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A major goal of modern cosmology is the detection of B-modes in the cosmic microwave background
polarization originated from primordial gravitational waves. Their detection not only could provide
substantial evidence for primordial inflation but also could shed light on its physical nature. Under the
assumption of single-field slow-roll inflation, a set of conditions exist for the scalar and tensor parameters.
In particular, given a constraint on the scalar spectral index ns, its running αs, its running of running βs, and
the tensor-to-scalar ratio r, constraints can be derived on the tensor spectral index nt, its running αt, its
running of running βt, and its running of running of running γt. Using current bounds from the Planck 2015
and BICEP2 datasets and under the slow condition we found the following constraints at 95% C.L.:
nt > −0.0157, αt ¼ −0.00018þ0.00019

−0.00024 , βt ¼ 0.00004þ0.00022
−0.00013 , and γt ¼ 0.00017þ0.00040

−0.00019 . Future measure-
ments of the tensor spectrum could therefore be used to test these bounds and the slow-roll condition.
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I. INTRODUCTION

The detection of B-modes in the cosmic microwave
background (CMB) polarization angular spectra represents
one of the primary goals of modern cosmology. B-modes
on large angular scales1 are indeed produced by the
presence of primordial gravitational waves, and their
detection can, therefore, provide evidence, albeit indirect,
for their existence (see e.g., [1–4]). Several inflationary
models, indeed, predict a sizable background of primordial
gravitational waves, and its detection could therefore also
prove significant information on the physics of inflation
(see e.g., [5] for a recent review) and more (see e.g., [6]).
Analyses of the most recent CMB data have provided no

evidence for large-scale B-modes and bounded the tensor
contribution to r0.002 < 0.064 at 95% C.L. where r0.002 is
the tensor-over-scalar ratio at spatial wavelength of k ¼
0.002 Mpc−1 [7]. In performing this kind of analysis, it is
assumed that the tensor fluctuations follow a primordial
spectrum of a power law form as

PtðkÞ ¼ Atknt ; ð1Þ

where At is the primordial tensor amplitude and nt is the
tensor spectral index assumed as scale independent.

In most of the recent analyses, the consistency relation
nt ¼ −r=8 (see e.g., [8,9] and references therein) motivated
by standard slow-roll single field inflation is further
assumed, leaving r as a single free parameter. However,
Eq. (1) is clearly an approximation since nt is scale
dependent and a further parametrization that includes a
running and a running of running of tensor modes could be
considered.
In this paper we indeed consider a broader set of

inflationary parameters, we derive relations between these
parameters that are valid under the slow-roll condition,2 and
we finally compare these relations with current observa-
tions. In the next section we describe the inflationary
parameters considered, and we show the relevant equations
that connect them under the slow-roll condition. In Sec. III
we describe our analysis method. In Sec. IV we discuss our
results, and in Sec. V we present our conclusions.

II. INFLATIONARY PARAMETERS

As stated in the Introduction, in this section we are going
to derive some consistency relations among the inflationary
parameters that must be satisfied by every single field slow-
roll inflation model. We will first derive three consistency
relations among the scalar and tensor spectral parameters of
interest for our analysis, but then we will also generalize
our results to higher order parameters proving that, for the
single field slow-roll inflationary models, one can obtain as
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1On smaller angular scales gravitational lensing from the

intervening dark matter fluctuations generates B-modes at later
epochs. Several experiments have already detected these modes.

2There are several inflationary models that do not satisfy the
slow-roll condition; see e.g., [10].

PHYSICAL REVIEW D 99, 123522 (2019)

2470-0010=2019=99(12)=123522(16) 123522-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.123522&domain=pdf&date_stamp=2019-06-19
https://doi.org/10.1103/PhysRevD.99.123522
https://doi.org/10.1103/PhysRevD.99.123522
https://doi.org/10.1103/PhysRevD.99.123522
https://doi.org/10.1103/PhysRevD.99.123522


many consistency relations as he wants. However, before
deriving these relations, we introduce the following
extended parametrization for the primordial spectra of
scalar and tensor perturbations:

PsðkÞ ¼ AS

�
k
k�

�
ns−1þ1

2
αs log ðk=k�Þþ1

6
βsðlog ðk=k�ÞÞ2

; ð2Þ

PtðkÞ ¼ At

�
k
k�

�
ntþ1

2
αt log ðk=k�Þþ1

6
βtðlog ðk=k�ÞÞ2

; ð3Þ

where As (At) is the scalar (tensor) amplitude, ns (nt) is the
scalar (tensor) spectral index while αs (αt) and βs (βt)
are the scalar (tensor) spectral index running and the
running of running, respectively. The spectral parameters
are defined as

ns − 1 ¼ d logPs

d log k

����
k¼k�

; ð4Þ

nt ¼
d logPt

d log k

����
k¼k�

; ð5Þ

αs;t ¼
dns;t
d log k

����
k¼k�

; ð6Þ

βs;t ¼
dαs;t
d log k

����
k¼k�

: ð7Þ

In this work all these relations are to be considered
calculated at the pivot scale k� ¼ 0.05 Mpc−1, unless
otherwise stated.

