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Supplemental Material for
Full spectrum of open dissipative quantum systems in the Zeno limit
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Lamb shift Hamiltonian and effective dissipator of Eq. (2)

Assume that the kernel of D is one-dimensional, i.e., its 0 eigenvalue, D[ 0] = 0, is nondegenerate and D is diagonalizable,
i.e., there exists a basis { k} (not necessarily orthogonal) such that D[ k] = ck k. Let {'k} be a complementary basis,
trace-orthonormal to the basis { k}, tr('k j) = �k,j . In Ref. [18] it has been shown that
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D̃[·] =
X

m>0

X

n>0

�m,n

✓
gn · g†m �

1

2
g†mgn ·�

1

2
· g†mgn

◆
, (S2)

where gk = trH0(( k ⌦ IH1)H) are the operators in Eq. (5) and �m,n = Ym,n + Y ⇤

n,m and �m,n = (Ym,n � Y ⇤

n,m)/(2i) with
Ym,n = � tr

�
'†

m'n 0

�
/c⇤m are the elements of two matrices which are, respectively, positive and Hermitian. Note that the

dissipation-projected Hamiltonian of Eq. (2) is hD = g0.
For the dissipator D = ((1 + µ)/2)D1 + ((1 � µ)/2)D2 with D1 and D2 given by Eq. (19), we have �m,n = 0 and

�m,n = �m�m,n, where �1 = (1 + µ)/2, �2 = (1� µ)/2 and �3 = (1� µ2)/4.

Proof of Statement: nondegenerate eigenvalues

We start introducing the spectral projection Pk according to

PkX =  k ⌦Xk, Xk = trH0 (('k ⌦ IH1)X) . (S3)

We have PkPm = �k,mPm and Pk⇢(⌧) =  k ⌦ Rk(⌧). From Eq. (1), scaling the time by ⌧ = t/�, we find d⇢(t)/dt =
L0[⇢(t)] +K[⇢(t)] with L0[·] = D[·] and K[·] = �(i/�)[H, ·]. If we now apply the Liouvillian propagator ✏t = expLt on Pk

with k > 0, we can use the Dyson expansion with respect to the small perturbation K and obtain

✏tPk = eckt (Pk + PkKPkt) +
1

ck
P0KPk(e

ckt � 1)

+
X

m>0, m 6=k

ecmt

ck � cm
PmKPk(e

(ck�cm)t
� 1) +O(K2). (S4)

The term P0KPk describes the flow towards the dissipation-free subspace; as expected, its norm is of order 1/� due to presence
of K. The term in (S4) containing PmKPk describes the intra-sector flow  k ⌦Rk(0) !  m ⌦Rm(t), and is at most of order
1/� at any time. Finally, the inter-sector flow  k ⌦Rk(0) !  k ⌦Rk(t) is given by the first two terms, namely,

Pk✏tPk = eckt (Pk + PkKPkt) +O(K2). (S5)

The evolution Rk(0) ! Rk(t) resulting from Eq. (S5) can be cast in differential form by using dRk(t)/dt = limt!0(Rk(t) �
Rk(0))/t. Applying Pk✏tPk on ⇢(t) we find  k ⌦ dRk(t)/dt = ck k ⌦ Rk + PkKPk⇢(t). Scaling back the time by t = �⌧ ,
after some algebra we get

dRk(⌧)
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+ i
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†

n

⌘
+O(1/�), (S6)

which, by virtue of Eq. (16), is Eq. (8) up to terms O(1). The O(1/�) corrections can be obtained by accounting for the next,
second order term of the Dyson expansion, see later.
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Proof of Statement: degenerate eigenvalues

Suppose that there exists a degenerate dissipator eigenvalue with degeneracy deg, let’s say, ck = ck+1 = · · · = ck+deg�1.
Equation (S4) is not applicable directly, since there would be a pole singularity in the terms 1/(ck � cm). In order to eliminate
this singularity, we group together the respective spectral projections Pk, defining P = Pk + Pk+1 + · · · + Pk+deg�1. One
can check that Eq. (S4) with the substitution (Pk, Pk+1, . . . , Pk+deg�1) ! P remains valid provided the sum over m has the
constraint m 6= k, k + 1, . . . , k + deg � 1, and we obtain P✏tP = eckt (P+PKPt) +O(K2). For the equation of motion of
the components Rk(⌧), Rk+1(⌧), . . . , Rk+deg�1(⌧), we get
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which, by virtue of Eq. (9), is Eq. (8) up to terms O(1).

