
Applied Numerical Mathematics 159 (2021) 93–105
Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Functions and eigenvectors of partially known matrices with

applications to network analysis

Mohammed Al Mugahwi a, Omar De la Cruz Cabrera a, Silvia Noschese b,∗,
Lothar Reichel a

a Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA
b Dipartimento di Matematica “Guido Castelnuovo”, SAPIENZA Università di Roma, P.le A. Moro, 2, I-00185 Roma, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 May 2020
Received in revised form 11 August 2020
Accepted 31 August 2020
Available online 3 September 2020

Keywords:
Matrix function
Arnoldi process
Low-rank approximation
Cross approximation
Column subset selection
Centrality measure

Matrix functions play an important role in applied mathematics. In network analysis, in
particular, the exponential of the adjacency matrix associated with a network provides
valuable information about connectivity, as well as about the relative importance or
centrality of nodes. Another popular approach to rank the nodes of a network is to
compute the left Perron vector of the adjacency matrix for the network. The present
article addresses the problem of evaluating matrix functions, as well as computing an
approximation to the left Perron vector, when only some of the columns and/or some
of the rows of the adjacency matrix are known. Applications to network analysis are
considered, when only some sampled columns and/or rows of the adjacency matrix that
defines the network are available. A sampling scheme that takes the connectivity of the
network into account is described. Computed examples illustrate the performance of the
methods discussed.

© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many problems in applied mathematics can be formulated and solved with the aid of matrix functions. This includes the
solution of linear discrete ill-posed problems [7], the solution of time-dependent partial differential equations [12], and the
determination of the most important node(s) of a network that is represented by a graph and its adjacency matrix [13,15].
Usually, all entries of the adjacency matrix are assumed to be known. This paper is concerned with the situation when
only some columns, and/or rows, of the matrix are available. This situation arises, for instance, when one samples columns,
and possibly rows, of a large matrix. We will consider applications in network analysis, where column and/or row sampling
arises naturally in the process of collecting network data by accessing one node at a time and finding all the other nodes
it is connected to. This is particularly important when it is too expensive or impractical to collect a full census of all the
connections.

A network is represented by a graph G = {V , E}, which consists of a set V = {v j}n
j=1 of vertices or nodes, and a set

E = {ek}m
k=1 of edges, the latter being the links between the vertices. Edges may be directed, in which case they emerge

from a node and end at a node, or undirected. Undirected edges are “two-way streets” between nodes. For notational
convenience and ease of discussion, we consider simple (directed or undirected) unweighted graphs G without self-loops.

* Corresponding author.
E-mail addresses: malmugah@kent.edu (M. Al Mugahwi), odelacru@kent.edu (O. De la Cruz Cabrera), noschese@mat.uniroma1.it (S. Noschese),

reichel@math.kent.edu (L. Reichel).
https://doi.org/10.1016/j.apnum.2020.08.020
0168-9274/© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2020.08.020&domain=pdf
mailto:malmugah@kent.edu
mailto:odelacru@kent.edu
mailto:noschese@mat.uniroma1.it
mailto:reichel@math.kent.edu
https://doi.org/10.1016/j.apnum.2020.08.020

94 M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105
Then the adjacency matrix A = [aij]n
i, j=1 ∈ Rn×n associated with the graph G has the entry aij = 1 if there is a directed

edge emerging from vertex vi and ending at vertex v j ; if there is an undirected edge between the vertices vi and v j ,
then aij = a ji = 1. Other matrix entries vanish. In particular, the diagonal entries of A vanish. Typically, 1 ≤ m � n2, which
makes the matrix A sparse. A graph is said to be undirected if all its edges are undirected, otherwise the graph is directed.
The adjacency matrix for an undirected graph is symmetric; for a directed graph it is nonsymmetric. Examples of networks
include:

• Flight networks, with airports represented by vertices and flights by directed edges.
• Social networking services, such as Facebook and Twitter, with members or accounts represented by vertices and inter-

actions between any two accounts by edges.

Numerous applications of networks are described in [9,14,27].
We are concerned with the situation when only some of the nodes and edges of a graph are known. Each node and its

connections to other nodes determine one row and column of the matrix A. Specifically, all edges that point to node vi
determine column i of A, and all edges that emerge from this node define the ith row of A. We are interested in studying
properties of networks associated with partially known adjacency matrices.

An important task in network analysis is to determine which vertices of an associated graph are the most important ones
by measuring how well-connected they are to other vertices of the graph. This kind of importance measure often is referred
to as a centrality measure. The choice of a suitable centrality measure depends on what the graph is modeling. All commonly
used centrality measures ignore intrinsic properties of the vertices, and provide information about their importance within
the graph just by using connectivity information.

A simple approach to measure the centrality of a vertex v j in a directed graph is to count the number of edges that point
to it. This number is known as the indegree of v j . Similarly, the outdegree of v j is the number of edges that emerge from
this vertex. For undirected graphs, the degree of a vertex is the number of edges that “touch” it. However, this approach
to measure the centrality of a vertex often is unsatisfactory, because it ignores the importance of the vertices that v j
is connected to. Here we consider the computation of certain centrality indices quantifying the “importance” of a vertex
on the basis of the importance of its neighbors, according to different criteria of propagation of the vertex importance.
Such centrality indices are based on matrix functions of the adjacency matrix of the graph, and are usually called spectral
centrality indices. In particular, we focus on the Katz index and the subgraph centrality index. Moreover, we also consider
eigenvector centrality, that is, the Perron eigenvector of the adjacency matrix.

