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Abstract
We calculate a Griffiths-type ring for smooth complete intersections in Grassmannians. This
is the analogue of the classical Jacobian ring for complete intersections in projective space
and allows us to explicitly compute their Hodge groups.

1 Introduction

Griffiths’ theory of residues is a powerful tool in algebraic geometry. It identifies the Hodge
groups of a smooth projective hypersurface X with some special homogeneous slices of a
graded ring, the Jacobian ring associated with the defining equation of X (see [12] for the
original result). Its very explicit nature has led to proofs of several well-known theorems,
for example, the Torelli theorem or the Noether-Lefschetz theorem in some special cases,
including e.g. threefolds.

This result has been generalised to the case of complete intersection in toric varieties,
thanks to the work of Batyrev and Cox, Dimca, Konno, Mavlyutov, and many others [1,6,
17,20]. In this case, the generalised Jacobian ring is as explicit as in the hypersurface case
(given in terms of generators and relations). Another generalisation was subsequently given
by Green in [11], who investigated the case of hypersurfaces of sufficiently high degrees in an
arbitrary variety. However, the latter was less explicit than the former case. In a very recent
work which was developed in parallel with ours, Huang–Lian–Yau–Yu [13] generalised
Green’s description to zero loci of homogeneous vector bundles. Their approach and ours
share many techniques, which were also used in the first author’s PhD thesis [7]. However,
they differ both in the scope of the results, which hold in greater generality in [13], and in the
explicit computability of Hodge structures, which is explained in greater detail in the present
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paper. In a preliminary chapter, we go through a brief summary of some of the literature in
the topic.

The purpose of this paper is to construct explicitly a Jacobian-type ring for complete
intersections in Grassmannians. In particular, in what we consider to be the core result, we
give a presentation (in terms of generators and relations) of the Griffiths ring that plays the
role of the classical Jacobian ring in this context. In particular, we produce a simple recipe
to explicitly write down the Jacobian-type ideal, echoing the original spirit of the work of
Griffiths. We present as well several meaningful examples in Sects. 3.1, 4.1 and 4.2 to show
in detail how the computations can be done. These computations can be easily replicated for
any other example, either by hand or by using computer–algebra software such asMacaulay2
[10].

When Xd ⊂ Gr(k, n) is a smooth hypersurface we define the Griffiths ring RG
f as in

Definition 3.2 and Ip−1,p as in Definition 3.7. Our first result is the following.

Theorem 1.1 Let Xd be a smooth hypersurface in the Grassmannian G = Gr(k, n). Set
N := dim(G) = k(n − k), and define RG

f the Griffiths ring for X as defined in Definition
3.2. Assume that d ≥ n − 1. If dim(X) = N − 1 ≡ 0 (2), then

[RG
f ](p+1)d−n ∼= H p

van(X ,�N−1−p).

If dim(X) = N − 1 ≡ 1 (2), then

[RG
f ](p+1)d−n ∼= H p

van(X ,�N−1−p) ⊕ δp, N2
Ip−1,p,

where δp, N2
is the Kronecker delta symbol.

We discuss the case d ≤ n − 2 and give some explicit formulae for the Grassmannian of
lines as well.
In the case of Z a complete intersection Z = Zd1,...,dc ⊂ Gr(k, n), we use a Cayley trick
to produce a specific version of the Griffiths ring U as in (7). Set m := ∑

di − n , so that
ωZ ∼= OZ (m). Our result is then the following.

Theorem 1.2 Let Z be a smooth complete intersection in a Grassmannian Gr(k,n), and let
U be the Griffiths ring attached to Z. Suppose m ≥ −1. Then if dim(Z) = N − c is even

Up,m ∼= HN−c−p,p
van (Z).

If dim(Z) = N − c is odd

Up,m ∼= HN−c−p,p
van (Z) ⊕ δp, N−c

2
Ip,p−1(G).

We give several significative examples, such as Fano 5-folds and 4-folds of genus 6 and
degree 10, and a Calabi–Yau section of the Grassmannian Gr(2, 7). We conclude with an
appendix on Fano varieties of K3 type: we intend this as the beginning of a classification
project that we plan to develop in a series of future works.

Notation

If Vn is a C-vector space of dimension n, we denote by Gr(k, Vn) = Gr(k, n) the Grass-
mannian of k-planes in Vn (sometimes in longer formulae—and whenever there is no risk
of confusion—we will denote it by G). We will denote by N := k(n − k) the dimension
of Gr(k, n). Denote by OG(1) the ample generator of Pic(Gr(k, n)) ∼= Z: we have then
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ωG ∼= OG(−n). We will always assume that k �= 1, n − 1: this is motivated by substantial
differences in the theory between projective space and Grassmannian varieties.

Denote by

S =
⊕

a≥0

Sa, Sa = H0(Gr(k, n),OG(a))

the homogeneous coordinate ring of the Grassmannian; in particular, a hypersurface X of
degree d will be given by the vanishing of a f ∈ Sd . Throughout the whole paper, Xd1,...,dc ⊂
Gr(k, n)will denote a complete intersection ofmultidegree (d1, . . . , dc) in the Grassmannian
Gr(k, n). All varieties are assumed to be smooth and projective. We work over C.

2 Preliminaries

2.1 Original Griffiths theory and link with deformations of affine cones

If X is a smooth projective hypersurface, Griffiths’ theory of residues explicitly determines
the Hodge structures of X in terms of the coordinate ring of X . The result is classic. For a
general overview, we refer to [29, 6.10].

Theorem 2.1 The n-dimensional vanishing Hodge structure of a degree d smooth projective
hypersurface X ⊂ P

n+1 is given by the isomorphism

Hn−p+1,p−1
van (X) ∼= (C[x0, . . . , xn+1]/J f )pd−n−2

where J f is the ideal spanned by all the partial derivatives ( f0, . . . , fn+1) of f .

The ideal J is often called in the literature the Jacobian ideal. The notation Hn
van(X)

(and similarly for the (p, q) part) will denote the vanishing subspace of the cohomology
group, see [29, 2.3.3] for a definition. In the literature, the result is often phrased in terms
of primitive cohomology. This is because for a smooth projective hypersurface primitive and
vanishing cohomology agrees. The Jacobian ringC[x0, . . . , xn+1]/J f of a smooth projective
hypersurface coincides moreover with T 1

AX
, the infinitesimal first-order deformation module

of the affine cone AX over X . The latter is a classical object in algebraic geometry and
deformation theory. We refer to [5] for an overview of its properties that are needed in the
present paper. When X is an arbitrary smooth projective variety of codimension c there is
a link between the deformations of AX and the Hodge theory of X . An assumption needed
for the result is the subcanonicality property for X , that is we can write ωX as OX (c), some
c ∈ Z.

Theorem 2.2 (Theorem1.1 in [5])Let X bea smooth projectively normal variety of dimension
n > 1, and let m ∈ Z be the integer such that ωX ∼= OX (m). If H1(X ,OX (k)) = 0 for every
k ∈ Z, then we have

(T 1
AX

)m ∼= Hn−1,1
prim (X).

The relation between T 1 and Hodge theory will be crucial for the rest of this paper.

2.2 Cohomology of projective bundles and of complete intersections in PN

In order to extend Griffiths’ original result from hypersurfaces to complete intersections
in projective spaces, one of the main tools is the Cayley trick approach of Dimca, Konno,
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Terasoma et al. Starting from a complete intersection Z ⊂ P one can construct a hypersurface
Ẑ in a projective bundle P(E) over P . The middle vanishing cohomology of Z and of
Ẑ coincide up to a shift. Therefore one can apply the construction for a hypersurface to
Ẑ ⊂ P(E), with suitable modifications. In [17] a generalised version of a Griffiths ring for a
variety defined by the zero set of a generic section of E is defined. However, the result was
made explicit only for complete intersections in a projective space. We give here an explicit
version of Griffiths’ residue theorem for complete intersections in Grassmannians as well.
We will now go through a recap of some preliminary concepts on projective bundles that we
will need later in the paper.