A. Consistency relations

One of the most interesting aspects of the inflation theory
[11–24] is that, in the framework of the single field slow-
roll approximation [25–28], from the theory of the quantum
inflationary fluctuations [29–45], one can calculate the
primordial spectra predicted by inflation3 to obtain

Ps ¼
�

1

8π2M2
p

��
H2

ϵ1

�
¼

�
1

12π2M6
p

��
V3

V2
ϕ

�
; ð8Þ

Pt ¼
�

2

π2M2
p

�
H2 ¼

�
2

3π3M4
p

�
V; ð9Þ

where V is the potential of the inflaton scalar field ϕ, Vϕ

indicates the derivative with respect to ϕ, and ϵ1 is the first

Hubble parameter (See Table I). Since in the slow-roll limit
the logarithm derivative4 d

d ln k ¼ − d
dN ¼ 1

H
d
dt can be written

in terms of Vϕ as d
d ln k ≈ −M2

p
Vϕ

V
d
dϕ, the scalar and tensor

spectral parameters can be calculated in terms of the slow-
roll parameters ϵV , ηV , ξ2V , and ϖ3

V defined in Table I. For
the scalar parameters we have [47]

ns − 1 ¼ 2ηV − 6ϵV; ð10Þ

αs ¼ þ16ϵVηV − 24ϵ2V − 2ξ2V; ð11Þ

TABLE I. Conventions and definitions.

Parameter Definition

Inflation physics
ϕ Inflaton field
VðϕÞ Inflaton potential
a Scale factor
Xϕ Partial derivative with respect to ϕ
Mp Reduced Planck mass

(¼2.435 × 1018 GeV)
N ¼ −Hdt Number of e-folding

ϵV ¼ M2
plV

2
ϕ

2V2

First slow-roll parameter for VðϕÞ

ηV ¼ M2
plVϕϕ

V
Second slow-roll parameter for VðϕÞ

ξ2V ¼ M4
plVϕVϕϕϕ

V2

Third slow-roll parameter for VðϕÞ

ϖ3
V ¼ M6

plV
2
ϕVϕϕϕϕ

V3

Fourth slow-roll parameter for VðϕÞ
ϵ1 ¼ − _H

H2 ¼ − 1
2

d logðH2Þ
d log k

First Hubble parameter

ϵn ¼ d logðϵn−1Þ
d log k

nth Hubble parameter

ΛCDM model
Ωbh2 Baryon energy density
Ωch2 Cold dark matter energy density
θMC Angular size of the horizon at the last

scattering surface
τ Optical depth
logð1010AsÞ Amplitude of primordial scalar

perturbation
ns ¼ d logPs=d log k Scalar spectral index

Other inflationary parameters
αs ¼ dns=d log k Scalar spectral index running
βs ¼ dαs=d log k Scalar spectral index running of

running
r ¼ Pt=Ps Tensor-to-scalar ratio
nt ¼ d logPt=d log k Tensor spectral index
αt ¼ dnt=d log k Tensor spectral index running
βt ¼ dαt=d log k Tensor spectral index running of

running
γt ¼ dβt=d log k Tensor spectral index running of

running of running

3We are considering the curvature perturbation to be generated
by the quantum fluctuations of a slowly rolling inflaton field.
Other different theories predict curvature perturbations generated
by quantum fluctuations of fields that have nothing to do with the
inflation; see e.g., [46].

4We are at the horizon crossing where k ¼ aH and therefore
d log k ¼ d log aþ d logH ¼ Hdtþ _H

H dt ≈Hdt ¼ −dN by the
slow-roll condition _H

H ≪ 1.
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βs ¼ −192ϵ3V þ 192ϵ2VηV − 32ϵVη
2
V − 24ϵVξ

2
V

þ 2ηVξ
2
V þ 2ϖ3

V: ð12Þ

On the other hand, for the tensor parameters we obtain

nt ¼ −2ϵV; ð13Þ

αt ¼ þ4ϵVηV − 8ϵ2V; ð14Þ

βt ¼ −64ϵ3V − 8ϵVη
2
V − 4ϵVξ

2
V þ 56ϵ2VηV: ð15Þ

Once again, all these equations have to be considered
evaluated when the inflaton field ϕ ¼ ϕ⋆ where the mode
crosses the Hubble radius for the first time: k⋆ ¼ a⋆H⋆.
The single field slow-roll paradigm implies the following

well known consistency relation [8,9,48–54]:

r≡ Ptðk�Þ
Psðk�Þ

¼ −8nt: ð16Þ

Two other interesting consistency relations can easily be
obtained reversing Eqs. (13), (14), and (15) and finding
the expressions of the slow-roll parameters in terms of
the tensor parameters: ϵV ¼ − 1

2
nt, ηV ¼ −nt − 1

2
αt
nt
, and

ξ2V ¼ n2t þ 3
2
αt − 1

2
ðαtntÞ2 þ 1

2
ðβtntÞ. Substituting these relations

into Eqs. (10) and (11), it is easy to find the following
relations among scalar and tensor parameters (see e.g., [9]):

αt ¼ n2t − ntðns − 1Þ; ð17Þ

βt ¼ ntðαt − αsÞ þ
α2t
nt

: ð18Þ

Using the consistency relation (16), one can see that all the
tensor spectral parameters can be expressed in terms of the
tensor-to-scalar ratio r, the spectral index ns, and the scalar
running αs as follows:

nt ¼ −
r
8
; ð19Þ

αt ¼
r
8
ðns − 1Þ þ r2

64
; ð20Þ

βt ¼
r
8
½αs − ðns − 1Þ2� − 3r2

64
ðns − 1Þ − r3

256
: ð21Þ

B. Higher order generalization

The previous consistency relations can be derived in a
more elegant way using a slightly different version of the
slow-roll parameters that we may call Hubble parameters,
fϵ1 � � � ϵng defined in such a way that

ϵ1 ¼ −
1

2

d logðH2Þ
d log k

¼ −
_H
H2

;