To discuss measures determined by matrix functions, we need the notion of a walk in a graph. A walk of length k is
a sequence of k + 1 vertices vi1 , vi2 , . . . , vik+1 and a sequence of k edges e j1 , e j2 , . . . , e jk , such that e j� points from vi� to
vi�+1 for � = 1, 2, . . . , k. The vertices and edges of a walk do not have to be distinct. It is a well known fact that [Ak]i j , i.e.,
the (i j)th entry of Ak , yields the number of walks of length k starting at node vi and ending at node v j . Thus, a matrix
function evaluated at the adjacency matrix A, defined by a power series

∑∞
k=0 αk Ak with nonnegative coefficients, can be

interpreted as containing weighted sums of walk counts, with weights depending on the length of the walk. Unless A is
nilpotent (i.e., the graph is directed and contains no cycles), convergence of the power series requires that the coefficients
αk converge to zero; this corresponds well with the intuitively natural requirement that long walks be given less weight
than short walks (which is the case in (1.1) and (1.2) below).

Commonly used matrix functions for measuring the centrality of the vertices of a graph are the exponential function
exp(γe A) and the resolvent (I − γr A)−1, where γe and γr are positive user-chosen scaling parameters; see, e.g., [13]. These
functions can be defined by their power series expansions

exp(γe A) = I + γe A + 1

2! (γe A)2 + 1

3! (γe A)3 + . . . , (1.1)

(I − γr A)−1 = I + γr A + (γr A)2 + (γr A)3 + (1.2)

For the resolvent, the parameter γr has to be chosen small enough so that the power series converges, which is the case
when γr is strictly smaller than 1/ρ(A), where ρ(A) denotes the spectral radius of A.

Matrix functions f (A), such as (1.1) and (1.2), define several commonly used centrality measures: If f (A) = exp(A), then
[f (A)1]i is called the total subgraph communicability of node vi , while the diagonal matrix entry [f (A)]ii is the subgraph
centrality of node vi ; see, e.g., [2,13]. Moreover, if f (A) = (I − αA)−1, then [f (A)1]i gives the Katz index of node vi ; see,
e.g., [27, Chap. 7].

It may be beneficial to complement the centrality measures above by the measures [f (AT)]ii and [f (AT)1]i , i =
1, 2, . . . , n, when the graph G that defines A is directed. Here and below the superscript T denotes transposition; see,
e.g., [2,11,13,14] for discussions on centrality measures defined by functions of the adjacency matrix.

We are interested in computing useful approximations of the largest diagonal entries of f (A), or the largest entry of
f (A)1 or f (AT)1, when only 1 ≤ k � n of the columns and/or rows of A are known. The need to compute such approxi-
mations arises when the entire graph G is not completely known, but only a small subset of the columns or rows of the
adjacency matrix A of G are available. This happens, e.g., when not all nodes and edges of a graph are known, a situation
that is common for large, complex, real-life networks. The situation we will consider is when the columns and rows of the

M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105 95
adjacency matrix are not explicitly known, but can be sampled. It is then of considerable interest to investigate how the
sampling should be carried out, as simple random sampling of columns and possibly rows of a large adjacency matrix does
not give the best results. We will describe a sampling method in Section 2. A further reason for our interest in computing
approximations of functions of a large matrix A, that only use a few of the columns and/or rows of the matrix, is that the
evaluation of these approximations typically is much cheaper than the evaluation of functions of A.

Another approach to measure centrality is to compute a left or right eigenvector associated with the eigenvalue of largest
magnitude of A. In many situations the entries of these eigenvectors live in a one-dimensional invariant subspace, have only
nonvanishing entries, and can be scaled so that all entries are positive. The so-scaled eigenvectors are commonly referred
to as the left and right Perron vectors for the adjacency matrix A. The left and right Perron vectors are unique up to
scaling provided that the adjacency matrix is irreducible or, equivalently, if the associated graph is strongly connected. The
centrality of a node is given by the relative size of its associated entry of the (left or right) Perron vector for the adjacency
matrix. If the jth entry of the, say left, Perron vector is the largest, then v j is the most important vertex of the graph.
This approach to determine node importance is known as eigenvector centrality or Bonacich centrality; see, e.g., [3,14,27] for
discussions of this method. We will consider the application of this method to partially known adjacency matrices.

This paper is organized as follows. Section 2 discusses our sampling method for determining (partial) knowledge of the
graph and its associated adjacency matrix. The evaluation of matrix functions of adjacency matrices that are only partially
known is considered in Section 3, and Section 4 describes how an approximation of the left Perron vector of A can be
computed quite inexpensively by using low-rank approximations determined by sampling. A few computed examples are
presented in Section 5, and concluding remarks can be found in Section 6.

2. Sampling adjacency matrices

Let σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 be the singular values of a large matrix A ∈Rn×n and let, for some 1 ≤ k � n, u1, u2, . . . , uk

and v1, v2, . . . , vk be left and right singular (unit) vectors associated with the k largest singular values. Then the truncated
singular value decomposition (TSVD)

A(k) =
k∑

j=1

σ ju jv
T
j , (2.1)

furnishes a best approximation of A of rank at most k with respect to the spectral and Frobenius matrix norms; see, e.g.,
[33]. However, the computation of the approximation (2.1) may be expensive when n is large and k is of moderate size. This
limits the applicability of the TSVD-approximant (2.1). Moreover, the evaluation of this approximant requires that all entries
of A be explicitly known.

As mentioned above, we are concerned with the situation when A is an adjacency matrix for a simple (directed or
undirected) unweighted graph without self-loops and that, while the whole matrix is not known, we can sample a (relatively
small) number of rows and columns. Then, approximations different from (2.1) have to be used. This section discusses
methods to sample columns and/or rows of A. The low-rank approximations of A determined in this manner are used in
Sections 3 and 4 to compute approximations of spectral node centralities.