Let E be a vector bundle of rank c on an n dimensional smooth and proper variety X .
Denote by Ex the fiber over x ∈ X . Consider the projective vector bundle

π : Y = P(E) → X ,

whose fiber is the space P(Ex ). To avoid any confusion we consider P(E) as the space of
rank one quotients. Useful sequences to understand the geometry of Y in terms of X are the
relative tangent sequence

0 → TY/X → TY → π∗TX → 0, (1)

and the relative Euler sequence

0 → OY → π∗E∗ ⊗ L → TY/X → 0, (2)

where L = OY (1) denotes the tautological quotient line bundle on the projective bundle Y ,
which is ample if and only if E is. The following lemma is useful in this context.

Lemma 2.3 ( [17, Lemma 1.2]) Let F be a vector bundle on X. Then

Hq(Y , π∗F ⊗ Lh) ∼=
⎧
⎨

⎩

Hq(X ,F ⊗ Symh E) if h ≥ 0
Hq−c+1(X ,F ⊗ det E∗ ⊗ Sym−h−c E∗) if h ≤ −c
0 otherwise

From the aboveLemma it follows that H0(X , E) ∼= H0(Y ,L). Toσ ∈ H0(X , E)weassociate
the corresponding section σ̂ of L on Y . Let Z and Ẑ be the zero loci of σ and σ̂ . The Hodge
theory of Z and Ẑ are strongly related: namely, we have the following result.

Proposition 2.4 ([17, Proposition 4.3])There exists a canonical isomorphism ofHodge struc-
tures

Hq
van(Z ,C)(1 − c) ∼= Hq+2c−2

van (Ẑ ,C).

As an example, take X ∼= P
N . Assume that E splits into a direct sum of line bundles, i.e.

E ∼= OPn (di ). Since we have H0(X , E) ∼= H0(Y ,L) we can consider the total coordinate
ring of Y

S = C[x0, . . . , xN , y0, . . . , yc].
The Picard group of Ẑ has rank two: therefore the ring above comeswith a suitable bi-grading.
We set deg(xi ) = (0, 1) and deg(yi ) = (1,−di ). This choice of bi-grading is inspired by the
above isomorphismwith the global sections of the normal bundle E|Z . We have the following
result.
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Theorem 2.5 (Theorem 7 in [6]) Let Z = V ( f1, . . . , fc) be a smooth complete intersection
of dimension n in P

N with normal bundle
⊕c O(di ) and ωZ ∼= OZ (m). Set F = ∑

fi yi .
Denote by

Ua,b := (S/J )a,b,

where J is the ideal generated by ( ∂F
∂x0

, . . . , ∂F
∂ yc

). Then

Up,m ∼= Hn−p,p
van (X).

3 Hypersurfaces in Grassmannians

The first step in our analysis consists of formulating the following definition. In the definition
below we use the fact that sln acts on S. We will properly define this action in the lines that
follow.

Definition 3.1 (cf. [11,25]) The generalised Jacobian ideal orGriffiths ideal J f of a smooth
hypersurface X = V ( f ) in Gr(k,n) is the homogeneous ideal of S generated by f ∈ Sd and

{v · f | v ∈ sln ∼= H0(G, TG)}.
We denote by RG

f = S/J f the corresponding Griffiths ring.

We want now to introduce an equivalent definition of RG
f in the most possible explicit way,

that is in terms of generators and relations. Let us fix a basis v1, . . . , vn for Vn and a dual
basis x1, . . . , xn for V∨

n
∼= C[x1, . . . , xn]1. It is well known that

H0(G,OG(1)) ∼=
k∧
V∨
n

∼= 〈. . . , xI , . . .〉,
where I denotes a multi-index {i1, . . . , ik} of {1, . . . , n} of length k, with i1 < · · · < ik and
xI := xi1 ∧ . . .∧ xik . In particular, S is isomorphic to the Plücker algebra S ∼= C[xI ]/P,with
xI is as above,with P denoting the ideal generated by the equations of the Plücker embedding.
These can be computed quite easily in a recursive way, for example using Macaulay2.

To have a complete understanding of RG
f we only have to make the sln action explicit.

There is a canonical action of sln on the dual of its tautological module (Vn)∨ (cf. [23]).
Recall that sln is generated by

{Ei, j , Ei,i − E j, j | i, j = 1, . . . , n, i �= j},
where Ei, j denotes the matrix with one in the (i, j)-place and zeroes elsewhere. Ei, j acts
on (Vn)∨ as a differential operator: more precisely to Ei, j corresponds the derivations Di

j
defined by

Di
j = xi

∂

∂x j
.

The action of Di
j induces a natural action on

∧k V∨ and on Symr ∧k V∨ simply by Leibniz’s
rule.

Therefore, if X ⊂ Gr(k, n) is given by the vanishing of a polynomial f ∈ Sd , J will be
generated by f itself and by the n2 − 1 degree d polynomials given by

{Di
j ( f ), Di

i ( f ) − D j
j ( f ) | i, j = 1, . . . , n, i �= j}. (3)

We can then rephrase the definition of the Griffiths ring as follows.
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Definition 3.2 Let X = V ( f ) be a smooth hypersurface in the Grassmannian Gr(k,n). Let S
be the coordinate ring of the (affine cone over the) Grassmannian, and let J be the ideal of
S generated by f and the equations in (3). We define the Griffiths ring of X as

RG
f := S/J .

The above definition is quite similar to the one given in Theorem 2.1 in the projective case.
The main difference is the sln-action, which is different from the usual one for Pn that sends
f �→ ∂ f

∂xi
. Our assumption k �= (1, n − 1) in Gr(k, n) is therefore relevant.

Generalising Griffiths’ calculus, when appropriate vanishings are provided, the Hodge
groups H p

van(�
n−p) are contained in (some specific homogeneous component of) S. In par-

ticular, there is a surjective map of graded rings
⊕

Sa −→
⊕

H p,n−p
van (X).

Our purpose is to identify the kernel of this surjective map with the above-defined Jacobian
ideal J f . Moreover, in what we consider being the core result of this section, we show how
to give an explicit presentation of the Jacobian ring (and its graded components) in terms of
generators and relations. This in turn allows us to recover explicit (polynomial) basis for the
Hodge groups H p,q

van (X), in a generalisation of Griffiths’ theorem on Pn .
We point out that the required vanishings for Griffiths’ theorem to hold do not always

work in the Grassmannian case. Nevertheless, we give a generalised version of Griffiths’
strategy, showing how to effectively use our result in a few distinguished examples.

The first step consists in linking the generalised Jacobian ring to the T 1
AX

of the affine cone

over X . Recall from [26] that T 1
AX

can be defined as Ext1(�1
AX

,OAX ) under the assumption
of projective normality of X . We refer to [5] for a collection of properties relevant in this
context. In particular, recall that for a smooth projective hypersurface the module T 1

AX
has a

ring structure, and it is isomorphic, up to a degree shift, to the classical Jacobian ideal of X .We
want to show that the same happens for hypersurfaces in Grassmannian, with the appropriate
definition of the Griffiths ring given above. In what follows, recall that N := k(n−k) denotes
the dimension of Gr(k, n) and that ωG ∼= OG(−n).

Lemma 3.3 Let X be a smooth hypersurface of degree d in the Grassmannian G = Gr(k, n)

defined by the vanishing of f ∈ H0(G,OG(d)). We have an isomorphism

T 1
AXd

(−d) ∼= RG
f .

Proof Consider the short exact sequence

0 → TX → TG |X → OX (d) → 0.

For any twist withOX (h) we consider the associated long exact sequence in cohomology on
X

H0(TG|X (h))
β→ H0(OX (d + h))

α→ H1(TX (h)) → H1(TG|X (h)). (4)

The first thing to show is the vanishing of the last term in the sequence above. One uses the
two standard exact sequences (for any k, t)

0 → �k
G(t) → �k

G(t + d) → �k
G |X (t + d) → 0, (5)

0 → �k−1
X (t) → �k

G |X (t + d) → �k
X (t + d) → 0, (6)

and the fact that by Serre duality H1(X , TG(h)|X ) ∼= (HN−2(�1
G |X (−n + d − h))∨. Indeed

the latter is zero after expanding in cohomology the first sequence since by Borel–Bott–Weil
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theorem we have the vanishing of Hq(�1
G(t)) for any (q, t) �= (1, 0), q > 1. Therefore in

(4) by properties of exact sequences one has

H1(X , TX (h)) ∼= H0(X ,OX (h + d))/Im(β).

