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Abstract: This paper presents a preliminary study concerning a fast preprocessing method for facial
microexpression (ME) spotting in video sequences. The rationale is to detect frames containing frozen
expressions as a quick warning for the presence of MEs. In fact, those frames can either precede or
follow (or both) MEs according to ME type and the subject’s reaction. To that end, inspired by the
Adelson–Bergen motion energy model and the instinctive nature of the preattentive vision, global
visual perception-based features were employed for the detection of frozen frames. Preliminary
results achieved on both controlled and uncontrolled videos confirmed that the proposed method is
able to correctly detect frozen frames and those revealing the presence of nearby MEs—independently
of ME kind and facial region. This property can then contribute to speeding up and simplifying the
ME spotting process, especially during long video acquisitions.

Keywords: facial microexpressions; motion energy; preattentive vision; standard deviation; spatio-
temporal filtering

1. Introduction

In the last few years, non verbal communication has gained interest in different fields,
such as forensic investigation, security devices, clinical diagnosis, marketing investigation
and forecasting, etc. In this context, facial micro-expressions (MEs) play a fundamental
role, as they reveal the actual internal emotional states and intentions of a subject [1,2].
Despite a fast development of both computer algorithms and video acquisition technologies,
automatic ME detection is still a challenging goal [3,4]. In fact, MEs are characterized
by very short durations, ranging from 1/25 to 1/5 of a second (recently relaxed to a
maximum duration of 1/2 s) [5]. Since this short duration usually goes along with a very
low intensity involving just a partial motion, MEs are very difficult to detect by human
beings [6]. Nonetheless, they have distinctive peculiarities, as highlighted in their original
definition [7]. Among them, three interesting ME features are that they:

• Are often misinterpreted or missed altogether;
• Occur in half a second or less;
• Unconsciously display concealed emotions,

where the term “conceal” can be read as a lack of action of the speaker who tries to hide
emotions. This last point represents the cornerstone of the following well-known ME
taxonomy [8,9]:

• Simulated expression: A microexpression is not accompanied by a genuine expres-
sion/emotion. This is the most commonly studied form of a microexpression because
of its nature. It occurs when there is a brief flash of an expression, and then a return to
a neutral state.
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• Neutralized expression: A genuine expression is suppressed and the face remains neutral.
This type of micro-expression is not observable due to the successful suppression of it
by a subject.

• Masked expression: A genuine expression is completely masked by a falsified expression.
Masked expressions are microexpressions that are intended to be hidden, either
subconsciously or consciously.

Despite the existing taxonomies, it is somewhat difficult to capture MEs at first glance,
especially in videos from uncontrolled environments. As Paul Ekman did in his pioneering
works [10,11], this goal is often reached only after various video replays. In order to
support experts in this field, different approaches have been proposed in the literature for
automatic ME spotting and classification. However, their limited duration unavoidably
implies the use of very accurate but time consuming methods, as a frame by frame analysis
is necessary in the spotting process. This actually represents the main drawback of an
accurate analysis, as, for example, 30 min of a standard video sequence with a rate equal to
25 fps (frames per second) would require the inspection of 30·60·25 = 45,000 frames. On the
other hand, it is interesting to note that psychologists and detectives usually give attention
to just a few video clips, i.e., those where something that is “not convincing” occurs, by
automatically discarding the useless ones. In practice, they apply what it is intrinsically
contained in the informal ME definition given in [9].

Based on this observation, this paper aims at contributing to quantitatively char-
acterize what is “something not convincing”. In particular, it will be shown that such
an “unnatural” component is composed of a few frozen frames that occur just before or
immediately after a ME. The presence of those frozen frames proves that the speaker under
examination is trying to hide something. In contrast to MEs, frozen frames have the advan-
tage of allowing for automatic detection through a simplified version of the Adelson and
Bergen model for motion perception [12]. This kind of approach is doubly advantageous.
On the one hand, it is absolutely general and matches well with all types of MEs; on the
other hand, it contributes to speeding up the ME spotting process, whose pipeline requires
different and expensive procedures [2]. Specifically, frozen frame detection consists of a
fast and automatic selection of those video temporal intervals (groups of frames—GOFs),
where it is worth checking for the presence of MEs with more accurate but expensive
methods. As a result, the proposed approach serves as an efficient preprocessing tool that
shows some robustness to events that do not meet the hypothesis of static background,
such as luminance changes and quantization. Thus it contributes to preventing eventual
instabilities in the spotting pipeline that may interfere with the final result [2].

The remainder of the paper is as follows. The next section presents the motivations of
the work. It includes a very brief description of the state-of-the-art methods for ME spotting
and a short presentation of the perceptual model that inspired the work. Section 3 deals
with the presentation of the proposed method for the automatic detection of frozen frames.
Some experimental results performed on both controlled and “uncontrolled” videos are
presented in Section 4, and the last section draws the conclusions.

