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Matrix functions play an important role in applied mathematics. In network analysis, in 
particular, the exponential of the adjacency matrix associated with a network provides 
valuable information about connectivity, as well as about the relative importance or 
centrality of nodes. Another popular approach to rank the nodes of a network is to 
compute the left Perron vector of the adjacency matrix for the network. The present 
article addresses the problem of evaluating matrix functions, as well as computing an 
approximation to the left Perron vector, when only some of the columns and/or some 
of the rows of the adjacency matrix are known. Applications to network analysis are 
considered, when only some sampled columns and/or rows of the adjacency matrix that 
defines the network are available. A sampling scheme that takes the connectivity of the 
network into account is described. Computed examples illustrate the performance of the 
methods discussed.

© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many problems in applied mathematics can be formulated and solved with the aid of matrix functions. This includes the 
solution of linear discrete ill-posed problems [7], the solution of time-dependent partial differential equations [12], and the 
determination of the most important node(s) of a network that is represented by a graph and its adjacency matrix [13,15]. 
Usually, all entries of the adjacency matrix are assumed to be known. This paper is concerned with the situation when 
only some columns, and/or rows, of the matrix are available. This situation arises, for instance, when one samples columns, 
and possibly rows, of a large matrix. We will consider applications in network analysis, where column and/or row sampling 
arises naturally in the process of collecting network data by accessing one node at a time and finding all the other nodes 
it is connected to. This is particularly important when it is too expensive or impractical to collect a full census of all the 
connections.

A network is represented by a graph G = {V , E}, which consists of a set V = {v j}n
j=1 of vertices or nodes, and a set 

E = {ek}m
k=1 of edges, the latter being the links between the vertices. Edges may be directed, in which case they emerge 

from a node and end at a node, or undirected. Undirected edges are “two-way streets” between nodes. For notational 
convenience and ease of discussion, we consider simple (directed or undirected) unweighted graphs G without self-loops. 
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Then the adjacency matrix A = [aij]n
i, j=1 ∈ Rn×n associated with the graph G has the entry aij = 1 if there is a directed 

edge emerging from vertex vi and ending at vertex v j ; if there is an undirected edge between the vertices vi and v j , 
then aij = a ji = 1. Other matrix entries vanish. In particular, the diagonal entries of A vanish. Typically, 1 ≤ m � n2, which 
makes the matrix A sparse. A graph is said to be undirected if all its edges are undirected, otherwise the graph is directed. 
The adjacency matrix for an undirected graph is symmetric; for a directed graph it is nonsymmetric. Examples of networks 
include:

• Flight networks, with airports represented by vertices and flights by directed edges.
• Social networking services, such as Facebook and Twitter, with members or accounts represented by vertices and inter-

actions between any two accounts by edges.

Numerous applications of networks are described in [9,14,27].
We are concerned with the situation when only some of the nodes and edges of a graph are known. Each node and its 

connections to other nodes determine one row and column of the matrix A. Specifically, all edges that point to node vi
determine column i of A, and all edges that emerge from this node define the ith row of A. We are interested in studying 
properties of networks associated with partially known adjacency matrices.

An important task in network analysis is to determine which vertices of an associated graph are the most important ones 
by measuring how well-connected they are to other vertices of the graph. This kind of importance measure often is referred 
to as a centrality measure. The choice of a suitable centrality measure depends on what the graph is modeling. All commonly 
used centrality measures ignore intrinsic properties of the vertices, and provide information about their importance within 
the graph just by using connectivity information.

A simple approach to measure the centrality of a vertex v j in a directed graph is to count the number of edges that point 
to it. This number is known as the indegree of v j . Similarly, the outdegree of v j is the number of edges that emerge from 
this vertex. For undirected graphs, the degree of a vertex is the number of edges that “touch” it. However, this approach 
to measure the centrality of a vertex often is unsatisfactory, because it ignores the importance of the vertices that v j
is connected to. Here we consider the computation of certain centrality indices quantifying the “importance” of a vertex 
on the basis of the importance of its neighbors, according to different criteria of propagation of the vertex importance. 
Such centrality indices are based on matrix functions of the adjacency matrix of the graph, and are usually called spectral 
centrality indices. In particular, we focus on the Katz index and the subgraph centrality index. Moreover, we also consider 
eigenvector centrality, that is, the Perron eigenvector of the adjacency matrix.

