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In the past decade, a new class of cyber-threats, known as “Advanced Persistent Threat” (APT), has emerged and has been

used by different organizations to perform dangerous and effective attacks against financial and politic entities, critical in-

frastructures, and so on. To identify APT related malware early, a semi-automatic approach for malware samples analysis is

needed. Recently, a malware triage step for a semi-automatic malware analysis architecture has been introduced. This step

identifies incoming APT samples early, among all the malware delivered per day in the cyber-space, to immediately dispatch

them to deeper analysis. In the article, the authors have built the knowledge base on known APTs obtained from publicly

available reports. For efficiency reasons, they rely on static malware features, extracted with negligible delay, and use ma-

chine learning techniques for the identification. Unfortunately, the proposed solution has the disadvantage of requiring a

long training time and needs to be completely retrained each time new APT samples or even a new APT class are discov-

ered. In this article, we move from multi-class classification to a group of one-class classifiers, which significantly decreases

runtime and allows higher modularity, while still guaranteeing precision and accuracy over 90%.
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1 INTRODUCTION

Since the origin of the Internet, cyber-attacks have evolved in parallel with computer development, changing
ways and means of execution. From the first viruses and worms to the modern botnets and rootkits, from the first
singular and non-organized attacks to the advanced and well-crafted persistent ones, all these kinds of vectors
mutate their behavior by updating their “source” in line with the new software and hardware technologies.
During the past two decades, the number of delivered malware has exponentially increased: According to a
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survey conducted by Panda Security [21], just in 2015, about 230,000 malware samples were delivered per day
with an increase of 40% with respect to 2014, assailing the cybersecurity community. A recent analysis from
McAfee [2] showed that in the third quarter of 2018 more than 60 million new malware samples were discovered.
In the mid-2000s, indeed, the black hat community evolved from adolescent hackers to organized crime networks,
fueling highly profitable identity theft schemes with massive loads of personal data harvested from corporate
and government networks. In recent times, in fact, a new powerful and dangerous threat is on the rise, identified
in the community as “Advanced Persistent Threat” (APT). According to the NIST Glossary of Key Information
Security Terms,1 APT is “an adversary that possesses sophisticated levels of expertise and significant resources

which allow it to create opportunities to achieve its objectives by using multiple attack vectors (e.g., cyber, physical

and deception).” Hence the APT name identifies the main peculiarities of the threat:

Advanced. Criminal minds behind attacks utilize the full spectrum of computer intrusion technologies and
techniques. While an individual attacker may not be classed as particularly “advanced” (e.g., single-stage
malware component found on the black market), their operators typically access and develop more advanced
tools as required.

Persistent. Criminal operators give priority to a specific task rather than opportunistically seeking immediate
financial gain. The attack is indeed conducted through continuous monitoring and interaction to achieve
the defined objectives. A “low-and-slow” approach is usually more successful.

Threat. The attack has a malicious nature. Malevolent attackers have a specific objective and are skilled,
motivated, organized, and, of course, well funded.

Such advanced attacks are strongly targeted to overcome all the general defenses that the target can apply.
According to the FireEye studies [4], based on the huge amount of APT operations they analyzed, APTs princi-
pally target big companies, critical infrastructure, and institutions to gain financial secrets, intellectual property,
national secrets, and private personal information or damage critical infrastructures by interrupting or decreas-
ing their functionality. Despite different targets and origin, it has been demonstrated that APTs perform attacks
in a standard way that can be represented as an intrusion kill chain [7]. The attack starts with a Reconnaissance

phase in which the APT deeply studies the victim’s infrastructure, followed by the initial exploitation phase,
where those malicious organizations actually “enter” inside the victim’s systems. Given the persistent appella-
tion that characterizes APT, in the next phase APTs establish persistence in the host, which provides attackers
the possibility to install backdoors or other tools for following attack stages. Lateral movement is actually ac-
complished to escalate privileges and hence to be able to elevate the capability in the system. Finally, in the
exfiltration phase the real aim of the attack is achieved. It is hence important to identify any malware used by
APTs in any of these phases so that other malware used in previous steps can be found and analyzed and de-
fenses can be improved against future activities. In this article, we refer to the malware developed by Advanced
Persistent Threats as APT-related malware or APT-malware for the sake of simplifying the text.

1.1 Contribution

According to Reference [7], defenders must implement countermeasures faster than adversaries evolve. It is
evident that there is a need for a prioritization mechanism to promptly identify samples that deserve to be further
analyzed by security analysts. Taking inspiration from the medical field, in this article we propose a triage-based
approach. Doctors are a limited resource, and thus there is the need to prioritize patients that require urgent
care. Similarly, the number of security analysts is very low, and thus we need to prioritize malware to avoid
wasting time analyzing suspicious software that is not dangerous. Malware developed by APTs are the most
dangerous, because they apply a high level of sophistication, and they target important victims. However, the

1http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf.
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proposed approach has the scope of only highlighting this class of malware. The full analysis is pursued at a
later stage by human analysts and specialized architecture components.