On the other hand, the action of H0(TG|X ) ∼= sln is given as the derivation action of sln
on the space of homogeneous polyonomial of degree h in the coordinate ring. For every h
therefore β coincides with the action defined in (3). The right hand side of the isomorphism
above coincides with the given definition of the Jacobian ring RG

f . For dimension reasons

H2(OX (h)) = 0. This implies that

T 1
AX

(−d + h) ∼= H1(TX (h)).

��
The above lemma gives us almost everything we need. In fact, thanks to this result we can
work directly on T 1

AX
, whose graded components are identified with the cohomology groups

of twists of the tangent bundle TX . We can therefore apply all original Griffiths’ machinery,
proving at the same time the results for the Griffiths ring RG

f . Many of the proofs use standard
diagram-chasing techniques, and therefore we will just sketch them.

Using [5, Theorem 1.1], Lemma 3.3 implies

(RG
f )0 ∼= H1(TX ), (RG

f )m ∼= Hn−1,1(X),

where m is the integer such that ωX ∼= OX (m). These cohomology spaces both coincide
with their primitive part, since H2(X ,OX (k)) = 0 for any k. In the case of projective
hypersurfaces Griffiths’ theory implies

Hn−p,p
van (X) ∼= (T 1

AX
)(p−1)d−m ∼= H1(TX ((p − 1)d − m),

see [5,Corollary 3.13]. These spaces can be shown to be isomorphic a priori,without deducing
it from the previous theorem. This is implied by the vanishings of Hq(�

p
P
(k)) for p ≥

0, q, k > 0 by Bott’s theorem (and Hard Lefschetz theorem). On the Grassmannian Gr(k,n)
the vanishing of the cohomology group of twisted differentials is a more subtle question.
Borel-Bott-Weil theorem is themain source to address the computations of these cohomology
groups. A classical survey can be found for example in Snow’s paper [28]. The following
lemma provides the vanishings required in the Grassmannian case.

Lemma 3.4 Let X ⊂ Gr(k, n) be a smooth hypersurface of degree d and take p ∈
{1, . . . , N − 2}. Suppose that the following vanishings hold:

(I) H p−1(�
N−p
G (d)) = 0;

(II) H p(�
N−p
G (d)) = 0;

(III) H p(�
N−p
G ) = 0;

(IV) H p+1(�
N−p
G ) = 0.

Then the following isomorphism holds

H p−1(

p−1∧
TX (2d − n)) ∼= H p(

p∧
TX (d − n)).

Proof Consider the tangent-normal sequence raised to the p-th power

0 →
p∧
TX (d − n) →

p∧
TG |X (d − n) →

p−1∧
TX (2d − n) → 0.
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The long associated sequence in cohomology is

· · · → H p−1(

p∧
TG|X (d − n))→H p−1(

p−1∧
TX (2d − n))→H p(

p∧
TX (d − n))→H p(

p∧
TG|X (d − n))→· · ·

By the standard tangent pairing

H p−1(

p∧
TG |X (d − n)) ∼= H p−1(�

N−p
G |X (d));

H p(

p∧
TG |X (d − n)) ∼= H p(�

N−p
G |X (d)).

Using the Koszul complex one has that the vanishing conditions (I,III) imply the vanishing
of H p−1(�

N−p
G |X (d)), and the same with H p(�

N−p
G |X (d)) and conditions (II, IV). ��

The above Lemma gives us only one step of the iterated multiplication map. We remark
that for every step the latter is the connecting homomorphism in cohomology of the p-th
wedge power of the normal sequence. However, one can replicate the same technique and
get even more conditions. The proof is rather technical and we will omit it, since it follows
the same lines of Lemma 3.4.

Lemma 3.5 Let X ⊂ Gr(k, n) be a smooth hypersurface of degree d and consider p ∈
{1, . . . , N − 2}. Suppose that the following vanishings hold

H j (�
q
G(ld)) = 0, q = N − p, . . . , N , j = p + 1, . . . , 1, l = 0, . . . , p.

Then the following isomorphism holds

H1(TX (pd − n)) ∼= H p(X ,�
N−1−p
X ).

We point out that this set of vanishings is slightly stronger than the one we need. As an
example, see Lemma (3.4), where the vanishing of H p+1(�

N−p
G (d)) is not needed. What

we have to understand now is for which Xd ⊂ Gr(k, n) the vanishing conditions of Lemma
3.5 are automatically satisfied. Borel–Bott–Weil theorem transforms the vanishing question
into a combinatorial one. We quote the following result by Snow [28].

Theorem 3.6 (Thm. 3.2, 3.4, 3.5 in [28]) Denote by G the Grassmannian Gr(k, n). Then
H p(G,�q(t)) = 0, for t ≥ 1, if any of the following conditions are satisfied:

(I) t ≥ n;
(II) kp ≥ (k − 1)q > 0;
(III) p > N − q;
(IV) q > N − k, (k, n) �= (2, 4);
(V) q ≤ t , with p > 0;
(VI) t ≥ n − k and p >

(n−1−t)(n−t)
2 .

We are now in position to prove the main result of this section. We recall first the description
of the Hodge groups of the Grassmannian. Since the Grassmannian is a homogeneous variety,
hi, j (G) = 0 for i �= j . On the other hand, when i = j the dimension of these spaces are

h j, j (G) = #{(a1, . . . , ak)|n − k ≥ a1 ≥ . . . ≥ ak ≥ 0,
∑

ai = j}.
We will need the following definition.
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Definition 3.7 For j ≤ N
2 define I j−1, j as the cokernel of the injective map given by the

multiplication by a hyperplane class

0 → H j−1, j−1(G) → H j, j (G).

Theorem 3.8 Let Xd be a smooth hypersurface in the Grassmannian G = Gr(k, n), and
RG

f the Jacobian ring for X defined in Definition 3.2. Assume that d ≥ n − 1. If dim(X) =
N − 1 ≡ 0 (2), then

[RG
f ](p+1)d−n ∼= H p

van(X ,�N−1−p).

If dim(X) = N − 1 ≡ 1 (2) then

[RG
f ](p+1)d−n ∼= H p

van(X ,�N−1−p) ⊕ δp, N2
Ip−1,p,

where δp, N2
is the Kronecker delta symbol.

Proof By Lemma 3.3 one has

(RG
f )k+d ∼= (T 1

AX
)k ∼= H1(X , TX (k)).

In particular, thanks to Lemma 3.5 we will have

(RG
f )pd−n+d ∼= H1(X , TX (pd − n)) ∼= H p(X ,�N−1−p),

provided that the vanishing conditions in the hypotheses hold. By Theorem 3.6 all these
vanishings are automatically satisfied if d ≥ n (part I) and if d = n − 1 (part VI) except
possibly Hi+1(�

N−1−p
G ) = Hi+1(�

N−1−p
G ) = 0.

Thanks to the given description of the cohomology ring of the Grassmannian, we know
that the above groups vanish for almost all values of i . In particular, from (5) and (6) one
gets the sequence in cohomology

0 → HN−1−p,p−1(G) → HN−p,p(G) → H p−1(�
N−p
X (d)) → HN−1−p,p(X)

→ HN−p,p+1(G) → 0,

where we have already taken into account all the other vanishings of Lemma 3.5. The Hodge
groups in the Grassmannian will vanish unless p + 1 = N − p or p = N − p. In the first
case dim(X) = N − 1 = 2p is even, and we have

0 → H p−1(�
N−p
X (d)) → HN−1−p,p(X) → HN−p,p+1(G) → 0,

that is

H1(TX ((
N − 1

2
d − n)) ∼= H

N−3
2 (�

N+1
2

X (d)) ∼= H
N−1
2 , N−1

2
van (X).