To discuss measures determined by matrix functions, we need the notion of a walk in a graph. A walk of length k is 
a sequence of k + 1 vertices vi1 , vi2 , . . . , vik+1 and a sequence of k edges e j1 , e j2 , . . . , e jk , such that e j� points from vi� to 
vi�+1 for � = 1, 2, . . . , k. The vertices and edges of a walk do not have to be distinct. It is a well known fact that [Ak]i j , i.e., 
the (i j)th entry of Ak , yields the number of walks of length k starting at node vi and ending at node v j . Thus, a matrix 
function evaluated at the adjacency matrix A, defined by a power series 

∑∞
k=0 αk Ak with nonnegative coefficients, can be 

interpreted as containing weighted sums of walk counts, with weights depending on the length of the walk. Unless A is 
nilpotent (i.e., the graph is directed and contains no cycles), convergence of the power series requires that the coefficients 
αk converge to zero; this corresponds well with the intuitively natural requirement that long walks be given less weight 
than short walks (which is the case in (1.1) and (1.2) below).

Commonly used matrix functions for measuring the centrality of the vertices of a graph are the exponential function 
exp(γe A) and the resolvent (I − γr A)−1, where γe and γr are positive user-chosen scaling parameters; see, e.g., [13]. These 
functions can be defined by their power series expansions

exp(γe A) = I + γe A + 1

2! (γe A)2 + 1

3! (γe A)3 + . . . , (1.1)

(I − γr A)−1 = I + γr A + (γr A)2 + (γr A)3 + . . . . (1.2)

For the resolvent, the parameter γr has to be chosen small enough so that the power series converges, which is the case 
when γr is strictly smaller than 1/ρ(A), where ρ(A) denotes the spectral radius of A.

Matrix functions f (A), such as (1.1) and (1.2), define several commonly used centrality measures: If f (A) = exp(A), then 
[ f (A)1]i is called the total subgraph communicability of node vi , while the diagonal matrix entry [ f (A)]ii is the subgraph 
centrality of node vi ; see, e.g., [2,13]. Moreover, if f (A) = (I − αA)−1, then [ f (A)1]i gives the Katz index of node vi ; see, 
e.g., [27, Chap. 7].

It may be beneficial to complement the centrality measures above by the measures [ f (AT )]ii and [ f (AT )1]i , i =
1, 2, . . . , n, when the graph G that defines A is directed. Here and below the superscript T denotes transposition; see, 
e.g., [2,11,13,14] for discussions on centrality measures defined by functions of the adjacency matrix.

We are interested in computing useful approximations of the largest diagonal entries of f (A), or the largest entry of 
f (A)1 or f (AT )1, when only 1 ≤ k � n of the columns and/or rows of A are known. The need to compute such approxi-
mations arises when the entire graph G is not completely known, but only a small subset of the columns or rows of the 
adjacency matrix A of G are available. This happens, e.g., when not all nodes and edges of a graph are known, a situation 
that is common for large, complex, real-life networks. The situation we will consider is when the columns and rows of the 
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adjacency matrix are not explicitly known, but can be sampled. It is then of considerable interest to investigate how the 
sampling should be carried out, as simple random sampling of columns and possibly rows of a large adjacency matrix does 
not give the best results. We will describe a sampling method in Section 2. A further reason for our interest in computing 
approximations of functions of a large matrix A, that only use a few of the columns and/or rows of the matrix, is that the 
evaluation of these approximations typically is much cheaper than the evaluation of functions of A.

Another approach to measure centrality is to compute a left or right eigenvector associated with the eigenvalue of largest 
magnitude of A. In many situations the entries of these eigenvectors live in a one-dimensional invariant subspace, have only 
nonvanishing entries, and can be scaled so that all entries are positive. The so-scaled eigenvectors are commonly referred 
to as the left and right Perron vectors for the adjacency matrix A. The left and right Perron vectors are unique up to 
scaling provided that the adjacency matrix is irreducible or, equivalently, if the associated graph is strongly connected. The 
centrality of a node is given by the relative size of its associated entry of the (left or right) Perron vector for the adjacency 
matrix. If the jth entry of the, say left, Perron vector is the largest, then v j is the most important vertex of the graph. 
This approach to determine node importance is known as eigenvector centrality or Bonacich centrality; see, e.g., [3,14,27] for 
discussions of this method. We will consider the application of this method to partially known adjacency matrices.

This paper is organized as follows. Section 2 discusses our sampling method for determining (partial) knowledge of the 
graph and its associated adjacency matrix. The evaluation of matrix functions of adjacency matrices that are only partially 
known is considered in Section 3, and Section 4 describes how an approximation of the left Perron vector of A can be 
computed quite inexpensively by using low-rank approximations determined by sampling. A few computed examples are 
presented in Section 5, and concluding remarks can be found in Section 6.