2. Motivation of the Work

Facial microexpressions are defined as “very brief, subtle, and involuntary facial
expressions which normally occur when a person either deliberately or unconsciously
conceals his or her genuine emotions” [5,9,10]. They are then characterized by a peculiar
temporal evolution that can mainly be summarized into five phases:

• Neutral phase: ME is still absent.
• Onset phase: ME starts.
• Apex phase: ME reaches its maximum expression.
• Offset phase: ME begins to dissipate.
• Neutral phase: ME disappears.
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Even though this temporal chain describes the whole process, the classification intro-
duced in the previous section clearly reveals that this chain may be altered by the subject’s
consciousness in hiding its true emotions, making ME detection more difficult.

Automatic ME detection in a video usually consists of two phases: (i) spotting and
(ii) recognition. The former is strictly related to ME temporal evolution and it consists of
finding out those video frames containing an ME. Recognition implies ME classification
according to the facial action unit system (FACS) [13], which encodes 44 facial deformations
caused by muscle movements—each ME involves one or more action units. Both spotting
and recognition require different sequential operations that can be time consuming, es-
pecially for preventing detection failure and misclassifications. In particular, spotting is
required to be enough precise in order to have a successful classification. MEs spotting
is composed of three main steps: preprocessing, feature description and ME detection—
see [2] for a complete review. It requires accurate face preprocessing, especially in its
first step. Several methods have been proposed in the literature. For example, frame by
frame methods [14,15] are based on face features and frame classification, while temporal
methods [8,16] track the amount of deformation incurred by a specific facial region during
motion: high deformation in very few frames is expected for ME. The former are not robust
to spontaneous MEs; the latter, even though suitable for detecting spontaneous MEs and
for distinguishing between macro and microexpressions, are dependent on amplitude and
temporal threshold settings and require processing distinct facial regions. Many papers
directly exploit motion intensity in a short time period or facial features’ temporal dif-
ferences [16–18]. Moreover, they depend on a predefined temporal window that limits
their adaptivity to videos having different rates. Another class of methods focuses on
specific temporal phases by looking for, for example, the apex frame through the char-
acterization of geometric and/or appearance and/or saliency features of specific facial
components [19–23]. A first attempt to define a perceptual fingerprint of ME has been done
in [24] by looking at an ME as a perceptual discontinuity. Even though preliminary results
are promising, the use of high-pass details suffers from some sensitivity to noise or local
movements that can provide some false alarms, including eye blinking. An attempt to
distinguish between MEs and eye movements has been presented in [25], where the phase
variations between frames were analyzed through the Riesz pyramid.

Considering the amount of data to be processed, it would be then advantageous to
have a method that selects those groups of frames (GOFs) where MEs probably occur, using
arguments and tools that are independent of ME kinds and are implementable through
few and fast operations. More specific and sophisticated methods for precise ME spotting
can be then applied just to these selected GOFs.

To that end, inspired by some approaches that have been employed to solve some
image processing problems [26–30], in this paper preattentive vision has been considered,
with reference to human vision sensitiveness to motion. This choice was mainly motivated
by the simple observation that ME perception seems to mainly be an instinctive and
immediate visual mechanism. More precisely, ME is an unconscious response of the
subject to an external source, and in turn, it is a stimulus that is unconsciously perceived
by a third party. As a result, MEs have perceptual properties that are very general and
independent of the specific ME type and context. These global perceptual properties have
to be quantified through global information that conveys the “unconvincing” component,
without additional details concerning the specific ME.

Hence, differently from most of the ME spotting literature, the aim of this paper is to
rely on a general and global motion estimation that must be independent of the specific
facial region, but dependent on the limited temporal duration of both the ME and the eye
fixation. This goal becomes more relevant if one considers that ME motion shares some
features with first order motion (luminance changes) but some others with second order
motion (textures) [31,32]. As a result, MEs often do not represent significant temporal
discontinuities in the temporal motion strength.
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In order to better display the contributions of this paper, the next subsection gives a
short description of the perceptual model that has been adopted in this paper.

Perceptual Motion Estimation: The Adelson and Bergen Model

As proved by several neurological studies [31–33], the human visual system is sensi-
tive to motion even in the preattentive phase. The response of neurons that are sensitive to
motion can be modeled as the impulse response of separable spatio-temporal filters. The
combination of the single responses of specific spatio-temporal filters allows a good ap-
proximation of neurons’ sensitivity to motion direction (left/right). The idea is represented
in Figure 1. A separable spatio-temporal filter is defined as

h(x, y, t) = ρ(x, y) · ψ(t) (1)

where the spatial filter ρ(x, y) is low-pass (sensitivity to object motion rather than single
pixel motion) and the temporal filter ψ(t) is high-pass (sensitivity to temporal changes).
The spatio-temporal filter provides the response in Figure 1a. The use of both spatial and
temporal filters, having different supports, sets the sensitivity to motion velocity (slow or
fast), as shown in Figure 1b.

