4.5 0.004

Rotation ROM (degrees) 18.0 ± 6.3 14.0 ± 5.8 12.5 ± 6.9 0.100

Asymmetry

in gait parameters (side-to-side

differences)

Stance phase (%) 1.5 ± 2.4 3.0 ± 1.8 5.4 ± 6.3 0.058

Swing phase (%) 1.5 ± 2.4 3.0 ± 1.8 3.4 ± 3.8 0.205

1st double support (%) 1.4 ± 1.1 2.0 ± 1.5 1.4 ± 1.5 0.645

2nd double support (%) 1.5 ± 1.2 2.1 ± 1.3 1.3 ± 1.2 0.453

Single support phase (%) 1.4 ± 2.3 3.2 ± 1.7 3.3 ± 3.5 0.173

Tilt ROM (degrees) 0.2 ± 0.3 0.3 ± 0.3 0.3 ± 0.3 0.717

Obliquity ROM (degrees) 0.2 ± 0.3 0.6 ± 0.5 0.4 ± 0.2 0.013

Rotation ROM (degrees) 0.4 ± 0.3 1.0 ± 0.7 0.8 ± 0.6 0.069

The last column report the p-values of the analysis of variance performed among the three groups (p-values are reported in bold if statistically significant, whereas data are in bold if

post-hoc analysis revealed that they are significantly different from those of healthy subjects).

Frontiers in Neurology | www.frontiersin.org 4 May 2021 | Volume 12 | Article 650542

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Iosa et al. AI for Stroke Gait Analysis

TABLE 2 | Comparisons of the performances (accuracy, sensitivity, and specificity) of feedforward neural network (FFNN) and forward stepwise logistic regression (FSLR)

for identification of patients and patients unable to return to work (No-RTW).

FFNN vs.

FSLR

Group Healthy subjects

and patients

Healthy subjects

and patients

Only patients

Parameter Patient

identification

No-RTW

identification

No-RTW

identification

Model FFNN FSLR FFNN FSLR FFNN FSLR

Model results Accuracy 90.9% 75.8% 90.9% 81.8% 93.8% 81.3%

Sensitivity 93.8% 82.4% 90.0% 87.0% 90.0% 90.0%

Specificity 88.2% 68.8% 91.3% 70.0% 100.0% 66.7%

Input Cadence 66.3% 0.768 76.2% 0.017 61.0% 0.128

Mean values of Input parameters Stance phase 99.6% 0.088 83.0% 0.452 73.1% 0.564

Swing phase 93.4% 0.877 81.5% 0.054 71.1% 0.026

1st double support 84.1% 0.875 100% 0.678 65.9% 0.732

2nd double support 89.7% 0.809 64.8% 0.816 67.1% 0.497

Single support phase 94.5% 0.789 72.5% 0.902 81.2% 0.497

Tilt 95.6% 0.312 78.8% 0.223 70.8% 0.985

Obliquity 100% 0.010 79.5% 0.561 77.5% 0.454

Rotation 83.6% 0.892 88.6% 0.549 95.0% 0.658

Asymmetry of Input (differences of

values)

Stance phase 83.6% 0.757 81.6% 0.166 67.1% 0.280

Swing phase 90.4% 0.795 80.2% 0.283 62.4% 0.408

1st double support 91.1% 0.467 84.0% 0.833 98.8% 0.805

2nd double support 91.6% 0.532 76.7% 0.378 100% 0.409

Single support phase 81.2% 0.712 76.0% 0.340 62.9% 0.570

Tilt 59.7% 0.499 68.4% 0.854 52.8% 0.388

Obliquity 91.0% 0.083 63.7% 0.649 72.9% 0.354

Rotation 85.1% 0.080 82.8% 0.711 71.4% 0.894

Below, the normalized importance of input for FFNN (maximum = 100%, in bold the two highest values) and the p-values of the effect of input for FSLR (in bold if entered into the model

because their effect was statistically significant, or if the effect of their removal from the model was significant).

not significant, if removed by the model, it had a significant
effect (p= 0.007).

The third analysis was performed only on the patients. The
accuracy of the FFNN was 93.8%, with the same sensitivity as the
second analysis (90%) but with a specificity that is even higher
(100%). In this analysis, the most important parameter resulted
the asymmetry in both the double support phases, followed by
the trunk rotation ROM, which was already found as playing a
key role for the identification of subjects who did not return to
work also in the second analysis. Also, accuracy, sensitivity, and
specificity of the FSLR were similar to those found in the second
analysis, with the swing phase again found as a variable entered
into the model, the only one in this case.