2. Sampling adjacency matrices

Let σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 be the singular values of a large matrix A ∈Rn×n and let, for some 1 ≤ k � n, u1, u2, . . . , uk

and v1, v2, . . . , vk be left and right singular (unit) vectors associated with the k largest singular values. Then the truncated 
singular value decomposition (TSVD)

A(k) =
k∑

j=1

σ ju jv
T
j , (2.1)

furnishes a best approximation of A of rank at most k with respect to the spectral and Frobenius matrix norms; see, e.g., 
[33]. However, the computation of the approximation (2.1) may be expensive when n is large and k is of moderate size. This 
limits the applicability of the TSVD-approximant (2.1). Moreover, the evaluation of this approximant requires that all entries 
of A be explicitly known.

As mentioned above, we are concerned with the situation when A is an adjacency matrix for a simple (directed or 
undirected) unweighted graph without self-loops and that, while the whole matrix is not known, we can sample a (relatively 
small) number of rows and columns. Then, approximations different from (2.1) have to be used. This section discusses 
methods to sample columns and/or rows of A. The low-rank approximations of A determined in this manner are used in 
Sections 3 and 4 to compute approximations of spectral node centralities.

In the first step, a random non-vanishing column of A is chosen. Let its index be j1, and denote the chosen column 
by c1. If the columns c1, . . . , ck have been chosen, corresponding to the indices j1, . . . , jk , at the next step we pick an 
index jk+1 according to a probability distribution on {1, . . . , n} proportional to c1 + · · · + ck . Thus, at the (k + 1)st step, the 
probability of choosing column i as the next sampled column is proportional to the number of edges in the network from 
node vi to nodes v j1 , . . . , v jk . At each step, if a column has already been picked, or the new column consists entirely of 
zeros, this choice is discarded and the procedure is repeated until a new, nonzero column ck+1 is obtained. We denote by 
J the set of indices of the chosen columns; using MATLAB notation, the matrix A(:, J ) is made up of the chosen columns of 
A. Another way of describing this sampling method is that we pick the first vertex at random, and then pick subsequent 
vertices randomly using a probability distribution proportional to c1 + · · · + ck .

We remark that this scheme for selecting columns can just as easily be used in the case when the edges have positive 
weights (that is, the nonzero entries of A may be positive numbers other than 1). Also, if a row-sampling scheme is needed, 
rows of the adjacency matrix A can be selected similarly by applying the above scheme to the columns of the matrix AT ; 
in this case we denote by I the set of row indices. The matrix A(I,:) ∈Rk×n contains the selected rows of A. By alternating 
column and row sampling, sets of columns and rows can be determined simultaneously.

The adaptive cross approximation method (ACA) applied to a matrix A also samples rows and columns to obtain an 
approximation of the whole matrix. In ACA, one uses the fact that the rows and columns of A(I,:) and A(:, J ) have common 
entries. These entries form the matrix A(I, J ) ∈Rk×k . When the latter matrix is nonsingular, the cross approximation of A is 
given by

Mk = A(:, J ) A−1
( J ,I) A(I,:); (2.2)

see [16,18,19,24] for details.
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Let σk+1 ≥ 0 be the (k + 1)st singular value of A. Then the matrix (2.1) satisfies ‖A − A(k)‖2 = σk+1, where ‖ · ‖2 denotes 
the spectral norm. Goreinov et al. [18] show that there is a matrix M∗

k of rank k, determined by cross approximation of A, 
such that

‖A − M∗
k ‖2 = O(σk+1

√
kn). (2.3)

Thus, cross approximation can determine a near-best approximation of A of rank k without computing the first k singular 
values and vectors of A.

However, the selection of columns and rows of A so that (2.3) holds is computationally difficult. In their analysis, Gor-
einov et al. [19] select sets I and J that give the submatrix A(I, J ) maximal “volume” (modulus of the determinant). It 
is difficult to compute these index sets in a fast manner. Therefore, other methods to select the sets I and J have been 
proposed; see, e.g., [16,24]. They are related to incomplete Gaussian elimination with complete pivoting. These methods 
work well when the matrix A is not very sparse. The adjacency matrices of concern in the present paper typically are quite 
sparse, and we found the sampling methods described in [16,24] often to give singular matrices A(I, J ) . This makes the use 
of adaptive cross approximation difficult. We therefore will not use the expression (2.2) in subsequent sections.

3. Functions of low-rank matrix approximations

This section discusses the approximation of functions f of a large matrix A ∈Rn×n that is only partially known. Specif-
ically, we assume that only 1 ≤ � � n columns of A are available, and we would like to determine an approximation of 
f (A). We will tacitly assume that the function f and matrix A are such that f (A) is well defined; see, e.g., [17,20] for 
several definitions of matrix functions. For the purpose of this paper, the definition of a matrix function by its power series 
expansion suffices; cf. (1.1) and (1.2). We first will assume that the matrix A is nonsymmetric. At the end of this section, 
we will address the situation when A is symmetric.