(a) (b)

Figure 1. (a) Response of a spatio-temporal filter; (b) responses of a combination of couples of spatial
and temporal filters having different supports.

Adelson and Bergen model [12] aims at quantifying the sensitivity to both velocity
and motion direction in the case of low-level motion, such as legs or arms motion. To that
end the two temporal high-pass filters are biphasic, i.e.,

ψ(t) = (kt)n e−kt2
[

1
n!
− (kt)2

(n + 2)!

]
,

with n, k fixed “a priori”. They are designed to detect both slow and fast motion. The
low-pass spatial filters are selected so that one is odd and the other one is even—second
and third-order derivatives of Gaussian functions are adopted in the original model, while
Gabor functions have been used in successive modifications.

The combination of spatial and temporal filters defines a spatio-temporal filter that is
able to replicate neurons’ sensitivity to motion. This represents a fundamental property
for modeling motion perception. In fact, the four spatio-temporal filters can be further
combined to provide directional (leftward and rightward) energies. The latter can be then
subtracted to get the motion energy, conveying information concerning motion intensity,
velocity and direction. Motion energy is a normalized quantity in the range [−1, 1], and
it is −1 for pure leftwards motion, +1 for pure rightwards motion and 0 whenever no
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directional energy is measurable. As it will be clearer in the following, the latter case will
be of interest for our purposes.

3. Motion Perception and Frozen Frames

The proposed approach starts from the pioneering Adelson and Bergen model [12]
and simplifies it in order to detect the absence of motion. The use of both spatial and
temporal filtering is motivated by the following observations:

• Space: Human eye sensitivity is not at the pixel level; that is why pixel-based motion
estimation, as optical flow, could result useless in this case as it could cause some
additional but perceivable noise. Preattentive vision is characterized by fixation
points [34] that are the centers of each observed region (foveated region) whose
dimensions depend on the observation distance. This means that the farther an image
point is from the fixation point, the more blurred it is perceived. As fixation points in
the preattentive phase last 150–200 ms, while ME duration ranges from 100–166 ms to
500 ms, it immediately follows that the fastest ME reaches the limit of visual attention,
while very few points, probably spatially correlated, are fixated during the longest ME
lifetime [34]. As a result, an ME could not be in focus, with high probability, during
the observation process, but it is equally perceived as a peripheral area of the field of
view [32].

• Time: Visual perception is mainly based on contrast measures, i.e., the difference
between the object of interest and its background; as a result, motion can be perceived
as it causes a temporal contrast in the observed region. Temporal filtering is then
necessary in order to quantify the temporal contrast, and then the temporal stimulus.

The simplified version of the model derives from the observation that very subtle and
fast movements are of interest, independently of their direction. In addition, despite their
unconscious nature, a sort of instinctive self-control mechanism is activated before or after
MEs. In fact, the common attitude for hiding or suppressing emotions is to completely
conceal oneself, causing frozen frames in the video sequence. This often happens in the
offset phase but also just before the onset one. Even though it naturally occurs in controlled
video acquisitions, like the ones in some datasets, including CASME II [35], SAMM [36] and
SMIC [37], it could sound quite unreliable or at least much less evident or measurable in
controlled videos than in ordinary conditions, such as the ones in the MEVIEW dataset [38].
As a matter of fact, it is not so. In order to give evidence of this statement, three sequences
from the MEVIEW dataset have been considered (https://cmp.felk.cvut.cz/~cechj/ME/
(accessed on 1 April 2021); in all of them the subject maintains a concealed facial expression
so that it is quite hard to detect pose differences in subsequent frames. In particular, in
the first two sequences (Figures 2 and 3), the subject intentionally tries to hide emotions by
assuming a fixed posture that is completely concealed just before and immediately after
the unconscious reaction (“surprise” and “contempt” respectively). In the third example
(Figure 4), the concealed pose is assumed just after the unconscious reaction (“happiness”),
with the apex expression lasting for different successive frames. This observation meets
Ekman’s studies concerning MEs and automatically provides an additional ME feature that
is independent of ME kind. More precisely, as frozen frames precede and/or follow any
ME, they can act as a sort of early warning for the presence of MEs in a video sequence.

It is worth observing that this feature gives a practical advantage in the ME detection
process. In fact, it is more convenient to detect the absence of motion rather than the
fast motion of an ME. Among the different motivations, the most significant one is that
ME causes motion that is neither completely of first order (luminance changes) nor of
second order (textures) [31,32]. As a result, MEs often cannot be detected as isolated and
significant temporal discontinuities in the motion intensity signal. In addition, the very
short ME temporal duration limits one to the use of just one pair of spatio-temporal filters
adopted in the Adelson and Bergen model, i.e., the one composed of an even low-pass
filter in the space and a high-pass filter in the time having a very short support. This pair

https://cmp.felk.cvut.cz/~cechj/ME/
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will be indicated as LH in the sequel and it defines a spatio-temporal filter like the one
in Equation (1).

