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Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoi-
etic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong 
to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the 
other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns 
of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive 
lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, 
the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) 
but increases risks of developing a wide range of life-threatening infections. However, 
these patients may rely on innate defenses that are reconstituted more rapidly than the 
adaptive ones. In this context, ILCs may represent important players in the early phases 
following transplantation. They may contribute to tissue homeostasis/remodeling and 
lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role 
in haplo-HSCT have been largely investigated, little information is available on ILCs. Of 
note, CD34+ cells isolated from different sources of HSC may differentiate in vitro toward 
various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) 
may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia 
may skew the ILC repertoire. Further studies are required to define the timing of ILC 
development and their potential protective role after HSCT.
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inTRODUCTiOn

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) still represents a major therapeutic 
option for severe hematological and immunological disorders (1). However, success of allo-HSCT 
can be impaired by graft-versus-host disease (GvHD) and, in the case of high-risk hematological 
malignancies, also by disease relapse. The clinical outcome can also be hampered by infections 
favored by the delayed immune reconstitution in transplanted patients (1). Moreover, only 60% of 
patients may find a related or unrelated HLA-matched donor. For the remaining patients, umbilical 
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cord blood (UCB) may represent an alternative source of HSC 
(2). UCB transplant allows a less stringent HLA-matching 
between donor and recipient, but it is frequently associated with 
delayed neutrophil engraftment and delayed T-cell reconstitu-
tion. Moreover, UCB transplant recipient cannot benefit from 
the adoptive transfer of antigen-experienced donor T-cells (2). 
Another important therapeutic option is represented by the 
haploidentical (haplo)-HSCT. In this setting, the donor (in most 
instances, a parent) is identical for one HLA haplotype and 
mismatched for the other one (3). Given the high degree of HLA 
disparity, haplo-HSCT requires an extensive T-cell depletion of 
the graft (3) or heavily posttransplantation immune-suppressive 
therapy to prevent severe GvHD (4). In both UCB-HSCT and 
haplo-HSCT settings, the immune-compromised hosts are highly 
susceptible to a wide range of opportunistic infections. Thus, 
cells of the innate immunity are the only players exerting a major 
defensive role for several months before the restoring of adap-
tive immune responses. In particular, natural killer (NK) cells 
can provide protection against viral reactivation and/or primary 
infections. Perhaps, more importantly, the presence of alloreac-
tive NK cells provides a potent graft-versus-leukemia (GvL) effect 
that contributes to tumor eradication (4, 5). It is now clear that 
NK cells are one of the components of a broad family of innate 
lymphoid cells (ILCs). However, so far, little is known on the 
possible role of the other ILC subsets in haplo-HSCT. Here, we 
will summarize our current knowledge on ILCs both in murine 
models and in human studies, since they could result crucial in 
host defenses after HSCT.

iLC Subsets
Different from T-cells and B-cells, ILCs are a group of lympho-
cytes that do not express rearranged antigen-specific receptors 
(6). ILCs represent a heterogeneous family of cells classified on 
the basis of their transcriptional and functional profile. Similar to 
T-cells, ILCs have been grouped into cytotoxic-ILC and helper-
ILC (6). NK cells represent the cytotoxic-ILC population (7). They 
express eomesodermin (Eomes) and T-box transcription factor 
(T-bet), display cytolytic activity, and produce pro-inflammatory 
cytokines, primarily IFNγ and TNF. Helper-ILC population is 
further subdivided into three groups, namely: ILC1, ILC2, and 
ILC3 (6). ILC1 depend on the expression of the T-bet transcription 
factor for their development and secrete IFNγ, but, different from 
NK cells, they neither express Eomes nor exert cytolytic activity 
(7). ILC2 express GATA-binding protein 3 (GATA3) and produce 
type-2 cytokines, including IL-13 and IL-5 (8). Finally, ILC3 are 
a heterogeneous cell population, including fetal lymphoid tissue-
inducer (LTi) cells and adult ILC3 that are further subdivided 
into natural cytotoxicity receptors− (NCR−) and NCR+ subsets. 
Collectively, ILC3 are defined by the expression of the retinoic 
acid receptor-related orphan receptor (RORγt) and produce 
mainly IL-17 and IL-22 (9). Studies in mice revealed that ILC, 
similar to T-cells and B-cells, derive from the common lymphoid 
progenitors (CLPs). The expression of the Id2 transcription factor 
determines further commitment toward a precursor common 
to all ILC subsets. While the NK cell precursor diverges early 
from the other ILC lineages, all helper-ILCs share a common 
helper-ILC progenitor (CHILP). Subsequently, upon exposure 