When the dimension of X is odd, we first remark that HN−1(X) = HN−1
van (X). We have

N = 2p and

0 → HN−1−p,p−1(G) → HN−p,p(G) → H p−1(�
N−p
X (d)) → HN−1−p,p(X) → 0,

that is

H1(TX ((
N

2
d − n)) ∼= H

N
2 −1(�

N
2
X (d)) ∼= H

N
2 −1, N2 (X) ⊕ I N−2

2 , N2
.

��
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We notice how the statements of the above theorem directly generalise Theorem 2.1. In
particular, the degree of the homogeneous slices in the Griffiths ring representing the Hodge
groups are determined by the degree of the hypersurface and the canonical class of the ambient
space.

The above theorem guarantees an extension of the Griffiths’ residue calculus to all but
a finite number of cases for any Grassmannian (namely, in the Fano case of index > 1).
Of course Borel-Bott-Weil theorem can be effectively used to get either more vanishings or
to easily compute the exceptions to the above result in the Fano case. As we have seen, in
general for a Grassmannian Gr(k, n) the difference between (R f )

G
(p+1)d−n and H p,n−p

van (X)

can be computed in terms of H p(�
q
G(k)). There exist ad-hoc formulae for these groups, but a

general statement is complicated to find. The situation is slightly better for the Grassmannian
of lines Gr(2, n).

Corollary 3.9 Let X be a smooth hypersurface of degree d in the Grassmannian Gr(k,n)
defined by f ∈ H0(OG(d)). Then

N−1⊕

p=1

(R f )(p+1)d−n ⊕ BN−1−p,p ∼= ⊕(HN−1−p,p
van (X) ⊕ AN−1−p,p)

with the possible residual contributions Ap,Np−1, Bp,Np−1 determined by the non-vanishing
of the groups in Lemma 3.5 and therefore depending only by some residual cohomologies of
H j (�

q
G(k)).

Corollary 3.10 Let X be a smooth hypersurface of degree d in the Grassmannian Gr(2,n)
defined by f ∈ H0(OG(d)). Then

n−1⊕

p=1

(R f )(p+1)d−n ∼= ⊕HN−1−p,p
van (X) ⊕ δp, N2

Ip−1,p

with the possible exceptions of

p = 2n − 1 − d

3
and p = 4n − 9 − d

3
.

Proof The case d ≥ n − 1 is already addressed by Theorem 3.8. Therefore we just need to
check the case d ≤ n − 2. In particular, we need to check the vanishing of the groups in
Lemma 3.5. For the Grassmannian of lines however, these are listed in [22, Lemma 0.1]. ��
Wewant now to provide an example to show to the reader how our method can be effectively
used in computations.

3.1 A worked example: Fano fivefold of degree 10

Our first example is a smooth quadric fivefold hypersurface in the GrassmannianGr(2,5). The
GrassmannianGr(2, 5) has dimension six, and it is embedded under the Plücker embedding in
P
9 = P(

∧2 V5). Its description is well-known, but wewill briefly recall it for the convenience
of the reader. Its homogeneous ideal of relations is given by the submaximal Pfaffians of a
generic skew 5 by 5 matrix, and we can write the five equations as

IG = (x3,4x2,5 − x2,4x3,5 + x2,3x4,5, x3,4x1,5 − x1,4x3,5 + x1,3x4,5, x2,4x1,5 − x1,4x2,5
+x1,2x4,5, x2,3x1,5 − x1,3x2,5 + x1,2x3,5, x2,3x1,4 − x1,3x2,4 + x1,2x3,4).
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As before, we think of X as defined by the vanishing of an (appropriate) single polynomial
f in H0(OG(2)). The hypersurface X is an example of a Gushel-Mukai variety in the sense
of [15]. We point out that the novelty of this computation is not the determination of the
Hodge numbers (that were computed before for example in [21]), but the fact that we can
now determine explicitly generators and relations for these groups.

By adjunction formula one has that ωX ∼= OX (−3). X is a Fano fivefold of degree 10 and
genus 6. In particular, we know straight away that

H0,5(X) ∼= H5,0(X) ∼= H0(KX ) = 0.

Lemma 3.11 Let X be as above. The following isomorphisms hold

• (RG
f )−1 ∼= H1(TX (−3)) ∼= H4,1(X);

• (RG
f )1 ∼= H1(TX (−1)) ∼= H3,2(X);

• (RG
f )3 ∼= H1(TX (1)) ∼= H2,3(X);

• (RG
f )5 ∼= H1(TX (3)) ∼= H1,4(X).

Proof Follows from Corollary 3.10, since neither 2n−1−d
3 nor 4n−9−d

3 are integer numbers.
��

Now that we established the isomorphisms in abstract, we want to explicitly compute the
Griffiths ring of a Gushel-Mukai fivefold.

We have therefore to make explicit the action of sl5 on H0(Gr(2, 5),OG(2)), the latter
being the degree 2 component of the quotient of C[x1,2, . . . , x4,5] by the ideal generated by
the Plücker relations.

The derivations Di
j acts as

Di
j (xr ,s · xh,k) = (δ j,r xi,s + δ j,s xr ,i )xh,k + xr ,s · (δ j,hxi,k + δ j,k xh,i ).

Extending by linearity we can rewrite the Di
j in a much more neat form as

Di
j =

5∑

k=1

xk,i
∂

∂xk, j
.

We prepared a Macaulay2 script that, given a polynomial f ∈ H0(Gr(2, 5),OG(2)) returns
the 24 polynomials Di

j ( f ). The polynomial f needs to be chosen such that the correspond-
ing X is smooth: in turn, this can be checked a posteriori. In particular, the Fermat-type
polynomial

f =
∑

ai, j x
2
i, j

works as a choice, as long as we take the coefficients ai, j in a fairly generic way. In particular,

none of the D j
i ( f ) has to cancel out and become identically zero: to this purpose picking

ai, j �= ar ,s will be enough. As an example with random coefficients we can therefore pick

f = x21,2 + 2x21,3 + 4x21,4 + 5x21,5 + 6x22,3 + 11x22,4 + 75x22,5 + 13x23,4 + 43x23,5 + 8x24,5.
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Using the formula above we write the twenty-four differential polynomials as

D2
1( f ) = 4x1,3x2,3 + 8x1,4x2,4 + 10x1,5x2,5,

...

D4
4( f ) − D5

5( f ) = 8x21,4 − 10x21,5 + 22x22,4 − 150x22,5 + 26x23,4 − 86x23,5.

Denote by D the ideal generated by the 24 polynomials above and f . Let P be the ideal
generated by the Plücker equations. By the description above we have

RG
f

∼= C[x1,2, . . . , x4,5]/(P + D).

The Hilbert-Poincaré series of RG
f is

HP(RG
f ) = 1 + 10t + 25t2 + 10t3 + t4.

By Lemma 3.11 we have 0 = (RG
f )−1 ∼= H4,1(X) ∼= H1,4(X) and C

10 = (RG
f )1 ∼=

H3,2(X) ∼= H2,3(X) ∼= (RG
f )3 ∼= (RG

f )∨1 . This coincides with the calculation already done
above.

In particular, (RG
f )1 ∼= H3,2(X) is generated by the degree 1 element in R, that is the ten

linear forms {xi, j }, dual to H2,3(X) ∼= (RG
f )3 with respect to the socle generator x44,5 of R4.

4 Complete intersections in Grassmannians

Let Z = Zd1,...,dc ⊂ Gr(k, n) be a smooth codimension c complete intersection of multi-
degree d1, . . . , dc. Setm = ∑

di −n the adjunction degree of Z : in particular,ωZ ∼= OZ (m).
Equivalently, Z is defined by a section σ ∈ H0(G, E), where E = ⊕c

i=1 OG(di ). We
associate to Z a hypersurface Ẑ ⊂ Y = P(E) with a Cayley trick as explained in the
preliminaries. This is in fact the same circle of ideas that led to Theorem 2.5, allowing to
translate the result we obtained in the hypersurface case to complete intersections.