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2. Four frames of the sequence cut 15.1 in the MEVIEW dataset [38]: (a) frozen frame before a
microexpression (ME) ( surprise); (b) ME onset; (c) ME apex; (d) frozen frame after ME; (e) temporal
global energy measured as the standard deviation of the spatio-temporal filtered sequence using
the filter in Equation (1)—the arrows indicate frozen frames; (f) standard deviation restricted to the
group of frames containing the ME; (g) standard deviation of the spatio-temporal filtered sequence
using the filter l(x, y, t) in Equation (2) restricted to the group of frames containing a ME—markers
correspond to local minima.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Four frames of the sequence cut 1.1 from the MEVIEW dataset [38]: (a) frozen frame
before ME (contempt); (b) ME onset; (c) ME apex; (d) frozen frame after ME; (e) temporal global
energy measured as the standard deviation of the spatio-temporal filtered sequence using the filter
in Equation (1)—the arrows indicate frozen frames; (f) standard deviation of the spatio-temporal
filtered sequence using the filter l(x, y, t) in Equation (2) restricted to the group of frames containing
the ME—markers correspond to local minima.

The use of frozen frames implies that a global absence of motion in the temporal
sequence does involve the whole facial region; it means that we expect a minimum/zero in
the energy of the response of the high-pass filter. Unfortunately, even though the latter is
sensitive to very subtle and fast movements, it also has the same drawbacks of pixel-based
motion estimators—i.e., artifacts are more visible than motion. As a result, the response of
the spatio-temporal filter LH can be quite noisy, making ME detection troublesome and
somewhat ambiguous. Specifically, local temporal minima can provide false alarms in
the analyzed cases, as is evident in Figures 2e, 3e and 4e: several points, other than the
ones corresponding to ME frozen frames in the energy signal, are close to zero. The energy
signal is computed as the standard deviation of the spatio-temporal filtered video sequence
using a filter as the one defined in Equation (1).
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Four frames of the sequence cut 14.3 from the MEVIEW dataset [38]: (a) frozen frame
before ME (happy); (b) ME onset; (c) ME apex; (d) frozen frame after ME; (e) temporal global
energy measured as the standard deviation of the spatio-temporal filtered sequence using the filter
in Equation (1)—the arrows indicate frozen frames; (f) standard deviation of the spatio-temporal
filtered sequence using the filter l(x, y, t) in Equation (2) restricted to the group of frames containing
the ME—markers correspond to local minima.

In the following, we prove that the high-pass temporal filter in the selected filter
pair LH can be substituted for a suitable low-pass temporal filter in the spatio-temporal
analysis, i.e.,

l(x, y, t) = ρ(x, y)φ(t), (2)

where ρ(x, y) is a spatial low-pass filter and φ(t) is a temporal low-pass filter—this filter
pair will be denoted by LL in the sequel. In particular, it will be shown that the minima
of the energy of the response of this new spatio-temporal filter LL include the zero points
of the response of LH filters pair; in addition, due to its low frequency characteristics, the
proposed spatio-temporal filter is more robust to the presence of noise or local artifacts in
the video sequence.
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In order to better characterize filters properties, it is worth reminding ourselves that
in the preattentive phase, the human visual system takes only 13 images out of a second of
continuous flow. As a result, the temporal filter is required to have a compact time support
that depends on video sequence frame rate. By considering that a standard video sequence
consists of 25/30 fps, the temporal sampling should be at least 1:2 in order to be consistent
with the visual channel. As a result, in the simplified Adelson and Bergen model, the two
separable filters (spatial and temporal) are both low-pass. Their supports are set according
to both spatial and temporal resolution of the visual system, while the temporal energy is
computed as the standard deviation of the spatio-temporal filtered sequence. The use of the
standard deviation provides a global temporal variability measure of the video sequence,
but it is also a crucial dispersion measure that is highly consistent with the vision process,
especially with the preattentive phase [39].

Let us denote by
G(x, y, t) = f ∗ h (3)

and
F(x, y, t) = f ∗ l (4)

two spatio-temporal filtered versions of the original video sequence f that have been
obtained by applying, respectively, LH (Equation (1)) and LL filter pairs (Equation (2)),
and with

σU(t) =
1√
|ΩU |

‖U(x, y, t)− µU(t)‖2, (5)

the spatial standard deviation of any function U(x, y, t) depending on both space (x, y)
and time (t) variables, where µU is the corresponding mean value, while |ΩU | is the
dimension of the spatial domain. The next proposition proves that the minima of the
standard deviation of F are strictly correlated to frozen frames, i.e., those characterized by
lack of motion.