ϵ2 ¼
1

ϵ1

dϵ1
d log k

¼ d logðϵ1Þ
d log k

;

� � �

ϵn ¼
d logðϵn−1Þ
d log k

: ð22Þ

Using these parameters we can prove a quite general result:
in the single field slow-roll inflation, if we fix the scalar

parameters up to the scalar running dn−1ns
dðlog kÞn−1, we immedi-

ately fix all the tensor spectral parameters up to the tensor
running dnnt

dðlog kÞn proving that, for the single field slow-roll

inflation, one can obtain as many relations as one wants.
The scalar and tensor spectral indices can easily be
calculated in terms of the Hubble parameters (22):

ns − 1 ¼ d logPs

d log k
¼ d logH2

d log k
−
d log ϵ1
d log k

¼ −2ϵ1 − ϵ2;

ð23Þ

nt ¼
d logPt

d log k
¼ d logH2

d log k
¼ −2ϵ1: ð24Þ

It is therefore easy to convince yourself that in the scalar
case the first n scalar parameters will be (regular) functions
of the first nþ 1 Hubble parameters:

ns − 1 ¼ −2ϵ1 − ϵ2 ≡ f1ðϵ1; ϵ2Þ;
dns

d log k
≡ αs ¼ −2ϵ1ϵ2 − ϵ2ϵ3 ≡ f2ðϵ1; ϵ2; ϵ3Þ;

d2ns
dðlog kÞ2 ≡ βs ¼ −2ϵ1ϵ22 − 2ϵ1ϵ2ϵ3 − ϵ2ϵ

2
3 − ϵ2ϵ3ϵ4 ≡ f3ðϵ1; ϵ2; ϵ3; ϵ4Þ;

� � �
dn−1ns

dðlog kÞn−1 ¼ fnðϵ1;…; ϵnþ1Þ: ð25Þ

In the tensor case, the first nþ 1 tensor parameters will be (regular) functions of the first nþ 1 Hubble parameters:
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nt ¼ −2ϵ1 ≡ g1ðϵ1Þ;
dnt

d log k
≡ αt ¼ −2ϵ1ϵ2 ≡ g2ðϵ1; ϵ2Þ;

d2nt
dðlog kÞ2 ≡ βt ¼ −2ϵ1ϵ22 − 2ϵ1ϵ2ϵ3 ≡ g3ðϵ1; ϵ2; ϵ3Þ;

d3nt
dðlog kÞ3 ¼

dβt
d logðkÞ ¼ −2ϵ1ϵ32 − 6ϵ1ϵ

2
2ϵ3 − 2ϵ1ϵ2ϵ

2
3 − 2ϵ1ϵ2ϵ3ϵ4 ≡ g4ðϵ1; ϵ2; ϵ3; ϵ4Þ;

� � �
dnnt

dðlog kÞn ¼ gnþ1ðϵ1;…; ϵnþ1Þ: ð26Þ

Note that the two sets of functions ff1;…; fng and fg1;…; gng are introduced only to render explicit the dependency of the
scalar and tensor parameters in terms of the Hubble parameters.
Because of the structure of the tensor runnings (26), it is easy to reverse the equations in such a way that

we can express the Hubble parameters fϵ1;…; ϵnþ1g as functions fg̃1;…; g̃ng of the tensor parameters
fnt; αt; βt;…; dnnt

dðlog kÞng:

ϵ1 ¼ −
1

2
nt ≡ g̃1ðntÞ;

ϵ2 ¼
αt
nt
≡ g̃2ðnt; αtÞ;

ϵ3 ¼
βt
αt
−
αt
nt
≡ g̃3ðnt; αt; βtÞ;

ϵ4 ¼
�

nt
ntβt − α2t

��
d3nt

dðlog kÞ3 þ
α3t
n2t

−
αtβt
nt

−
β2t
αt

�
≡ g̃4

�
nt; αt; βt;

d3nt
dðlog kÞ3

�
;

� � �

ϵnþ1 ¼ g̃nþ1

�
nt; αt; βt;

d3nt
dðlog kÞ3 ;…;

dnnt
dðlog kÞn

�
: ð27Þ

Substituting in the scalar equations (25) we obtain the following n relations among scalar and tensor parameters:

ns − 1 ¼ nt −
αt
nt
;

dns
d log k

≡ αs ¼ αt þ
�
αt
nt

�
2

−
βt
nt
;

d2ns
dðlog kÞ2 ≡ βs ¼ βt − 2

�
α3t
n3t

�
þ 3

�
αtβt
n2t

�
−

1

nt

�
d3nt

dðlog kÞ3
�
;

� � �
dn−1ns

dðlog kÞn−1 ¼ f̃n

�
nt; αt; βt;

d3nt
dðlog kÞ3 ;…;

dnnt
dðlog kÞn

�
: ð28Þ

Note that here the tilded functions are nothing other than the untilded functions up to a variables redefinition.
However, by Eq. (16), we also know that, for the single field slow-roll inflation, r ¼ −8nt and so the set of all the
nþ 1 relations is
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r ¼ −8nt;

ns − 1 ¼ nt −
αt
nt
;

dns
d log k

≡ αs ¼ αt þ
�
αt
nt

�
2

−
βt
nt
;

d2ns
dðlog kÞ2 ≡ βs ¼ βt − 2

�
α3t
n3t

�
þ 3

�
αtβt
n2t

�
−

1

nt

�
d3nt

dðlog kÞ3
�
;