Let P ∈Rn×n be a permutation matrix such that the known columns of the matrix A P have indices 1, 2, . . . , �. Thus, the 
first columns of A P are c1, . . . , c� . Let ̃c j = P T c j for 1 ≤ j ≤ �. We first approximate P T A P by

A� = [̃c1, . . . , c̃�,0, . . . ,0︸ ︷︷ ︸
n−�

] (3.1)

Thus,

A� = P T A P

[
I� 0
0 0

]
≈ P T A P ,

and then approximate f (A) = P f (P T A P )P T by

f (A) ≈ P f (A�)P T . (3.2)

Hence, it suffices to consider the evaluation of f at an n ×n matrix, whose n −� last columns vanish. We will tacitly assume 
that f (A�) is well defined.

The computations simplify when f (0) = 0. We therefore will consider the functions

f (A�) = exp(γe A�) − I and f (A�) = (I − γr A�)
−1 − I. (3.3)

The subtraction of I in the above expressions generally is of no significance for the analysis of networks, because one 
typically is interested in the relative sizes of the diagonal entries of f (A�), or of the entries of the vectors f (A�)1 or 
f (AT

� )1.
The power series representations of the functions in (3.3),

f (A�) = c1 A� + c2 A2
� + . . . ,

show that only the first � columns of the matrix f (A�) contain nonvanishing entries.
Let v1 be a random unit vector (not belonging to span{c1, . . . , c�}). Application of � steps of the Arnoldi process to A�

with initial vector v1, generically, yields the Arnoldi decomposition

A�V�+1 = V�+1 H�+1, (3.4)

where H�+1 ∈ R(�+1)×(�+1) is an upper Hessenberg matrix and the matrix V�+1 ∈ Rn×(�+1) has orthonormal columns. The 
computation of the Arnoldi decomposition (3.4) requires the evaluation of � matrix-vector products with A� , which is 
quite inexpensive since A� has at most � nonvanishing columns. We assume that the decomposition (3.4) exists. This is the 
generic situation. Breakdown of the Arnoldi process, generically, occurs at step � +1; see Saad [30, Chapter 6] for a thorough 
discussion of the Arnoldi decomposition and its computation.
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Introduce the spectral factorization

H�+1 = S�+1��+1 S−1
�+1, (3.5)

which we tacitly assume to exist. This is the generic situation. Thus, the matrix ��+1 is diagonal; its diagonal entries 
are the eigenvalues of H�+1. We may assume that the eigenvalues are ordered by nonincreasing modulus. Then the last 
diagonal entry of ��+1 vanishes. It follows that the last column of the matrix S�+1 is an eigenvector that is associated with 
a vanishing eigenvalue. There may be other vanishing diagonal entries of ��+1 as well, but this will not be exploited. The 
situation when the factorization (3.5) does not exist can be handled as described by Pozza et al. [28].

We have

A�V�+1 S�+1 = V�+1 S�+1��+1.

The columns of V�+1 S�+1 are eigenvectors of A�. The last column of V�+1 S�+1 is an eigenvector that is associated with a 
vanishing eigenvalue.

Let w j = V�+1 S�+1e j , j = 1, 2, . . . , �, where e j denotes the jth column of an identity matrix of appropriate order. Then

Sn = [w1, . . . ,w�,e�+1, . . . ,en] ∈Rn×n

is an eigenvector matrix of A� , and

A� Sn = Sn

⎡
⎢⎢⎢⎣

��

0
. . .

0

⎤
⎥⎥⎥⎦ ,

where �� is the � × � leading principal submatrix of ��+1. Hence,

f (A�) = Sn f

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

��

0
. . .

0

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ S−1

n

= Sn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (λ1)

. . .

f (λ�)

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

S−1
n , (3.6)

where we have used the fact that f (0) = 0.
To evaluate the expression (3.6), it remains to determine the first � rows of S−1

n . This can be done with the aid of the 
Sherman–Morrison–Woodbury formulas [17, p. 65]. Define the matrix W = [w1, w2, . . . , w�] ∈ Rn×� and let In,� ∈ Rn×�

denote the leading n × � principal submatrix of the identity matrix I ∈ Rn×n . Then the first � rows of S−1
n are given by 

[(I�,n W )−1, 0�,n−�], and we can evaluate

f (A�) = W f (��)[(I�,n W )−1,0�,n−�], (3.7)

where 0�,n−� ∈R�×(n−�) denotes a matrix with only zero entries.
Our approximation of f (A) is given by P f (A�)P T . For a large matrix A, the computationally most expensive part of 

evaluating this approximation, when the matrix A� is available, is the computation of the Arnoldi decomposition (3.4), 
which requires O(n�2) arithmetic floating point operations.