Proof of statement: Dyson expansion at second order

To obtain the O(1/�) terms in the equation of motion for Rk(t) we need to include in the Dyson expansion the terms of
order 2 in the perturbation K. The O(K2) term for the evolution projected onto the Rk subspace is given by the operator
Pk exp(Lt) = Pk✏t. Recalling that Pk⇢ =  k ⌦Rk, we have

 k ⌦Rk(t) = Pk⇢(t) = Pk✏t⇢(0) =
X

j

Pk✏tPj⇢(0). (S8)

In differential form we have dRk(⌧)/d⌧ = �dRk(t)/dt, i.e.,

 k ⌦
dRk(⌧)

d⌧
= � lim

t!0

P
j Pk✏tPj⇢(0)� Pk⇢(0)

t
. (S9)

It turns out that the O(1/�) contribution to the equation of motion (S9) for Rk(t) are given only by the terms Pk✏tPs⇢(0),
with cs = ck, while the terms Pk✏tPn⇢(0) with cn 6= ck give no O(1/�) contribution. The Dyson expansion for Pk✏tPs with
cs = ck yields

Pk✏tPs = �s,kPk +O(K) + teckt
X

n:cn 6=ck

1

ck � cn
PkKPnKPs, (S10)

where the O(K) terms are those calculated before. At the leading order in time, teckt = t + O(t2). In differential form, the
respective terms for Rk(⌧) are given by

 k ⌦
dRk(⌧)

d⌧
= O(1) + �

X

n:cn 6=ck

X
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1

ck � cn
PkKPnKPs⇢(⌧). (S11)

Using the following formulas

⇢ =
X

k

 k ⌦Rk, (S12)

tr('k n) = �k,n, (S13)
PkA =  k ⌦ tr(A'k), Pk⇢ =  k ⌦Rk, (S14)

H =
X

m

'm ⌦ gm =
X

m

'†

m ⌦ g†m, (S15)

KA = �
i

�
[H,A], (S16)

we calculate the term PkKPnKPs⇢, step by step, as follows (summation over repeated indices m is implied)

PnKPs⇢ = �
i

�
Pn[H, s ⌦Rs]
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and then (now, summation over repeated indices m and z is implied)
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In passing from the second-last line to the last one, we exchanged the summation indices m $ z in half of the terms. Finally,
denoting

�n,s,km,z = Cm,s,nAz,n,k +Az,s,nCm,n,k, (S17)

✏n,s,kz,m = Cm,s,nBz,n,k, (S18)

�n,s,kz,m = Az,s,nCk,n,m, (S19)

and multiplying by �, we obtain the O(1/�) terms of Eq. (8).

Equivalence of two open spin chains with flipped boundary fields

Suppose that we have two operators f± of the form

f± =
N�1X

j=1

X

↵=x,y,z

J↵�
↵
j �

↵
j+1 ±

X

↵=x,y,z

n↵�
↵
1 , (S20)

where J↵, n↵ are some constants. Let us choose a representation in which the boundary term becomes diagonal, by an appropri-
ate rotation of the basis,

P
↵=x,y,z n↵�↵

1 = A�̃z
1 . Under this transformation the operators f± take the form

f± =
N�1X

j=1

X

↵,�=x,y,z

K↵� �̃
↵
j �̃

�
j+1 ±A�̃z

1 , (S21)

where K↵� and A are constants. Then, the unitary operator

U =
NO

j=1

�̃x
j , U2 = I, (S22)

transforms f+ into f� and vice versa,

f± = Uf⌥U, (S23)

which follows from �̃x
j �̃

z
j �̃

x,y
j = ��̃z

j and �̃x
j �̃

x
j �̃

x
j = �̃x

j .
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The XY Z spin chain: spectrum associated to the dissipator eigenvalue c0 = 0.

This is the stripe closest to the origin in Fig. 1. The equation for R0 was obtained in [18]. It has the Lindblad form (2) with
H̃a = 0,

hD =
N�1X

j=1

~�j · (Ĵ~�j+1) + µ(Ĵ~n0) · ~�1, (S24)

where Ĵ = diag(Jx, Jy, Jz), and effective dissipator D̃[R0] =
P3

p=1(L̃pR0L̃†

p �
1
2 L̃

†

pL̃pR0 �
1
2R0L̃†

pL̃p) with

L̃1 =
p

2(1 + µ)
⇣
Ĵ(~n0

0 � i~n0)
⌘
· ~�1,

L̃2 = L̃†

1

p
(1� µ)/

p
(1 + µ),

L̃3 =
p

(1� µ2)/2
⇣
Ĵ~n0

⌘
· ~�1,

where ~n0 = ~n(✓,') ⌘ (sin ✓ cos', sin ✓ sin', cos ✓), and ~n0

0 = ~n(⇡2 � ✓,'+ ⇡), ~n0 = ~n(⇡2 ,'+ ⇡
2 ).