Proposition 1. Let G(x, y, t) and F(x, y, t) be two spatio-temporal filtered versions of the original
video sequence f defined as in Equations (3) and (4), where

h(x, y, t) = ρ(x, y)ψ(t) and l(x, y, t) = ρ(x, y)φ(t), (6)

with ρ(x, y), a spatial low-pass filter; ψ(t), a temporal high-pass filter; and φ(t), a temporal low-
pass filter such that ψ(t) = d

dt φ(t). Let σF(t) and σG(t) denote the spatial standard deviation—as
defined in Equation (5)—of F(x, y, t) and G(x, y, t).

Then a local minimum for σF(t) corresponds to a null value for σG(t) (frozen frame). Con-
versely, null values of σG(t) are realized in relation to local extrema of σF(t).

The proof is in Appendix A. What we observe here is that local minima of σF(t)
identify static scenes, i.e., frozen frames. As a result, this proposition provides a practical
method for the detection of GOFs containing MEs. In fact, frozen frames delimiting MEs
can be found among the local minima of σF(t), which are easier to find with respect to
σG(t) zeros (see Figures 2–4). In particular, as will be shown in the experimental results,
frozen frames that occur before ME onset or after ME offset are identified by the absolute
minima of σF(t), when the latter is computed in relation to stationary scenes—see also
Figures 2g, 3f and 4f.

3.1. The Algorithm

The proposed frozen frames detection algorithm can be summarized as follows.

• Partition the video sequence into stationary scenes fk(x, y, t), k = 1, 2, ...
• For each sequence fk(x, y, t):

1. Detect a region Ω containing the face of interest in the whole subsequence fk
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2. Set f (x, y, t) = fk(x, y, t)|Ω and define F(x, y, t), as in Equation (4), for each
t by applying the spatio-temporal filter l as defined in Equation (2) and in
Proposition 1.

3. Compute the spatial standard deviation σF(t) of F(x, y, t) at each time t using
Equation (5) by setting U = F

4. Compute the local minima of σF(t) and let {tk}0≤k≤M denote their location.
5. Remove eventual instabilities as follows:

– Let I = {tkj
}j be a subset of adjacent local minima such that |tkj−1

− tkj
| ≤

d and |σF(tkj−1
)− σF(tkj

)| ≤ τ, with d and τ predefined values.
– Remove them from the list of local minima
– Set tk̂ equal to the mid-point of the set I.
– Add tk̂ to the list of local minima.
– Denote with {t̄k}k the modified sequence of local minima.

6. Sort the local minima in {t̄k}k in ascending order (with respect to their value)
and select the first K ones.

7. Select a GOF around each selected local minimum location.
8. Apply a suitable spotting algorithm to each GOF.

Details concerning steps 5–7 are provided in the next section.

4. Results and Discussion

The results presented in this section aim at giving evidence of the potential of the
adopted visual perception based model for MEs in carrying out a fast but effective selection
of those frames containing what has been defined as “something not convincing” in the
Introduction. To that end, the proposed preprocessing method has been tested on different
video sequences contained in publicly available and annotated spontaneous ME databases
in order to have various ME types and subjects and different backgrounds and scenes.
Even though the proposed method aims at working in the case of “in the wild” video
sequences, some results concerning the case of datasets composed of acquisitions made
under controlled conditions will be presented in order to assess the consistency and the
reliability of its responses. In particular, results achieved on CASME II dataset [35] are
presented in this section. CASME II is one of the largest and widely used databases; it is an
improved version of CASME dataset and it contains a quite comprehensive representation
of spontaneous MEs. It consists of about 255 videos that were recorded using high frame-
rate cameras (200 fps). As videos were recorded under controlled conditions, several kinds
of artifacts are missing, so more stable results are expected. With regard to more realistic
scenarios, the MEVIEW dataset [38] has been considered. This dataset collects mostly poker
game videos downloaded from YouTube. The peculiarity of this dataset consists in the
fact that poker players often try to conceal or hide their true emotions—as a consequence,
the corresponding videos contain several MEs. The dataset is composed of 31 videos
having different subjects; videos were acquired at 25 fps; ME onset and offset frames are
also provided.

A spatial Gaussian low-pass filter has been used for the spatial filter ρ in Equation (2),
having standard deviation equal to 9. This dimension is consistent with a viewing distance
that resembles the one used in real cases and which corresponds to approximately one
degree of visual angle [34,40]. For the temporal low-pass filter, as mentioned in the previous
section, the dimensions were set according to the sensitivity to motion as a continuous flow
(i.e., 13 frames per second) and the frame rate of the video being analyzed. That is why it
has been set as equal to 8 for the CASME II dataset and equal to 2 for MEVIEW. In order to
eliminate some numerical instabilities that can create some local oscillations in σF(t) and
then false local minima, the mid-point of the minima that are measured in the instability
regions is considered in the output list of local minima. A region is considered unstable
if there exist subsequent local minima having comparable values (i.e., they differ for less
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than 10% of the energy range—τ = 0.1 in step 5 of the algorithm) and whose distances are
less than a predefined value d that depends on the frame rate of the analyzed video.