We remark that for functions such that

f (A) = ( f (AT ))T , (3.8)

which includes the functions (1.1) and (1.2), we may instead sample rows of A, which are columns of AT , to determine 
an approximation of f (A) using the same approach as described above. We remark that equation (3.8) holds for all matrix 
functions f (A) that stem from a scalar function f (t) for t .

We turn to the situation when the matrix A ∈Rn×n is symmetric, and assume that 1 ≤ � � n of its columns are known. 
Let the permutation matrix P be the same as above. Then the first � rows and columns of the symmetric matrix A� = P T A P
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are available. Letting v1 be a random unit vector and applying � steps of the symmetric Lanczos process to A� with initial 
vector v1 gives, generically, the Lanczos decomposition

A�V�+1 = V�+1T�+1, (3.9)

where T�+1 ∈R(�+1)×(�+1) is a symmetric tridiagonal matrix and V�+1 ∈Rn×(�+1) has orthonormal columns. The computa-
tion of the decomposition (3.9) requires the evaluation of � matrix-vector products with A� . We assume � is small enough 
so that the decomposition (3.9) exists. Breakdown depends on the choice of v1. Typically this assumption is satisfied; other-
wise the computations can be modified. Breakdown of the symmetric Lanczos process, generically, occurs at step � + 1. We 
now can derive a representation of f (A�) of the form (3.6), making use of the spectral factorization of T�+1. The derivation 
in the present situation is analogous to the derivation of f (A�) in (3.6), with the difference that the eigenvector matrix S�

can be chosen to be orthogonal.

4. The computation of an approximate left Perron vector

Let A ∈ Rn×n be the adjacency matrix of a strongly connected graph. Then A has a unique left Perron vector 
y = [y1, y2, . . . , yn]T ∈ Rn of unit length with all entries positive. As mentioned above, the importance of vertex vi is 
proportional to yi . When the matrix A is nonsymmetric, the left Perron vector measures the centrality of the nodes as 
receivers; the right Perron vector yield the centrality of the nodes as transmitters.

Assume for the moment that the (unmodified) adjacency matrix A is nonsymmetric. We would like to determine an 
approximation of the left Perron vector by using a submatrix determined by sampling columns and rows as described 
in Section 2. Let the set J contain the � indices of the sampled columns of A. Thus, the matrix A(:, J ) ∈ Rn×n contains 
the sampled columns. Similarly, applying the same column sampling method to AT gives a set I of � indices; the matrix 
A(I,:) ∈ Rn×n contains the sampled rows. We will compute an approximation of the left Perron vector of A by applying 
the power method to the matrix M� = A(:, J ) A(I,:) , which approximates A2 (without explicitly forming M�). We instead also 
could have applied the power method to A(I,:) A(:, J ) . Since the matrix M� is not explicitly stored, the latter choice offers no 
advantage.

Possible nonunicity of the Perron vector and non-convergence of the power method can be remedied by adding a matrix 
E ∈Rn×n to M� , where all entries of E are equal to a small parameter ε > 0. The computations with the power method are 
carried out without explicitly storing the matrix E and forming M� + E . The iterations with the power method applied to 
M� + E are much cheaper than the iterations with the power method applied to A, when � � n. Moreover, our method does 
not require the whole matrix A to be explicitly known. In the computed examples reported in Section 5, we achieved fairly 
accurate rankings of the most important nodes without using the matrix E defined above. Moreover, we found that only 
fairly few rows and columns of A were needed to quite accurately determine the most important nodes in several “real” 
examples.

When the adjacency matrix A is symmetric, we propose to compute the Perron vector of the matrix M� = A(:, J ) A( J ,:) , 
which can be constructed by sampling the columns of A, only, to construct A(:, J ) , since A( J ,:) = AT

(:, J ) . Notice that for 
symmetric matrices the right and left Perron vectors are the same.

5. Computed examples

This section illustrates the performance of the methods discussed when applied to the ranking of nodes in several “real” 
large networks. All computations were carried out in MATLAB with standard IEEE754 machine arithmetic on a Microsoft 
Windows 10 computer with CPU Intel(R) Core(TM) i7-8550U @ 1.80 GHz, 4 Cores, 8 Logical Processors and 16 GB of RAM.

5.1. soc-Epinions1

The network of this example is a “web of trust” among members of the website Epinions.com. This network describes 
who-trusts-whom. Each user may decide to trust the reviews of other users or not. The users are represented by nodes. An 
edge from node vi to node v j indicates that user i trusts user j. The network is directed with 75,888 members (nodes) and 
508,837 trust connections (edges) [29,31]. We will illustrate that one can determine a fairly accurate ranking of the nodes 
by only using a fairly small number of columns of the nonsymmetric adjacency matrix A ∈Rn×n with n = 75888. The node 
centrality is determined by evaluating approximations of the diagonal entries of the matrix function f (A) = exp(A) − I .