We privilege precision metric on accuracy metric; in fact, precision is necessary, because the malware triage
should not prioritize non-APT malware (false positive) so as to not overload human analysts and/or complex
components with urgent but not necessary analyses. However, also, high accuracy is desired to correctly iden-
tify samples really belonging to some known APT classes (true positive). We believe that this triage step is an
important first step in a defense strategy, intending to automate the identification process and reduce the analysis
burden for human analysts. In fact, we propose our approach as a module of a complex security architecture, like
the one presented in Reference [13]. Our module tries to detect and identify the most malware developed by APTs
as possible, prioritizing them, and leaving the remaining ones to be analyzed by other components. In such a
way, we save the time of analysts, being confident that the architecture is able to later identify the few undetected
APT-related malware with other deeper but slower tools, thus improving the general security of the environment.

A security architecture including our proposed tool can hence be helpful to any critical infrastructure or
company that can be target of an APT attack. We believe that adding it to the malware analysis pipelines that
are already in place in industries can heavily improve the workflow.

It is possible to directly use a classifier to identify APT-malware. It should output the APT class the malware
sample belongs to, or a “non-APT label” in the case where the sample is not associated to any class. Unfortunately,
such a solution presents a huge problem. In fact, this so-called negative class has a cardinality of several orders
of magnitude bigger than the set of APT samples, and there is a large variety among its samples. Thus, the result
in terms of accuracy and precision are very poor, and for this reason in Reference [11] the authors proposed a
Random Forest-based triage (RFT) approach. They trained their model on a knowledge base built upon a collection
of ATPs’ related reports publicly released by cyber-security firms. This solution works well and achieves great
accuracy and precision but has the disadvantage of requiring a long training time and needs to be re-trained
each time new APT samples or even a new APT class are discovered.

To overcome such problems, in this article we present several key improvements w.r.t. existing literature:

• We propose a novel modular and lightweight malware triage framework, based on One-class classification,
which permits us to train each classifier only on samples related to the relative class. This permits us to
add new APT classifiers and modify a single classifier when new samples are discovered without affecting
the whole triage framework;

• We design the malware triage framework on the Isolation Forest learning concept. Each Isolation Forest
is trained on the samples of a specific APT;

• Our training set is composed of more than 2,000 samples belonging to 15 different APTs: APT28, APT29,

APT30, Carbanak, Desert Falcon, Hurricane Panda, Lazarus Group, Mirage, Patchwork, Sandwork, Shiqiang,

Transparent Tribe, Violin Panda, Volatile Cedar, and Winnti Group;
• We introduce features dimensionality reduction through Linear Discriminant Analysis to decrease the

computational time needed in the training phase, avoid the curse of dimensionality problem, and increase
the overall precision and accuracy for each class;

• We compare our work with the results obtained by RFT and show that our approach allows fast, precise,
and also accurate identification of APT malware through an experimental evaluation performed on a
dataset composed by samples obtained by public APT reports. We also test its performance on a non-APT
dataset.

1.2 Outline

The remaining part of the article is divided into the following sections: Section 2 shows the state of the art of the
analysis of malware and Advanced Persistent Threats; Section 3 introduces the main tools used in this article;
Section 4 explains in details the methodology behind our system; Section 5 presents experimental evaluations
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of our solution; and, finally, Section 6 sums up the results of our work and shows some directions for future
activities.

2 RELATED WORKS

The awareness around APT has been increasing over the past few years, becoming an important research topic
within the cybersecurity area. Important works have been done to deploy APT detection as well as avoidance
frameworks to identify compromised hosts. In Reference [13], the authors propose the design of an architecture
composed by various tangled phases that starts from the uninterrupted collection of malware and reports from
different sources, continues through different analysis components that work on single elements (like static
analysis tools) and groups of elements (like classification algorithms), and at the end stores all the information
in a knowledge base that can be easily linked to others to share different information. Inside such an architecture,
several malware analysis tools can be used. The number of works carried out to identify and classify malware
samples, even if not focused on APT, is really huge, and hence we here present a small subset of them, more
related to our work. In Section 2.1, we focus on malware analysis through machine learning techniques, while
in Section 2.2, we present works related to APT malware.

2.1 Malware Identification

An important malware analysis technique is the BitShred framework [8], which extracts information from the
sample and, using feature hashing, creates a probabilistic data structure to large-scale correlate samples.

Another fast and precise malware analysis framework is SigMal [9], a framework improving the state of the art
of the previous systems based on the concept of malware similarity by leveraging signal processing techniques
to extract noise-resistant signatures from the samples. In Reference [16], malware triage has been deployed by
machine learning classification using Artificial Neural Network. In particular, the dataset used in the classifi-
cation involves 3,131 samples spread over 24 different unique malware classes, and the overall detection and
classification accuracy is about 96%. Each binary executable is represented as a greyscale image through GIST
descriptors [20]; then neural networks are used to derive and extract similar patterns among the various sam-
ples. In Reference [1], Ahmadi et al. propose a learning-based system using different malware characteristics to
assign malware samples to their corresponding families. Because of accurate and fast classification, they propose
to extract static features both from the binary hex view and the assembly one to exploit complementary infor-
mation by these two representations without relying on other information derivable from dynamic analysis of
malware. Kong et al. [10] propose a framework for automated malware classification based on the function call
graph of the malware. First, they disassemble the single sample building the relative function call graph. Then,
discriminant malware distance is computed on each pair of samples: They perform pairwise graph matching
between the attributed function call graphs of two malware instances to measure their structural similarity. In
Reference [19], Nari and Ghorbani introduce a framework for automated classification of malware samples based
on their network behavior. IP addresses, port numbers, protocols, and dependencies between network activities
are abstracted for further analysis.