We denote by N̂ = N + (c − 1) the dimension of Y . The projective bundle Y has
Pic(Y ) ∼= Z

2: pick as a Z-basis 〈L, D〉 with D = π∗OG(1), and L being the tautological
quotient line bundle. With respect to this grading, we write F(a, b) := F ⊗ La ⊗ Db and
Hi∗,∗(F) for

⊕
a,b H

i (F(a, b)). We define the Griffiths ring of Z as follows.

Definition 4.1 Let Z , Ẑ be as above. The Griffiths ring of Z is

U =
⊕

a,b

Ua,b

with

Ua,b = H1(Ẑ , TẐ ⊗ La−1 ⊗ Db). (7)

Notice that a priori U above has only the structure of bi-graded vector space. The ring
structure is given by the following tangent-normal exact sequence, where we denote with L
the restriction of L to Ẑ as well.

0 → TẐ → TY |Ẑ → OẐ (L) → 0.

For any (a − 1, b) we consider the twisted version of the above sequence

0 → TẐ (a − 1, b) → TY |Ẑ (a − 1, b)
ϕ→ OẐ (a, b) → 0.
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From the twisted Koszul resolution associated to Ẑ one can check that H1(TY |Ẑ (a, b)) = 0.
Therefore, if F denotes the equation of Ẑ one has

H1(Ẑ , TẐ ⊗ La−1 ⊗ Db) ∼= H0(Y ,La ⊗ Db)/(F, Im(ϕ)).

Therefore the ring structure of U descends directly from that of H0∗,∗(Y ,La ⊗ Db). We
identify

⊕

a,b

H0(Y ,La ⊗ Db) ∼= S[y1, . . . , yc],

where S denotes the coordinate ring of the affine cone over the Grassmannian Gr(k, n). We
set the Plücker variables xI to have bi-degree (0,1), and the new fiber variables yi bi-degree
(1,−di ). The choice of bi-grading of the variable is taken in accordance with the projective
case, as in Theorem 2.5. In this set of coordinates, the equation of Ẑ , F ∈ (S[y1, . . . , yc])1,0,
is defined as F := ∑

i yi fi , where the fi are the equations of the complete intersection Z .
This is the same strategy used in [17], [6] and recalled in Theorem 2.5.

From the relative tangent sequence (1) we have that the action of H0∗,∗(TY ) splits into the
direct sum of its vertical part and the horizontal part: from the discussion in the previous
section, Lemma 2.5, and [17], we make explicit this action and give a new definition of the
Griffiths Ring of Z , that coincides with the one given above.

Definition 4.2 Let Z and S be as above, with the variables xI with bi-degree (0,1), and the
variables yi with bi-degree (1,−di ). The Griffiths ring of Z can be equivalently defined as

U := S[y1, . . . , yc]/(F,
∂F

∂ y1
, . . . ,

∂F

∂ yc
, {DxI (F)}). (8)

The derivations DxI are the ones already defined in the previous section. Notice that

DxI (F) =
∑

i

yi DxI ( fi )

and

∂F

∂ yi
= fi .

In turn, the above definition can be further simplified as

U := S[y1, . . . , yc]/(F, f1, . . . , fc, {DxI (F)}).
In particular, the ideal above can be directly compared with the one in Theorem 2.5, where
we consider DxI (F) instead of ∂F

∂xi
, as in the hypersurface case.

From the relative Euler sequence we have ωY ∼= L−c ⊗ Dm , and by adjunction formula

ωẐ
∼= L−c+1 ⊗ Dm .

From (7) and Proposition 2.4 we have the following immediate corollary.

Corollary 4.3 U1,0 ∼= H1(Ẑ , TẐ ) ∼= H1(Z , TZ ).

We are now able to prove the main result of this section. Define δ and I as in Theorem 3.8.
As above m := ∑

di − n so that ωZ ∼= OZ (m).
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Theorem 4.4 Let Z = Zd1,...,dc be a smooth complete intersection in a Grassmannian
Gr(k,n), and let U be the Griffiths ring attached to Z. Suppose m ≥ −1. Then if dim(Z) =
N − c is even

Up,m ∼= HN−c−p,p
van (Z).

If dim(Z) = N − c is odd

Up,m ∼= HN−c−p,p
van (Z) ⊕ δp, N−c

2
Ip,p−1(G).

Proof The first step consists in reducing our analysis to the study of Y . From Proposition
2.4, it is enough to prove that

Up+1−c,m ∼= H N̂−1−p,p
van (Ẑ).

In fact,

H N̂−1−p,p
van (Ẑ) ∼= HN+c−2−p,p

van (Ẑ) ∼= HN−p−1,p−c+1
van (Z),

and setting p′ = p + 1 − c we obtain the statement.
By definition of Griffiths ring, we have therefore to show that

Up+1−c,m ∼= H1(Ẑ , TẐ ⊗ ωẐ ⊗ Lp−1) ∼= H1(Ẑ ,�N̂−2 ⊗ Lp−1) ∼= H p
van(Ẑ ,�

N̂−1−p
Ẑ

).

The only non-obvious isomorphism is the second one. This is proved inductively as follows.
First use the two exact sequences (Koszul and tangent-normal)

0 → �k−1
Ẑ

⊗ Lp−1 → �k
Y |Ẑ ⊗ Lp → �k

Ẑ
⊗ Lp → 0 (9)

0 → �k
Y ⊗ Lp−1 → �k

Y ⊗ Lp → �k
Y |Ẑ ⊗ Lp → 0 (10)

From Lemma 4.9 [17], the groups Hi (Y ,�k
j ⊗ Lp−1) vanish if Hr (G,�s ⊗ det(E) ⊗

Symt E) = 0, for specific values of r , s, k. But from Theorem 3.6 all these groups vanish
when m ≥ −1. As in the hypersurface case, the only vanishings that are not automatic are
for H p,p(Y ). Indeed, using (9) and (10) one gets the division in even and odd case, similarly
to what we did in Theorem 3.8. Moreover by Künneth formula, Ip,p−1(Y ) = Ip,p−1(G).

When these vanishings are not satisfied, the residual contributions depend only on
H∗(�k

Y ⊗ L j ). These cohomology groups can be expressed in terms of (cohomology of)
π∗�k

G and the relative cotangent bundle �c−1
Y/G by picking appropriate exterior powers of the

short exact sequence

0 → π∗�1
G ⊗ Lp → �1

Y ⊗ Lp → �1
Y/G → 0. (11)

Equivalently, as in Lemma 1.4, [17], one could use the following spectral sequence

Ei, j−1
1 = H j (Y ,�

p−i
Y/G ⊗ Lp ⊗ π∗(�i

G ⊗ V )) ⇒ H j (Y ,�
p
Y ⊗ Lp ⊗ π∗V ).

The last step consists in expressing the cohomologygroups of the exterior power of the relative
cotangent bundle in terms of the cohomology groups of bundles on the Grassmannian. This
is done via the following sequence (sequence (3) in [17])

0 → �l
Y/G⊗Lp⊗π∗�k−1

G →π∗(
l∧
E⊗�k−1

G )⊗Lp−l→�l−1⊗Lp⊗π∗�k−1
G → 0. (12)

Since Z is a complete intersection in Gr(k,n), its normal bundle in the Grassmannian is
E = ⊕OG(di ). Therefore we are in the situation of Lemma 2.3, and we can express any
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cohomology group of the form Hq(Y , π∗�k ⊗ Lp) as a function of either Hq(G,�k
G ⊗

Symp E) or Hq−r+1(G,�k
G ⊗ det(E∗) ⊗ Sym−p−c E∗), with both S pE and det(E∗) equal

to (the sum of some) OG(di ). ��
Our Theorem closely mirrors the statement in Theorem 2.5 in the projective space case.
As in that case, the degrees of the relevant bigraded components are only functions of the
multi-degree and the canonical class of the complete intersection.

From the proof of the above Theorem we can immediately obtain the following corollary.

Corollary 4.5 Let Z = Zd1,...,dc be a smooth complete intersection in a Grassmannian
Gr(k,n), and let U be the Griffiths ring attached to Z, and m = ∑

di . − n. Then

Up,m ⊕ BN−c−p,p ∼= HN−c−p,p
van (Z) ⊕ AN−c−p,p,

where AN−c−p,p, BN−c−p,p depend only on the residual cohomology groups Hi (G,�
j
G(k))

for appropriate values of i, j, k.