We sample � � n columns of the adjacency matrix A using the method described in Section 2. The first column, c1, is 
a randomly chosen nonvanishing column of A; the remaining columns are chosen as described in Section 2. Once the �
columns of A have been chosen, we evaluate an approximation of f (A) as described in Section 3. The rankings obtained are 
displayed in Fig. 5.1; see below for a detailed description of this figure. When instead all columns of A are chosen randomly, 
then we obtain the rankings shown in Fig. 5.2. Computing times are reported in Table 5.1.

The exact ranking of the nodes of the network is difficult to determine due to the large size of the adjacency matrix. 
It is problematic to evaluate f (A) both because of the large amount of computational arithmetic required, and because 
of the large storage demand. While the matrix A is sparse, and therefore can be stored efficiently using a sparse storage 
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Fig. 5.1. soc-Epinions1: The top twenty ranked nodes using the diagonal of f (A) (2nd column), and rankings determined by the diagonals of f (A�) for 
� ∈ {500, 1000, 1500, 2000, 2500, 3000} for f (t) = exp(t) − 1. The columns of A are sampled as described in Section 2.

Table 5.1
soc-Epinions1. Computation time in sec-
onds. Average, max and min over 50 
runs.

� Mean Max Min

500 22.28 24.05 17.23
1000 85.28 93.33 74.20
1500 184.46 189.55 177.92
2000 336.34 477.35 323.31
2500 549.49 596.81 524.38
3000 753.24 810.85 721.24

Fig. 5.2. soc-Epinions1: The top twenty ranked nodes using the diagonal of f (A) (2nd column), and rankings determined by the diagonals of f (A�) for 
� ∈ {500, 1000, 1500, 2000, 2500, 3000} for f (t) = exp(t) − 1. The columns of A are sampled randomly.
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Fig. 5.3. ca-CondMat: The top twenty nodes determined by the diagonals of f (A�) for � ∈ {500, 1000, 1500, 2000, 2500, 3000} for f (t) = exp(t) − 1. The 
columns of A are sampled as described in Section 2.

format, the matrix f (A) is dense. In fact, the MATLAB function expm cannot be applied to evaluate exp(A) on the computer 
used for the numerical experiments. Instead, we apply the Arnoldi process to approximate f (A). Specifically, k steps of the 
Arnoldi process applied to A with a random unit initial vector generically gives the Arnoldi decomposition

AVk = Vk Hk + gkeT
k , (5.1)

where the matrix Vk ∈ Rn×k has orthonormal columns, Hk ∈ Rk×k is an upper Hessenberg matrix, and the vector gk ∈ Rn

is orthogonal to the columns of Vk . We then approximate f (A) by Vk f (Hk)V T
k ; see, e.g., [1,12] for discussions on the 

approximation of matrix function using the Arnoldi process. These computations were carried out for k = 4000, k = 6000, 
k = 8000, and k = 9000, and rankings diag(Vk f (Hk)V T

k ) for these k-values were determined. We found the rankings to 
converge as k increases. The ranking obtained for k = 9000 therefore is considered the “exact” ranking. It is shown in the 
second column of Fig. 5.1. Subsequent columns of this figure display rankings determined by the diagonal entries of f (A�)

for � = 500, 1000, 1500, 2000, 2500, and 3000, when the columns of A are sampled by the method of Section 2. Each 
column shows the top 20 ranked nodes. To make it easier for a reader to see the rankings, we use 4 colors, and 5 levels for 
each color. As we pick 500 columns of A, 9 of the top 20 ranked nodes are identified, but only the most important node 
(35) has the correct ranking. When � = 1000, the computed ranking improves somewhat. We are able to identify 11 out of 
top 20 nodes. As we sample more columns of A, we obtain improved rankings. For � = 3000, we are able to identify 17 of 
the 20 most important nodes, and the rankings get closer to the exact ranking. The figure illustrates that useful information 
about node centrality can be determined by sampling many fewer than n columns of A.

Fig. 5.2 differs from Fig. 5.1 in that the columns of the matrix A are randomly sampled. Comparing these figures shows 
the sampling method of Section 2 to yield rankings that are closer to the “exact ranking” of the second column for the same 
number of sampled columns.

5.2. ca-CondMat

This example illustrates the application of the technique of Section 3 to a symmetric partially known matrix. We consider 
a collaboration network from e-print arXiv. The 23,133 nodes of the associated graph represent authors. If author i co-
authored a paper with author j, then the graph has an undirected edge connecting the nodes vi and v j . The adjacency 
matrix A is symmetric with 186,936 non-zero entries [23,31]. Of the entries, 58 are on the diagonal. Since we are interested 
in graphs without self-loops, we set the latter entries to zero. We use the node centrality measure furnished by the diagonal 
of f (A) = exp(A) − I .