2.2 APT Detection

Many works about APT detection focus on the identification of indicators of suspicious activities, like anom-
aly detection systems. In Reference [5], authors propose an anomaly detection system for APTs built around
several security recorded logs. In particular, this white-list-based approach keeps track of system events, their
dependencies, and occurrences, learning the normal system behavior and reporting all strange actions. Another
interesting work is the framework proposed by Marchetti et al. [17] that aims to detect, among all the hosts inside
the company, the ones infected by APT to be further analyzed in the future. In line with the idea of the previous
works, Ussath et al. [26] develop a Security Investigation Framework (SIF) that supports the analysis and the
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tracing of multi-stage APTs. In particular, it leverages different information sources to give a comprehensive
overview of the different stages of an attack.

In the previous malware triage work [11], the authors aim to recognize malware developed by APTs, but,
contrary to the other described works, they focus on the sample analysis instead of the malware activity observed
during the infection. The work achieves high precision and very high accuracy in detecting the ownership of
this kind of malware but suffers the problem highlighted in Section 1.

3 TOOLS

In this section, we introduce the main tools used in this article. In particular, Section 3.1 presents PEFrame, a
static malware analysis tool we use for feature extraction. We then outline Random Forest and Isolation Forest
in Sections 3.2 and 3.3, respectively. Section 3.4 presents principles of feature reduction.

3.1 PEFrame

PEFrame2 is an open-source tool that performs static analysis on Portable Executable malware and generic sus-
picious file. The Portable Executable format contains the information necessary for the Windows OS loader to
manage the wrapped executable code. It consists of the MS-DOS stub, the PE file header, and the sections and
can provide an enormous amount of features, containing relevant information for a malware analyst.

Thanks to PEFrame, we successfully extract more than 4,000 features. We then leave classifiers and Linear
Discrimination Analysis the handling of this huge number (see Section 3.4 for more details). These features can
be roughly grouped into eight categories as follows:

Optional Header (30 features). Every file has an optional header that provides information to the loader.
This header is optional in the sense that some files (specifically, object files) do not have it. For image
files, this header is required. An object file can have an optional header, but generally this header has no
function in an object file except to increase its size. Features are extracted from the optional header of the
PE and contain information about the logical layout of the PE file, such as the address of the entry point,
the alignment of sections, and the sizes of part of the file in memory.

MS-DOS Header (17 features). The MS-DOS executable-file header is composed of four distinct parts: a
collection of header information (such as the signature word, the file size, etc.), a reserved section, a pointer
to a Windows header (if one exists), and a stub program. MS-DOS uses the stub program to display a message
if Windows has not been loaded when the user attempts to run a program. In this contest, we are interested
in features related to the execution of the file, including the number of bytes in the last page of the file, the
number of pages, or the starting address of the Relocation Table.

File Header (18 features). The Windows executable-file header contains information that the loader requires
for segmented executable files. This includes the linker version number, data specified by the linker, data
specified by the resource compiler, tables of segment data, and tables of resource data. Moreover, the features
related to this class highlight information about timestamp and the CPU platform that the PE is intended
for.

Obfuscated String Statistics (3 features). Binaries contain program messages stored as strings that can be
useful to understand their behavior. Classical tools like String extract byte sequences that can be readable
strings to find these messages. Malware authors encode strings in their program to avoid extraction, in fact,
even simple schemes can defeat this kind of tool and complicate static and dynamic analysis. In addition
to PEFrame, we use functionalities of the FireEye Labs Obfuscated String Solver (FLOSS3). It is an open-
source tool that automatically detects, extracts, and decodes obfuscated strings, such as malicious domains,

2https://github.com/guelfoweb/peframe.
3https://github.com/fireeye/flare-floss.
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IP addresses, suspicious file paths, and so on, from Windows Portable Executable files availing of advanced
static analysis techniques. We leverage this tool to compute some statistics, such as how many entry-points
or relocations are present in the file.

Mutex (7 features). Mutex are objects commonly used to avoid simultaneous access to a resource, like a
variable. If different software checks for the same mutex, then they can be linked. Our features are Boolean
values that map the use of particular mutex identified in the training data.

Packer (64 features). Packers are software that compress binaries, keeping them executable. Similarly to the
mutex related features, our features highlight if some particular packers are recognized.

Imported API (3917 features). Each software imports functions from common libraries or external files.
The combination of imported functions can show similar behavior. We store this information as a vector
with a Boolean value for each imported function, using the list of functions present in the training set as a
taxonomy.

Buckets (98 features). Similar size in functions and directories can be a proof of similarity in the file structure
and thus in the behavior. We observed that, usually, function size values range from 0 to 1,822 bytes, while
directory size values range from 0 to 2,638 kbytes. To track these properties, both of them are subdivided
into 49 buckets. Each bucket represents a range and counts the elements whose size is in the range. To
choose the different ranges we observe the distribution of sizes and lengths in the training set, trying to
form buckets that can better characterize the various classes.

3.2 Random Forest Classifier

A Random Forest [3] is a supervised classification tool that aggregates the results provided by a set of Decision

Trees through a Bootstrap aggregated (a.k.a. Bagging) technique.
In general, a Decision Tree [6] is a decision support tool that uses a treelike graph as model of decisions. In

machine learning science, Decision tree learning concept uses decision trees as a predictive model to go from
observations about an object to a conclusion about the objects’ target value, represented in the leaves of the tree.