To quantitatively evaluate the results, two different tests have been run. The first
test aims at giving empirical evidence of the concealing property of MEs and at showing
that the proposed simple global measure (σF(t)) is able to identify them as local minima.
The second test aims at confirming that the proposed temporal index allows us to select
time intervals involving ME with a certain degree of reliability and with a simple and fast
algorithm. This allows for spending the computational effort of a spotting algorithm only
for a reduced temporal interval.

With regard to the first test, the CASME II dataset has been considered. In order to
assess if the proposed method is able to correctly detect frozen frames nearby ME, it is
expected that at least a minimum occurs in σF temporal signal close to ME, independently
of ME kind. More precisely, since onset, apex and offset are available for all videos in
CASME II, the local minimum of σF occurring just before onset and the one occurring just
after the offset have been considered. In agreement with [38], a frozen frame is considered
to be correctly detected if there exists one minimum such that its distance from ME onset
or offset is less than N/2, where N is the maximal expected length of a ME, i.e., N = 64
for CASME II (200Hz). Using these settings and d = N/4 for the selection of instability
regions, the proposed method provides a positive answer for 245 sequences out of 255.
This result confirms that: (i) frozen frames can be good candidates as early warnings for
the presence of MEs, and (ii) the proposed spatio-temporal filtering allows us to define a
simple quantity that is able to well represent them (Proposition 1).

The second test is oriented toward providing a more practical procedure for extracting
a limited number of GOFs to be used as input for a spotting algorithm, independently of
ME kind and action units involved. To that end, we repeat the aforementioned analysis
but we limit our counting to the first K minima having the lowest σF values; we consider
the percentage of correct assignments for increasing K. Results for CASME II dataset
are in Table 1. As it can be observed, for each ME in the database, independently of the
subject, there is at least a group of frozen frames that precedes or immediately follows it.
These frames provide a local minimum in the standard deviation signal σF(t), defined in
Equation (4), and for many sequences it represents the absolute minimum. In particular,
frozen frames corresponding to MEs can be found among the first five minima for a high
percentage of sequences (82%) and more than 50% among the first three. As a matter of
fact, this percentage can increase if a more accurate removal of instabilities in the temporal
signal σF is performed. However, this is out of the scope of the preliminary study made in
this paper.

Table 1. CASME II dataset. Number of correspondences between minima of the temporal quantity
σF(t) and frozen frames’ nearby MEs. The correspondences were searched for among the first K local
minima of σF having the smallest values. The percentage of correct assignments with respect to the
total number of analyzed video is also provided.

No. of
Minima 1 2 3 5 8 10

no. of correct
assignments 79 127 169 210 226 228

% of correct
assignments 30.98 49.80 66.27 82.35 88.63 89.41

Based on these results, the same test has been applied to the MEVIEW dataset and the
first three smallest minima of σF have been considered; N has been set equal to 8 as 25 Hz as
the rate for this dataset. In this case, we observed that the percentage of correct assignments
is 90.32%. Some results are in Table 2. In particular, the frame numbers of the first three
local minima are provided for several sequences; for each sequence, the local minimum that
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is closer to ME is in bold, while the absolute minimum is underlined. As it can be observed,
the absolute minimum is nearby the ME of interest for the 40% of the sequences analyzed,
even though the latter have not been acquired in controlled conditions—subjects moved,
as did the camera position. Furthermore, frozen frames characterizing MEs correspond to
one of the first three minima of σF, even when the subject moves, as is the case represented
in Figure 5. In this case, perfect match among subsequent frames is not guaranteed but any
registration algorithm has been applied; nonetheless, while peaks and zero values in σG
are not able to characterize ME, minima in σF can still do that. This observation further
confirms the advantage provided by the proposed method even in terms of robustness. As
shown in Figure 5, several peaks are present in σG(t) profile, as defined in Equation (3),
but they are not in relation to the main ME; on the other hand, nearly zero values in the
same signal would provide a lot of false alarms. On the contrary, the use of σF(t) produces
a significantly reduced number of false alarms, resulting more robust than σG(t).