to different cytokines and/or to environmental cues, the CHILP 
differentiate toward ILC1, ILC2, or ILC3 (9). In humans, the 
developmental pathways are less characterized (10). However, 
NK and ILC3-committed precursors have recently been identi-
fied. Indeed, Renoux and coworkers identified, in several fetal 
and adult tissues, Lin−CD34+CD38+CD123−CD45RA+CD7+CD
10+CD127− cells able to differentiate exclusively toward cytotoxic 
NK cells both in vitro and in vivo (11). The ILC3 precursors, iden-
tified according to the Lin−CD34+RORγt+ phenotype, have been 
detected selectively in tonsils and intestinal lamina propria (12).

iLC in Host Defenses against Pathogens 
and in Tissue Remodeling
In view of the heterogeneous cytokine profile and function of 
different ILC subsets, it is conceivable that ILCs may contribute 
to host defenses against a broad variety of pathogens (13, 14). 
Our knowledge on human ILC1 and their functional profile are 
still rather limited (15–17). Taking advantage of murine models, 
it has been shown that ILC1, thanks to the production of IFN-γ 
and TNF, contribute to immune responses against intracellular 
pathogens, such as Toxoplasma gondii (18). Also, NK cells are 
an important source of IFN-γ and TNF and, in addition, display 
very important effector functions, such as natural cytotoxicity 
and antibody-dependent cell-mediated cytotoxicity (ADCC). 
In the context of antimicrobial defenses, NK cells are primarily 
involved in the control of different viral infections, primarily 
herpes-viruses, but may also exert a protective role against bacte-
rial and parasitic infections (19, 20). Of note, NK cells, thanks to 
their potent cytolytic activity, play also an important role against 
tumors (Figure 1) (21).

Host protection against parasites requires type-2 responses. 
A number of findings indicate that, during helminthic infec-
tions, epithelial cell-derived IL-25, IL-33, and thymic stromal 
lymphopoietin (TSLP) induce IL-13 release from ILC2 (22–24). 
In turn, IL-13 increases mucus production and smooth muscle 
contractility, thus contributing to the control of parasitic infec-
tions (25). In addition, dendritic cell (DC)-derived IL-23 and 
IL-1β cytokines induce the release of IL-22 and IL-17 by ILC3 
(26–29). In turn, these ILC3-derived cytokines promote the 
production of antimicrobial molecules and neutrophil recruit-
ment, enhancing the response against extracellular bacteria and 
fungi (14, 27, 30, 31) (Figure 1). In humans, the role played by 
ILC2 and ILC3 in defenses against pathogens is still undefined 
(10). Notably, patients experiencing helminthic infections show 
increases in ILC2 proportions; however, the role of ILC2 in anti-
parasitic responses needs further investigation to be precisely 
clarified (8). Besides their antimicrobial function, ILCs are also 
involved in processes of tissues remodeling/repair. In particular, 
ILC2 appear to be involved in resolution of damages caused by 
viral or parasitic infections in lung tissues. Indeed, in response 
to IL-33, ILC2 also produce amphiregulin that promotes airway 
epithelial cell repair (32). Fetal LTi cells were the first ILC3 popu-
lation to be described. LTi cells coordinate lymphoid organogen-
esis through their interaction with stromal cells by means of the 
LTαβ/LTβ receptor, leading to the upregulation of ICAM-1 and 
VCAM adhesion molecules on stromal cells (33). More recently, 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABLe 1 | This table summarizes the main function exerted by distinct iLC subsets and the possible role exerted by these cells in the context of HSCT.