Although single decision trees can be effective classifiers, increased accuracy often can be achieved by com-
bining the results of a collection of decision trees. As highlighted by the name, a forest is generated by randomly
ensembling different decision trees. The ensemble method for Random Forest is focused on feature bagging con-
cept, which has the advantage of significantly decreasing the correlation between each decision tree and thus
increasing, on average, its predictive accuracy. Feature bagging works by randomly selecting a subset of the
feature dimensions at each split in the growth of the individual decision trees. Although this might sound coun-
terproductive, since it is often desired to include as many features as possible, it has the purposes of deliberately
avoiding on average very strong predictive features that lead to similar splits in trees, thereby increasing corre-
lation. If a particular feature is strong in predicting the response value, then it will be selected for many trees.

To classify a new object from an input vector, the algorithm analyzes the input with all the trees composing the
forest. Each tree outputs a class label, and the forest gives as result the class having the highest number of votes.

3.3 Isolation Forest Classifier

In classification problems, there is the possibility to rely on one-class classification, where samples used in
training phase belong to the same class, and in the classification phase, we use the classifier to distinguish
between correct samples, i.e., samples probably related to the class, and outliers, i.e., samples not belonging to
the class used for training.

Isolation Forest [15] is a one-class classifier where the data structure is built on the same conceptual principle
of Random Forests. In particular, an Isolation Forest is still an ensemble of bootstrapped decision trees where
distinguishing features are selected by the protocol, but, instead of profiling normal points, it shows all possible
anomalies that are isolated with respect to the models just created. As stated by Liu et al. [15], anomalies are
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data patterns that have different data characteristics from normal instances. An isolation forest is composed
by several trees similar to binary search trees, and anomalies are identified when an anomaly score, based on
the average path length in visiting the isolation trees, exceeds a given threshold. Many existing model-based
approaches to anomaly detection construct a profile of normal instances and hence isolate instances that do not
conform to the normal profile.

Technically speaking, the Isolation Forest algorithm isolates observations by randomly selecting a feature
and then randomly selects a split value between the minimum and maximum values assumed by the selected
feature. Hence, the algorithm first constructs the separation by creating isolation trees or random decision trees;
then, when they collectively produce shorter path lengths for some particular points, they are highly likely to be
anomalies. Based on the average path length derived in the testing phase, it calculates the anomaly score for each
sample. In the various online tool libraries, it is possible to set a tolerance threshold that discriminates the given
sample as isolated or not according to the model: The higher it is, the more tolerant the Isolation Forest is with
anomalies. The implementation that we used is based on heights of trees as a metric for decisions, as proposed
in Reference [15].

3.4 Principles of Features Reduction

When dealing with high-dimensional features space, it is actually infeasible to think that each feature has the
same “importance.” In particular, both redundant and irrelevant features exist. We have performed an initial
feature selection basing it on the importance value given by Random Forest algorithm to the features described in
Section 3.1 as a reference, discovering that only 264 of them influence our data, less than the 300 ones used by RFT.

Moreover, feature reduction techniques can be hence used to reduce the dataset dimensionality to facilitate the
training process, decrease training and classification computational time, reduce the variance among features,
and avoid curse of dimensionality, i.e., with the increasing of the dimensionality, space volume increases so fast
that training data become sparse.

In this article, for features reduction purposes, we rely on the Linear Discriminant Analysis (LDA) technique,
because of its simplicity. LDA is a generalization of Fisher’s linear discriminant [18], a method used in statistics,
pattern recognition and machine learning to project the original features space in a smaller one through a linear
combination of features. In practice, given the original dimensionM of the features, it is possible to reduce the di-
mension to a chosen L by projecting into the linear subspaceHL maximizing inter-class variance after projection.

4 METHODOLOGY

In this section, we define the methodologies that lead us to define the proposed framework with high perfor-
mances. In particular, in Section 4.1, we explain the feature extraction process, in Sections 4.2 and 4.3, we respec-
tively discuss the RFT multi-class methodology proposed by Laurenza et al. [11] and the one-class classification
approach through which we implement the malware triage.

4.1 Features Extraction

To compare the approaches, we rely on the data provided by dAPTaset [12]. It is a publicly available database4

with different information about APTs activities, including various Indicators of Compromise like malware hashes,
network domains, and IP addresses. dAPTaset contains more than 9,000 unique malware hashes. This number
is nowhere near the total amount of malware in the world. However, known APTs are a limited number, and
they are usually developed with a small group of suspicious software. In fact, they usually tailor their malware
to the specific victims, without spreading their attacks in the wild. Moreover, we focus our work on windows
executable files, which are a subset of all the malware included in dAPTaset. We have searched such samples in

4http://github.com/GiuseppeLaurenza/dAPTaset.
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Table 1. Malware Count per APT Class

Class Count

APT28 68
APT29 205
APT30 101

Carbanak 105
Desert Falcon 45

Hurricane Panda 315
Lazarus Group 58

Mirage 54
Patchwork 559
Sandwork 44
Shiqiang 31

Transparent Tribe 267
Violin Panda 23

Volatile Cedar 35
Winnti Group 176

Total 2086

available public sources, and, unfortunately, we came up with only 2,086 samples related to 15 distinct groups
(we have discarded APT groups where we retrieved fewer than 10 samples). Table 1 shows the distributions of
these malware. Our approach should be validated also with a larger dataset, and we hope that in the future it
will be possible to access to security firms exclusive binaries.