We will analyse in full detail one example in which actually the residual contributes are not
all zero, showing how it is possible to get explicit results without restriction on the degrees.

4.1 A worked example: a linear section of the Grassmannian Gr(2, 7)

The first example we want to describe in detail is the Calabi-Yau threefold X17 ⊂ Gr(2, 7)
already famous in literature, see for example [24] or [2]. In the cited paper, Rødland computed
its Hodge numbers. We compute the full Griffiths ring. Since its canonical class is trivial,
Theorem 4.4 applies directly. In particular, its Griffiths ring contains theHodge groups as spe-
cial homogeneous slices, without any residual contribution from the ambient Grassmannian.
Picking the following seven general equations

f1 = x1,2 + 2x2,6 + 3x3,5,

f2 = x1,6 + 4x2,5 + 5x3,4,

f3 = x1,5 + 6x2,4 + 7x6,7,

f4 = x1,4 + 8x2,3 + 9x5,7,

f5 = x1,3 + 10x4,7 + 11x5,6,

f6 = x1,2 + 12x3,7 + 13x4,6,

f7 = x3,6 + x2,7 + x4,5.

Denote by I the ideal generated by these seven equations in the coordinate ring S of the
Grassmannian Gr(2,7). One can check with a direct computation that the variety defined by
this set of equations is smooth. Of course the choice of coefficients is not influential, provided
that they are sufficiently general. The action of sl7 on the coordinate ring of X17 is generated
by 48 homogeneous degree 1 equations that are easily written down. So, if as before we
denote by

F =
7∑

i=1

yi fi ,

where each yi has bi-degreee (1,−1) we have that

U ∼= S[y1, . . . , y7]/(D + F + I ).
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The ideal D is generated by the induced sl7 action on the ring S[y1, . . . , y7]. We can easily
compute the generators which are

D1
1(F) − D2

2(F) = −2x2,6y1 − 4x2,5y2 + x1,6y2 − 6x2,4y3 + x1,5y3 − 8x2,3y4 + x1,4y4 + x1,3y5,

.

.

.

D6
7(F) = 2x2,7y1 + x1,7y2 + 11x5,7y5 + 13x4,7y6.

Griffiths ring. Their dimensions are

a/b −4 −3 −2 −1 0 1 2 3
−1 0 0 0 0 0 0 0 . . .

0 0 0 0 0 1 14 70 210
1 0 0 0 7 50 91 28 0
2 0 0 28 84 51 7 0 0
3 0 84 77 14 1 0 0 0
4 210 21 0 0 0 0 0 0

The (vertical) slice with b = 0 corresponds to the Hodge groups of X17 . In fact, as
predicted by Theorem 4.4 we have

H3,0(X) ∼= U0,0 ∼= C,

H2,1(X) ∼= U1,0 ∼= C
50,

H1,2(X) ⊕ I2,1 ∼= U2,0 ∼= C
50 ⊕ C,

H0,3(X) ∼= U3,0 ∼= C.

4.2 A worked example: Fano fourfold of degree 10

We focus now on a smooth complete intersection Z2,1 ⊂ Gr(2, 5). This is a linear section
of the fivefold considered in the hypersurface section of this paper. Its Hodge numbers can
be found for comparison in [16]. Again, the purpose of this example is to compute the
full Griffiths ring, together with generators and relations. This 4-fold has dimension 4 and
canonical classOZ (−2). To Z is associated the adjoint 6-fold hypersurface Ẑ ⊂ P(E), where
E = OG(1) ⊕ OG(2). Since the index of Z is greater than one, Theorem 4.4 does not apply
directly.Wewant to explicitly compute the residual contribute Ap,N−p−1 and give an explicit
presentation for the Griffiths ring U associated to Z . The main result here is the following:

Proposition 4.6 Let Z , Ẑ be as above. We have the following

• H0(�4
Z ) ∼= H1(�5

Ẑ
) ∼= U0,−2;

• H1(�3
Z ) ∼= H2(�4

Ẑ
) ∼= U1,−2;

• H2
van(�

2
Z ) ∼= H3

van(�
3
Ẑ
) ∼= U2,−2/V5;

• H3(�1
Z ) ∼= H4(�2

Ẑ
) ∼= U3,−2;

• H4(OZ ) ∼= H5(�1
Ẑ
) ∼= U4,−2.

Proof The first isomorphism of any row follows from Proposition 2.4.Wewill prove only the
first 3 points, the other being analogous and following by duality. Moreover (1) is obvious,
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since all three terms are equal to zero. So we are left to prove part (2) and (3). We will divide
the proof in three separate lemmata. ��
Lemma 4.7 H1(TẐ ⊗ ωẐ ⊗ L) ∼= H2(�4

Ẑ
).

Proof We start with the observation that the above lemma proves point (2), since

H1(TẐ ⊗ ωẐ ⊗ L) =: U1,−2.

By tangent pairing,

H1(TẐ ⊗ ωẐ ⊗ L) ∼= H1(�5
Ẑ

⊗ L).

We use the sequence (9) with k = 5 and p = 1. In cohomology this becomes

0 → H1(�5
Y |Ẑ ⊗ L) → H1(�5

Ẑ
⊗ L) → H2(�4

Ẑ
) → H2(�5

Y |Ẑ ⊗ L) → 0,

with the first and last zeroes given, respectively, byKünneth formula and byAkizuki-Kodaira-
Nakano vanishing. Using the same arguments, from sequence (10) we immediately get

0 → H1(�5
Y ⊗ L) → H1(�5

Y |Ẑ ⊗ L) → 0

and

0 → H2(�5
Y ⊗ L) → H2(�5

Y |Ẑ ⊗ L) → 0.

Consider now sequence (11). Since the normal bundle to Ẑ has rank 2, the relative cotangent
bundle�1

Y/G is a rank 1 bundle. Therefore the raised relative tangent sequence,when tensored
with L has a particularly simple form

0 → π∗�5
G ⊗ L → �5

Y ⊗ L → π∗�4
G ⊗ �1

Y/G ⊗ L → 0.

By Proposition 2.4,

Hi (Y , π∗�5
G ⊗ L) ∼= Hi (G,�5

G(1)) ⊕ Hi (G,�5
G(2)).

These groups are all 0 for i = 1, 2, 3 (see [22, Lemma 0.1] ). Therefore

Hi (�5
Y ⊗ L) ∼= Hi (π∗�4

G ⊗ �1
Y/G ⊗ L), i = 1, 2.

Finally, by sequence (12)

0 → �1
Y/G ⊗ L ⊗ π∗�4

G → π∗(�4
G(2) ⊕ �4

G(1)) → L ⊗ π∗�4
G → 0.

Using Proposition 2.4, Kodaira vanishing and the Peternell–Wisniewski Lemma we have

H j (π∗(�4
G(2) ⊕ �4

G(1))) = 0, j = 0, 1, 2

and

Hl(π∗�4
G ⊗ L) = 0, l = 1, 2.

In particular, from all these vanishings

H1(�5
Y |Ẑ ⊗ L) = H2(�5

Y |Ẑ ⊗ L) = 0

and the result follows. ��
To prove part (3) of the proposition, we need to combine the two following results.
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Lemma 4.8 H2(�4
Ẑ

⊗ L) ∼= H3
van(�

3
Ẑ
)

Lemma 4.9 H1(�5
Ẑ

⊗ L2) ∼= H2(�4
Ẑ

⊗ L) ⊕ V5

The two Lemma above together prove the result, since

U2,−2 = H1(TẐ ⊗ ωẐ ⊗ L2) ∼= H2(�4
Ẑ

⊗ L) ⊕ V5 ∼= H3
van(�

3
Ẑ
),

as required.

Proof of Lemma 4.8 We use the same tools of the previous Lemma. The first step is the
reduction to

0 → H2(�4
Y |Ẑ ⊗ L) → H2(�4

Ẑ
⊗ L) → H3(�3

Ẑ
) → H3(�4

Y |Ẑ ⊗ L) → 0

Then, since by Künneth formula H3(�4
Y ) = 0 we consider the two induced sequences

0 → H2(�4
Y ⊗ L) → H2(�4

Y |Ẑ ⊗ L) → 0,

0 → H3(�4
Y ⊗ L) → H3(�4

Y |Ẑ ⊗ L) → H4(�4
Y ) → 0.