� � �
dn−1ns

dðlog kÞn−1 ¼ f̃n

�
nt; αt; βt;

d3nt
dðlog kÞ3 ;…;

dnnt
dðlog kÞn

�
: ð29Þ

Note that if all the left side members of (29) (i.e., r and all
the n scalar parameters) are fixed, all the nþ 1 right side
tensor parameters are fixed as well. Therefore by the system
above, one can calculate how many consistency relations
one wants. The first three lines of (29) are nothing other
than the three consistency relations (16), (17), and (18)
derived in the previous subsection, while the fourth line is
another explicit consistency relation that can be put in the
form

dβt
d log k

≡ γt ¼ ntðβt − βsÞ − 2

�
α3t
n2t

�
þ 3

�
αtβt
nt

�
: ð30Þ

Therefore, in practice, if single field slow-roll inflation is
valid, a determination of r and the first n scalar parameters
immediately fixes also the first nþ 1 tensor parameters. An
independent measurement of these tensor parameters can
therefore be used for testing the slow-roll condition. This is
what we plan to do in the next two sections of this paper. As
we will see, even if the tensor component has not yet been
detected, some interesting regions of the parameter space
are excluded.
A first point of interest is to investigate the sign of the

tensor runnings predicted by the slow-roll paradigm. Of
course we expect a red tensor tilt by Eq. (19). More
interesting is to investigate the sign of the tensor running αt

FIG. 1. On the left side panel the consistency relation (20) for different values of ns. On the right side panel the consistency relation
(21) for ns ¼ 0.959 and the different indicated values of αs.
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and the running of running βt. Both of them consist of
negative and positive contributions, so the final sign
depends on the relative amplitude of these contributions.
As regards αt, since from the data we know that ns − 1 < 0
at more than 5 standard deviations, the linear contribution
in r is negative while the contribution ∝ r2 is of course
positive. Therefore at sufficiently small r, αt should be
negative. As regards βt, the situation is more complicated
since the sign of the linear term ∝ r

8
½αs − ðns − 1Þ2�

depends on the sign and above all on the amplitude of
αs itself. On the other hand, the term ∝ −r2ðns − 1Þ is
positive while the cubic contribution in r is negative and
expected to be negligible for small r. In Fig. 1 we plot both
the consistency relation (20) and the consistency relation
(21) for different values of the scalar parameters, exploring
a range r ∈ ½0.001; 0.6�. On the left side panel of Fig. 1, we
can see how the tensor running αt is always negative at
small r as expected. Depending on the value of ns, it
changes sign at different r as large as ns is small. Since ns is
well constrained to be ns ∼ 0.96, a positive scalar running
for the slow-roll paradigm inflation would imply a value of
r≳ 0.3 that seems to be excluded by the present data. On
the right side panel of the same figure we can instead see
how αs, even if small of order 10−3, significantly alters the
final sign of βt: if we consider a small positive scalar
running, for sufficiently small r, βt will be positive, while
considering a small negative scalar running, βt will
always be negative. For αs ≃ 0 the sign of βt changes three
times at different r, being negative at very small r where
the negative linear term ∝ −rðns − 1Þ2 is dominant as
expected.

III. METHOD

We perform a Monte Carlo Markov chain (MCMC)
analysis using the November 2016 version of the publicly
available package COSMOMC [55], with a convergence
diagnostic based on the Gelman and Rubin statistic.
This includes the support for the Planck data release
2015 Likelihood Code [56] (see http://cosmologist.info/
cosmomc/) and implements an efficient sampling by using
the fast/slow parameter decorrelations [57]. We also vary
the foreground parameters as described in [56,58].
We consider the six parameters of the standard ΛCDM

model, i.e., the baryon ωb ≡Ωbh2 and cold dark matter
ωc ≡ Ωch2 energy densities, the angular size of the horizon
at the last scattering surface θMC, the optical depth τ, the
amplitude of primordial scalar perturbation logð1010AsÞ,
and the scalar spectral index ns. We add the scalar spectral
index running αs, the scalar running of running βs, the
tensor-to-scalar ratio r, the tensor spectral index nt, the
tensor spectral index running αt, and the tensor running of
running βt. We normalize the inflationary parameters to the
pivot wavelength k� ¼ 0.05 Mpc−1. Therefore, for our
theoretical baseline we consider 12 parameters that we

vary in a range of external, conservative priors listed in
Table II. We stress that for r we have decided to consider a
prior lower limit r > 0.001 (roughly corresponding to the
chain sampling). This is because the current data do not
lead to a detection of a nonvanishing r, and so any value of
nt, αt, and βt would give a good fit as long as r is close
enough to zero. So without the lower limit above we could
not say anything about the tensor spectral parameters.
Our reference datasets are based on CMB temperature

and polarization anisotropies. We analyze the BB power
spectrum as measured by the Joint Analysis of BICEP2/
Keck Array and Planck (BKP) collaborations [59], in
combination with the temperature and polarization
Planck 2015 likelihood [56]. More precisely, we use the
TT and the TT, TE, EE high-l likelihood together with the
TEB pixel-based low-l likelihood and the BB power
spectrum polarization data from the BKP collaborations.

IV. RESULTS

In this section we present the results of our MCMC
analysis. We first present the constraints on all the
parameters considered in our cosmological model, without
assuming the consistency relations, i.e., deriving the
bounds on the tensor parameters directly from the data.
As a second step we compare the constraints on the tensor
parameters with those derived assuming the slow-roll
conditions described in Sec. II.