Fig. 5.3 shows results when using the sampling method described in Section 2 to choose � columns of the adjacency 
matrix A. Due to the symmetry of A, we also know � rows of A. The figure compares the ranking of the nodes using the 
diagonal of the matrix f (A) (which is the exact ranking) with the rankings determined by the diagonal entries of f (A�) for 
� ∈ {500, 1000, 1500, 2000, 2500, 3000}. The figure shows the top 20 ranked nodes determined by each matrix. For � = 500, 
a couple of the 20 most important nodes can be identified among the first 20 nodes, but their rankings are incorrect. The 
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Fig. 5.4. ca-CondMat: The top twenty nodes determined by the diagonals of f (A�) for � ∈ {500, 1000, 1500, 2000, 2500, 3000} for f (t) = exp(t) − 1. The 
columns of A are sampled randomly.

Table 5.2
ca-CondMat. Computation time in sec-
onds. Average, max and min over 100 
runs.

� Mean Max Min

500 0.89 1.02 0.76
1000 2.38 3.54 2.06
1500 4.61 7.66 3.55
2000 7.55 12.43 5.78
2500 10.87 19.45 8.45
3000 15.53 37.50 11.03

most important node (5013) is in the 13th position, and the second most important node (21052) is in the 3rd position. 
Increasing � to 1000 yields more accurate rankings. The most important nodes, i.e., (5013), (21052), and (18746), are ranked 
correctly. Increasing � further yields rankings that are closer to the “exact” ranking of the second column. For instance, 
� = 2000 identifies 19 of the 20 most important nodes, and 8 of them have the correct rank. The figure suggests that we 
may gain valuable insight into the ranking of the nodes by using fairly few columns (and rows) of the adjacency matrix, 
only. Computing times are shown in Table 5.2.

Fig. 5.4 differs from Fig. 5.3 in that the columns of the matrix A are randomly sampled. Comparing these figures shows 
that the sampling method of Section 2 gives rankings that are closer to the “exact ranking” of the second column for the 
same number of sampled columns.

5.3. Enron

This example illustrates the application of the method described in Section 4 to a nonsymmetric adjacency matrix. The 
network in this example is an e-mail exchange network, which represents e-mails (edges) sent between Enron employees 
(nodes). The associated graph is unweighted and directed with 69,244 nodes and 276,143 edges, including 1,535 self-loops. 
We removed the self-loops before running the experiment. This network has been studied in [10] and can be found at [32].

We choose � columns of the matrix A as described in Section 2 and put the indices of these columns in the index set J . 
Similarly, we select � columns of the matrix AT . The indices of these rows make up the set I . This determines the matrix 
M� = A(:, J ) A(I,:) ∈ Rn×n of rank at most �. We calculate an approximation of a left Perron vector of A by computing a left 
Perron vector of M�. The size of the entries of the Perron vectors determines the ranking.

The second column of Fig. 5.5 shows the “exact ranking” determined by a left Perron vector of A. The remaining columns 
show the rankings defined by Perron vectors of M� for � ∈ {500, 1000, 1500, 2000, 2500, 3000} with the sampling of the 
columns of A carried out as described in Section 2. The ranking determined by Perron vectors of M� gets closer to the exact 
ranking in the second column as � increases. When � = 500, we are able to identify 12 out of the 20 most important nodes, 
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Fig. 5.5. Enron: The top 20 ranked nodes given by the left Perron vector of A and of M� = A(:, J ) A(I,:) for � ∈ {500, 1000, 1500, 2000, 2500, 3000}. The 
columns of A are sampled as described in Section 2.

Fig. 5.6. Enron: The top 20 ranked nodes given by the left Perron vector of A and of M� = A(:, J ) A(I,:) for � ∈ {500, 1000, 1500, 2000, 2500, 3000}. The 
columns of A are sampled randomly.

but not in the correct order. The three most important nodes have the correct ranking for � ≥ 1000. When � ≥ 2000, we 
almost can identify all the 20 important nodes, because node (60606) is actually ranked 21st. Computing times are shown 
in Table 5.3.
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Table 5.3
Enron. Computation time in seconds. 
Average, max and min over 100 runs.

� Mean Max Min

500 0.21 0.37 0.11
1000 0.32 0.58 0.10
1500 0.38 0.66 0.10
2000 0.42 0.72 0.10
2500 0.42 0.84 0.11
3000 0.43 0.95 0.10

Fig. 5.7. Cond-mat-2005: The top 20 ranked nodes determined by the Perron vectors of A and of M� = A(:, J ) A( J ,:) for � ∈ {500,1000,1500,2000,2500,

3000}. The columns of A are sampled as described in Section 2.