DISCUSSION

The FFNN showed good performances both in identifying
patients with respect to healthy subjects as well as in identifying
those patients unable to return to work among all the enrolled
subjects. Its performances were higher than those of a classical
statistical analysis such as the FSLR. It is noteworthy that both
the analyses (FFNN and FSLR) had some analogies in the
identification of the parameters that mostly contributed to the
outputs (as well as with the results of the preliminary analysis

of variance). In both, the identification of patients was based on
the percentage duration of the stance phase and on the range of
motion of trunk obliquity. The gait phases, and in particular the
ratio between stance and swing phases, have been highlighted
as fundamental for a harmonic walking because they formed,
together with the double support phases, a fractal autosimilar
structure of walking (19). The autosimilarity of the ratios between
consecutive gait phases is altered in pathological conditions
(20, 21), but in physiological conditions, walking allows for
an optimization of energy expenditure (21) and an optimal
equilibrium between balance and speed (22). In our study, the
FSLR showed that a longer stance phase was associated to the
identification of patients (OR = 1.547). The trunk kinematics
was also reported as fundamental for the upright balance during
walking in patients with stroke, being exposed to the risk of fall
(23, 24). The inertial measurement of trunk kinematics during
walking is probably the most important factor associated to
this dynamic balance (11, 12). An excessive obliquity of trunk
could be used as a compensation strategy for lower limb deficits
in neurological and also neuromuscular diseases (12, 25). It is
conceivable that patients who returned to work adopted this
strategy to compensate for the affected side, resulting in an
asymmetric lateral trunk bending during walking. Conversely,
patients unable to return to work showed a lower trunk obliquity
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range of motion than healthy subjects (OR = 0.717). It was
probably due to the reduced walking speed, which reduces the
trunk oscillations (10, 11), and to the incapacity to put in action
the above-described effective compensation strategy.

The inability to return to work was found associated by the
ANN to the first double support phase and to the trunk rotation
ROM. In this case, these parameters were different from those
identified by analysis of variance as significantly different among
groups and by logistic regression, for which cadence and swing
phase entered into the model. In this latter case, reduced cadence
and reduced limb oscillation phases were found to be associated
to patients who did not return to work. This is conceivable with
a reduced speed and hence a reduced mobility. For the ANN, the
most important parameters associated to not returning to work
were those related to the double support phase. This result was in
accordance with that of logistic regression: the longer the double
support phase, the longer the stance, and the shorter the swing
phase (19). But also trunk rotation ROM highly contributed for
the ANN, being reduced in patients who are unable to return
to work. As well as for trunk obliquity, also rotation could
be related to a reduced speed, but its reduction can also be
associated with a lack of upper limb oscillations during walking.
The contralateral oscillations of the upper limb with respect to
the lower limbs are a strategy to stabilize the trunk and the head
during walking, counteracting the momentum produced by the
lower limbs during their swing phases (12).

The identification of inability to return to work performed
only on patients (the third analysis of this study) also confirmed
that the FFNN had higher accuracy and specificity than the
FSLR, with similar sensitivity. However, caution is needed in the
interpretation of these last results given the small sample size of
this specific analysis (n = 16) with respect to the high number
of computed parameters (n = 17). In spite of this, this analysis
also confirmed a key role of double support phases and trunk
kinematics for correct identification performed by the FFNN,
whereas the swing phase was confirmed as a variable that should
enter into the model of the FSLR.

With respect to logistic regression and general linear models,
an artificial neural network has two main advantages. The first
one is that the ANN exploits the contribution of each variable that
concurs in the identification, whereas in the logistic regression,
only those entering into the model do it. On one hand, it could
be a complication because the model includes all the inputs, but
on the other hand, the accuracy of the output is higher. The
second advantage is that each variable can contribute only in a
linear manner in the logistic regression and analyses of variance,
whereas more complex relationships, also including linear or
non-linear interactions, can be taken into account by an ANN.
This aspect could be very important: the physiological stance
to swing ratio is about 1.618 (19); both a reduction as well as
an increment of this ratio could be associated to a pathological
walking with a consequent increment of energy expenditure
(21). The ANN could intercept this non-linear alteration more
than the logistic regression, although the interpretation of the
importance of each variable into the ANN is more hidden than
as it is in the logistic regression. Other potential disadvantages

of the ANN are its sensitivity to the setup of the parameters in
its architecture, which may also reduce the repeatability of its
optimization process.

This study had some limits; first of all, it should be considered
as a pilot study because of the reduced sample size that also led
to a reduced number of patients with stroke who returned to
work. Another limit is its focus on gait; further analysis may
include also upper limb kinematic analysis, cognitive factors,
and potential social and environmental barriers into the input
of the ANN. At the same time, this study has some strengths
such as the innovative approach of combining an IMU and an
ANN for determining the possibility to return to work of patients
with stroke. The second one is its intrinsic simplicity despite
the technologies used. We chose to use only one IMU without
any external input (such as spatial distance helpful to compute
walking speed or step lengths) and also without any covariate
(age or other demographical features, clinical scale scores, and
other clinical information were not used). Then, the architecture
chosen for the FFNN was relatively simple. The resulting system
was standalone.

In conclusion, the wide amount of clinical data today that is
easily measurable with wearable technologies needs a powerful
computational analysis, such as those provided by artificial neural
networks. The hidden layers of artificial intelligences should not
scare clinicians, but it is fundamental to provide meaningful
information that is helpful for them and especially for patients
(26). The integration of machine learning with instrumental
movement analysis not only may simplify the assessment of
several interdependent parameters (27) but also may provide
an evolution of gait analysis allowing for the identification of
parameters related to poorly explored fields, such as the return to
work and the related quality of life of people affected by long-term
disability due to stroke.
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