A. Parameter constraints without assuming
the slow-roll condition

In Table III we present the constraints at 68% C.L. (or the
upper/lower limits at 95% C.L.) for different datasets from
the Planck 2015 temperature and polarization data together
with the BB power spectrum polarization as measured from
the BKP collaboration. A first point of interest is to
investigate the impact of the inclusion of the scalar and
tensor parameters r, nt, αs;t, and βs;t on the remaining six

TABLE II. List of the external flat priors on the cosmological
parameters assumed in this paper.

Parameter Prior

Ωbh2 [0.005, 0.1]
Ωch2 [0.001, 0.99]
100 θMC [0.5, 10]
τ [0.01, 0.8]
logð1010AsÞ [2, 4]
ns [0.8, 1.2]
αs ½−0.1; 0.1�
βs ½−0.1; 0.1�
r [0.001, 3]
nt ½−2; 0�
αt ½−0.4; 0.4�
βt ½−0.4; 0.4�
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parameters of the standard ΛCDM model. Comparing our
results with those obtained from the Planck collaboration in
Ref. [60], we can see that there are no significant shifts on
the ΛCDM parameters. The largest deviations with respect
to the standard scenario are present in the spectral index ns
that is ∼0.8 (∼1) standard deviations lower for both the
Planck TTþ lowP (þBKP) and the Planck TT, TE, EE,
þlowP (þBKP) datasets. The optical depth τ is instead
∼0.6 standard deviations higher as well as the scalar
amplitude logð1010AsÞ that is about ∼0.7=0.8 standard
deviations higher (depending on the datasets).
As concerns the scalar spectral parameters, we can see

that the data provide an indication for βs > 0 at about 2
standard deviations for all the datasets. Similar results were
found in [61] analyzing models with only the scalar spectral
parameters allowed and also in [62] analyzing tensor
models assuming scale at independent nt. Therefore one
can conclude that the inclusion of the tensor spectral
parameters does not alter significantly the bounds on the
scalar parameters as well as the bounds on the other
standard ΛCDM parameters.
On the other hand, for the tensor parameters, we can see

that considering the BKP data together with the Planck data
we can obtain tighter bounds on the tensor-to-scalar ratio r,
while the bounds on the scalar parameters are of the same
order. Therefore in the following discussion we will focus
on the two datasets Planck TTþ lowTEBþ BKP and
Planck TT TE EEþ lowTEBþ BKP. For the tensor-to-
scalar ratio we obtain r < 0.127 (95% C.L. Planck
TTþ lowTEBþ BKP) and r < 0.124 (95% C.L. Planck
TT TE EEþ lowTEBþ BKP).
As concerns the tensor index nt in our analysis we

restrict our attention to red tensor tilts (i.e., nt < 0) and we
obtain the two lower bounds nt > −0.990 (95% C.L.
Planck TTþ lowTEBþ BKP) and nt > −1.15 (95% C.L.
Planck TT TE EEþ lowTEBþ BKP).

For the tensor running αt and the running of running βt
we instead fix a prior sampling range [−0.4, 0.4] for both
the parameters, as we can see in Table II. For αt we have
αt < 0.231 (95% C.L. Planck TTþ lowTEBþ BKP) and
αt < 0.232 (95% C.L. Planck TT TE EEþ lowTEBþ
BKP) while for βt we have βt > −0.102 (95% C.L. Planck
TTþ lowTEBþ BKP) and βt > −0.0918 (95% C.L.
Planck TT TE EEþ lowTEBþ BKP).

B. Constraints on tensor parameters
assuming slow roll

We now derive the constraints on the tensor parameters
nt, αt, and βt from the observed constraints on ns, αs,
and r reported in the previous subsection assuming the
relations described in Sec. II under the slow-roll condition.
Moreover, we can check the slow-roll approximation by
comparing these results with the model independent con-
straints reported in the previous subsection. Using the
consistency relations one expects that the bounds on the
tensor parameters drastically shrink since, as explained in
Sec. II, all the tensor parameters are related to r and the
scalar parameters.
Imposing the consistency relations, for the tensor tilt we

find nt > −0.0158 (95% C.L., Planck TTþ lowTEBþ
BKP) and nt > −0.0157 (95% C.L., Planck TT TE
EEþ lowTEBþ BKP).
In the left side panel of Fig. 2 we plot the marginalized

joint confidence contours at 68% and 95% C.L. in the
plane ðr; ntÞ while in the right side panel of the same figure
we plot the marginalized contours with nt derived by the
consistency relation (19). As one can see, assuming the
consistency relation (19), to each r corresponds one
fixed nt. The constraints obtained relaxing the consis-
tency relations are of course embedded into the contours
for the relaxed parameters. As concerns the tensor run-
nings, for αt the limits obtained imposing the consistency
relations become αt ¼ −0.00018þ0.00019

−0.00025 (95% C.L.,

TABLE III. Constraints on all the parameters of theΛCDMþ αs þ βs þ rþ nt þ αt þ βt model for different datasets. For each dataset
we quote the 68% C.L. constraint or the 95% C.L. upper/lower limit.