Fig. 5.6 differs from Fig. 5.5 in that the columns of the matrix A are randomly sampled. These figures show that the 
sampling method of Section 2 gives rankings that are closer to the “exact ranking” of the second column for the same 
number of sampled columns.

5.4. Cond-mat-2005

The network in this example models a collaboration network of scientists posting preprints in the condensed matter 
archive at www.arxiv.org. It is discussed in [26] and can be found at [25]. We use an unweighted version of the network. 
The associated graph is undirected and has 40,421 nodes and 351,382 edges. We use the Perron vector as a centrality 
measure, and compare the node ranking using the Perron vector of A with the ranking determined by the Perron vector for 
the matrices M� = A(:, J ) A( J ,:) ∈ Rn×n for several �-values. The matrix A(:, J ) is determined as described in Section 2, and 
A( J ,:) is just AT

(:, J ) .
Fig. 5.7 shows the (exact) ranking obtained with the Perron vector for A (2nd column) and the rankings determined by 

the Perron vector for M�, for � ∈ {500, 1000, 1500, 2000, 2500, 3000}, when the columns of A are sampled as described in 
Section 2. We compare the ranking of the top 20 ranked nodes in these rankings. When � = 500, the two most important 
nodes are ranked correctly by using the Perron vector for M500. Moreover, 15 out of 20 top ranked nodes are identified, 
but their ranking is not correct. For � = 2000, the nine most important nodes are ranked correctly. Computing times are 
displayed in Table 5.4.

Fig. 5.8 differs from Fig. 5.7 in that the columns of the matrix A are randomly sampled. Clearly, the sampling method of 
Section 2 gives rankings that are closer to the “exact ranking” for the same number of sampled columns.

The above examples illustrate that valuable information about the ranking of nodes can be gained by sampling columns 
and rows of the adjacency matrix. The last two examples determine the left Perron vector. The most popular methods for 
computing this vector for a large adjacency matrix are the power method and enhanced variants of the power method that 

http://www.arxiv.org
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Fig. 5.8. Cond-mat-2005: The top 20 ranked nodes determined by the Perron vectors of A and of M� = A(:, J ) A( J ,:) for � ∈ {500, 1000, 1500, 2000, 2500,

3000}. The columns of A are sampled randomly.

Table 5.4
Cond-mat-2005. Computation time in 
seconds. Average, max and min over 
100 runs.

� Mean Max Min

500 0.08 0.13 0.03
1000 0.13 0.17 0.02
1500 0.16 0.24 0.03
2000 0.19 0.26 0.03
2500 0.21 0.25 0.03
3000 0.23 0.28 0.03

do not require much computer storage. These methods, of course, also can be applied to determine the left Perron vector of 
the matrices M� . It is outside the scope of the present paper to compare approaches to efficiently compute the left Perron 
vector. Extrapolation and other techniques for accelerating the power method are described in [4–6,8,21,22,34].

In our experience the sampling method described performs well on many “real” networks. However, one can construct 
networks for which sampling might not perform well. For instance, let G be an undirected graph made up of two large 
clusters with many edges between vertices in the same cluster, but only one edge between the clusters. The latter edge 
may be difficult to detect by sampling and the sampling method. The method therefore might only give results for edges 
in one of the clusters. We are presently investigating how the performance of the sampling method can be quantified. We 
would like to mention that the sampling method can be used to study various quantities of interest in network analysis, 
such as the total communicability [2].

6. Conclusion

In this work we have described novel methods for analyzing large networks in situations when not all of the adjacency 
matrix is available. This was done by evaluating matrix functions or computing approximations of the Perron vector of 
partially known matrices. In the computed examples, we considered the situation when only fairly small subsets of columns, 
or of rows, or both, are known.

There are two distinct advantages to the approaches developed here:

1. They are computationally much cheaper than the evaluation of matrix functions or the computation of the Perron vector 
of the entire matrix when the adjacency matrix is large.



M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105 105
2. The methods described correspond to a compelling sampling strategy when obtaining the full adjacency information of 
a network is prohibitively costly. In many realistic scenarios, the easiest way to collect information about a network is 
to access nodes (e.g., individuals) and interrogating them about the other nodes they are connected to. This version of 
sequential sampling is described in Section 2.

Finally, in order to illustrate the feasibility of our techniques, we have shown how to approximate well-known node 
centrality measures for large networks, obtaining quite good approximate node rankings, by using only a few columns and 
rows of the underlying adjacency matrix.
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