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Standard thermometry employs the thermalisation of a probe with the system of interest. This approach can
be extended by incorporating the possibility of using the non-equilibrium states of the probe, and the presence
of coherence. Here, we illustrate how these concepts apply to the single-qubit thermometer introduced by Jevtic
et al. [S. Jevtic et al., Phys. Rev. A 91, 012331 (2015)] by performing a simulation of the qubit-environment
interaction in a linear-optical device. We discuss the role of the coherence, and how this affects the useful-
ness of non-equilibrium conditions. The origin of the observed behaviour is traced back to the propensity to
thermalisation, as captured by the Helmholtz free energy.

Introduction. Thermodynamics provides a description of
open systems in terms of the exchange of energy, be it in the
form of either heat or work. Although it was developed first
in order to give an account of such systems once they have
reached the equilibrium with the surrounding environment, it
has recently been the object of extensions for treating transient
behaviours, irreversibility, and non-equilibrium quantum pro-
cesses. The knowledge gained through such exertion ranges
from fundamental [1–4], to more technological issues related
to non-equilibrium quantum heat machines [5–7].

Within such a context, the simplest example considers a
single-particle system in contact with a thermal bath; the ther-
modynamic limit can still be taken, by considering a large
collection of identical replicas [8]. By isolating a single con-
stituent, the need of accounting for inter-constituent interac-
tions is avoided, and the problem greatly simplified. The at-
tention is then entirely devoted to the internal energy levels of
this one constituent, and, if this is a quantum particle, to the
coherence among them. Since the presence of quantum coher-
ence underlies the existence of distinctively quantum states,
viz. the class of entangled states, it is natural to consider co-
herence itself as a resource, with appropriate tools for assess-
ing and quantifying its presence [9–12].

These considerations find an immediate application in the
context of thermometry, since, on the one hand, we assist at
the interaction for a given time of a probe with the moni-
tored system, while, on the other, the probe itself needs being
prepared in an informative, hence resourceful, state [13–17].
In [18], Jevtic et al. have discussed the implementation of an
elementary thermometer with a single qubit: the task is not the
estimation of arbitrary temperatures, but the discrimination
between two thermal baths at different temperatures. Notably,
they have found that limiting the interaction time between the
qubit and either bath, thus avoiding thermalisation, result in an
improved discrimination. This investigation opens perspec-
tives for realizing temperature measurements at the nanoscale,
when the thermometer needs being even smaller than a nano-
size thermal bath, e.g. a nanomechanical device [19] or atomic
condensates [20–22].

Here we present an experimental investigation of the results
of Jevtic et al. with a linear-optical simulator. We show how
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one can determine an observable able to discriminate opti-
mally between the two baths, and how the coherence between
the two energy level of the qubit influence the performance
of the thermometer. Coherence does play a role in the dis-
crimination, but its role is not as simple as a mere enhance-
ment; instead, it affects the time scale at which thermalisation
occurs. These features are well captured by the change of
the Helmholtz free energy of the probe. Our investigations
offer an experimental insight on the roles of quantum non-
equilibrium states as probes for thermodynamic processes.

Qubit-bath interaction. Our thermometer is constituted by
a single qubit, governed by its Hamiltonian HS=~ω

2 σz , where
σz is the z-Pauli operator. When isolated, the two levels of the
system, the excited state |0〉 and the ground state |1〉, are sep-
arated by ~ω, which dictates the energy scale of the protocol.

The interaction of the qubit with a thermal bath, modelled
as a gas of non-interacting bosons, results in either of two pro-
cesses: i) the qubit decays to the ground state transfering its
energy to the thermal bath; ii) the qubit absorbs an excitation
from the reservoir, hence hopping incoherently to the excited
state. The rate of the two processes is dictated by the temper-
ature.

Since we are approaching thermodynamics as a theory de-
scribing state transformations in the presence of a thermal
bath, we introduce a phenomenological model for this inter-
action as a Generalized Amplitude Damping (GAD) channel
[23]. The corresponding map utilizes two couples of Kraus
operators. The first one (E0,E1) describes the decay process
(i) via a standard Amplitude Damping (AD) channel [23]. The

Figure 1. Conceptual scheme of the protocol. First, the qubit is
initialised in a suitable probe state, then it is put in contact with a
thermal bath of unknown temperature, either T1, or T2. Finally, the
qubit is removed from the interaction after a time τ , and measured to
infer the working temperature.
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second one (E2,E3) reproduces the inverse process (ii); this
is an AD too in which the roles of |0〉 and |1〉 are exchanged
(See Appendix).