Parameter TTþ lowP TT, TE, EEþ low P TTþ low Pþ BKP TT, TE, EE, þlow Pþ BKP

Ωbh2 0.02214� 0.00033 0.02220� 0.00018 0.02209þ0.00030
−0.00035 0.02218� 0.00018

Ωch2 0.1207� 0.0024 0.1203� 0.0015 0.1210� 0.0024 0.1206� 0.0016
100 θMC 1.04079� 0.00050 1.04072� 0.00032 1.04076� 0.00048 1.04071� 0.00033
τ 0.092� 0.023 0.094þ0.020

−0.018 0.092� 0.023 0.094� 0.019
logð1010AsÞ 3.120� 0.046 3.123� 0.037 3.120� 0.045 3.123� 0.038
ns 0.9590� 0.0079 0.9598� 0.0056 0.9579� 0.0077 0.9586� 0.0057
αs 0.007� 0.014 0.007� 0.011 0.010� 0.014 0.009� 0.011
βs 0.028� 0.016 0.027� 0.014 0.030� 0.016 0.028� 0.014
r <0.785 <0.629 <0.127 <0.124
nt >−0.890 >− 0.907 >− 0.990 >− 1.15
αt <0.209 <0.186 <0.231 <0.232
βt >− 0.0707 >− 0.0667 >− 0.102 >− 0.0918

TESTING THE INFLATIONARY SLOW-ROLL CONDITION WITH … PHYS. REV. D 99, 123522 (2019)

123522-7



Planck TTþ lowTEBþ BKP) and αt ¼ −0.00018þ0.00019
−0.00024

(95% C.L., Planck TT TE EEþ lowTEBþ BKP),
while for βt we find βt ¼ 0.00004þ0.00027

−0.00019 (95% C.L.,
Planck TTþ lowTEBþ BKP) and βt ¼ 0.00004þ0.00022

−0.00013

(95% C.L., Planck TT TE EEþ lowTEBþ BKP). In
Figs. 3 and 4, we plot the marginalized contours at 68%
and 95% C.L. in the planes ðr; αtÞ and ðr; βtÞ both relaxing
and imposing the consistency relations. Once again the first

FIG. 2. Marginalized joint confidence contours at 68% and 95% C.L. in the plane ðnt; rÞ for the indicated datasets. On the left (right)
side panel the contours obtained relaxing (imposing) the consistency relations. The black dashed line in the left panel represents the
consistency relation nt ¼ − r

8
.

FIG. 3. Marginalized joint confidence contours at 68% and 95% C.L. in the plane ðαt; rÞ for the indicated datasets. On the left (right)
side panel the contours obtained relaxing (imposing) the consistency relations. The colored dashed lines represent the consistency
relations (20) for different values of ns.
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include the second. Together with the derived marginalized
contours we also plot the curves that represent the con-
sistency relations for different values of the scalar param-
eters (colored dashed lines in the right panels). From the
right side panel of Fig. 3, one can see how imposing the
consistency relations, regions with αt > 0, are almost

excluded by data. On the other hand, from the right side
panel of Fig. 4, we can see that both positive and negative
values of βt are possible.
Since the consistency relation (21) suggests that the sign

of βt may strongly depend on the value of αs, it is
interesting to study the situation in the plane ðαs; βtÞ.

FIG. 4. Marginalized joint confidence contours at 68% and 95% C.L. in the plane ðβt; rÞ for the indicated datasets. On the left (right)
side panel the contours obtained relaxing (imposing) the consistency relations. The colored dashed lines represent the consistency
relations (21) for ns ¼ 0.959 and the different indicated values of αs.

FIG. 5. Marginalized joint confidence contours at 68% and 95% C.L. obtained imposing the consistency relations for the indicated
datasets. On the left side panels the plane ðns; αtÞ. On the right side panel the plane ðαs; βtÞ.
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This is what we have done in the right side panel of Fig. 5
where we have plotted the marginalized contours at 68%
and 95% C.L. in that plane, assuming the consistency
relations. As one can see for negative values of αt, negative
values of βt are preferred as well, even if it is possible to
have negative (positive) αs and positive (negative) βs

around jαsj ∼ 0. In the left side panel of the same figure,
instead, we have plotted the marginalized contours in the
plane ðns; αtÞ that confirm the fact that regions with αt > 0,
albeit noncompletely excluded, are strongly disadvantaged.
Other interesting plots of the marginalized contours at 68%
and 95% C.L, both for the free parameters and for the

FIG. 6. Marginalized joint confidence contours at 68% and 95% C.L. in the plane ðnt; αtÞ for the indicated datasets. On the left (right)
panels the contours obtained relaxing (imposing) the consistency relations.

FIG. 7. Marginalized joint confidence contours at 68% and 95% C.L. in the plane ðnt; βtÞ for the indicated datasets. On the left (right)
panels the contours obtained relaxing (imposing) the consistency relations.
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derived parameters, are given in Figs. 6–8 where in the left
side panels are plotted the contours obtained relaxing the
consistency relations while in the right side panels there are
the respective contours obtained imposing them. Once
again we can see how the second are fully embedded in
the first. From the right side panels of Figs. 6 and 8, where
the consistency relations are assumed, we can also see the
previous considerations about a negative αt are still valid.
In Table IV we summarize all the 95% C.L. limits for the

tensor parameters, comparing the constraints obtained
relaxing the consistency relations discussed in the previous
subsection, with those obtained here fixing the single field
slow-roll condition. The constraints obtained imposing the
consistency relations are of course compatible with the
larger bounds obtained leaving the parameters free.