In the first step, a random non-vanishing column of A is chosen. Let its index be j1, and denote the chosen column
by c1. If the columns c1, . . . , ck have been chosen, corresponding to the indices j1, . . . , jk , at the next step we pick an
index jk+1 according to a probability distribution on {1, . . . , n} proportional to c1 + · · · + ck . Thus, at the (k + 1)st step, the
probability of choosing column i as the next sampled column is proportional to the number of edges in the network from
node vi to nodes v j1 , . . . , v jk . At each step, if a column has already been picked, or the new column consists entirely of
zeros, this choice is discarded and the procedure is repeated until a new, nonzero column ck+1 is obtained. We denote by
J the set of indices of the chosen columns; using MATLAB notation, the matrix A(:, J) is made up of the chosen columns of
A. Another way of describing this sampling method is that we pick the first vertex at random, and then pick subsequent
vertices randomly using a probability distribution proportional to c1 + · · · + ck .

We remark that this scheme for selecting columns can just as easily be used in the case when the edges have positive
weights (that is, the nonzero entries of A may be positive numbers other than 1). Also, if a row-sampling scheme is needed,
rows of the adjacency matrix A can be selected similarly by applying the above scheme to the columns of the matrix AT ;
in this case we denote by I the set of row indices. The matrix A(I,:) ∈Rk×n contains the selected rows of A. By alternating
column and row sampling, sets of columns and rows can be determined simultaneously.

The adaptive cross approximation method (ACA) applied to a matrix A also samples rows and columns to obtain an
approximation of the whole matrix. In ACA, one uses the fact that the rows and columns of A(I,:) and A(:, J) have common
entries. These entries form the matrix A(I, J) ∈Rk×k . When the latter matrix is nonsingular, the cross approximation of A is
given by

Mk = A(:, J) A−1
(J ,I) A(I,:); (2.2)

see [16,18,19,24] for details.

96 M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105
Let σk+1 ≥ 0 be the (k + 1)st singular value of A. Then the matrix (2.1) satisfies ‖A − A(k)‖2 = σk+1, where ‖ · ‖2 denotes
the spectral norm. Goreinov et al. [18] show that there is a matrix M∗

k of rank k, determined by cross approximation of A,
such that

‖A − M∗
k ‖2 = O(σk+1

√
kn). (2.3)

Thus, cross approximation can determine a near-best approximation of A of rank k without computing the first k singular
values and vectors of A.

However, the selection of columns and rows of A so that (2.3) holds is computationally difficult. In their analysis, Gor-
einov et al. [19] select sets I and J that give the submatrix A(I, J) maximal “volume” (modulus of the determinant). It
is difficult to compute these index sets in a fast manner. Therefore, other methods to select the sets I and J have been
proposed; see, e.g., [16,24]. They are related to incomplete Gaussian elimination with complete pivoting. These methods
work well when the matrix A is not very sparse. The adjacency matrices of concern in the present paper typically are quite
sparse, and we found the sampling methods described in [16,24] often to give singular matrices A(I, J) . This makes the use
of adaptive cross approximation difficult. We therefore will not use the expression (2.2) in subsequent sections.

3. Functions of low-rank matrix approximations

This section discusses the approximation of functions f of a large matrix A ∈Rn×n that is only partially known. Specif-
ically, we assume that only 1 ≤ � � n columns of A are available, and we would like to determine an approximation of
f (A). We will tacitly assume that the function f and matrix A are such that f (A) is well defined; see, e.g., [17,20] for
several definitions of matrix functions. For the purpose of this paper, the definition of a matrix function by its power series
expansion suffices; cf. (1.1) and (1.2). We first will assume that the matrix A is nonsymmetric. At the end of this section,
we will address the situation when A is symmetric.

Let P ∈Rn×n be a permutation matrix such that the known columns of the matrix A P have indices 1, 2, . . . , �. Thus, the
first columns of A P are c1, . . . , c� . Let ̃c j = P T c j for 1 ≤ j ≤ �. We first approximate P T A P by

A� = [̃c1, . . . , c̃�,0, . . . ,0︸ ︷︷ ︸
n−�

] (3.1)

Thus,

A� = P T A P

[
I� 0
0 0

]
≈ P T A P ,

and then approximate f (A) = P f (P T A P)P T by

f (A) ≈ P f (A�)P T . (3.2)

Hence, it suffices to consider the evaluation of f at an n ×n matrix, whose n −� last columns vanish. We will tacitly assume
that f (A�) is well defined.

The computations simplify when f (0) = 0. We therefore will consider the functions

f (A�) = exp(γe A�) − I and f (A�) = (I − γr A�)
−1 − I. (3.3)

The subtraction of I in the above expressions generally is of no significance for the analysis of networks, because one
typically is interested in the relative sizes of the diagonal entries of f (A�), or of the entries of the vectors f (A�)1 or
f (AT

�)1.
The power series representations of the functions in (3.3),

f (A�) = c1 A� + c2 A2
� + . . . ,

show that only the first � columns of the matrix f (A�) contain nonvanishing entries.
Let v1 be a random unit vector (not belonging to span{c1, . . . , c�}). Application of � steps of the Arnoldi process to A�

with initial vector v1, generically, yields the Arnoldi decomposition

A�V�+1 = V�+1 H�+1, (3.4)

where H�+1 ∈ R(�+1)×(�+1) is an upper Hessenberg matrix and the matrix V�+1 ∈ Rn×(�+1) has orthonormal columns. The
computation of the Arnoldi decomposition (3.4) requires the evaluation of � matrix-vector products with A� , which is
quite inexpensive since A� has at most � nonvanishing columns. We assume that the decomposition (3.4) exists. This is the
generic situation. Breakdown of the Arnoldi process, generically, occurs at step � +1; see Saad [30, Chapter 6] for a thorough
discussion of the Arnoldi decomposition and its computation.

M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105 97
Introduce the spectral factorization

H�+1 = S�+1��+1 S−1
�+1, (3.5)

which we tacitly assume to exist. This is the generic situation. Thus, the matrix ��+1 is diagonal; its diagonal entries
are the eigenvalues of H�+1. We may assume that the eigenvalues are ordered by nonincreasing modulus. Then the last
diagonal entry of ��+1 vanishes. It follows that the last column of the matrix S�+1 is an eigenvector that is associated with
a vanishing eigenvalue. There may be other vanishing diagonal entries of ��+1 as well, but this will not be exploited. The
situation when the factorization (3.5) does not exist can be handled as described by Pozza et al. [28].