The GAD channel is characterized by two parameters: γ,
which represents the decay rate for both the processes and p
which is the occurrence probability of the first couple of Kraus
operators; (1−p) is the probability for the other couple. These
two parameters are linked to the exact solution of the problem,
given by the full Lindblad treatment: (1− 2N̄)−1 = (1− 2p)
and (1 − γ) = exp[−(1 + 2N̄)τ ] where N̄ is the average
number of excitations in the bath, and τ is the (dimensionless)
interaction time as described in [18]. We notice that the Lind-
blad treatment is only justified in the Markovian limit of the
dynamics [24].

Single-qubit thermometry. Figure [1] illustrates our dis-
crimination protocol. At τ=0− the thermometer is kept iso-
lated and inizialized in the state |ψ〉 = cos θ2 |0〉+ sin θ

2 |1〉. At
τ=0, the qubit is put in contact with the thermal bath which is
itself at either a ”cold” temperature T1, or a ”hot” temperature
T2>T1. The different temperatures imply different occupa-
tion numbers, N̄1 and N̄2, therefore the qubit undergoes two
distinct evolutions depending on the state of the reservoir. Fi-
nally, after an interaction time τ , the qubit is isolated again
and then measured to determine whether the bath was cold or
hot.

Full thermalization, τ→∞, corresponds to the equilibrium
regime where the qubit is in a thermal state; conventional ther-
mometry operates within this regime. In our investigation, we
extend this analysis to non-equilibrium states. The state of
the qubit after the interaction with the reservoir Ti is ρi(τ)
(i = 1, 2). The protocol then aims at finding a suitable ob-
servable Ĝ(τ) allowing to discriminate ρ1(τ) and ρ2(τ) opti-
mally [25]. The observable Ĝ(τ) is then chosen to maximize
the difference |Tr[ρ1(τ)Ĝ(τ)]− Tr[ρ2(τ)Ĝ(τ)]|.

Linear-optics simulation. We illustrate these concepts by
implementing a linear-optics simulator. The main advantage
of using simulated dynamics is that it allows to isolate effects
stemming genuinely from the process of interest, decoupling
all spurious behaviours from other unwanted interactions. The
linear-optical approach has demonstrated its ability in repli-
cating sinqle-quantum processes even when conducted in a
fully classical regime [26–31]. Indeed, this takes advantage
from the fact that photons are non-interacting particles; us-
ing classical light provides a convenient way to obtain a large
number of independent replicas. In this work, we adopt this
approach for the simulation of an open system, where the
qubit is coded in the polarisation, and the coupling to the
reservoir occurs via the spatial mode [32, 33].

Our experimental setup, shown in Fig.2, consists of a dis-
placed Sagnac interferometer where one of the mirrors is re-
placed by a spatial light modulator (SLM). By convention, we
set the ground (excited) state |1〉 (|0〉) to be the vertical |V 〉
(horizontal |H〉) polarisation state. We initialize the input as
a linear polarisation, than send it to the interferometer. The
beam is then divided in two using a polarising beam splitter
(PBS0) whose outputs constitute the two arms of the Sagnac
interferometer. The polarisation is then coupled to the path
using two half-wave-plates (H3 and H4) and the SLM that

Figure 2. Experimental linear-optical simulation. Light is provided
by a diode laser emitting 680µW at 810nm. Its polarisation is con-
trolled by means of the H0 waveplate. The SLM, embedded in a
displaced Sagnac interferometer, realises the coupling between po-
larisation and path, as detailed in the text. At the two outputs, two
polarisation analysers, consisting of a quarter wave plate, a half wave
plate and a polarising beam splitter are used to characterise the state
after the simulated interaction. The two analysis channels, 1 and 2,
are kept distinct for practicality, but the results are combined for the
analysis. Intensities are detected by a linear diode. Inset: detail of
the loops in the Sagnac interferometer. The presence of H3 and H4,
both set at an angle of 22.5◦ makes the polarisation sensitive to the
birefringent phase φ imparted by the SLM. A phase mask is applied,
presenting two phase settings: in order to implement (E0, E1), the
half on the clockwise loop is kept fixed at φ=0, while the other half
is varied to simulated different interaction times. The mask is then
inverted to implement (E2, E3).