Table 2 also gives evidence of the advantage in using the proposed algorithm as
preprocessing in the spotting process. This advantage has been quantified, as the percentage
of frames in a video sequence that cannot be discarded by the spotting algorithm. It is
worth observing that the proposed method is not able to assess if the detected frozen
frames occur before or after MEs. That is why a temporal interval centered at the detected
minimum has to be considered for further analysis. The half amplitude of this interval
is set according to the average MEs time and video resolution, i.e., 4–8 frames in case
of common resolution in standard cameras (25 Hz) and 16–32 in case of high resolution
cameras (200 Hz). The results for the MEVIEW dataset have been included in Table 2,
where for each detected minimum a GOF composed of 10 frames has been considered. As
it can be observed, the preliminary detection of frozen frames allows one to reduce the
number of frames to be processed by a spotting algorithm of about 60% on average, ranging
from 84% to 20%, resulting in a considerable computing time reduction and increased real
time processing capabilities.

Figure 5. Sequence 2.1 in MEVIEW database. (Top) σF(t) signal. Star makers correspond to local
minima; square markers are the three selected minima—the absolute one is emphasized. Dots
correspond to frames involving MEs. (Bottom) σG(t) signal. Dots correspond to frames involving
MEs. They do not correspond to evident impulsive peaks.
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Table 2. Frozen frames detection results achieved on the MEVIEW dataset [38]. For each video
subsequence (first column), the frame interval including the ME is provided (second column), along
with the location of the first three absolute minima, if any, of σF(t) (third column): the closest location
to the ME interval is in bold, while the location where the absolute minimum is realized has been
underlined. The last column contains the percentage of frames that need to be analyzed with a more
precise spotting algorithm: for each minimum, 10 frames have been considered (5 before and 5 after).
The length of the reference video-cut is indicated in the brackets.

No. ME σF(t) Minima Percentage
Sequence Interval Locations (%)

1.1 [49 62] 37 63 74 33% (89)
2.1 [92 100] 32 60 106 25% (120)
3.1 [82 90] 68 80 111 22% (138)
5.2 [75 81] 54 72 85 17% (174)
6.1 [15 26] 12 30 51 50% (60)
7.1 [52 60] 39 42 48 43% (69)
7.3 [93 98] 17 56 89 30% (101)
7.5 [54 70] 31 34 50 39% (77)
7.6 [59 76] 47 56 83 22% (136)
7.8 [81 90] 53 59 80 27% (112)
7.9 [76 87] 45 88 90 30% (100)
8.2 [19 34] 18 33 42 27% (109)
9.1 [88 96] 76 83 88 55% (55)

10.1 [13 27] 10 52 62 73% (41)
10.2 [81 93] 10 62 80 16% (192)
11.2 [7 21] 11 29 35 79% (38)
11.3 [57 67] 32 50 27% (73)
11.4 [9 23] 21 27 33 48% (63)
11.5 [33 49] 20 38 50 48% (63)
13.1 [16 32] 15 38 50 47% (64)
13.2 [6 20] 23 29 34 52% (58)
14.1 [35 41] 42 16% (64)
14.3 [21 26] 13 22 27 81% (37)
15.1 [36 41] 30 42 55 47% (64)
16.2 [45 52] 30 46 54 48% (62)

In order to study the dependence of the proposed method on the adopted parameters,
the area under the ROC curve (AUC) for the CASME II dataset has been considered. The
curve was constructed by computing the true positive rate (TPR), i.e., TPR = TP

TP+FN , and
the false positive rate (FPR), i.e., FPR = FP

FP+TN , with TP, FP, TN and FN respectively
being the numbers of true positive, false positive, true negative and false negative assign-
ments. In particular, according to the Algorithm in Section 3.1, K minima in σF signal have
been selected, i.e., {tk}1≤k≤K; hence, a frame has been considered a true positive ME assign-
ment if it belongs to an interval having size equal to N and centered at a minimum tk whose
distance from ME onset or offset is less than N/2. ROC curve has been then constructed by
increasing K. The AUC values corresponding to different parameters settings are provided
in Table 3. In particular, the threshold τ and the spatio-temporal filters size have been
considered in the evaluation studies. The other parameters, as mentioned above, have
been set depending on the video resolution, in agreement with the state-of-the-art methods.
As it can be observed, the value of τ can change moderately the final result, especially for
small temporal filter lengths as temporal instabilities are more probable. For fixed τ, AUC
moderately changes according to temporal filter; however, to avoid the suppression of ME
contribution in the adopted global measure, the temporal filter length is required to not
exceed the minimum length expected for a ME in a video with a specific frame rate. The
default application mode of the proposed method, i.e., a filter size depending on some
perceptual features and video resolution, represents, on average, a good default setting for
a generic video sequence.
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Finally, Table 4 compares the proposed method with two state-of-the-art spotting
methods: HOOF (Histograms of Oriented Optical Flow) [41] and 3D HOG (Histogram Of
Gradients) [42] based ME spotting methods. The latter employ features that are commonly
used to describe micro-expressions but that can be computationally demanding. As it can
be observed, even though the proposed method is based on a global frame feature and
does not apply any preprocessing method oriented to detect specific facial ROIs, it is able
to provide comparable and even better results than the two competing methods.