After having retrieved the malware samples, we process them with the PEFrame tool to extract features from
each binary. As highlighted in Section 3.1, for each analyzed executable, the extraction tool provides us seven
distinct features classes with more than 4,000 characteristics.

4.2 Multi-class Classification

RFT [11] creates a multi-class model to deal with APT classification. The authors explain that, when training
a multi-class classifier, all the output classes need to be also in the training set. Thus, when dealing with APT-
malware, this set must contain a class for each APT and also a class for all the malware that are not APT-related.
However, the group composed of the elements of the latter class is not homogeneous, making hard to train a
classifier on it. Moreover, the huge difference in the cardinality of this class with the respect to APT classes leads
to an excessive imbalance in the training set. For this reason, in the training phase, authors only consider classes
of known APTs. To discriminate a sample as not related to any APT, they set a threshold for each class in the
Knowledge Base (KB): If the score of a given sample analyzed is lower than all the relative APT thresholds, then
it is assumed to belong to the non-APT class.

Laurenza et al. [11] tested RFT with 10-fold cross-validation, a common value in literature. For each execution,
they generate the model with k − 1 folds and test it with both the remaining fold and all the collected malware
not developed by APTs.

4.3 One-class Classification

In the multi-class classification, each time an APT sample is going to enrich the Knowledge Base, there is the
need to re-train the whole RFT model, to update classification parameters and APT thresholds, wasting time
and resources. In this article, we propose to leverage on an Isolation Forest for every single APT class. This
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classification algorithm requires in the training set only the single class it should identify. In such a way, we
can create a model that identifies all those elements belonging to the related APT while considering the other
samples as anomalies. All the one-class classifiers form an ensemble classifier [14] where it is sufficient that one
of them recognizes a sample to be associated to the relative APT to raise the alarm in the triage phase. Whenever
a new sample is identified and associated with a known APT, it is going to enforce the knowledge base, and it is
sufficient to re-train the related APT classifier in the case it would exhibit a concept drift [25], i.e., its statistical
properties drifts from the ones at the time of training. The other one-class classifiers are not impacted by the
concept drift and are hence kept unchanged.

We implemented our classifiers on the open-source Scikit library,5 which provides different machine learning
tools in Python programming language. Linear discriminant analysis has been used to reduce the feature dimen-
sionality from 264 to N − 1 features, with N the number of APTs. After having split the dataset in training set
and validation set through 10-folder cross-validation, we have trained one Isolation Forest for each class by using
only malware of the training set developed by the specific corresponding APT. Isolation Forest implementation
requires two main arguments to tune in the fitting phase: contamination expresses how much the classifier has to
be tolerant in creating the model for detecting outliers; number of estimators is an attribute totally related to the
tree-nature of the Isolation Forest, and it defines how many trees it has to use in the ensemble methods. To tune
the 〈contamination, number of estimators〉 tuple for achieving the best result for each Isolation Forest classifier,
we performed cross-validation over the APT training set.

To train our Isolation Forest classifiers, we decided to provide a non-zero value to contamination. This means
that some of the training samples can be wrongly considered as outliers but increases precision in the classifica-
tion phase. Such a decision is mainly motivated by the following reasons: (i) APT reports are a known unreliable
source of labeled data [24], and hence we cannot be sure that any identified sample is really related to the specific
APT. (ii) Malware samples have high feature variability, which can compromise the performance of the classifiers
if we do not allow them to discard atypical samples in the training phase, and (iii) APT can leverage on masking
(a non-APT sample is detected) to induce misclassification errors [23]. This is possible if an APT is going to use
many different malware samples not really necessary for its activity but only to confuse analysts and ML tools
during training. This would result in many false alarms in the classification test. Introducing contamination does
not completely solve the problem but makes the system more robust. On the other side, APTs usually perform
swamping (an APT sample is classified as an outlier) to hide their presence behind the samples. However our
Isolation Forests are trained only on samples belonging to APTs according to public reports, and hence swamp-
ing is not affecting the training. We only miss not recognized samples and similar samples during classifications.
In the choice of the correct parameters, we mainly rely on the following: (i) precision, due to the malware triage
nature of the proposed framework; a high number of false positives is undesirable, since it would increase the
workload of human analysts, and (ii) accuracy, expressing how much the APT classifier is accurate in determin-
ing the right APT class of an APT sample. The choice of the contamination-number of estimators parameters for
the Isolation Forest is hence totally based on the precision-accuracy tradeoff. Because of the triage nature of the
framework, we have been more oriented to tune this choice toward precision measure. In fact, in our view, in a
triage application, stating with high precision that an APT sample belongs to a given APT with high certainty,
even if some APT samples are not identified, is more important than recognizing all the APT samples, but also
raising false alarms related to non-APT sample that are assigned to some class.