V. CONCLUSIONS

In this paper we have first derived a set of consistency
relations among the scalar and tensor inflationary

parameters that are valid for the single field slow-roll
inflationary models, proving also that, for such models,
one can obtain as many relations as he wants. We
focused on the consistency relations involving the tensor
parameters nt, αt, and βt that can be expressed in terms of
the tensor-to-scalar ratio r, the spectral index ns, and the
scalar running αs by Eqs. (19), (20), and (21). We also
derived a fourth consistency relation for dβt

d log k, Eq. (30).
From these consistency relations, we argued that, for
sufficiently small r, we would expect a negative tensor
running αt while the sign of βt depends on the sign and
above all on the amplitude of the scalar running αs.
To check the slow-roll condition we performed a
MCMC analysis considering an extended cosmological
model with six additional parameters (αs, βs, r, nt, αt,
and βt) with respect to the standard ΛCDM model. We
analyzed both the Planck CMB polarization and anisot-
ropies 2015 data and the BKP data for the BB spectrum,
normalizing the inflationary parameters at the pivot scale

FIG. 8. Marginalized joint confidence contours at 68% and 95% C.L. in the plane ðαt; βtÞ for the indicated datasets. On the left (right)
panels the contours obtained relaxing (imposing) the consistency relations.

TABLE IV. The 95% C.L. bounds on the tensor parameters relaxing and imposing the consistency relations.

Parameter TTþ low P TT, TE, EEþ lowP TTþ lowPþ BKP TT, TE, EE, þlow Pþ BKP

r <0.785 <0.629 <0.127 <0.124
nt >−0.890 >− 0.907 >− 0.990 >− 1.15

>− 0.120 >− 0.0800 >− 0.0158 >− 0.0157
αt <0.209 <0.186 <0.231 <0.232

0.00096þ0.0050
−0.0019 0.0003þ0.0036

−0.0010 −0.00018þ0.00019
−0.00025 −0.00018þ0.00019

−0.00024
βt >− 0.0707 >− 0.0667 >− 0.102 >− 0.0918

−0.0005þ0.0011
−0.0045 −0.0001þ0.0007

−0.0019 0.00004þ0.00027
−0.00019 0.00004þ0.00022

−0.00013

TESTING THE INFLATIONARY SLOW-ROLL CONDITION WITH … PHYS. REV. D 99, 123522 (2019)

123522-11



of k� ¼ 0.05 Mpc−1. In Sec. IV we first presented
the results obtained relaxing the consistency relations
finding r < 0.127 (95% C.L., Planck TTþ lowPþ BKP)
and r < 0.124 (95% C.L., Planck TT TE EEþ
lowPþ BKP). For the tensor spectral index we found
the lower bounds nt > −0.990 (95% C.L., Planck
TTþ lowPþ BKP) and nt > −1.15 (95% C.L., Planck
TT TE EEþ lowPþ BKP), while for the tensor running
αt we found the upper limits αt < 0.231 (95% C.L.,
Planck TTþ lowPþ BKP) and αt < 0.232 (95% C.L.,
Planck TT TE EEþ lowPþ BKP). On the other
hand, for the tensor running of running βt we found
the lower limits βt > −0.102 (95% C.L., Planck
TTþ lowPþ BKP) and βt > −0.0918 (95% C.L.,
Planck TT TE EEþ lowPþ BKP).
Then we have fixed the consistency relations among the

inflationary parameters, and we have also presented the
constraints on the derived parameters. We have compared
these new constraints with the previous ones in order to
check the slow-roll condition. For the derived tensor
spectral index nt we found nt > −0.0158 (95% C.L.,
Planck TTþ lowTEBþ BKP) and nt > −0.0157
(95% C.L., Planck TT TE EEþ lowTEBþ BKP) while
for the derived tensor runnings αt and βt we found,
respectively, αt ¼ −0.00018þ0.00019

−0.00025 (95% C.L., Planck
TTþ lowTEBþ BKP), αt ¼ −0.00018þ0.00019

−0.00024 (95% C.L.,
Planck TT TE EEþ lowTEBþ BKP), and βt ¼
0.00004þ0.00027

−0.00019 (95% C.L., Planck TTþ lowTEBþ
BKP), βt ¼ 0.00004þ0.00022

−0.00013 (95% C.L., Planck TT TE
EEþ lowTEBþ BKP). Therefore the 95% C.L. con-
straints obtained from the consistency relations, in
addition to being much tighter, are also in accordance
with the larger limits obtained relaxing the consistency
relations.
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APPENDIX: BEYOND THE LEADING ORDER IN
THE PRIMORDIAL SPECTRA

In Sec. II we have explicitly derived some consistency
relations [Eqs. (19)–(21) and Eq. (30)], and we have also
shown that consistency relations can be found at any order.
However, all the consistency relations that we have derived
come from the primordial spectra at leading order in the
slow-roll approximation. So one could ask if considering the
primordial spectra at the leading order is a good approxi-
mation for such high order consistency relations and, in
general, what happens if one goes beyond the leading order.
What we want to show is that if one goes beyond the leading
order, each equation is corrected by higher order terms that,
within the same equation, are negligible.
Let us start our discussion going beyond the leading

order spectra. At the next order in the slow-roll approx-
imations they read [8,9]

Ps ¼
H2

8π2M2
Pϵ1

f1 − 2ðCþ 1Þϵ1 − Cϵ2g þOðϵ2Þ; ðA1Þ

Pt ¼
2H2

π2M2
P
f1 − 2ð1þ CÞϵ1g þOðϵ2Þ; ðA2Þ

where C≡ γ þ ln 2 − 2 ≈ −0.73. Since the logarithmic
derivative of a quantity of order ϵn is of order ϵnþ1, we
immediately see that all the corrections of order ϵ in the
primordial spectra become corrections of order ϵ2 in the
scalar and tensor running ns;t, ϵ3 in their running αs;t, ϵ4 in
their running of running βs;t, and so on. In fact, a
straightforward computation gives

ns − 1 ¼ −2ϵ1 − ϵ2 þ ½−2ϵ21 − ð3þ 2CÞϵ1ϵ2 − Cϵ2ϵ3�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Oðϵ2Þ