imparts a birefrigent phase φ (Fig. 2, inset) [34]. The mask
displayed on the SLM makes sure that such phase is present
only on one of the arms while the other arm is unaffected.
Overall, this system implements the transformation |H〉→|H〉
on the clockwise loop, and |V 〉→

(
cos φ2 |V 〉+ sin φ

2 |H〉
)

on
the counter-clockwise loop. When the two loops are super-
imposed on PBS0, the horizontal component of the counter-
clockwise loop emerges on a separate output; this simulates
the incoherent excitation of the qubit corresponding to E3

Kraus operator. The other output is then associated to the
complementary event E2. The damping rate is then related
to the phase setting as γ = sin2 φ

2 (see Appendix). Our device
can be programmed to implement the operators E0 and E1 by
using a different phase mask on the SLM that now leaves the
|V 〉 component unaltered.

We reconstruct the density matrix for the qubit after its in-
teraction with the reservoir in the following way: first, we set
the interferometer in order to implement the (E0, E1) trans-
formation, and perform polarisation tomography [35], without
distinguishing the outputs of the interferometer. We repeat the
same operation, using the second setting (E2, E3). The two
experimentally reconstructed matrices are then summed with
the opportune weighting p, (1− p) to obtain the state after the
complete interaction [36]. We then have access to the state of
the qubit at different evolution times and for both the hot and
cold baths, corresponding to different choices of the phase φ,
and of the weight p.
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Figure 3. Simulated temperature discrimination. The expectation values of Ĝ(τ) have been inferred from the experimentally reconstructed
density matrices, corresponding to three different input states. In the three panels, red dots are for the hot bath N2=9.5, blue dots for the cold
bath N1=5.5; the solid lines show the predicted behaviour. The vertical dashed lines indicate the optimal discrimination time, i.e. the time
for which the difference of the expectation values is maximal. Errors are obtained through a Monte Carlo routine that takes into account the
uncertainties on the measured intensities.

The results for the discrimination protocol are shown in
Fig. 3, where we plot the expectation values of Ĝ(τ) for
the two baths associated to three different input states: |H〉,
|+〉=(|H〉+|V 〉)/

√
2, and |V 〉. In the three cases, the ob-

served values follow closely the predictions, and demonstrate
that Ĝ(τ) serves well the purpose of discriminating between
the two possible temperatures. The maximal separation oc-
curs at short times, well before the qubit has reached full ther-
malisation with the reservoir. These three states are associated
to three different strategies: |V 〉 corresponds to the ground
state of the qubit, hence we simulate the standard procedure
of heating the thermometer; |H〉 corresponds to the excited
state, hence we simulate the cooling of the thermometer; fi-
nally, |+〉 is a coherent strategy, based on the superposition
of a hot and a cold thermometer. As expected, in the steady-
state regime, the use of any of the three state is equivalent, as
thermalisation erases any information on the initial state. Fur-
thermore, the presence of the coherence does not help either in
implementing a more effective thermometer, since the optimal
separation between Tr[ρ1(τ)Ĝ(τ)] and Tr[ρ2(τ)Ĝ(τ)] weakly
depends on the input, nor a faster thermometer, as the optimal
measurement time occurs at shorter times for the ground state
|V 〉. The main advantage of using the state |+〉 is in the pos-
sibility of maintaining a satisfactory discrimination ability for
longer times, as shown by the width of the separation between
the two curves; in practical applications, this eases the require-
ments on the controlled interaction between the qubit and the
reservoir.

Free energy and the discrimination power of the single-
qubit thermometer. The origin of this behaviour has been
traced back to the different trajectories of the Block vector as-
sociated to the qubit in the presence of either bath [18]. Here,
we show that this can also been understood in purely thermo-
dynamic terms by looking at the variation of the Helmholtz
free energy ∆F that the qubit undergoes during the interac-
tion process with the external thermal bath. Taking into ac-
count the isothermal transformation of the system between its
initial (ρin) and final (ρout) states, we can express Helmholtz
free energy change as: ∆F = ∆U − T∆S, where ∆U =
Tr[HS(ρin − ρout)] is the difference in the internal energy,

kB is Boltzmann’s constant, and ∆S is the difference in the
Von Neumann entropies, ∆S=− kBTr[ρout log(ρout)], since
S(ρin) = 0, being ρin a pure state.