Neglecting O(1/�) corrections, eigencomponents of the matrix R0 have form | 0i ⌦ |↵ih�|, with respective eigenvalues
�0,↵,� = i(✏� � ✏↵)+O(1/�), where hD|↵i = ✏↵|↵i. Note that the eigenvalues ✏↵ are real because hD is Hermitian. Including
the O(1/�) corrections, the eigenvalues �0,↵,� are given by the perturbative formula

�0,↵,� = i(✏� � ✏↵) +
1

�

3X

p=1

✓
h↵|L̃p|↵ih�|L̃

†

p|�i �
1

2
h↵|L̃†

pL̃p|↵i �
1

2
h�|L̃†

pL̃p|�i

◆
. (S25)

The above O(1/�) corrections are valid only for eigenvalues nondegenerate at the zeroth order, i.e., for ↵ 6= �. For degenerate
eigenvalues �0,↵,↵, to resolve the degeneracy we write down equations for ⌫↵(⌧) = h↵|R0(⌧)|↵i using Eq. (2). We obtain
(see also [25]) a classical Markov process d⌫↵(⌧)/d⌧ = ��1

P
� M↵� ⌫�(⌧), where M is the stochastic matrix with elements

M↵� =
P

p |h↵|L̃p|�i|2, for ↵ 6= �, and M↵↵ = �
P

� 6=↵ M�↵. The eigenvalues of M , namely, M |P↵i = µ↵|P↵i, determine
the O(1/�) corrections to the 2N�1 degenerate eigenvalues �0,↵,↵

�0,↵,↵ =
1

�
µ↵ +O(1/�2). (S26)

According to the Perron-Frobenius theorem, all eigenvalues µ↵ have a strictly negative real part, except for ↵ = 0 which is
µ0 = 0. This zero eigenvalue corresponds to an eigenvector |P0i with real nonnegative entries ⌫↵. In the original quantum
problem, the ⌫↵ have the meaning of eigenvalues of the reduced density matrix in the Zeno limit [18]. We remark that the
O(1/�) corrections in Eqs. (S25) and (S26) have strictly negative real part and, in addition, all µ↵ from Eq. (S26) are real,
which is a highly nontrivial property.

In the top right panel of Fig. S1, we compare the Liouvillian eigenvalues of this stripe evaluated numerically with those
obtained by the above perturbative formulas. As expected according to Fig. 2, for the chosen value � = 8000 we have an
excellent agreement between the two sets of data.

The XY Z spin chain: corrections O(1/�) for the spectrum associated to the nondegenerate dissipator eigenvalue c3 = �1

First of all, we note that for the XY Z spin chain with dissipation at site 0 the operators gk = trH0(( k ⌦ IH1)H) are given
by [? ], Eqs. (41) and (42),

g1 =
⇣
Ĵ(~n0

0 � i~n0)
⌘
· ~�1,

g2 = g†1,

g3 =
⇣
Ĵ~n0

⌘
· ~�1.

The O(1/�) corrections ��3,↵,� to the Liouvillian eigenvalues �3,↵,� = c3�+ i(✏↵ � ✏�) are obtained from the second order
of Dyson expansion and correspond to the terms O(1/�) of Eq. (8). By explicitly calculating the coefficients �nskmz , ✏nskzm and
�nskzm with s = k = 3 and n = 0, 1, 2, we find

dR3

d⌧
= �c3R3 + i(U3R3 �R3W3) +

1

�

✓
(1 + µ)E2,1[R3] + (1� µ)E1,2[R3]�

1� µ2

2
Dg3 [R3]

◆
, (S27)



5

where

U3 = V3 = g0 � µ g†3 =
N�1X

k=1

hk,k+1 � µ(J~n0) · ~�1, (S28)

En,m[X] = g†ngnX +Xg†ngn + 2gmXg†m, (S29)

Dg[X] = gXg† �
1

2
g†gX �

1

2
Xg†g. (S30)

For � large, the last term in Eq. (S27) can be treated as a perturbation V3[R3] of order 1/�. The O(1/�) corrections to
the Liouvillian eigenvalues are then obtained via the standard perturbative formula ��3,↵,� = h↵�|V̂3|↵�i, where V̂3 is the
vectorized superoperator acting on the vectorized reduced density matrix |R3i = |↵,�i = |↵i ⌦ |�i⇤ defined by V̂3|R3i =
V3[R3]. We recall that |↵i and |�i are the eigenvectors of V3 = V3,