;

ðA3Þ

nt ¼ −2ϵ1 þ ½−2ϵ21 − 2ð1þ CÞϵ1ϵ2�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Oðϵ2Þ

: ðA4Þ

Therefore the systems (25) and (26) remain the same except
for higher order corrections:

ns − 1 ¼ −2ϵ1 − ϵ2 þOðϵ2Þ;
dns

d log k
≡ αs ¼ −2ϵ1ϵ2 − ϵ2ϵ3 þOðϵ3Þ;

d2ns
dðlog kÞ2 ≡ βs ¼ −2ϵ1ϵ22 − 2ϵ1ϵ2ϵ3 − ϵ2ϵ

2
3 − ϵ2ϵ3ϵ4 þOðϵ4Þ;

� � �
dn−1ns

dðlog kÞn−1 ¼ fnðϵ1;…; ϵnþ1Þ þOðϵnþ1Þ; ðA5Þ
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and

nt ¼ −2ϵ1 þOðϵ2Þ;
dnt

d log k
≡ αt ¼ −2ϵ1ϵ2 þOðϵ3Þ;

d2nt
dðlog kÞ2 ≡ βt ¼ −2ϵ1ϵ22 − 2ϵ1ϵ2ϵ3 þOðϵ4Þ;

d3nt
dðlog kÞ3 ¼

dβt
d logðkÞ ¼ −2ϵ1ϵ32 − 6ϵ1ϵ

2
2ϵ3 − 2ϵ1ϵ2ϵ

2
3 − 2ϵ1ϵ2ϵ3ϵ4 þOðϵ5Þ;

� � �
dnnt

dðlog kÞn ¼ gnþ1ðϵ1;…; ϵnþ1Þ þOðϵnþ2Þ: ðA6Þ

So following the derivation given in Sec. II, one can see that all the possible corrections to our consistency relations are
negligible,

r ¼ −8nt þOðϵ2Þ;
ns − 1 ¼ nt −

αt
nt
þOðϵ2Þ;

dns
d log k

≡ αs ¼ αt þ
�
αt
nt

�
2

−
βt
nt
þOðϵ3Þ;

d2ns
dðlog kÞ2 ≡ βs ¼ βt − 2

�
α3t
n3t

�
þ 3

�
αtβt
n2t

�
−

1

nt

�
d3nt

dðlog kÞ3
�
þOðϵ4Þ;

� � �
dn−1ns

dðlog kÞn−1 ¼ f̃n

�
nt; αt; βt;

d3nt
dðlog kÞ3 ;…;

dnnt
dðlog kÞn

�
þOðϵnþ1Þ; ðA7Þ

and so

FIG. 9. Marginalized joint confidence contours at 68% and 95% C.L. in the planes ðnt; dβt
d log kÞ (left panels) and ðns; dβt

d log kÞ (right panels),
for the indicated datasets.
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nt ¼ −
r
8|{z}

OðϵÞ

þOðϵ2Þ; ðA8Þ

αt ¼
r
8
ðns − 1Þ þ r2

64|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Oðϵ2Þ

þOðϵ3Þ; ðA9Þ

βt ¼
r
8
½αs − ðns − 1Þ2� − 3r2

64
ðns − 1Þ − r3

256|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Oðϵ3Þ

þOðϵ4Þ:

ðA10Þ

For example, one can compute the correction to the
consistency relation nt ¼ − r

8
to obtain [8,9,48,50]

FIG. 10. Marginalized joint confidence contours at 68% and 95% C.L. in the planes ðαt; dβt
d log kÞ (left panels) and ðαs; dβt

d log kÞ (right
panels), for the indicated datasets.

FIG. 11. Marginalized joint confidence contours at 68% and 95% C.L. in the planes ðβt; dβt
d log kÞ (left panels) and ðβs; dβt

d log kÞ (right
panels), for the indicated datasets.
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nt ¼ −
r
8
−
r
8

h
−

r
16

þ 1 − nS
i
þOðϵ3Þ; ðA11Þ

where the correction of order Oðϵ3Þ has to be computed
including corrections of order ϵ2 in the primordial spectra.
One can immediately see that the correction Δnt ¼
− r

8
½− r

16
þ 1 − nS� is less than the 3% for ns ≈ 0.96 and

the maximum value of rmax ¼ 0.24 used in our analysis in
Sec. IV.
Clearly, generalizing this discussion, further corrections

of order ϵn in the spectra will provide corrections of order
ϵnþ1 in the scalar and tensor tilts, ϵnþ2 in their running, ϵnþ3

in their running of running, and so on. All these contri-
butions are of course smaller and smaller.

1. Constraints on γt =
dβt

d log k

As stated in Sec. II, since in our simulations we have
parametrized the scalar spectrum including the running of
running βs, thanks to Eqs. (19), (20), (21), and (30), we can
also provide the constraints on γt ¼ dβt

d log k that, for the
different datasets, are presented in Table V at 95% C.L.

In Figs. 9–11 we also plot the derived marginalized
contours at 68% and 95% C.L. in different planes for γt
obtained imposing the consistency relations. In the left
panels we present the contours among γt and the other
tensor parameters while in the right panels we focus on the
contours for γt and the scalar parameters. As well as for βt
also in this case, positive values for γt seems to be favored
by data. We remark that the constraints for γt ¼ dβt

d log k

completely derive from the consistency relations since in
our simulations we have not included this effect in the
spectral parametrization.
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