4.4 Result Validation

As previously explained, the triage system should prioritize APT-related malware that are the most dangerous
ones. Samples associated with some APT are immediately dispatched to human analysts, which have the tasks of
validating the classifier results and performing in-depth sample analysis. We note that our triage prefers precision

5http://scikit-learn.org/.
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to accuracy. Hence false negatives can occur. In this case, APT samples are not recognized. However this does
not mean that they are excluded by further analysis, but they are not prioritized. Indeed, a high classification
score can indicate that a sample deserves further inspection, even if not classified in an APT class. Scores can
be a base of a further prioritization; malware with a higher score has more probabilities to be related to an APT,
and thus it can deserve more attention than others.

The output of the triage is the label predicted by the frameworks, but, as collateral results, it gives also a
score for each of the possible labels. These scores can be very helpful for human analysts, because by knowing
in advance which group is using the sample, analysts can easily retrieve information about the APT activities.
Moreover, these scores can show interesting relationships that analysts or other tools can successively inves-
tigate. For example, they may indicate that an APT is trying to imitate another one or even that previously
separated groups are part of a single APT.

5 ANALYSIS

In this section, we compare the proposed triage scheme with RFT. For a fair comparison, we have implemented
and tested both the solutions. We have built our dataset by following the methodology used in Reference [11].
We have trained a Random Forest classifier on the 15 APT classes in Table 1 and then created a new dataset by
selecting only the classes that are recognized with Precision and Recall over 95%. This approach, already adopted
in Reference [11], gives us two sets of samples, one with malware belonging to 15 APT classes and the other
one with malware of 6 APT classes, the latter having higher performances. These classes are APT28, APT30,
Carbanak, Hurricane Panda, Patchwork, and Transparent Tribe. The same 2 sets have been used to train and
test the Isolation Forest classifiers. Following the same approach of the previous work, we have computed the
thresholds for RFT : We take the average confidence for each class, and we decrease them by a factor Δ that we
set as 5%, 10%, and 15%.

Due to the huge difference in size between the positive and negative classes, we use the weighted version of
Precision and Recall. F1-Score is computed with these values instead of the classical ones. The weighted formulas
are as follows:

WeiдhtedPrecision =
1∑

l ∈L TPl

∑

l ∈L

TPl ∗ Precisionl

WeiдhtedRecall =
1∑

l ∈L TPl

∑

l ∈L

TPl ∗ Recalll

• L is the set of labels;
• TPl is the set of samples that have the true label l ;
• Precisionl |Recalll compute the precision or recall for samples that have the label l .

In Section 5.1, we evaluate the performances of the two solutions in discriminating whether a sample belongs

or not to some APTs and their performances in the identification of the correct APT class, showing the achieved
results for each classifier. Finally, in Section 5.2, we compare the execution time required by both our works. A
draft of the code with the used dataset can be found on GitHub.6

5.1 APT-Triage

To generate a sound and uniform test, we rely on the Scikit’s Stratified 10-Fold Validation, which splits data into
train/test sets, guaranteeing the same percentage of samples for each class. The train set is used to train an
Isolation Forest for each APT class in the dataset, thus creating 6 and 15 Isolation Forests for the two identified

6https://github.com/GiuseppeLaurenza/I_F_Identifier.
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Table 2. APT-Triage Confusion Matrix with Six APTs

One-class classifier
Predicted

APT non-APT

Real
APT 1173 242

non-APT 69 90141

RFT (Δ = 5%)
Predicted

APT non-APT

Real
APT 1227 164

non-APT 12 8618

RFT (Δ = 10%)
Predicted

APT non-APT

Real
APT 1261 130

non-APT 25 8605

RFT (Δ = 15%)
Predicted

APT non-APT

Real
APT 1272 119

non-APT 100 8530

Table 3. APT-Triage Quality Measures with Six APTs

Accuracy F1 Precision Recall

One-class classifier 0.9966 0.9966 0.9965 0.9966
RFT (Δ = 5%) 0.9824 0.9825 0.9826 0.9824
RFT (Δ = 10%) 0.9845 0.9845 0.9845 0.9845
RFT (Δ = 15%) 0.9781 0.9781 0.9780 0.9781

scenarios. We built a group of classifiers for each scenario, because we related the number of features produced
by the LDA algorithm to the number of classes. In this way, each scenario has its own number of features for
the generation of the forest, thus requesting two separate training phases. A sample is recognized to belong to
some APT if at least one Isolation Forest recognizes it in its class. Otherwise, a malware is classified as non-APT

if no classifier recognizes it. In RFT, we consider a sample as non-APT if all the scores given by the framework
are lower than the relative thresholds. We performed a preliminary test of RFT solution with a set of more than
800 binaries not belonging to Advanced Persistent Threats. Then, we validated our proposed solution based on
Isolation Forests on a larger set of non-APT samples containing 9,000 binaries. While APT samples are used
in both training and classification in our 10-folder cross-validation (hence each sample is used only once in
classification), non-APT samples have been used only to evaluate all the 10 trained models. Thus, in the various
confusion matrices, the obtained results are the sum of the 10 confusion matrices, obtained each one with the
corresponding testing folder and the entire non-APT set of malware.