Cell type Function Role in HSCT

NK cells Anti-tumor activity (21) GvL (21, 55, 56)
Defense against virus-infected cells (19, 20, 53) Control of viral reactivation and/or primary infections (55, 56)

ILC1 Defense against protozoa (14, 18) Control of posttransplant opportunistic infections?
ILC2 Defense against helminthic infection (14, 22–24) Control of posttransplant opportunistic infections?

Wound healing (32) Contribute to tissue repair?
ILC3 Lymphoid organogenesis (33) Regeneration of secondary lymphoid organs?

Lymphoid tissue remodeling (34) Thymic epithelial cell recovery (41)
Epithelial homeostasis (35, 36) Protection against therapy-induced epithelial damage and mucositis and promotion of tissue 

regeneration (35, 37)
Reduction of GvHD occurrence (37)

Defense against extracellular bacteria and fungi 
(14, 27–30)

Control of posttransplant opportunistic infections?

Only for some of the ILC populations, a role in the context of HSCT has been demonstrated. The possible roles exerted by other cell subsets are indicated in italics.

FiGURe 1 | iLC subsets and function. Graphic representation of the role played by ILC subsets in host defenses and tissue homeostasis/repair.
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postnatal ILC3 have been shown to promote both survival and 
proliferation of stromal cells, following lymphoid tissue damage 
caused by viral infection and/or irradiation (34) (Figure 1). In 
addition, ILC3-derived IL-22 exerts a protective role on intestinal 
epithelial stem cells, particularly in the context of tissue damage 
caused by irradiation and/or acute GvHD (35, 36).

iLC and HSCT
So far, only a limited number of studies addressed the role of 
helper-ILC in the context of HSCT (35–37).

Reconstitution
Chemotherapy and radiotherapy treatment before HSCT induces 
extensive tissue damages in the host, including severe intestinal 
mucositis (38). Such damages can be even worse after allo-HSCT, 
if donor T lymphocytes attack the recipient intestinal epithelium 
(GvH reaction) (39). In a murine model of acute GvHD, Hanash 
and coworkers showed that host-derived IL-22 could substan-
tially limit the development of GvHD (35). They could identify 

intestinal ILC3 subset as a main producers of IL-22 after total 
body irradiation treatment. In particular, IL-22 seemed to play a 
crucial role in the protection against epithelial cell damage and in 
preserving intestinal stem cells. These data are further supported 
by the finding that treatment with IL-22, in mice receiving bone 
marrow transplantation, resulted in increased intestinal stem cell 
recovery, in enhanced epithelial cell regeneration, and in reduc-
tion of intestinal GvHD (36). Given the role of ILC3 in lymphoid 
organogenesis and in lymphoid tissue remodeling, a role for these 
cells could also be envisaged in the regeneration of lymphoid 
tissues damaged by radiations (38, 40). Of note, ILC3-derived 
IL-22 can also favor the recovery of thymic epithelial cells, thus 
allowing a more efficient and rapid reconstitution of T-cell com-
partment (Table 1) (41). Conversely, it remains to be determined 
whether ILC3 also contribute to the regeneration of secondary 
lymphoid organs. In this context, it is recently shown that gamma 
irradiation used in conditioning regimen before HSCT may exert 
a long-lasting effect on secondary lymphoid organ structure and 
function (40). Also, ILC2 appear to be involved in epithelial 
tissue repair, particularly in lung tissues; however, no data are 
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available to support an actual protection exerted by these cells in 
 GvHD-induced tissue damages (42).

