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Protein-protein interactions regulate almost all cellular functions and rely on a fine tune of surface amino
acids properties involved on both molecular partners. The disruption of a molecular association can be
caused even by a single residue mutation, often leading to a pathological modification of a biochemical
pathway. Therefore the evaluation of the effects of amino acid substitutions on binding, and the ad hoc
design of protein-protein interfaces, is one of the biggest challenges in computational biology. Here,
we present a novel strategy for computational mutation and optimization of protein-protein interfaces.
Modeling the interaction surface properties using the Zernike polynomials, we describe the shape and
electrostatics of binding sites with an ordered set of descriptors, making possible the evaluation of com-
plementarity between interacting surfaces. With a Monte Carlo approach, we obtain protein mutants
with controlled molecular complementarities. Applying this strategy to the relevant case of the interac-
tion between Ferritin and Transferrin Receptor, we obtain a set of Ferritin mutants with increased or
decreased complementarity. The extensive molecular dynamics validation of the method results confirms
its efficacy, showing that this strategy represents a very promising approach in designing correct molec-
ular interfaces.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The majority of the cellular functions are mediated by processes
that occur when two molecules recognize each other and bind
[1,2]. In particular, protein-protein non-covalent associations play
an essential role in several aspects, such as biocatalysis, organism
immunity or cell regulatory network construction [3,4].

Since the complex network of energetic couplings occurring
between interacting atoms ensures the stability of the molecular
complex, residues involved in protein interfaces undergo addi-
tional evolutionary pressure, and therefore they are more con-
served than other surface residues [5,6]. Indeed the substitution
of an amino acid residue can modify the protein structure, stability,
binding affinity and function, thus potentially leading to an altered
activity of the whole complex, often pathogenic [7,8].
Because protein-protein interactions are involved in a plethora
of cellular processes and consist of fine tuning of chemico-physical
properties at the interfaces, in the last years many computational
methods have been developed for predicting the effects of muta-
tions on binding, relying on a wide range of techniques spanning
from all-atom molecular dynamics to multiple features machine
learning approaches [9–13]. An accurate in silico evaluation of
mutations that strengthen or weaken a specific protein-protein
interaction would represent a key guide in the identification of
hot sites to target, preventing time and effort consuming experi-
mental protocols. Indeed, methods for affinity optimization of
interacting proteins, and even for the design of new binder mole-
cules, have been developed [14–17]. These computational methods
aim at redesigning protein sequences to selectively modify the
characteristics of the binding sites [18,19]: the applications of such
approaches can be extremely interesting, from antibody design to
the optimization of inhibitors against pathogens [20–23].

A fundamental step for devising an effective computational
design of molecular interfaces is the formulation of an accurate
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scoring function for evaluating protein-protein complexes. This is a
classic field in structural computational biology [24], and in the
past years numerous scoring functions have been developed. They
are generally based on combinations of several factors, such as
energetical evaluation, solvation effects, statistical and
knowledge-based potential, geometrical features or empirical con-
sideration [25–29].

In this scenario, the Zernike polynomials represent a very
promising strategy for rapid and effective evaluation of binding
complementarity between molecular partners [30–33]. Indeed,
once a protein region of a molecule is selected, its shape and its
electrostatic potential can be represented as functions and then
expanded on the basis of the Zernike polynomials [34,35], obtain-
ing an ordered set of numerical descriptors invariant under rota-
tion and translation.

The 3D Zernike description is widely applicable and it has been
recently adopted for the characterization of protein-protein inter-
faces, where the authors use a machine learning approach to detect
similarities between the interface region of proteins in terms of
shape and physico-chemical similarity of local surface patch [36].

However, here we exploit the possibility of evaluating the shape
and electrostatics complementarity between 2 molecular regions,
to design protein mutants with increased binding compatibility:
after representing both the binding sites in this compact formal-
ism, the complementarity between them can be easily assessed
comparing the corresponding Zernike descriptors through a dis-
tance metrics [30,33].