Tables 2 and 3 show details about the result of the first experiment in the 6 APTs scenario, while Tables 4 and
5 in the 15 APTs one. Our results are slightly better than the ones obtained by RFT, in fact, we correctly detect
most of the malware developed by APTs, achieving a precision of over 99%. Even if our solution detects a bit less
APT malware than RFT, we strongly reduced the number of false-positive cases, cutting more than half of them
in percentage with respect to the other solution. As described in the previous section, a triage approach must
focus on lowering the false detection rate to not waste analysts’ effort. Hence, this small loss in accuracy can be
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Table 4. APT-Triage Confusion Matrix with 15 APTs

One-class classifier
Predicted

APT non-APT

Real
APT 1756 330

non-APT 685 89525

RFT (Δ = 5%)
Predicted

APT non-APT

Real
APT 1759 327

non-APT 45 8585

RFT (Δ = 10%)
Predicted

APT non-APT

Real
APT 1803 283

non-APT 60 8570

RFT (Δ = 15%)
Predicted

APT non-APT

Real
APT 1831 255

non-APT 77 8553

Table 5. APT-Triage Quality Measures with 15 APTs

Accuracy F1 Precision Recall
One-class classifier 0.9890 0.9895 0.9901 0.9890

RFT (Δ = 5%) 0.9653 0.9654 0.9656 0.9653
RFT (Δ = 10%) 0.9680 0.9680 0.9680 0.9680
RFT (Δ = 15%) 0.9690 0.9689 0.9688 0.9690

well accepted if it implies a heavy reduction of false alarms and, thus, of time loss. However, the results of these
tests show improvements in all the measures, confirming the goodness of our solution.

Tables 6 and 8 show the results of the second experiment in the 6 APTs scenario, and Table 7 presents the
detailed confusion matrix for this scenario. Tables 9 and 10 contain results of the second experiment in the
15 APTs scenario. Again, in this experiment, we achieve results comparable with RFT. The small number of
APTs misclassified as other ones in the second experiment is related to the structure of our framework. In fact,
using different classifiers, it is possible that more than one classifier labels the same sample as belonging to the
relative APT. As introduced in Section 4.4, our framework can provide a score vector, thus this kind of error
can be probably reduced by evaluating it before taking a decision. Indeed, this number is small enough to be
negligible, in fact, the average metrics are only less than 0.002% lesser than the ones obtained by the other
solution. Moreover, the assignment of a sample to more classes can highlight some relations between APTs that
an analyst can deepen.

Summarizing the result of both tests, we always achieve results comparable to the ones obtained by Laurenza
et al., even better in most of the cases, and thus we can conclude that we have improved the results of RFT.

5.2 Execution Time

We here compare the runtime of training and evaluation phases for both RFT and Isolation Forests. In our tests,
we have measured the time of 10 executions and computed the average time.
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Table 6. APT-Identification Confusion Matrix with Six APTs

One-class classifier
Predicted

Correct APT Other APTs

Real
Correct APT 1171 2
Other APTs 2 5865

RFT (Δ = 5%)
Predicted

Correct APT Other APTs

Real
Correct APT 1224 3
Other APTs 3 6132

RFT (Δ = 10%)
Predicted

Correct APT Other APTs

Real
Correct APT 1258 3
Other APTs 3 6302

RFT (Δ = 15%)
Predicted

Correct APT Other APTs

Real
Correct APT 1269 3
Other APTs 3 6357

Table 7. Detailed APT-Identification Confusion Matrix of Our Isolation Forest-based Triage with Six APTs

Predicted

Real

APT28 APT30 Carbanak Hurricane Panda Patchwork Transparent Tribe

APT28 44 0 0 0 0 0

APT30 0 81 0 0 0 0

Carbanak 0 0 97 0 0 0

Hurricane Panda 0 0 0 293 0 2

Patchwork 0 0 0 0 408 0

Transparent Tribe 0 0 0 0 0 248

Table 8. APT-Identification Quality Measures with Six APTs

Precision Recall Accuracy F1

One-class classifier 0.9994 0.9994 0.9994 0.9994
RFT (Δ = 5%) 0.9992 0.9992 0.9992 0.9992

RFT (Δ = 10%) 0.9992 0.9992 0.9992 0.9992
RFT (Δ = 15%) 0.9992 0.9992 0.9992 0.9992

Tables 11 and 12, respectively, show execution time in seconds with 6 and 15 APTs. Tables also include the
training time required by the LDA algorithm to generate the LDA transformation, based on the training set. On
the other side, LDA runtime for feature reduction in classification is not provided, because it is negligible. We
underline that the configuration of the LDA transformation is performed only at the first training and repeated
when we need re-training of all the Isolation Forests (because precision and accuracy significantly decreased after
the introduction of several new samples) or when we need to add another APT. In both training and prediction,
our solution is faster than the previous one, especially in the training phase. In fact, training of a set of Isolation
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Table 9. APT-Identification Confusion Matrix with 15 APTs

One-class classifier
Predicted

Correct APT Other APTs

Real
Correct APT 1731 56
Other APTs 25 25018

RFT (Δ = 5%)
Predicted

Correct APT Other APTs

Real
Correct APT 1753 6
Other APTs 6 24620

RFT (Δ = 10%)
Predicted

Correct APT Other APTs

Real
Correct APT 1797 6
Other APTs 6 25236

RFT (Δ = 15%)
Predicted

Correct APT Other APTs

Real
Correct APT 1822 9
Other APTs 9 25625

Table 10. APT-Identification Quality Measures with 15 APTs

Precision Recall Accuracy F1

One-class classifier 0.9970 0.9970 0.9970 0.9970
RFT (Δ = 5%) 0.9995 0.9995 0.9995 0.9995