From sequences (11), (12) we get the vanishings of H2(�4
Y ⊗ L) and H3(�4

Y ⊗ L). This
implies

0 → H2(�4
Ẑ

⊗ L) → H3(�3
Ẑ
) → H4(�4

Y ) → 0,

and therefore by definition and Lesfchetz hyperplane section theorem

H2(�4
Ẑ

⊗ L) ∼= H3
van(�

3
Ẑ
).

The contribution of H4(�4
Y ) can be easily computed from the Künneth formula: in fact

H4(�4
Y ) ∼= H4(Y ,C) ∼= H4(Gr(2, 5)) ⊗ H0(P1) ⊕ H3(Gr(2, 5))

⊗H1(P1) ⊕ H2(Gr(2, 5)) ⊗ H2(P1).

In particular, H3(Gr(2, 5)) ∼= C
3 and H2(Gr(2, 5)) ∼= C

2 and therefore H4(�4
Y ) ∼= C

5.
��

Proof of Lemma 4.9 The first thing that we need to show is H1(�4
Ẑ

⊗ L) = 0. By using

sequences (9) and (10) this is equivalent to showing that H1(�4
Y ⊗ L) = 0. This is implied

by sequences (11), (12) together with H0(�3
G(1)) = H0(�3

G(2)) = 0, see [22]. Therefore
we have

0 → H1(�5
Y |Ẑ ⊗ L) → H1(�5

Ẑ
⊗ L2) → H2(�4

Ẑ
⊗ L) → H1(�5

Y |Ẑ ⊗ L) → 0. (13)

On the other hand from the residue sequence (10)

H1(�5
Y |Ẑ ⊗ L) ∼= H1(�5

Y ⊗ L2), H2(�5
Y |Ẑ ⊗ L) ∼= H2(�5

Y ⊗ L2).

Set M := π∗�4
G ⊗ �1

Y/G ⊗ L2. We see from sequence (11)

H1(�5
Y ⊗ L2) ∼= H1(M), H2(�5

Y ⊗ L2) ∼= H2(M).

From (13) we have

H1(�5
Ẑ

⊗ L2) ∼= H2(�4
Ẑ

⊗ L) ⊕ H1(M)/H2(M).
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[17, Lemma 1.5, ii] gives H0(M) = 0. By Borel–Bott–Weil

H0(π∗(�4
G(1) ⊕ �4

G(2)) ⊗ L) ∼= H0(L2 ⊗ π∗�4
G) ∼= V2,

with the latter denoting the unique irreducible SL(5)-module of highest weight−2.Moreover

H1(π∗(�4
G(1) ⊕ �4

G(2)) ⊗ L) ∼= V5 ⊕ V5 ∼= C
10

and

H1(π∗�4
G ⊗ L2) ∼= V5.

Therefore by sequence (12) H1(M)/H2(M) ∼= V5, proving the Lemma. ��

We now construct explicitly the Griffiths ring U . The ambient ring S[y1, y2] is the Plücker
ring already constructed in the previous section with the two new variables y1, y2 added. The
variables xi, j have bi-degree (0, 1)while y1 and y2 have bi-degree (respectively) (1,−1) and
(1,−2). As a quadric we choose the same one of the hypersurface case, that is

f2 = x21,2 + 2x21,3 + 4x21,4 + 5x21,5 + 6x22,3 + 11x22,4 + 75x22,5 + 13x23,4 + 8x24,5 + 43x23,5

while as a linear equation we pick

f1 = x1,2 + x3,4.

We remark that the latter equation defines a smooth hypersurface of Gr(2, n) only when
n ≤ 5. The 24 derivations are obtained easily from the formula

∑
yi Dx ( fi ), given that we

already know how each of the infinitesimal derivations in Dx ( fi ) acts from the hypersurface
example. For example

D2
1(F) = y1(4x1,3x2,3 + 8x1,4x2,4 + 10x1,5x2,5),

...

D4
4(F) − D5

5(F) = y1(8x
2
1,4 − 10x21,5 + 22x22,4 − 150x22,5 + 26x23,4 − 86x23,5) + y0(x3,4)

Denote by D the ideal generated by all these derivations. We have

U = S[y1, y2]/(D, F, f1, f2).

We compute some of the graded components of U

a/b −4 −3 −2 −1 0 1 2 3
−1 0 0 0 0 0 0 0 . . .

0 0 0 0 0 1 10 50 . . .

1 0 0 1 10 24 10 1 0
2 1 10 25 10 1 0 0 0
3 25 11 1 0 0 0 0 0
4 2 0 0 0 0 0 0 0

In particular, U1,0 ∼= H1(TZ ), U−1,−2 = H4,0(Z), U1,−2 ∼= H3,1(Z), U2,2 = V5 ⊕
H2,2
van (Z), U3,−2 = H1,3(Z) and U4,−2 = H0,4(Z). The Hodge diamond of Z = Z2,1 is then
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0 1 22 1 0
0 0 0 0
0 1 0
0 0

1

and one can compare with the results in [4].

Acknowledgements The authors wish to thank Enrico Arbarello for useful comments and suggestions,
Camilla Felisetti and Luca Migliorini for their support. Many of these results appeared as well in the PhD
thesis of the first author [7]. We would also like to thank Miles Reid, Christian Böhning and Alessio Corti
for discussions, insights and suggestions. EF was supported by MIUR-project FIRB 2012 “Moduli spaces
and their applications.” GM was supported by “Progetto di ricerca INdAM per giovani ricercatori: Pursuit of
IHS.” Both authors are member of the INDAM-GNSAGA. While completing this paper, we learned that An
Huang, Bong Lian, Shing-Tung Yau, and Chenglong Yu obtained similar results in an independent way; see
[13] and the subsequent [14]. We believe that the two papers together complete each other and we invite the
interested reader to check both of them. We thank in particular Shing-Tung Yau for his nice comments on our
work.

5 Appendix: Fano varieties of K3 type

Recall the following definition (slightly adapted) from [15]:

Definition 5.1 Let X be a smooth projective variety of dimension n, such that hi,0(X) = 0,
i < n. Define h := � n−k

2 �. We say that X is of weak k-Calabi–Yau type if its middle
dimensional Hodge structure is numerically similar to a Calabi-Yau k-fold, that is

hn−h,h = 1, hn−h+ j,h− j = 0, j ≥ 1.

We say that X is of strong k-Calabi–Yau type (or simply of k-Calabi–Yau type) if in addition
the contraction with any generator ω ∈ Hn−h,h(X) induces an isomorphism

ω : H1(TX ) −→ Hn−h−1,h+1(X).

The case of 3-Calabi–Yau is investigated in [15]. We are particularly interested in the 2-
Calabi–Yau case, that is, K3 type. Known examples of these varieties in the strong sense
include a smooth cubic fourfold X3 ⊂ P

5, a linear section Y1 ⊂ Gr(3, 10), cf. [3], and in
the weak sense the already mentioned Gushel-Mukai fourfold and the c5- Küchle variety, cf.
[18]. Some more examples are found if we allow mild singularities—e.g. cyclic quotient—
see [9]. Most of these examples are deeply linked with hyperkähler geometry and derived
category problems. Moreover by [19] families of Fano of K3 type (FK3) are likely to be
linked with projective families of irreducible holomorphic symplectic manifolds.