U3|↵i = ✏↵|↵i. (S31)

Note that U3 is Hermitian and its eigenvalues ✏↵ are real.
To explicitly illustrate the evaluation of ��3,↵,� , let’s start considering the simplest case µ = 1. By making the substitution

R3(⌧) = ec3�⌧r3(⌧), we obtain

dr3
d⌧

= i(U3r3 � r3U3) +
2

�

⇣
g†2g2r3 + r3g

†

2g2 + 2g1r3g
†

1

⌘

= L
(0)
3 [r3] + V3[r3]. (S32)

In the Zeno limit � ! 1, Eq. (S32) for r3 is linearized in terms of modes |↵ih�|. In fact, U3 can be obtained from hD by
flipping the boundary term, therefore hD and U3 are equivalent and have the same set of eigenvalues ✏↵. It follows that, in an
equivalent representation, the solution of the eigenvalue problem for the Liouvillian L

(0)
3 [·], namely, L(0)

3 [ j ] = ⇤j j , is given
by  j = |↵ih�| and ⇤j = i(✏↵ � ✏�).

The expectation of an arbitrary superoperator of the form V [r3] = Qr3W on the state  j = |↵ih�| can be calculated in a
vectorized form as

h j |V̂ | ji = h↵|⌦ h�|⇤(Q⌦W t)|↵i ⌦ |�i⇤ = h↵|Q|↵ih�|⇤W t
|�i⇤ = h↵|Q|↵ih�|W |�i. (S33)

It follows that, accounting for the corrections O(1/�), for µ = 1 we obtain

�3,↵,� = c3�+ i(✏↵ � ✏�) + h j |V̂3| ji

= ��+ i(✏↵ � ✏�) +
2

�

⇣
h↵|g†2g2|↵i+ h�|g†2g2|�i+ 2h↵|g1|↵ih�|g

†

1|�i
⌘
. (S34)

This result is immediately generalised to arbitrary µ

�3,↵,� = � �+ i(✏↵ � ✏�)

+
1

�

⇣
(1 + µ)

⇣
h↵|g†2g2|↵i+ h�|g†2g2|�i+ 2h↵|g1|↵ih�|g

†

1|�i
⌘

+ (1� µ)
⇣
h↵|g†1g1|↵i+ h�|g†1g1|�i+ 2h↵|g2|↵ih�|g

†

2|�i
⌘

+
1� µ2

4

⇣
h↵|g†3g3|↵i+ h�|g†3g3|�i � 2h↵|g3|↵ih�|g

†

3|�i
⌘⌘

. (S35)

The above perturbative formula can be applied only if the unperturbed eigenvalue is nondegenerate. For O(1) degenerate
eigenvalues, �3,↵,↵ = ��, the O(1/�) corrections must be found in a different way. In the Zeno limit, we have a stationary
solution r3(1) =

P
↵ ⌫↵|↵ih↵|. Taking into account the O(1/�) terms, we can assume the finite-time r3(⌧) to have the same

form but with coefficients ⌫↵ which depend on time, r3(⌧) =
P

↵ ⌫↵(⌧)|↵ih↵|. Then, from Eq. (S32) we have, for µ = 1,

d⌫↵
d⌧

=
2

�

X

�

T↵,�⌫� , (S36)

where

T↵,� = 2w1,↵,� , � 6= ↵, T↵,↵ = 2
X

�

w2,�,↵ + 2w1,↵,↵, (S37)
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with

wn,↵,� = |h↵|gn|�i|
2 . (S38)

For arbitrary values of µ we have, instead,

T↵,� = w↵,�(µ), � 6= ↵, T↵,↵ =
X

�

f�,↵(µ) + w↵,↵(µ), (S39)

with

w↵,�(µ) = (1 + µ)w1,↵,� + (1� µ)w2,↵,� �
1� µ2

4
w3,↵,� , (S40)

f�,↵(µ) = (1 + µ)w2,�,↵ + (1� µ)w1,�,↵ +
1� µ2

4
w3,�,↵. (S41)

By finding the eigenvalues µ↵ of the matrix T , we resolve the degeneracy problem. In fact, in terms of the corresponding
eigenvectors ⌫̃↵ of T , we have

d⌫̃↵
d⌧

=
2

�
µ↵⌫̃↵, (S42)

the set of the values (2/�)µ↵ being the 1/� correction to the set of the degenerate eigenvalues �3,↵,↵,

�3,↵,↵ = ��+
2

�
µ↵, ↵ = 1, 2, . . . , 2N . (S43)

Numerically, for the integrable XY Z model, we find the matrix T to be equivalent to a symmetric real matrix, so that all its
eigenvalues µ↵ are real. Since c3 = �1 is real too, the eigenvalues (S43) lie on the real axis.