RFT (Δ = 10%) 0.9996 0.9996 0.9996 0.9996
RFT (Δ = 15%) 0.9993 0.9993 0.9993 0.9993

Table 11. Execution Time with Six APTs in Seconds

One-class classifier RFT

Feature Reduction (LDA) 0.1729 ± 0.0004 0.0000 ± 0.0000
Training Phase 1.6948 ± 0.3495 1031.9726 ± 9.1574

Prediction Phase 3.7564 ± 0.2253 7.0076 ± 0.0012

Forests is orders of magnitude lower than the training of RFT and computing the various thresholds. Moreover,
we note that the training time of our solution is the sum of the time required to build each single Isolation Forest;
thus, when there is the need to re-train only a single class, for example, after collecting new samples developed
by a particular APT, the time is only a fraction of that total time. Our solution requires an average of 0.3 s to
build an Isolation Forest related to a particular APT.

6 CONCLUSION

Among the huge amount of malware daily produced, those developed by APTs are highly relevant, as they
are part of massive and dangerous campaigns that can exfiltrate information and undermine or impede critical
operations of a target.
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Table 12. Execution Time with 15 APTs in Seconds

One-class classifier RFT

Feature Reduction (LDA) 0.2129 ± 0.0005 0.0000 ± 0.0000
Training Phase 1.6179 ± 0.0111 1600.7085 ± 25.1686

Prediction Phase 4.7240 ± 0.1566 8.4778 ± 0.3841

This work improves the previous automatic malware triage process, reducing needed computational resources,
reducing the time required for the training phase, and providing higher flexibility. These improvements are
achieved through the change of the classification approach, moving from a single multi-class classifier to a
set of one-class classifiers. Both algorithms were used with features obtained by static analysis on available
malware known to be developed by APTs, as attested by public reports. Although static features alone are not
sufficient to completely exclude relations with APTs, they allow to perform a quick triage and prioritize the
analysis of malware that surely deserve higher attention, with minimal risk of wasting analysts’ time. In fact,
the experimental evaluation has shown encouraging results: Malware developed by known APTs have been
detected with precision and accuracy over 90%.

As future work, first, we want to enlarge the Knowledge Base. In this work, we have realized classifiers relative
to 15 distinct classes, but the actual number of APTs is higher. Thus, we are interested in enriching our Knowledge
Base by crawling other public APT reports to be able to detect, among the huge number of malware delivered
per day, the ones more relevant for further analysis.

As outlined in Section 4.3, a re-training is necessary each time the discovery of new malware would cause
a concept drift in the model. Tracking concept drift [25] is hence critical to the successful application of the
proposed solution and must be included in our future works.

Another interesting future development regards the improvements of the classification through the revise of
the features reduction phase and the classification algorithm. For the former, we want to observe the impact of
variation of the number of projections or applying other techniques such as Principal Component Analysis. Given
the modularity of our proposal, we also want to test other algorithms based on different principles respect to
Isolation Forests, also examining the possibility to rely on different approaches (not necessarily based on machine
learning tools) for different APTs. Also, different metrics can be considered in our approach. For example, an
interesting approach to be investigated is the one proposed in Reference [27] for the identification of malicious
emails, which presents a new scoring system that is based on the combination of various scores applied on
different subgroups of features. The modularity of our approach is a strong advantage of our proposal, in fact,
we should use different classification algorithms and metrics for different APTs, choosing each time the one
that performs better or combining the output of more single classifiers. Modularity also permits to introduce
classifiers for other problems of interest, such as the recognition of important malware families, even if not
necessarily connected to APTs.

Another aspect that we want to study is the use of different types of features: In our works, we focus on
characteristics extracted from the headers of the file and its structure, but the static analysis also includes code

analysis that we slightly use only in the form of function size observation. Code reuse and code similarities are
techniques that we can exploit to add new information to our knowledge base. Similarly, both our proposal
and previous work rely on static features to provide a fast response, but many obfuscation techniques can hide
characteristics useful for APT identification. To overcome these protections made by adversaries, it is always
possible to use dynamic analysis tools that can observe the behavior of the malware. Even if these tools require
a higher amount of time respect to static analysis, we can use dynamic analysis in a second step after the first
triage one to validate results of the first phase or take decision on samples that have not been identified in the
first step but whose classification score is close to the threshold. Moreover, we plan to investigate also the field
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of semantic features. Works like Reference [22] show how it is possible to use semantic features to determining
malware similarity and the temporal ordering of malware, generating also malware lineages. We believe that
these information can heavily help to detect and identifying malware developed by APTs, with the addition of
highlighting the evolution of the tools used by attackers to perform their activities.

Finally, as described in Section 4.4, a collateral result of our framework is a scoring vector showing the prob-
ability of a binary to be developed by each APT. Such score vectors can be exploited in many different ways.
First, they can be used in a multi-level prioritization system where samples not classified as belonging to some
APT are scheduled to analysts according to their scores, because a higher score highlights some correlation with
other malware developed by that particular APT. Moreover, they provide much other useful information, beyond
our triage analysis. These scores might highlight relationships among different groups, and investigating them
can then lead to interesting discoveries, such as, for example, a group trying to imitate another one, more APTs
collaborating against a common target, or also an APT incorrectly divided in more groups. It is of our interest
to explore their utility in future applications, beyond malware triage.
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