Thanks to the compactness of such an approach in evaluating
the complementarity between two large biomolecules, we can
accurately scan a very large set of possible mutations and assess
their effects in terms of molecular complementarity. Here we pre-
sent a Monte Carlo (MC) approach for the optimization of the bind-
ing interface between two proteins. More in details, once the
residues composing the binding site are identified, we perform
extensive computational mutagenesis – substituting in each step
an interacting residue with a random one – and we evaluate the
mutants complementarity comparing their Zernike descriptors,
accepting or rejecting the mutation according to MC cost function.
This procedure can produce mutants characterized by an increased
or decreased complementarity with respect to the wild type, sim-
ply inverting the sign of the cost function. Combining the compact-
ness of Zernike evaluation of complementarity with the MC clever
exploration of the possible mutants, we devised an automated
computational protocol to identify the set of residue substitutions
that confer the desired properties to the protein-protein interface.

To test the method we focus on the case of the complex
between human transferrin receptor 1 (CD71 or hTfR1) and the
Human heavy-chain Ferritin (H-Ft), whose structural details have
been recently published [37].

The interaction between these two molecules is significant both
in physiological and pathological conditions [38,39]. Ferritin/CD71
complex contributes to the maintenance of cellular iron homeosta-
sis. Ferritin works as molecular storage of iron within the cell, thus
preventing its oxidative damage. The transmembrane glycoprotein
CD71 regulates and mediates iron import to the cell in the form of
a complex with plasma iron-binding proteins, such as ferritin or
transferrin, in response to variation of intracellular iron concentra-
tion. Beyond the importance of this system in regulating iron meta-
bolism, H-Ft/CD71 interaction is largely exploited in
nanotechnology and medicine as drug delivery tools, selective for
cancer cells [40,41].

Indeed, many metastatic cancers overexpress up to a hundred
times more CD71 than healthy cells because of their uncontrolled
proliferation rate that requires increasing iron uptake [42,43]. On
the other hand, the hollow-cage like architecture of Ferritin can
be easily assembled/disassembled by pH variation in the 24 sub-
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units that compose it, thus providing a simple mechanism for
encapsulating small molecules. Therefore, numerous Ft/CD71-
based strategies have been developed for anticancer treatment,
being the receptor a selective route of access to tumor cells for
the internalization of engineered Fts, either chemically conjugated
or filled up with cytotoxic drugs.

In this context, obtaining Ferritin mutants with increased or
decreased complementarity would provide a powerful tool to fine
tune the therapeutic/diagnostic cargo transport and delivery from
engineered Fts to cancer cells. The physiological nanomolar affinity
that controls Ft and CD71 binding might be alternatively modu-
lated depending on cancer types and stage and the cellular context
to minimize detrimental effects on healthy cells. As an example, H-
Ft with optimized binding properties to CD71 would increase the
Ft-nanocages uptake by damaged cells, reducing the dose of Ft-
encapsulated agent injected and side effects.

In addition, CD71 is also the cell entry carrier for several
human-affecting viruses [44–47] and for Plasmodium vivax [48],
the most common malaria parasite. Since these pathogens mostly
share the ferritin epitope on CD71 [49], the optimization of the
H-Ft-CD71 interface can enable the development of alternative
ferritin-like therapeutic ligands capable of blocking the common
epitopes on CD71with anti-viral or anti-parasite activity.

Applying our MC approach to the H-Ft binding site, we propose
both a set of 10 independent mutants that maximize the Zernike
complementarity (H-C-mut) and 10 mutants that minimize the
complementarity (L-C-mut).

To accurately test the reliability of proposed mutants, the anal-
ysis of the dynamical behavior of the designed molecular com-
plexes is necessary. Since in the last years molecular dynamics
simulations have been widely applied to investigate dynamically
the binding properties of protein-protein associations [50–53],
we simulated the molecular complex between CD71 and both
the ferritin wild type and mutated variants, thus performing 21
extensive independent simulations and studying the interface
properties of the various molecular complexes. Both an interface
stability analysis and an energetic investigation of all molecular
dynamics simulation underline a higher binding propensity of H-
C-mut with respect to the L-C-mut.