We have

A�V�+1 S�+1 = V�+1 S�+1��+1.

The columns of V�+1 S�+1 are eigenvectors of A�. The last column of V�+1 S�+1 is an eigenvector that is associated with a
vanishing eigenvalue.

Let w j = V�+1 S�+1e j , j = 1, 2, . . . , �, where e j denotes the jth column of an identity matrix of appropriate order. Then

Sn = [w1, . . . ,w�,e�+1, . . . ,en] ∈Rn×n

is an eigenvector matrix of A� , and

A� Sn = Sn

⎡
⎢⎢⎢⎣

��

0
. . .

0

⎤
⎥⎥⎥⎦ ,

where �� is the � × � leading principal submatrix of ��+1. Hence,

f (A�) = Sn f

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

��

0
. . .

0

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ S−1

n

= Sn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (λ1)

. . .

f (λ�)

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

S−1
n , (3.6)

where we have used the fact that f (0) = 0.
To evaluate the expression (3.6), it remains to determine the first � rows of S−1

n . This can be done with the aid of the
Sherman–Morrison–Woodbury formulas [17, p. 65]. Define the matrix W = [w1, w2, . . . , w�] ∈ Rn×� and let In,� ∈ Rn×�

denote the leading n × � principal submatrix of the identity matrix I ∈ Rn×n . Then the first � rows of S−1
n are given by

[(I�,n W)−1, 0�,n−�], and we can evaluate

f (A�) = W f (��)[(I�,n W)−1,0�,n−�], (3.7)

where 0�,n−� ∈R�×(n−�) denotes a matrix with only zero entries.
Our approximation of f (A) is given by P f (A�)P T . For a large matrix A, the computationally most expensive part of

evaluating this approximation, when the matrix A� is available, is the computation of the Arnoldi decomposition (3.4),
which requires O(n�2) arithmetic floating point operations.

We remark that for functions such that

f (A) = (f (AT))T , (3.8)

which includes the functions (1.1) and (1.2), we may instead sample rows of A, which are columns of AT , to determine
an approximation of f (A) using the same approach as described above. We remark that equation (3.8) holds for all matrix
functions f (A) that stem from a scalar function f (t) for t .

We turn to the situation when the matrix A ∈Rn×n is symmetric, and assume that 1 ≤ � � n of its columns are known.
Let the permutation matrix P be the same as above. Then the first � rows and columns of the symmetric matrix A� = P T A P

98 M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105
are available. Letting v1 be a random unit vector and applying � steps of the symmetric Lanczos process to A� with initial
vector v1 gives, generically, the Lanczos decomposition

A�V�+1 = V�+1T�+1, (3.9)

where T�+1 ∈R(�+1)×(�+1) is a symmetric tridiagonal matrix and V�+1 ∈Rn×(�+1) has orthonormal columns. The computa-
tion of the decomposition (3.9) requires the evaluation of � matrix-vector products with A� . We assume � is small enough
so that the decomposition (3.9) exists. Breakdown depends on the choice of v1. Typically this assumption is satisfied; other-
wise the computations can be modified. Breakdown of the symmetric Lanczos process, generically, occurs at step � + 1. We
now can derive a representation of f (A�) of the form (3.6), making use of the spectral factorization of T�+1. The derivation
in the present situation is analogous to the derivation of f (A�) in (3.6), with the difference that the eigenvector matrix S�

can be chosen to be orthogonal.

4. The computation of an approximate left Perron vector

Let A ∈ Rn×n be the adjacency matrix of a strongly connected graph. Then A has a unique left Perron vector
y = [y1, y2, . . . , yn]T ∈ Rn of unit length with all entries positive. As mentioned above, the importance of vertex vi is
proportional to yi . When the matrix A is nonsymmetric, the left Perron vector measures the centrality of the nodes as
receivers; the right Perron vector yield the centrality of the nodes as transmitters.

Assume for the moment that the (unmodified) adjacency matrix A is nonsymmetric. We would like to determine an
approximation of the left Perron vector by using a submatrix determined by sampling columns and rows as described
in Section 2. Let the set J contain the � indices of the sampled columns of A. Thus, the matrix A(:, J) ∈ Rn×n contains
the sampled columns. Similarly, applying the same column sampling method to AT gives a set I of � indices; the matrix
A(I,:) ∈ Rn×n contains the sampled rows. We will compute an approximation of the left Perron vector of A by applying
the power method to the matrix M� = A(:, J) A(I,:) , which approximates A2 (without explicitly forming M�). We instead also
could have applied the power method to A(I,:) A(:, J) . Since the matrix M� is not explicitly stored, the latter choice offers no
advantage.

Possible nonunicity of the Perron vector and non-convergence of the power method can be remedied by adding a matrix
E ∈Rn×n to M� , where all entries of E are equal to a small parameter ε > 0. The computations with the power method are
carried out without explicitly storing the matrix E and forming M� + E . The iterations with the power method applied to
M� + E are much cheaper than the iterations with the power method applied to A, when � � n. Moreover, our method does
not require the whole matrix A to be explicitly known. In the computed examples reported in Section 5, we achieved fairly
accurate rankings of the most important nodes without using the matrix E defined above. Moreover, we found that only
fairly few rows and columns of A were needed to quite accurately determine the most important nodes in several “real”
examples.

When the adjacency matrix A is symmetric, we propose to compute the Perron vector of the matrix M� = A(:, J) A(J ,:) ,
which can be constructed by sampling the columns of A, only, to construct A(:, J) , since A(J ,:) = AT

(:, J) . Notice that for
symmetric matrices the right and left Perron vectors are the same.