It can be shown that the Von Neumann entropy of the sys-
tem increases monotonically, a signature of Markovian dy-
namic [37]; such a unidirectional information flow between
the system and the thermal bath results in a decrease in the
Helmholtz free energy, as expected for spontaneous transfor-
mations. The observed variation as a function of the time is
shown in Fig. 4, where ∆F is measured in units of ~ω. As
expected, the variation is more pronounced when the qubit in-
teracts with the hot bath, and there is a clear dependence of
the final value on the initial state, due to the different energy
variation ∆U .

Qualitative assessments on the functioning of the ther-
mometer can be inferred by the dynamics of the variation of

Figure 4. Variation of the free energy during the evolution of the
system. The points are the free energies of the output states extracted
from the experimental density matrices, using different input states:
|H〉 (dark red and blue), |D〉 (red and purple) and |V 〉 (orange and
cyan). The solid curves are the predicted behaviours. The evolution
in the presence of the hot (cold) bath, results in a larger (smaller)
variation of the free energy. Inset: Predicted variation of the free
energy, normalised to its limit value ∆F∞ at large times.
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∆F , and how this is affected by the coherence in the initial
qubit state; this not only fixes the limit value at the thermalisa-
tion, but also dictates the speed at which this occurs. Since op-
timal discrimination exploits the transient states of the qubit,
this constitutes a critical parameter for its performance. In the
case of initialisation in the coherent superposition |+〉, we are
able to slow down the thermalisation, and we do so in a dif-
ferent manner for the two possible evolutions. Therefore, we
obtain a longer transient that assists the discrimination. The
initialisation in the two energy states |H〉 and |V 〉 results in
a similar, shortened time scale, as observed in the curves of
Fig. 3. These behaviours are made more evident when con-
sidering the variation of the Helmholtz free energy rescaled to
the asymptotic value ∆F∞, for all the distinct input states and
reservoirs (Fig. 4, inset).

Conclusions and perspectives. We have shown an ex-
perimental investigation of the results of Jevtic et al. with
a linear-optical simulator. Despite the simplicity of the
protocol, interesting insights are obtained on the usefulness of
non-equilibrium states, and the interplay with the coherence
of the system. The capacity of the thermometer in distin-
guishing between hot and cold thermal bath strongly depends
on the initial state of the qubit: while starting from the ground
state might allow for a faster operation, coherence allows
to maintain a discrimination ability for longer times. These
conclusions are supported by the behaviour of the Helmholtz
free energy of the system. Within this framework, the
availability of a simulation tool, which can be also applied to
quantum light, may stimulate explorations to more complex
dynamics. This platform could be a testbed for introducing
methods of quantum metrology in thermometry [16, 38],
or ideas from thermometry in the monitoring of quantum
channels, establishing connections between thermodynamic
potentials and ultimate limits to the precision.

Note: During preparation of this manuscript we became
aware that similar work was being pursued by W.K. Tham et
al [39].
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APPENDIX

Appendix A We study the interaction of a qubit with a
thermal bath according to a standard master equation. The
qubit is first prepared in a known pure state with Bloch vec-
tor r(0) = (rx, ry, rz). After interaction from the reservoir.
and subsequent detachment after a time τ , the Bloch vector is
given by:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure 5. Interaction time dispersion as a function of the SLM bire-
frangent phase φ. Red line is for the hot bath N̂2 = 9.5 while blue
line is for the could bath N̂1 = 5.5. By using different φ parameters,
the interaction time between the thermometer probe and the reservoir
can be opportunely tuned.