This general and fast procedure allows an effective sampling of
the very large space of possible protein mutations, obtaining pro-
tein mutants with the desired binding molecular complementarity.
The strategy presented here can therefore represent an important
step in the elusive task of the computational design of optimal pro-
teins interface.
2. Results and discussion

2.1. Complementarity evaluation

The structural details of the interaction between H-Ft and CD71
have been recently discovered with Cryo-EM technique and depos-
ited in Protein Data Bank (PDB id:6H5I) [37]. Dealing with the
experimental structure, we define the molecules binding sites as
the set of residues whose atoms are closer than 5 Å to a molecular
partner atom (Fig. 1).

Once the molecular surface and the electrostatic surface poten-
tial for both the structures have been computed, we selected only
the surface points generated by the binding site residues, labeled
with their value of electrostatic potential. Through the voxelization
procedure, we built the 3D functions representing the geometrical
shape and the electrostatic potential of the binding site. Adopting
the Zernike expansion the geometrical and electrostatic properties
of a molecular interface are summarized in an ordered set of num-
bers, independently from the region size or orientation. Indeed the



Fig. 1. H-Ft and CD71 residues composing the binding sites and their contacts. In
the top figure, a contact between a ferritin residue (blue) and a receptor residue
(green) is established if the minimum distance between their atoms is lower than 5
Å, and the corresponding square is labeled with a red circle. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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patch representing functions were expanded in the Zernike poly-
nomials basis, and the coefficients of this expansion retain the
information about the form of the expanded function (See Methods
for a more detailed treatment). Since the functions represent the
interface properties, the Zernike coefficients are descriptive about
them.

In this manner, it is possible to characterize the binding regions
with such a compact formalism that we can establish a comple-
mentarity metrics simply using a distance between the descriptors
of the interacting surfaces. On one hand, since the shape of two
interacting surfaces is very similar, their shape Zernike descriptors
exhibit a low distance. On the other hand, the positive electrostatic
potential of one interface side has to match the negative potential
of the other side – and vice versa – so as we can define the comple-
mentarity as the mean cross distance between positive and nega-
tive electrostatic descriptors. It is worth noting that when the
complementarity is high, the distance between two surfaces is
low (See Methods).

Once we evaluated the shape and electrostatic complementar-
ity between wild type H-Ft and CD71 residues, we performed com-
putational mutagenesis on human ferritin. We randomly selected
and mutated a single residue to obtain a new interaction site char-
acterized by different shapes and electrostatic properties.

At this stage we recomputed the Zernike descriptors of the
mutated H-Ft binding sites, evaluating the new complementarity
observed with the receptor. In particular, we define the shape
and electrostatics complementarity balance DComp as

DCompshape ¼ Dmut
shape � Dwt

shape ð1Þ
DCompelec ¼ Dmut
elec � Dwt

elec ð2Þ

where Dwt
shape and Dmut

shape are the shape distances between the interact-
ing surfaces when wild type or mutated interface are considered,
and similarly the electrostatic potential distances are Dwt

elec and
Dmut

elec . These distances are formally defined in Method Section.
Since the complementarity is high when D is low, if DComp < 0

the mutation produces a higher complementary surface while if
DComp > 0 the mutation is deleterious.
2680
The complete procedure we adopted for the complementarity
evaluation is schematically illustrated in Fig. 2.

2.2. Monte Carlo procedure

To effectively sample the huge space of possible mutants, we
iterate the procedure described in the previous section performing
a MC exploration. The scope is the selection, with a limited number
of residues different from wild type ferritin, of mutants that are
characterized by an increased complementarity, in terms of both
shape and electrostatics. In each step the mutation is accepted
according to the following cost function:

DE ¼ DCompshape þ aDCompelec þ c Mnew �Mold½ �M2
new ð3Þ

where a and c are fixed parameters (See Methods for the values). M
is the number of the mutations with respect to the wild type H-Ft,
and the purpose is to keep M low to achieve a final mutant not too
different from the wild type.