5. Computed examples

This section illustrates the performance of the methods discussed when applied to the ranking of nodes in several “real”
large networks. All computations were carried out in MATLAB with standard IEEE754 machine arithmetic on a Microsoft
Windows 10 computer with CPU Intel(R) Core(TM) i7-8550U @ 1.80 GHz, 4 Cores, 8 Logical Processors and 16 GB of RAM.

5.1. soc-Epinions1

The network of this example is a “web of trust” among members of the website Epinions.com. This network describes
who-trusts-whom. Each user may decide to trust the reviews of other users or not. The users are represented by nodes. An
edge from node vi to node v j indicates that user i trusts user j. The network is directed with 75,888 members (nodes) and
508,837 trust connections (edges) [29,31]. We will illustrate that one can determine a fairly accurate ranking of the nodes
by only using a fairly small number of columns of the nonsymmetric adjacency matrix A ∈Rn×n with n = 75888. The node
centrality is determined by evaluating approximations of the diagonal entries of the matrix function f (A) = exp(A) − I .

We sample � � n columns of the adjacency matrix A using the method described in Section 2. The first column, c1, is
a randomly chosen nonvanishing column of A; the remaining columns are chosen as described in Section 2. Once the �
columns of A have been chosen, we evaluate an approximation of f (A) as described in Section 3. The rankings obtained are
displayed in Fig. 5.1; see below for a detailed description of this figure. When instead all columns of A are chosen randomly,
then we obtain the rankings shown in Fig. 5.2. Computing times are reported in Table 5.1.

The exact ranking of the nodes of the network is difficult to determine due to the large size of the adjacency matrix.
It is problematic to evaluate f (A) both because of the large amount of computational arithmetic required, and because
of the large storage demand. While the matrix A is sparse, and therefore can be stored efficiently using a sparse storage

M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105 99
Fig. 5.1. soc-Epinions1: The top twenty ranked nodes using the diagonal of f (A) (2nd column), and rankings determined by the diagonals of f (A�) for
� ∈ {500, 1000, 1500, 2000, 2500, 3000} for f (t) = exp(t) − 1. The columns of A are sampled as described in Section 2.

Table 5.1
soc-Epinions1. Computation time in sec-
onds. Average, max and min over 50
runs.

� Mean Max Min

500 22.28 24.05 17.23
1000 85.28 93.33 74.20
1500 184.46 189.55 177.92
2000 336.34 477.35 323.31
2500 549.49 596.81 524.38
3000 753.24 810.85 721.24

Fig. 5.2. soc-Epinions1: The top twenty ranked nodes using the diagonal of f (A) (2nd column), and rankings determined by the diagonals of f (A�) for
� ∈ {500, 1000, 1500, 2000, 2500, 3000} for f (t) = exp(t) − 1. The columns of A are sampled randomly.

100 M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105
Fig. 5.3. ca-CondMat: The top twenty nodes determined by the diagonals of f (A�) for � ∈ {500, 1000, 1500, 2000, 2500, 3000} for f (t) = exp(t) − 1. The
columns of A are sampled as described in Section 2.

format, the matrix f (A) is dense. In fact, the MATLAB function expm cannot be applied to evaluate exp(A) on the computer
used for the numerical experiments. Instead, we apply the Arnoldi process to approximate f (A). Specifically, k steps of the
Arnoldi process applied to A with a random unit initial vector generically gives the Arnoldi decomposition

AVk = Vk Hk + gkeT
k , (5.1)

where the matrix Vk ∈ Rn×k has orthonormal columns, Hk ∈ Rk×k is an upper Hessenberg matrix, and the vector gk ∈ Rn

is orthogonal to the columns of Vk . We then approximate f (A) by Vk f (Hk)V T
k ; see, e.g., [1,12] for discussions on the

approximation of matrix function using the Arnoldi process. These computations were carried out for k = 4000, k = 6000,
k = 8000, and k = 9000, and rankings diag(Vk f (Hk)V T

k) for these k-values were determined. We found the rankings to
converge as k increases. The ranking obtained for k = 9000 therefore is considered the “exact” ranking. It is shown in the
second column of Fig. 5.1. Subsequent columns of this figure display rankings determined by the diagonal entries of f (A�)

for � = 500, 1000, 1500, 2000, 2500, and 3000, when the columns of A are sampled by the method of Section 2. Each
column shows the top 20 ranked nodes. To make it easier for a reader to see the rankings, we use 4 colors, and 5 levels for
each color. As we pick 500 columns of A, 9 of the top 20 ranked nodes are identified, but only the most important node
(35) has the correct ranking. When � = 1000, the computed ranking improves somewhat. We are able to identify 11 out of
top 20 nodes. As we sample more columns of A, we obtain improved rankings. For � = 3000, we are able to identify 17 of
the 20 most important nodes, and the rankings get closer to the exact ranking. The figure illustrates that useful information
about node centrality can be determined by sampling many fewer than n columns of A.

Fig. 5.2 differs from Fig. 5.1 in that the columns of the matrix A are randomly sampled. Comparing these figures shows
the sampling method of Section 2 to yield rankings that are closer to the “exact ranking” of the second column for the same
number of sampled columns.

5.2. ca-CondMat

This example illustrates the application of the technique of Section 3 to a symmetric partially known matrix. We consider
a collaboration network from e-print arXiv. The 23,133 nodes of the associated graph represent authors. If author i co-
authored a paper with author j, then the graph has an undirected edge connecting the nodes vi and v j . The adjacency
matrix A is symmetric with 186,936 non-zero entries [23,31]. Of the entries, 58 are on the diagonal. Since we are interested
in graphs without self-loops, we set the latter entries to zero. We use the node centrality measure furnished by the diagonal
of f (A) = exp(A) − I .