These families of FK3 necessarily have to be of dimension greater or equal than four
and comparatively high index. This implies we have to apply Theorem 4.4 with caution,
since there may be some residual contributions from the ambient space to take into account.
However, there is some good news. Denote by T = C[xI , yi ] the basic ambient ring from
which we build the Griffiths ring U , suitably bigraded as in (7). For a variety X of dimension
2s, a sub-structure of K3-type implies hs+1,s−1(X) = 1 and hs+t,s−t (X) = 0, for t > 1.
We therefore look at Ui,m , with i ≤ s − 1 having the above numerological properties. Since
the relations in the Griffiths ring U are all in bidegree (0, 1) and (1, 0), m is negative and we
have for i in such a range that Ti,m = Ui,m . This reduces the problem into a combinatorial
one.
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Let in fact X be a complete intersection of index m in the Grassmannian Gr(k, l + k)
given by the bundle F = ⊕OG(di ). Denote by α = c1(F) = ∑

di . A quick analysis of the
polynomial ring T reveals that in order to have

Ts−1,m = C, Ts−t,m = 0

the weights must be ordered as

d1 > d2 ≥ . . . ≥ dc

and moreover the following equation needs to be satisfied

2(k + l − α) = d1(kl − c − 2). (14)

A computer search confirms that only the already mentioned X2,1 ⊂ Gr(2, 5) and Y1 ⊂
Gr(3, 10) satisfy this relation. They are the well known Gushel-Mukai fourfold and the
Debarre-Voisin Fano 20-fold.

However, this does not rule out any other option. Thanks to the residual contributions from
the Grassmannian there might be some Xd1,...,dc with Us−1,m �= C but still hs−1,s+1 = 1.
The condition on the ordering of the weights here might be not required. This is particularly
true in the case of linear sections. Indeed, after a first analysis on the cohomology groups
of the ambient Grassmannian, we found another example as X14 ⊂ Gr(2, 8). This is a Fano
8-fold with middle Hodge structure of K3 type. We believe it could lead to a construction of
a family of hyperkähler varieties of K3[n] type. We compute its Hodge numbers as

Proposition 5.2 Let X1,1,1,1 ⊂ Gr(2, 8) be given by a generic section of OG(1)⊕4. The
Hodge diamond of X1,1,1,1 is

0 0 0 1 22 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 0 0
0 0 2 0 0
0 0 0 0
0 1 0
0 0

1

with h4,4van(X) = 19.

Notice that the projective dual of Gr(2, 8) is a singular quartic hypersurface in P
27. Cutting

the Grassmannian and the quartic with orthogonal linear subspaces we can link X1,1,1,1 ⊂
Gr(2, 8) to a quartic K3 surface S ⊂ P

3. An embedding of the derived category of the quartic
K3 inside the derived category of the above linear section is provided in [27, Thm 2.8] .
However, we believe that this could be the only exception. Namely, we make the following

Conjecture 5.3 Let X = Xd1,...,dc ⊂ Gr(k, n) be a Fano smooth complete intersection of
even dimension (that is not a cubic fourfold). Then X is not of K3-type unless

({di }, k, n) = ({2, 1}, 2, 5), ({1, 1, 1, 1}, 2, 8), ({1}, 3, 10).
Our method above can be partially extended to more general vector bundles on other homo-
geneous varieties. In [8] we analysed a handful more examples and study in details their
geometric properties.

123



E. Fatighenti, G. Mongardi

References

1. Batyrev, V.V., Cox, D.A.: On the Hodge structure of projective hypersurfaces in toric varieties. Duke
Math. J. 75(2), 293–338 (1994)

2. Borisov, L., Caldararu, A.: The Pfaffian-Grassmannian derived equivalence. J. Algebr. Geom. 18(2),
201–222 (2009)

3. Debarre, O., Voisin, C.: Hyper-Kähler fourfolds andGrassmann geometry. J. ReineAngew.Math. (Crelles
J.) 2010(649), 63–87 (2010)

4. Debarre, O., Kuznetsov, A.: Gushel-Mukai varieties: linear spaces and periods. Kyoto J. Math. 59(4),
897–953 (2019)

5. Di Natale, C., Fatighenti, E., Fiorenza, D.: Hodge theory and deformations of affine cones of subcanonical
projective varieties. J. Lond. Math. Soc. 96(3), 524–544

6. Dimca, A.: Residues and cohomology of complete intersections. Duke Math. J. 78(1), 89–100 (1995)
7. Fatighenti, E.: Hodge theory in Grassmannians. PhD Thesis University of Warwick (2017)
8. Fatighenti, E., Mongardi, G.: Fano varieties of K3 type and IHS manifolds. Int. Math. Res. Not. (IMRN)

2021(4), 3097–3142 (2021)
9. Fatighenti, E., Rizzi, L., Zucconi, F.: Weighted Fano varieties and infinitesimal Torelli problem. J. Geom.

Phys. 139.C, 1–16 (2019)
10. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://

www.math.uiuc.edu/Macaulay2/
11. Green, M.: The period map for hypersurface sections of high degree of an arbitrary variety. Compos.

Math. 55(2), 135–156 (1985)
12. Griffiths, P.: Periods of integrals on algebraic manifolds, I, II, III. Am. J. Math. 90(3), 805–865 (1968)
13. Huang, A., Lian, B., Yau, S.T., Yu, C.: Jacobian rings for homogeneous vector bundles and applications.

arXiv:1801.08261
14. Huang, A., Lian, B., Yau, S.T., Yu, C.: Period integrals and tautological systems. Surv. Differ. Geom.

22(1), 275–289
15. Iliev,A.,Manivel, L.: Fanomanifolds ofCalabi-YauHodge type. J. PureAppl. Algebra 219(6), 2225–2244
16. Iliev, A., Manivel, L.: Fano manifolds of degree 10 and EPW sextics. Ann. Sci. Ecole Norm. Sup. 44,

393–426 (2011)
17. Konno, K.: On the variational Torelli problem for complete intersections. Compos. Math. 78(3), 271–296

(1991)
18. Kuznetsov, A.: Küchle fivefolds of type c5. Math. Z. 284(3–4), 1245–1278 (2016)
19. Kuznetsov, A., Markushevich, D.: A survey on the bicanonical map of surfaces with pg= 0 and K 2 ≥ 2.

J. Geom. Phys. 59(7), 843–860 (2009)
20. Mavlyutov, A.R.: Cohomology of complete intersections in toric varieties. Pac. J. Math. 191(1), 133–144

(1999)
21. Nagel, J.: The generalized Hodge conjecture for the quadratic complex of lines in projective four-space.

Math. Ann. 312, 387–401 (1998)
22. Peternell, T., Wisniewski, J.: On stability of tangent bundles of Fano manifolds with b2 = 1. J. Algebr.

Geom. 4(2)130, 363–384 (1995)
23. Popov, V., Vinberg, E.: Invariant Theory. Algebraic Geometry IV, pp. 123–278. Springer, Berlin (1994)
24. Rødland, E.: The Pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian G(2,7). Compos.

Math. 122(02), 135–149 (2000)
25. Saito, M.: Generic Torelli theorem for hypersurfaces in compact irreducible Hermitian symmetric spaces.

In: Algebraic Geometry and Commutative Algebra: In Honor of Masayoshi Nagata, p. 615 (1988)
26. Schlessinger, M.: On rigid singularities. Rice Univ. Stud. 19(1), 147–162 (1973)
27. Segal, E., Thomas, R.: Quintic threefolds and Fano elevenfolds. J. Reine Angew.Math. (Crelles J.) (2014)
28. Snow,D.:Cohomologyof twisted holomorphic formsonGrassmannmanifolds andquadric hypersurfaces.

Math. Ann. 276(1), 159–176 (1986)
29. Voisin, C.: Hodge theory and complex algebraic geometry, II. In: Cambridge studies in advanced mathe-

matics , vol. 76 (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/
http://arxiv.org/abs/1801.08261

	A note on a Griffiths-type ring for complete intersections in Grassmannians
	Abstract
	1 Introduction
	Notation

	2 Preliminaries
	2.1 Original Griffiths theory and link with deformations of affine cones
	2.2 Cohomology of projective bundles and of complete intersections in mathbbPN

	3 Hypersurfaces in Grassmannians
	3.1 A worked example: Fano fivefold of degree 10

	4 Complete intersections in Grassmannians
	4.1 A worked example: a linear section of the Grassmannian `3́9`42`"̇613A``45`47`"603AGr(2,7)
	4.2 A worked example: Fano fourfold of degree 10

	Acknowledgements
	5 Appendix: Fano varieties of K3 type
	References