It is worth noting that the additive formulation of the cost func-
tion allows a separate and independent evaluation of each of the
factors, ensuring the applicability of the protocol to a wide range
of molecular interfaces and choosing in each case the aspect that
is better to optimize.

In particular, each mutation is accepted with the probability
[54]:

P ¼ 1 if DE < 0
e�bDE if DE P 0

�
ð4Þ

where b is the temperature factor, that is progressively decreased to
freeze the system in an energy minimum performing a simulated
annealing process [55].

In Fig. 3 we report an example of the results obtained for such
MC exploration. As illustrated, during the mutants evaluation the
Zernike complementarity (distance), both shape and electrostatic
case, basically increases (decreases) its value, meaning that this
procedure correctly identifies mutants with improved compatibil-
ity with their molecular partner. The number of mutations is kept
low, limiting the possibility that the introduced mutations affect
the overall fold of the protein.

A completely analogous protocol could be applied for minimiz-
ing the complementarity, simply reversing the sign in the Eq. (3),
thus creating mutants with lower binding efficiencies than the
wild-type.

We performed 10 independent MC simulations to select H-C-
mut and 10 independent simulations to obtain L-C-mut. We report
the results in Table 1 and a more detailed analysis of the results can
be found in Supplementary Materials (Supplementary Table 1).

Interestingly, even if each MC simulation ran independently
from the others, the set of H-C and the set of L-C mutants proposed
are consistent with each other. Indeed, following the chemico-
physical properties of the interacting residues of the CD71 apical
domain, mostly composed by basic amino acids (Fig. 4, left), the
H-C-mut display preferentially negatively charged and shorter
side-chains with respect to the wild type: as a result, the interpen-
etration between the contacting regions is optimized, in compli-
ance with the surface steric hindrance, favoring the formation of
novel and/or alternative contacts (Fig. 4, upper panels). Conversely,
the L-C-mut show predominantly positively charged residues and
longer side-chains, hindering the H-Ft/CD71 interactions by com-
bining charge repulsion forces to steric clashes (Fig. 4, lower pan-
els) (See Supplementary Table 2 for a chemico-psyical analysis of
the obtained mutants).

In addition, it is of interest to notice that multiple mutations in
a single mutant do not work as isolated perturbations, but cooper-
ate to guarantee the desired effect. We examined in some detail



Fig. 2. Scheme of the Zernike complementarity evaluation upon mutation on the Ferritin Binding site. a) The experimental complex between wild type H-Ft (blue) and CD71
(green). b) The local binding surfaces (whose residues are shown in Fig. 1) are extracted from the whole protein. c) After the computational mutagenesis with a random
residue, the new Ferritin binding site surface is described in Zernike formalism. The complementarity between the CD71 binding region and the mutated surface can be
therefore compared with the wild type one. d) The molecular complementarity as a function of the number of Mo.nte Carlo steps. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Monte Carlo Simulation Results. Left) The Complementarity between CD71 and H-Ft binding sites in terms of shape Zernike descriptors, as a function of the number of
Monte Carlo steps. Center) The Complementarity between CD71 and H-Ft binding sites in terms of electrostatics Zernike descriptors, as a function of the number of Monte
Carlo steps. Right) The number of mutated residues in H-Ft binding site, as a function of the number of Monte Carlo steps.
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the case of H-C-mut A and the case of L-C H (see Fig. 4). In the first
one, the substitution of long and positively charged arginines with
glycine in position 79 and aspartate in position 9 can cause several
effect: i) might provide room for R208 of CD71 that could rearrange
establishing electrostatic interaction with D9; ii) might favor a clo-
ser positioning of L209 of CD71 to the N-terminus of H-Ft contact-
ing Y12; iii) could allow R43 from the flank monomer of H-Ft to
establish electrostatic interaction with the backbone carbonyl of
G207 and of N206 of CD71. Moreover Q14N mutation also pro-
motes protein-protein interaction thanks to the one unit reduced
steric hindrance of the side chain, yet preserving the electrostatic
contact with K374 of CD71. Similarly, K86H maintains electrostatic
interaction with E343, but its aromatic nature might also allow the
formation of a p-cation interaction with K344. Conversely, in the
case of L-C-mut H all substitutions aim at extending the arm of
the side chains of residues at positions 15, 18, 116 and 123 mostly
involved in electrostatic contacts with the receptor thus hindering
protein-protein binding by charge repulsion effects (such as, the
contact between A18R and K374 on CD71) and steric clashes with
CD71 (as in the case of A18R that clashes the bII � 1 strand of CD71
and D123R that bumps the loop bI � 1� bII � 1 of CD71). More-
over, some mutations help others to keep the distance from the
2681
receptor: for example, the contact that D123R might form with
the d-carbonyl group of Q197 of CD71 would strengthen the charge
repulsion effect of E116K since it forces the amide unit of Q197 to
be oriented with the �-amino group exposed to the positive charge
of K at position 116. In conclusion, the substantial homogeneity in
the results of independent simulations, considering H-C and L-C
mutants separately, testifies that this procedure falls in a stable
energy minimum, proving the method reliability.
2.3. Computational test of proposed mutants