Fig. 5.3 shows results when using the sampling method described in Section 2 to choose � columns of the adjacency
matrix A. Due to the symmetry of A, we also know � rows of A. The figure compares the ranking of the nodes using the
diagonal of the matrix f (A) (which is the exact ranking) with the rankings determined by the diagonal entries of f (A�) for
� ∈ {500, 1000, 1500, 2000, 2500, 3000}. The figure shows the top 20 ranked nodes determined by each matrix. For � = 500,
a couple of the 20 most important nodes can be identified among the first 20 nodes, but their rankings are incorrect. The

M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105 101
Fig. 5.4. ca-CondMat: The top twenty nodes determined by the diagonals of f (A�) for � ∈ {500, 1000, 1500, 2000, 2500, 3000} for f (t) = exp(t) − 1. The
columns of A are sampled randomly.

Table 5.2
ca-CondMat. Computation time in sec-
onds. Average, max and min over 100
runs.

� Mean Max Min

500 0.89 1.02 0.76
1000 2.38 3.54 2.06
1500 4.61 7.66 3.55
2000 7.55 12.43 5.78
2500 10.87 19.45 8.45
3000 15.53 37.50 11.03

most important node (5013) is in the 13th position, and the second most important node (21052) is in the 3rd position.
Increasing � to 1000 yields more accurate rankings. The most important nodes, i.e., (5013), (21052), and (18746), are ranked
correctly. Increasing � further yields rankings that are closer to the “exact” ranking of the second column. For instance,
� = 2000 identifies 19 of the 20 most important nodes, and 8 of them have the correct rank. The figure suggests that we
may gain valuable insight into the ranking of the nodes by using fairly few columns (and rows) of the adjacency matrix,
only. Computing times are shown in Table 5.2.

Fig. 5.4 differs from Fig. 5.3 in that the columns of the matrix A are randomly sampled. Comparing these figures shows
that the sampling method of Section 2 gives rankings that are closer to the “exact ranking” of the second column for the
same number of sampled columns.

5.3. Enron

This example illustrates the application of the method described in Section 4 to a nonsymmetric adjacency matrix. The
network in this example is an e-mail exchange network, which represents e-mails (edges) sent between Enron employees
(nodes). The associated graph is unweighted and directed with 69,244 nodes and 276,143 edges, including 1,535 self-loops.
We removed the self-loops before running the experiment. This network has been studied in [10] and can be found at [32].

We choose � columns of the matrix A as described in Section 2 and put the indices of these columns in the index set J .
Similarly, we select � columns of the matrix AT . The indices of these rows make up the set I . This determines the matrix
M� = A(:, J) A(I,:) ∈ Rn×n of rank at most �. We calculate an approximation of a left Perron vector of A by computing a left
Perron vector of M�. The size of the entries of the Perron vectors determines the ranking.

The second column of Fig. 5.5 shows the “exact ranking” determined by a left Perron vector of A. The remaining columns
show the rankings defined by Perron vectors of M� for � ∈ {500, 1000, 1500, 2000, 2500, 3000} with the sampling of the
columns of A carried out as described in Section 2. The ranking determined by Perron vectors of M� gets closer to the exact
ranking in the second column as � increases. When � = 500, we are able to identify 12 out of the 20 most important nodes,

102 M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105
Fig. 5.5. Enron: The top 20 ranked nodes given by the left Perron vector of A and of M� = A(:, J) A(I,:) for � ∈ {500, 1000, 1500, 2000, 2500, 3000}. The
columns of A are sampled as described in Section 2.

Fig. 5.6. Enron: The top 20 ranked nodes given by the left Perron vector of A and of M� = A(:, J) A(I,:) for � ∈ {500, 1000, 1500, 2000, 2500, 3000}. The
columns of A are sampled randomly.

but not in the correct order. The three most important nodes have the correct ranking for � ≥ 1000. When � ≥ 2000, we
almost can identify all the 20 important nodes, because node (60606) is actually ranked 21st. Computing times are shown
in Table 5.3.

M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105 103
Table 5.3
Enron. Computation time in seconds.
Average, max and min over 100 runs.

� Mean Max Min

500 0.21 0.37 0.11
1000 0.32 0.58 0.10
1500 0.38 0.66 0.10
2000 0.42 0.72 0.10
2500 0.42 0.84 0.11
3000 0.43 0.95 0.10

Fig. 5.7. Cond-mat-2005: The top 20 ranked nodes determined by the Perron vectors of A and of M� = A(:, J) A(J ,:) for � ∈ {500,1000,1500,2000,2500,

3000}. The columns of A are sampled as described in Section 2.

Fig. 5.6 differs from Fig. 5.5 in that the columns of the matrix A are randomly sampled. These figures show that the
sampling method of Section 2 gives rankings that are closer to the “exact ranking” of the second column for the same
number of sampled columns.

5.4. Cond-mat-2005

The network in this example models a collaboration network of scientists posting preprints in the condensed matter
archive at www.arxiv.org. It is discussed in [26] and can be found at [25]. We use an unweighted version of the network.
The associated graph is undirected and has 40,421 nodes and 351,382 edges. We use the Perron vector as a centrality
measure, and compare the node ranking using the Perron vector of A with the ranking determined by the Perron vector for
the matrices M� = A(:, J) A(J ,:) ∈ Rn×n for several �-values. The matrix A(:, J) is determined as described in Section 2, and
A(J ,:) is just AT

(:, J) .
Fig. 5.7 shows the (exact) ranking obtained with the Perron vector for A (2nd column) and the rankings determined by

the Perron vector for M�, for � ∈ {500, 1000, 1500, 2000, 2500, 3000}, when the columns of A are sampled as described in
Section 2. We compare the ranking of the top 20 ranked nodes in these rankings. When � = 500, the two most important
nodes are ranked correctly by using the Perron vector for M500. Moreover, 15 out of 20 top ranked nodes are identified,
but their ranking is not correct. For � = 2000, the nine most important nodes are ranked correctly. Computing times are
displayed in Table 5.4.