Graft-versus-Host Disease
In the context of human HSCT, only a single study investigated 
the possible role of ILCs in the protection from GvHD. It 
was suggested that both host and donor ILCs might exert a 
protective role (37). The expression of activation markers and 
of gut and skin homing receptors on host ILCs, detected prior 
to HSCT, correlated with a lower incidence of both mucositis 
and GvHD. Notably, after HSCT, ILCs detectable in periph-
eral blood (PB) are of donor origin. An early appearance of 
activated NCR+ILC3 correlated with reduced risk of develop-
ing GvHD. In light of these finding, it is conceivable that the 
induction of a rapid ILC3 expansion/generation after HSCT 
may protect from GvHD. In this context, we have recently 
shown that granulocyte-colony-stimulating factor (G-CSF) 
could affect ILC3 and NK cell differentiation (43). Of note, 
G-CSF is used in UCB transplantation to accelerate engraft-
ment and neutrophil recovery and is also used as a potent 
HSC mobilizing agent, before collection of HSC from donor 
PB (2, 44). Accordingly, we observed that HSC recovered after 
G-CSF-induced mobilization display a delayed and lower 
ILC3 and NK cell differentiation in vitro as compared to HSC 
isolated from bone marrow or UCB (43). These findings suggest 
that pre- and posttransplant treatment with G-CSF may affect 
ILC3 generation. Further studies should confirm these results 
in vivo and establish possible correlations with the occurrence 
of GvHD. Of note, it has been shown that ILC development 
may be impaired in patients with acute myeloid leukemia 
(AML) (45). Thus, after HSCT, ILC development might be 
affected by the presence of high residual leukemia burden or 
leukemia relapse. Indeed, it has been shown that HSC, when 
cultured in the presence of IL-1β-releasing AML blasts, display 
an impaired ability to differentiate toward ILC3 (46). Although 
in these culture setting the generation of NK cells seemed to be 
favored over ILC3, the final number of NK cells recovered was 
dramatically lower than those recovered in control cultures. 
Thus, if this inhibitory effect occurs also in vivo, it could have a 
negative impact on the NK-mediated GvL in haplo-HSCT. Of 
note, NK cell generation and differentiation after HSCT may 
be affected by immune-suppressor drugs, such as calcineurin 
inhibitors, used for treatment of GvHD (47, 48). On the other 
hand, helper-ILC reconstitution does not seem to be affected 
by cyclosporine or corticosteroids (37).

Opportunistic Infections
Studies in mice revealed that ILC might contribute to host 
defenses against different pathogens. In particular, while they 
are crucial in the control of infections in immune-compromised 
mice (18, 28, 49, 50), their actual role in the presence of a func-
tional T-cell compartment seems to be marginal [as in the case 
of ILC3 during Citrobacter rodentium infection (51)]. However, 

as discussed above, patients transplanted with UCB cells or 
recipients of T-cell depleted haploidentical allograft experience a 
delayed recovery of both T-cell and B-cell adaptive responses, thus 
suggesting a possible relevant role of ILC in these transplantation 
settings. Accordingly, a rapid ILC differentiation after HSCT 
could guarantee an efficient host defense against opportunistic 
infections. Whether ILC1, ILC2, and ILC3 may indeed play a role 
in the control of infections in immune-compromised host, such 
as HSCT patients, has not been addressed yet. In contrast, clear 
evidence exists that patients with NK cell deficiencies and patients 
with functional NK cell defects display a higher susceptibility to 
viral infections [reviewed in Ref. (52)]. Moreover, in human-
ized mouse models, NK cells are required to effectively control 
Epstein–Barr virus (EBV) reactivation even in the presence of 
CD8+ T-cells (53). NK cells also contribute to host protection 
against cytomegalovirus (CMV) (20, 54) also in the context of 
HSCT (55). In particular, NK cell involvement in CMV control 
is suggested by the finding that certain KIR haplotypes correlate 
with decreased CMV reactivation after transplantation (56). 
On the other hand, CMV, similar to other viral infections, can 
dramatically shape the NK cell repertoire (57–68). In humans, 
CMV infection is accompanied by a rapid NK cell maturation, 
the acquisition of KIR and CD57, and a selective expansion of a 
NKG2C+ NK subset (62, 63, 67).

COnCLUDinG ReMARKS

Information available on ILC development and function derives 
primarily from studies performed in mice. Although these stud-
ies could provide reliable models of ILC differentiation, further 
analyses are required to address the dynamics of helper-ILC 
reconstitution after HSCT, the influence of HSC source, and the 
possible interference of cytokines produced by leukemia cells 
with ILC development. In addition, it will be crucial to clarify 
the role of specific ILC subsets in response to infections. Key 
information is still lacking in humans, not only on the role of 
ILC during infections but also in lymphoid tissue homeostasis. 
The possible exploitation of ILC in the context of HSCT requires 
a deeper knowledge of the mechanisms regulating their function 
and of the stimuli that drive their development.
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