The Ferritin mutants obtained with the MC protocols, both for
the H-C-mut and L-C-mut case, have been computationally tested
via extensive molecular dynamics simulations. Indeed, we simu-
lated the different binding behavior between CD71 and the
mutants in comparison with the wild type complex to probe the
efficacy of our results.

We report the analysis of molecular dynamics simulation in
Fig. 5. As it emerges from these analyses, the stability of the bind-
ing is high when H-C-mut are considered, while the simulations of
CD71 in complex with L-C-mut exhibit a remarkable unsteadiness.



Table 1
High and low complementarity mutants. In each row the mutations regarding a single mutant are reported. The M represent the number of residue
mutations with respect to the wild type.

Seq no 5 6 9 14 15 17 18 19 21 22 25 78 79 81 83 86 116 119 123 M

Wild Type T S R Q D E A A N R N G R F Q K E K D

H-C mutants

A D N G H 4

B Q T S H 4

C E H A H 4

D E N G H 4

E C L L G V 5

F E M G S V 5

G E N S H 4

H G L G H 4

I D F H G Y 5

J T D W D H 5

L-C mutants

A V R R K 4

B R R R K 4

C K K K R R 5

D K K R K R R 6

E R K R Q R R 6

F R R R K 4

G R K W R 4

H R R K R 4

I K R R K R 5

J K K R R 4

Fig. 4. Ferritin mutants proposed after MC simulations. Top figure: Effects of H-C and L-C mutations. On the left, green ribbon representation of one CD71 monomer
(pdbpdb1cxcx8 [56]). Apical domain residues involved in the interaction with H-Ft are shown as surface model colored by electrostatic (Coulomb) potential (5 kcal mol�1 in
red to +5 kcal mol�1 in blue). On the right, examples of how one of the proposed H-C-mut (mut A, R9D/Q14N/R79G/K86H, upper panel) and one L-C-mut (mut H, D15R/A18R/
E116K/D123R, lower panel) might change the interaction with CD71. H-Ft is in blue and CD71 is in green ribbon representation (pbd 6h5i, [37]. Mutations, introduced by
simply mutating the corresponding H-Ft wild type residues by COOT [57] are represented in yellow sticks, while the related wild type amino acids are in white. Residues
involved in interactions are represented as sticks and labelled. Black boxes label mutations. Secondary structural elements are labelled. In both panels, arrows represent all
possible H-Ft mut/CD71 contacts: dashed and dotted arrows indicate electrostatic and hydrophobic interactions, respectively. Blue arrows are contacts maintained by
mutants; green arrows represent contacts that mut A might form (upper panels); red arrows indicate repulsive interactions and clashes that mut H might cause (lower
panels). We show the effect of H-C-mut A mutations (upper panels) and the effect of L-C-mut H mutations. (lower panels). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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In particular, for each MD simulation, we report the Root Mean
Square Deviation (RMSD) with respect to the initial configuration
2682
and the percentage of contact conserved along with the simulation,
where contact between 2 residues exists if any 2 atoms of these