Fig. 5.8 differs from Fig. 5.7 in that the columns of the matrix A are randomly sampled. Clearly, the sampling method of
Section 2 gives rankings that are closer to the “exact ranking” for the same number of sampled columns.

The above examples illustrate that valuable information about the ranking of nodes can be gained by sampling columns
and rows of the adjacency matrix. The last two examples determine the left Perron vector. The most popular methods for
computing this vector for a large adjacency matrix are the power method and enhanced variants of the power method that

http://www.arxiv.org

104 M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105
Fig. 5.8. Cond-mat-2005: The top 20 ranked nodes determined by the Perron vectors of A and of M� = A(:, J) A(J ,:) for � ∈ {500, 1000, 1500, 2000, 2500,

3000}. The columns of A are sampled randomly.

Table 5.4
Cond-mat-2005. Computation time in
seconds. Average, max and min over
100 runs.

� Mean Max Min

500 0.08 0.13 0.03
1000 0.13 0.17 0.02
1500 0.16 0.24 0.03
2000 0.19 0.26 0.03
2500 0.21 0.25 0.03
3000 0.23 0.28 0.03

do not require much computer storage. These methods, of course, also can be applied to determine the left Perron vector of
the matrices M� . It is outside the scope of the present paper to compare approaches to efficiently compute the left Perron
vector. Extrapolation and other techniques for accelerating the power method are described in [4–6,8,21,22,34].

In our experience the sampling method described performs well on many “real” networks. However, one can construct
networks for which sampling might not perform well. For instance, let G be an undirected graph made up of two large
clusters with many edges between vertices in the same cluster, but only one edge between the clusters. The latter edge
may be difficult to detect by sampling and the sampling method. The method therefore might only give results for edges
in one of the clusters. We are presently investigating how the performance of the sampling method can be quantified. We
would like to mention that the sampling method can be used to study various quantities of interest in network analysis,
such as the total communicability [2].

6. Conclusion

In this work we have described novel methods for analyzing large networks in situations when not all of the adjacency
matrix is available. This was done by evaluating matrix functions or computing approximations of the Perron vector of
partially known matrices. In the computed examples, we considered the situation when only fairly small subsets of columns,
or of rows, or both, are known.

There are two distinct advantages to the approaches developed here:

1. They are computationally much cheaper than the evaluation of matrix functions or the computation of the Perron vector
of the entire matrix when the adjacency matrix is large.

M. Al Mugahwi et al. / Applied Numerical Mathematics 159 (2021) 93–105 105
2. The methods described correspond to a compelling sampling strategy when obtaining the full adjacency information of
a network is prohibitively costly. In many realistic scenarios, the easiest way to collect information about a network is
to access nodes (e.g., individuals) and interrogating them about the other nodes they are connected to. This version of
sequential sampling is described in Section 2.

Finally, in order to illustrate the feasibility of our techniques, we have shown how to approximate well-known node
centrality measures for large networks, obtaining quite good approximate node rankings, by using only a few columns and
rows of the underlying adjacency matrix.

Acknowledgement

The authors would like to thank Giuseppe Rodriguez and the anonymous referees for comments and suggestions.

References

[1] B. Beckermann, L. Reichel, Error estimation and evaluation of matrix functions via the Faber transform, SIAM J. Numer. Anal. 47 (2009) 3849–3883.
[2] M. Benzi, C. Klymko, Total communicability as a centrality measure, J. Complex Netw. 1 (2013) 124–149.
[3] P.F. Bonacich, Power and centrality: a family of measures, Am. J. Sociol. 92 (1987) 1170–1182.
[4] C. Brezinski, M. Redivo–Zaglia, Rational extrapolation for the PageRank vector, Math. Comput. 77 (2008) 1585–1598.
[5] C. Brezinski, M. Redivo–Zaglia, The simplified topological ε-algorithms for accelerating sequences in a vector space, SIAM J. Sci. Comput. 36 (2014)

A2227–A2247.
[6] C. Brezinski, M. Redivo–Zaglia, The genesis and early developments of Aitken’s process, Shanks’ transformation, the ε-algorithm, and related fixed point

methods, Numer. Algorithms 80 (2019) 11–133.
[7] D. Calvetti, L. Reichel, Lanczos-based exponential filtering for discrete ill-posed problems, Numer. Algorithms 29 (2002) 45–65.
[8] S. Cipolla, M. Redivo-Zaglia, F. Tudisco, Shifted and extrapolated power methods for tensor �p-eigenpairs, Electron. Trans. Numer. Anal. 53 (2020) 1–27.
[9] J.J. Crofts, E. Estrada, D.J. Higham, A. Taylor, Mapping directed networks, Electron. Trans. Numer. Anal. 37 (2010) 337–350.

[10] A. Cruciani, D. Pasquini, G. Amati, P. Vocca, About Graph Index Compression Techniques, Proceedings of the 10th Italian Information Retrieval, in:
Workshop (IIR-2019), Padua, Italy, September 16–18, 2019, CEUR-WS.org/Vol-2441/paper23.pdf.

[11] O. De la Cruz Cabrera, M. Matar, L. Reichel, Analysis of directed networks via the matrix exponential, J. Comput. Appl. Math. 355 (2019) 182–192.
[12] V. Druskin, L. Knizhnerman, M. Zaslavsky, Solution of large scale evolutionary problems using rational Krylov subspaces with optimized shifts, SIAM J.

