Lack of splice factor and cohesin complex mutations
in pediatric myelodysplastic syndrome

Myelodysplastic syndromes (MDS) represent a hetero-
geneous group of hematologic disorders, with distinct
subtypes defined by cytogenetics, the number of affected
lineages, severity of cytopenia, cellular dysplastic mor-
phology, and blast counts.' Extensive next-generation
sequencing has recently been performed in adult MDS;
these studies revealed that mutations most frequently
occurred in genes involved in RNA splicing, the cohesin
complex, chromatin modification, DNA methylation,
transcriptional regulation, and signal transduction.”"’ In
contrast, relatively little is known about recurrently

affected genes and pathways in childhood MDS and their
contribution to disease pathogenesis."""

We performed for the first time within this disease
group a systematic investigation of the importance of
mutations and recurrently affected pathways found in a
variety of hematologic diseases using deep sequencing,
and compared our findings with published data from
adult MDS patients. DNA samples from 24 primary and
14 secondary pediatric MDS cases were analyzed.
Information on patients' characteristics is provided in
Online Supplementary Table S1. Institutional review board
approval for these studies was obtained in the participat-
ing centers. Thirty-nine samples were sequenced using
the TruSight Myeloid Sequencing Panel (Illumina, San
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Diego, CA, USA) on the MiSeq platform and prepared
according to the TruSight DNA Amplicon Sequencing
Panel guide (Illumina). Average gene coverage was 2805.
The MDS sample from patient 5 was analyzed using
whole exome sequencing (WES), as previously
described,” with an average gene coverage of 78. Further
details on the patient cohort, on the bioinformatic analy-
ses, and candidate mutation selection are provided in
Ounline Supplementary Table S1 and Figure S1.

In total, we found 28 mutations in 18 genes (Figure 1).
Details on the mutations, frequency, the variant cover-
age, and variant allele frequencies (VAFs) in healthy indi-
viduals as assessed by population-based sequencing
efforts, as well as predicted effects of the alterations for
each patient are shown in Online Supplementary Table S2.
TP53, BCOR and RUNX1 mutations were present in 3
patients. ASXL1, GATA2, PTPN11 were mutated twice
and mutations in WT1, DNMT3A, CUX1, STAG2, IKZF1,
CSF3R, PHF6, ATRX, CBL, EZH2, IDH2, CDKN2A were
found in single patients only. Twenty-one patients (55%)
had none of these mutations, but 13 of them had a cyto-
genetic abnormality (Figure 1 and Omnline Supplementary
Table S1), most commonly monosomy 7. Overall, at least
one genetic or cytogenetic aberration was present in 30
of the 38 (79%) patients. This percentage is identical to
that previously reported for adult MDS.” There was no
difference in frequencies or type of mutations between
primary and secondary MDS samples. Unfortunately, no
material of the primary diseases was available in the sec-
ondary MDS cases, thus, the possibility that these MDS
cases are minimal residual diseases (MRDs) of the pri-
mary malignancies [e.g. of the acute myeloid leukemia
(AML) patients] cannot be excluded. This represents an
interesting question to be investigated in independent
studies.

A previous report by Hirabayashi et al." suggests a lack
of mutations in the splice factor-encoding genes in pedi-
atric MDS, as evidenced by Sanger sequencing of muta-
tional hotspots in SF3B1, U2AF35 and SRSF2. This find-
ing contrasts strongly with results in adult MDS patients,
in which mutations in genes involved in RNA splicing are
the most common abnormality (Table 1), occuring as
clonal mutations and early in disease evolution.””’
Because the resolution of conventional Sanger sequenc-
ing is low, and given the previously reported impact of
subclonal mutations in adult MDS on patient survival,” !
we assessed whether subclonal aberrations in the splice
factor-encoding genes SF3B1, SRSF2, ZRSR2 and U2AF1
could be detected in our cohort. None of the pediatric
MDS cases in our study had clonal or subclonal muta-
tions in these genes, corroborating the findings by
Hirabayashi et al. Another mechanism that is recurrently
affected in adult MDS is the formation of the cohesin
complex (Table 1).” We found only one mutation in
STAG2 in our pediatric MDS cohort (Figure 1), while
other genes of this complex, such as SMC1A, SMC3 and
RAD21, were not mutated. On the other hand, we iden-
tified both clonal and subclonal mutations in genes
involved in chromatin modification, DNA methylation,
signaling and transcription (Figure 1 and Ounline
Supplementary Table S2), in frequencies comparable to
those reported for adult MDS (Table 1).

In summary, our study shows that approximately 45%
of pediatric MDS patients carry at least one mutation, pri-
marily occurring in genes associated with chromatin
modification, DNA methylation and transcription, but
rarely in genes involved in RNA splicing and function of
the cohesin complex. Because the latter mechanisms are

Table 1. Comparison of frequencies of affected pathways in pediatric
and adult myelodysplastic syndromes.

Pathway Frequency (%) Frequency (%)
in pediatric MDS*  in adult MDS*
DNA methylation 8.0 37.0
Chromatin modification 18.0 22.0
Transcription 20.0 14.0
Signaling 10.0 15.7
RNA splicing 0.0 474-55.2
Cohesin complex 2.5 41-8.0
Other pathways 75 7.0

MDS: myelodysplastic syndromes.'Data of this study.*Data based on Papaemmanuil
et al’, Kon et al."’ and Yoshida et al.’

most commonly affected in adult MDS, these data point
towards a clear distinction between the pathogenesis of
pediatric and adult patients, which may have implica-
tions for future therapy approaches in the different age
groups.
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