Fig. 5. Molecular dynamics simulation of the CD71/H-Ft complex. The results in blue and in red are for high and low complementarity mutants, respectively. The mean values
presented here are obtained disregarding the initial 25 ns of equilibration. a) The stability analysis of the complexes. In the left panel the mean value of RMSD, with respect to
the initial conformation. In the right panel the mean percentage of residue-residue interface contacts conserved with respect to the initial conformation. The black dotted
lines represent the mean values observed when the wild type interface is simulated. b) The energetic analysis of the interfaces. The values reported here are averaged on all
the MD equilibrium frames. In the top row, we report the mean energy of non-covalent interactions (Coulomb and van der Waals terms) between all the atoms of the CD71
and H-Ft. In the bottom row, we focus on the mean energy exchanged at the interface, i.e., considering only the atoms belonging to residues defined in Fig. 1. The orange line
represents one standard deviation interval centered on the mean. The black dotted lines represent the mean and standard deviation of the. wild type case. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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residues are closer than 5 A. The bindings between H-C-mut and
CD-71 are stable, since the values of RMSD and conserved contacts
observed are very similar to the wild type case. Conversely, the
simulation of the complexes with L-C-mut typically has very high
values of RMSD, and very few contacts (if any) are conserved along
with dynamics.

Also, we perform an analysis of the energetic interactions occur-
ring between ferritin and receptor, to explain the different behav-
ior of the mutant species. Indeed, we calculated for each frame the
non-covalent energies (Coulomb and Van der Walls terms)
exchanged through the molecular interface between any atoms
of the 2 molecules. We adopted the same formalism as we did in
[58,59].

In Fig. 5, we show the mean energies of the interactions
between the two molecules.

As it emerges from RMSD and conserved contacts analysis, since
the undergone mutations make L-C-mut unsuitable for binding
CD71 interaction site, in MD theymove to find a different andmore
favourable conformation (see Supplementary Fig. 2 for a more
detailed analysis). Even if in most cases the interaction energies
between all ferritin and receptor residues are comparable, as
expected H-C-mut interact with CD71 having, on average, more
favorable energy than their counterparts.

Importantly, if the analysis is focused only on the binding site
(residues identified in Fig. 1), the difference becomes even clearer.
The H-C-mut are all characterized by favorable energies, at least of
2683
the same order than the wild type complex, while all the L-C-mut
exhibit unfavorable energies. This result confirms that in L-C-mut
the original binding site is completely disrupted, and it is not able
anymore to bind CD71, while H-C-mut energetically conserve (and
in some cases improve) their compatibility with CD71 interaction
site.

All these results highlight the reliability of the MC protocol
because the ferritin H-C-mut are designed to bind the CD71 bind-
ing site (with an increased complementarity with respect to the
wild type), while the Ferritin L-C-mut are designed to minimize
the possibility of interaction with the CD71 epitope.
3. Discussions

The importance of protein-protein interactions can hardly be
overestimated since they are involved in the majority of the cellu-
lar biochemical pathway. The right physiological form of binding
between proteins is guaranteed by a large set of concomitant fac-
tors (such as pH, cofactors, enzymes, . . .), but surely it is necessary
to have a favorable energetic interaction between the interface
residues. For these reasons, one of the most challenging tasks in
computational biology is the design of specific protein-protein
interactions with desired properties.

In a typical protein-protein interaction dozens of different resi-
dues are involved, on both sides of the interface, and the network
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of their interactions can not be easily analyzed. This notwithstand-
ing, in many cases even the substitution of a single amino acid is
enough to disrupt an association, and therefore many pathological
conditions are associated with a single mutation in a binding
region [60].

Dealing with all this complexity, in the last decades, much effort
has been addressed in the development of computational methods
for the prediction of mutation effects in a protein-protein interface
and, more ambitiously, for the design of protein mutants able to
improve (or to decrease) the affinity with its molecular partner.