Table 3. CASME II dataset. AUC (area under the ROC curve) for the proposed method with different
parameter settings. The size of the spatial filter ρ and of the temporal filter φ in Equation (1),
along with the threshold τ used in the removal of instabilities (step 5 of the Algorithm), have been
considered. (Top) For fixed ρ standard deviation (std), AUC is evaluated for variable φ size and τ;
(bottom) for fixed φ size, AUC is evaluated for variable ρ standard deviation and τ. The best result is
in bold.

ρ std 9

φ size 4 8 16

τ 0.01 0.1 0.2 0.01 0.1 0.2 0.01 0.1 0.2

AUC (%) 72.65 74.28 66.29 73.18 72.01 70.93 70.46 69.61 69.43

φ size 8

ρ std 5 9 15

τ 0.01 0.1 0.2 0.01 0.1 0.2 0.01 0.1 0.2

AUC (%) 73.65 72.55 71.17 73.18 72.01 70.93 74.21 72.62 70.97

Table 4. CASME II dataset. Comparisons between AUC (area under the ROC curve) values pro-
vided by the proposed method (with the best parameters setting), the 3D-HOG-based ME spotting
method [42] and the HOOF-based ME spotting method [41]. The best result is in bold.

HOOF [41] 3DHOG [42] Proposed

AUC (%) 64.99 72.61 74.28

5. Conclusions

In this paper a first attempt to accelerate the micro-expression spotting process has
been presented. The method aims at reducing the temporal length of a video by discarding
those frames that do not contain a facial ME with high probability. To that end, a fast
and global method has been proposed that is based on the relation between some ME
features and the human visual perception. In particular, the sensitivity to motion has
been considered and a simplified and modified version of the motion energy model has
been defined. Differently from existing methods and models, the proposed one looks at
frozen frames rather than those revealing impulsive motion. In fact, frozen frames are
strictly related to concealed poses that are assumed just before or immediately after MEs.
Preliminary experimental results on a dataset with uncontrolled conditions showed that
concealed frames actually characterize MEs, independently of the subject and ME kind. In
addition, the modified motion energy model results are somewhat robust to background
motion. Finally, the algorithm for the detection of frozen frames is simple and fast, so is
computationally advantageous.

The achieved promising results motivate future research concerning this topic. In
particular, global scene motion could be considered in order to further characterize the
selection of interesting points without ambiguities. Moreover, the combination of the pro-
posed features and the ones gathered from high-pass motion information would contribute
to making the early warning reliable. Finally, the visual properties of facial MEs are worth
further investigation.
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Appendix A. Proof of Proposition

Proof. Without loss of generality, let us denote σF(t) = ‖F(x, y, t) − µF‖2 and σG(t) =
‖G(x, y, t) − µG‖2. By using the convolution product properties, since ψ(t) = d

dt φ(t),
d
dt F(x, y, t) = G(x, y, t),

By keeping in mind that σF(t), for fixed t, is a norm, from the triangle inequality,
we have

σF(t + ∆t)− σF(t) ≤ σF(t+∆t)−F(t)(t) (A1)

where ∆t ≥ 0. For ∆t small enough, we can apply Taylor expansion to both members of
previous inequality, i.e.,

d
dt

σF(t)∆t +
∆t2

2
d2

dt2 σF(t̃) ≤ σ
G(t)∆t+ ∆t2

2
d2
dt2

G(t̄)
(t)

with t̃ ∈ [t, t + ∆t], t̄ ∈ [t, t + ∆t], that is equivalent to

d
dt

σF(t) +
∆t
2

d2

dt2 σF(t̃) ≤ σ
G(t)+ ∆t

2
d2
dt2

G(t̄)
(t), (A2)

where the norm scaling property has been applied to the second member using ∆t as scale
value.

Using similar arguments, it holds that

σF(t− ∆t)− σF(t) ≤ σF(t−∆t)−F(t)(t), (A3)

which is equivalent to

− d
dt

σF(t) +
∆t
2

d2

dt2 σF(t̃) ≤ σ
G(t)− ∆t

2
d2
dt2

G(t̄)
(t), (A4)

with ˜̃t ∈ [t− ∆t, t], and ¯̄t ∈ [t− ∆t, t]
By using Equations (A2) and (A4) and letting ∆t approach 0, it holds that∣∣∣∣ d

dt
σF(t)

∣∣∣∣ ≤ σG(t).
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As a result, in relation to frozen frames, i.e., σG(t) = 0, d
dt σF(t) must be zero—i.e., a

relative extremum for it is expected. On the contrary, if t̂ is a local minimum for σF, then
the right-most sides of Equations (A1) and (A3) are positive and the equality holds. As
a result,

0 =

∣∣∣∣ d
dt

σF(t)
∣∣∣∣ = σG(t);

i.e., a frozen frame is expected at time t̂.
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