r(τ, T ) =

 rxe
−(1+2N̄)τ/2

rye
−(1+2N̄)τ/2

e−(1+2N̄)τ (1+(1+2N̄)rz)−1
1+2N̄

 (1)

as shown in [18]. Here, time is taken as a dimensionless pa-
rameter, as the actual time is normalised to the characteristic
spontaneous emission of the probe. The resulting dynamics is
described by a CP-map corresponding to a generalized ampli-
tude damping (GAD) channel, providing a suitable form for
the simulation of the non-equilibrium dynamic processes, and
the thermalisation of the probe. The GAD channel is com-
posed of the following Kraus operators:

E0 =
√
p

(
1 0
0
√

1− γ

)
, E1 =

√
p

(
0
√
γ

0 0

)

E2 =
√

1− p
(√

1− γ 0
0 1

)
, E3 =

√
1− p

(
0 0√
γ 0

)
This corresponds to two independent amplitude damping
channels with the same damping rate γ, acting with a prob-
abilities p and 1−p, working in opposite sense: one damps
population in the ground state, the other in the upper state.

As the transformation performed by the channel is:
(rx, ry, rz)→

(
rx
√

1− γ, ry
√

1− γ, γ(2p− 1) + rz(1− γ)
)
,

a satisfactory control of the bath temperature and interaction
time theoretical parameters can be realized via the param-
eters p and γ. This mapping can be realized performing
Bloch vectors component by component equalities, lead-
ing to the following results: (1 − 2N̄)−1 = 1 − 2p and
1− γ = exp[−(1 + 2N̄)τ ].

Appendix B. The experimental implementation of our chan-
nel provides is based on the use of a Sagnac interferometer
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Figure 6. Temperature dispersion as a function of the experimental
parameter p. The cold reservoir temperature N̄1 = 5.5 corresponds
to p = 0.458 while N̄2 = 9.5 corresponds to p = 0.475.

in which one of the mirrors have been substituted by a spatial
light modulator (SLM) between two half wave plates (HWPs),
set to perform a Hadamard transformation (Ĥg) on the polar-
isation states: Ĥg|H〉 = |+〉, Ĥg|V 〉 = |−〉. In the gen-
eral case, the input |ψ〉 = α|H〉 + β|V 〉 is first split on the
PBS0, coupling the polarisation to the arm within the Sagnac:
α|H〉cw + β|V 〉ccw, where cw (ccw) indicates the (counter-
)clockwise direction in the interferometer.

To reproduce one pair of the GAD Kraus operators, the
SLM has been used to implement the unitary transforma-
tion Û = I on the cw mode, and Û = exp[iφ2 ]|H〉〈H| +

exp[−iφ2 ]|V 〉〈V | for the ccw mode, where φ represents the
birefringent phase imparted by the SLM. The overall trans-
form is then ĤgĤg = I on |H〉, and ĤgÛĤg on |V 〉; this re-

sults in |H〉 remaining unaltered, while |V 〉 is transformed as
cos(φ/2)|V 〉+sin(φ/2)|H〉. PBS0 then directs photons in the
modes cw and ccw towards the two output modes 1 and 2, in
a polarisation-dependent fashion; the unnormalised states on
the two outputs are then: α|H〉1 + cos (φ/2)|V 〉1, and simply
sin (φ/2)β|V 〉2. By direct comparison with the theoretical
treatment in Appendix A, it is possible establish the relation
between γ and φ as γ = sin2

(
φ
2

)
= 1 − exp[−(1 + 2N̄)]τ .

The phase mask of the SLM can be modified to applying
the unitary transformation Û = I for the ccw mode, and
Û = exp[iφ2 ]|H〉〈H| + exp[−iφ2 ]|V 〉〈V | for the cw mode;
the density matrices coming from the other Kraus operators
can thus be obtained.

Finally, the link between the interaction time and the bire-
fringent phase of the SLM can be easily obtained resulting in:

τ = −
log
(

1− sin2
(
φ
2

))
1 + 2N̄

(2)

shown in Fig. 5; this has been used as a calibration curve, for
use with the experimental values of φ.

The other experimental parameter to control is represented
by the weighting p which we employ for the data processing.
This can be put in relation with the effective temperature T of
the bath; this is measured in units of ~ω/kB , in order to get a
dimensionless parameter. The relation linking p with T is be
obtained by evaluating the boson occupation number N̂ as a
function of temperature; this leads to the final result:

T =
1

2 arctanh(1− 2p)
(3)

The relative curve is shown in Fig.6.
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