Unfortunately, the protein-protein interfaces are composed by
many residues, each of which can in principle undergo a mutation
in one of the 19 different ones: it becomes evident that the space of
possible protein mutants is very large and the development of an
efficient method to explore a large number of possibilities is essen-
tial. For this reason, experimental blind site-directed mutagenesis
may require a significant amount of effort and time to scan.

Here we proposed a general and completely automated method,
based on the geometric and electrostatic complementarity and a
MC approach, for the identification of protein mutants that opti-
mize the compatibility with the molecular partner. Thanks to the
speed of computational mutagenesis and Zernike characterization,
we could explore a large portion of the possible mutants space,
reaching an optimal solution in terms of shape and electrostatic
complementarity (and with a limited number of mutations with
respect to the wild type).

We applied this protocol to the relevant case of the interaction
between Ferritin and Transferrin Receptor, obtaining Ferritin
mutants characterized selectively by increased or decreased com-
plementarity with Transferrin Receptor. These results might have
important bioengineering implications in developing alternative
ferritin-based agents.

Simulating these complexes in molecular dynamics we demon-
strate that high complementarity mutants exhibit higher partner
compatibility than their lower complementarity counterparts.

The method demonstrated capability in testing a very large set
of possible mutations, identifying the correct set of mutations able
to increase or decrease the molecular complementarity in a limited
amount of time, represent a new and very promising strategy for
the computational design of protein-protein interfaces. The possi-
ble applications of such an approach are numerous, from antibody
design to the optimization of inhibitors against pathogens.

4. Materials and methods

4.1. Surface construction

Starting from the experimental structure, the computational
mutagenesis has been performed using the SCWRL4 software [61].

In each step, atomic charges and radii were assigned using
PDB2PQR [62]. Solvent Accessible Surface and Electrostatic surface
potential are computed using Bluues software (with flags -srf and -
srfpot) [63]. Bluues uses a generalized Born (GB) models in order to
obtain the surface potential. We adopted Standard parameters:
inner dielectric constant 1.0, outer dielectric constant 78.54, tem-
perature 298.15 K, ionic strength 0.150 M. The surface points gen-
erated by each residue were associated with the mean electrostatic
potential of the examined residue. For protein structure manipula-
tion we used ‘geometry’ [64] and ‘Bio3D’ [65] packages available in
R.

4.2. The Zernike expansion

Once the molecular surface is built, through the voxelization
procedure, the surface shape and electrostatic characterization
can be represented as 3D functions [66]. In particular, the set of
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selected molecular surface points was scaled to the unit sphere
and placed into a 3D grid of dimension 1283. Voxelization was per-
formed differently for shape and electrostatics. In shape voxeliza-
tion, each voxel was set to 1 if the center of the voxel was closer
than 1.7 to any surface point, 0 otherwise. In electrostatic voxeliza-
tion, each voxel is labeled with the mean electrostatic value of the
points inside it. In this way we built the 3D functions associating
the x,y,z value to the 1-0 shape representation or to the mean elec-
trostatic potentials. The Zernike descriptors are obtained by
expanding the functions in the Zernike Polynomials basis, summa-
rizing the functions as an ordered set of Zernike descriptors.

In order to quantitatively describe a molecular surface region,
we use the Zernike polynomials expansion and the related
moments. Moment-based representations are a class of mathemat-
ical descriptors, originally utilized for 2D pattern recognition and
then extended to 3D [67,34,35].

A function representing a surface property f r; h;/ð Þ, defined in
the unit sphere, can be written as:

f r; h;/ð Þ ¼
X1
n¼0

Xn
l¼0

Xl

m¼�l

CnlmZ
m
nl r; h;/ð Þ ð5Þ

where the Zm
nl are the 3D Zernike polynomials, and the coefficients

Cnlm are the Zernike moments.
The Zernike polynomials are defined as:

Zm
nl r; h;/ð Þ ¼ Rnl rð ÞYm

l h;/ð Þ ð6Þ
where the Y functions are spherical harmonics of corresponding
indices depending on angular coordinates while R, depending only
on the radius r, is given by:

Rnl rð Þ ¼
Xn�lð Þ

2

k¼0

Nnlkrn�2k ð7Þ

where N is a normalization factor.
The accuracy of the description is modulated selecting the order

N at which the sum over n is truncated. In this work, we use N
= 20, corresponding to 121 coefficients for each function.