Sci. Comput. 31 (2009) 3760–3780.
[13] E. Estrada, D.J. Higham, Network properties revealed through matrix functions, SIAM Rev. 52 (2010) 696–714.
[14] E. Estrada, The Structure of Complex Networks, Oxford University Press, Oxford, 2012.
[15] C. Fenu, D. Martin, L. Reichel, G. Rodriguez, Block Gauss and anti-Gauss quadrature with application to networks, SIAM J. Matrix Anal. Appl. 34 (2013)

1655–1684.
[16] K. Frederix, M. Van Barel, Solving a large dense linear system by adaptive cross approximation, J. Comput. Appl. Math. 234 (2010) 3181–3195.
[17] G.H. Golub, C.F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, Baltimore, 2013.
[18] S.A. Goreinov, E.E. Tyrtyshnikov, N.L. Zamarashkin, A theory of pseudo-skeleton approximation, Linear Algebra Appl. 261 (1997) 1–21.
[19] S.A. Goreinov, E.E. Tyrtyshnikov, N.L. Zamarashkin, Pseudo-skeleton approximations by matrices of maximal volume, Math. Notes 62 (1997) 515–519.
[20] N.J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
[21] K. Jbilou, H. Sadok, LU-implementation of the modified minimal polynomial extrapolation method, IMA J. Numer. Anal. 19 (1999) 549–561.
[22] K. Jbilou, H. Sadok, Vector extrapolation methods. Applications and numerical comparison, J. Comput. Appl. Math. 122 (2000) 149–165.
[23] J. Leskovec, J. Kleinberg, C. Faloutsos, Graph evaluation: densification and shrinking diameters, ACM Trans. Knowl. Discov. Data 1 (1) (2007) 1–41, Art. 2.
[24] T. Mach, L. Reichel, M. Van Barel, R. Vandebril, Adaptive cross approximation for ill-posed problems, J. Comput. Appl. Math. 303 (2016) 206–217.
[25] M.E.J. Newman, Network data, http://www-personal .umich .edu /~mejn /netdata/.
[26] M.E.J. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA 98 (2001) 404–409.
[27] M.E.J. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010.
[28] S. Pozza, M.S. Pranić, A. Strakoš, The Lanczos algorithm and complex Gauss quadrature, Electron. Trans. Numer. Anal. 48 (2018) 362–372.
[29] M. Richardson, R. Agrawal, P. Domingos, Trust management for the semantic web, in: D. Fensel, K. Sycara, J. Mylopoulos (Eds.), The Semantic Web –

ISWC 2003, in: Lecture Notes in Computer Science, vol. 2870, Springer, Berlin, 2003, pp. 351–368.
[30] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[31] Stanford Large Network Dataset Collection, http://snap .stanford .edu /data /index .html.
[32] SuiteSparse Matrix Collection, https://sparse .tamu .edu.
[33] L.N. Trefethen, D. Bau III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[34] G. Wu, Y. Zhang, Y. Wei, Accelerating the Arnoldi-type algorithm for the PageRank problem and the ProteinRank problem, J. Sci. Comput. 57 (2013)

74–104.

http://refhub.elsevier.com/S0168-9274(20)30255-5/bib19D3326F3137CBADD21CE901A9BED4A7s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib3B16C9D4C4C856CE7FFF405E3B6C43ABs1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bibB0D8913D4DFB85C2325C0773FF52AE98s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bibC8F8C5E65D2F2A0DE72E51A47CED49F6s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bibFD15F1BB2434AD8D79D7A3F9985D215Es1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bibFD15F1BB2434AD8D79D7A3F9985D215Es1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib769CB2AB65A674EAA6E5B3DC10C9E02Bs1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib769CB2AB65A674EAA6E5B3DC10C9E02Bs1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib1D7B33FC26CA22C2011AAA97FECC43D8s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib49BD403B3F11FB3762109BF7347672A0s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib70E31B382DAEEFCE60556C2902759D88s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bibADF2ED765A083C8306BFFED6728F4CE3s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bibFBCD8E00E8C6422105556F07C20562B0s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bibFBCD8E00E8C6422105556F07C20562B0s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib088A2013906137902C9832D2F5A3A940s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib8CE893DC4532DA0C649CE57BF8C9B312s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib9D12A813C72864BA162B6780210B6500s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib9D12A813C72864BA162B6780210B6500s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib68C409A0128E9DFBAFCA51CE9D5B2A45s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib59050B2F3FC9F63D6B69E94D633AD302s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bibAF1FFE5D55155E099EB5F15A15CE4D78s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib8A561386DAD6CAA93AE9A6243517CB8Cs1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bibC1A5298F939E87E8F962A5EDFC206918s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib5BC06F5800D415CC95E1349EDBACA425s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib4A3C86CE1C13EBCE4376B42121EFD981s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib94ED28D4C364DA6B9AC7CDAACCDCA2D9s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib750BE2F217A3FDEE33C0DABA99B538FCs1
http://www-personal.umich.edu/~mejn/netdata/
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib8D9C307CB7F3C4A32822A51922D1CEAAs1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bibCBBDAD57E46519868265583B7EFBD9F3s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib1C319B3F8C6D3297EAB099E1EE0E930Bs1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib64E4E8FFE6F9D616FAE3D4723626EFE4s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib64E4E8FFE6F9D616FAE3D4723626EFE4s1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bibE55BB1AE59B6A64858A85A2F48C53036s1
http://snap.stanford.edu/data/index.html
https://sparse.tamu.edu
http://refhub.elsevier.com/S0168-9274(20)30255-5/bibFF88442A425C06D961F97BCCB11DDF5Ds1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib594BD72AE5019F9042FF2A3F3935258As1
http://refhub.elsevier.com/S0168-9274(20)30255-5/bib594BD72AE5019F9042FF2A3F3935258As1

	Functions and eigenvectors of partially known matrices with applications to network analysis
	1 Introduction
	2 Sampling adjacency matrices
	3 Functions of low-rank matrix approximations
	4 The computation of an approximate left Perron vector
	5 Computed examples
	5.1 soc-Epinions1
	5.2 ca-CondMat
	5.3 Enron
	5.4 Cond-mat-2005

	6 Conclusion
	Acknowledgement
	References