Indeed, the 3D Zernike Moments of a function f r; h;/ð Þ are
defined as:

Cnlm ¼
Z
jrj61

f rð ÞZm
nl r; h;/ð Þdr ð8Þ

where Z is the polynomial complex conjugate.
In order to obtain the descriptors, invariant under translation

and rotation, we compute the norm (the sum over the index m)
of the Zernike Moments. The 3D Zernike Descriptors (3DZD) are
defined as:

Dnl ¼ jjCnlmjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

m¼�l

Cnlmð Þ2
vuut : ð9Þ

A more complete description of the Zernike formalism can be
found here [68,69]. The calculation of the Zernike descriptors is
made using the python code described in Ref. [70].

4.3. Complementarity metrics of Zernike descriptors

We used the manhattan distance for the comparisons between
Zernike descriptors.

If T and V are 2 vectors of 121 components, the manhattan dis-
tance between them is:

Dist T;Vð Þ ¼
X121
i¼1

jTi � Vij ð10Þ
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Given 2 protein regions, A and B, when we analyze the comple-
mentarity between their Zernike descriptors we have:

DA�B
shape ¼ Dist Ashape;Bshape

� � ð11Þ

DA�B
elec ¼ Dist Aþ

elec;B
�
elec

� �þ Dist A�
elec;B

þ
elec

� �� �
2

ð12Þ

where Ashape;Bshape;A
þ
elec;B

þ
elec;A

�
elec;B

�
elec are, respectively, the shape,

the electrostatic positive potential, and the electrostatic negative
potential Zernike descriptors.

As said, the shape of 2 fitting surfaces is similar and therefore
the distance between the Zernike descriptors should be small. On
the other hand, in order to achieve a high electrostatic complemen-
tarity, the Zernike descriptors describing the positive potential of
one patch have to be similar to the negative potential ones of the
interacting patch (and vice versa).

High complementarity is achieved when the distance between
the corresponding descriptors are small.

4.4. Monte Carlo details

As described inMonte Carlo Procedure section, we perform 2 dif-
ferent Monte Carlo simulation types, one to increase and one to
decrease the complementarity.

When we deal with the complementarity increase, the potential
energy function is:

DE ¼ DCompshape þ aDCompelec þ cMnew �Mold½ �M2
new ð13Þ

where a ¼ 1
10 and c ¼ 1

2000. M is the number of the mutations with
respect to the wild type. The subscripts new and old refer to the
new and the last accepted mutation respectively. Each mutation is
accepted with the probability:

P ¼ 1 if DE < 0
e�bDE if DE P 0

�
ð14Þ

where b is the temperature factor. b values start from 75 and go to
600 with a jump of 75: each of 8 b value is maintained for 400 steps
for a total of 3200 steps.

When we deal with complementairty loss, the potential form is:

DE ¼ � DCompshape þ aDCompelec þ c Mnew �Mold½ �M3
new

� �
ð15Þ

and the acceptation probability is Eq. (14).

4.5. Molecular simulation

Starting from the cryo-EM structure (PDB id:6h5i), we simulate
the wild type complex between H-Ft and CD71, and then CD71 in
complex with both 10 high complementarity and 10 low comple-
mentarity mutants. For each of 21 complexes we minimized using
the steepest descent algorithm. We thus perform sequentially a
NVT and a NPT 100 ps long equilibration dynamics. Lastly we
run 100-ns long simulation using gromacs [71] with CHARMM
force field [72]. We adopted the Verlet cut-off scheme and the
particle-mesh Ewald algorithm. Each simulation has been carried
out with the interacting chain, i.e., one chain for CD71 and the unit
H-Ft dimer.

4.6. Software availability

The main software, performing the complete protocol for sur-
face optimization is available upon request. An amino acid substi-
tution with the relative Zernike calculation requires tens of second:
the time needed for the complete protocol application depends on
the system size and on the selected number of steps.
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