The XY Z spin chain: spectrum associated to the degenerate dissipator eigenvalue c1 = c2 = �1/2

Equation (8) for k = 1, 2 has the form

dRk

d⌧
= �c1Rk + i

2X

s=1

(Uk,sRs �RsWk,s)

+
1

�

X

z>0

X

m>0

X

n=0,3

2X

s=1

1

cn � c1

�
��n,s,km,z gmRsg

†

z + ✏n,s,kz,m g†zgmRs + �n,s,kz,m Rsg
†

zgm
�

= �c1Rk + i
2X

s=1

(Uk,sRs �RsWk,s)

+
2

�

X

z>0

X

m>0

2X

s=1

⇣
��̃s,km,zgmRsg

†

z + ✏̃s,kz,mg†zgmRs + �̃s,kz,mRsg
†

zgm
⌘
, (S44)

where

�̃s,km,z = �0,s,km,z � �3,s,km,z , (S45)

✏̃s,km,z = ✏0,s,km,z � ✏3,s,km,z , (S46)

�̃s,km,z = �0,s,km,z � �3,s,km,z , (S47)

with

�n,s,km,z = Cm,s,nAz,n,k +Az,s,nCm,n,k, (S48)

✏n,s,kz,m = Cm,s,nBz,n,k, (S49)

�n,s,kz,m = Az,s,nCk,n,m. (S50)
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The only nonzero coefficients �̃s,km,z , ✏̃s,km,z and �̃s,km,z are

�̃1,11,1 = �̃2,21,1 = 1 + µ,

�̃1,12,2 = �̃2,22,2 = 1� µ,

✏̃2,22,2 = �✏̃1,11,1 = µ,

✏̃2,11,2 = 1� µ, ✏̃1,22,1 = 1 + µ,

�̃1,12,2 = �✏̃2,21,1 = µ,

�̃2,11,2 = 1 + µ, �̃1,22,1 = 1� µ.

After the substitution R1(⌧) = ec1�⌧r1(⌧) and R2(⌧) = ec1�⌧r2(⌧), we obtain the following equations of motion for r1(⌧)
and r2(⌧).

dr1
d⌧

= i (f+r1 � r1f�)

+
2

�

⇣
�(1 + µ)g1r1g

†

1 � (1� µ)g2r1g
†

2 � µg†1g1r1 + µr1g
†

2g2+

+(1� µ)g†1g2r2 + (1 + µ)r2g
†

1g2
⌘
, (S51)

dr2
d⌧

= i (f�r2 � r2f+)

+
2

�

⇣
�(1 + µ)g1r2g

†

1 � (1� µ)g2r2g
†

2 + µg†2g2r2 � µr2g
†

1g1+

+(1 + µ)g†2g1r1 + (1� µ)r1g
†

2g1
⌘
, (S52)

where, we recall that g0 = hD,

f± = g0 ±
1⌥ µ

2
g†3 =

N�1X

j=1

hj,j+1 ± (J~n0) · ~�1. (S53)

At zeroth order in 1/�, the eigenmodes of Eqs. (S51) and (S52) are, respectively, |↵ih�̃| and |↵̃ih�|, where |↵i and |↵̃i are
the eigenvectors of f+ and f�, namely, f+|↵i = ✏↵|↵i and f�|↵̃i = ✏↵|↵̃i. Note that f+ and f�, being related by a unitary
transformation, have the same eigenvalues. It follows that the zeroth order eigenvalues of the Liouvillian are twice degenerate,

�1,↵,� = �
�

2
+ i(✏↵ � ✏�) +O(1/�), (S54)

�2,↵,� = �1,↵,� +O(1/�), (S55)

the respective eigenvectors being r(0)1 = |↵ih�̃| and r(0)2 = |↵̃ih�|. Note that the zeroth-order eigenvalues �1,↵,� and �2,↵,�
have a double degeneracy for ↵ 6= � and a degeneracy 2N+1 for ↵ = �.

To obtain the O(1/�) corrections to the degenerate eigenvalues �1,↵,� = �2,↵,� = ��/2 + i(✏↵ � ✏�) ⌘ ⇤↵� , we substitute
the Ansatz r1(⌧) = x1(⌧)|↵ih�̃| and r2(⌧) = x2(⌧)|↵̃ih�| into Eqs. (S51) and (S52), obtaining the following equations for
x1(⌧) and x2(⌧)

dx1

d⌧
= ⇤↵�x1 +

2

�
(V11x1 + V12x2),

dx2

d⌧
= ⇤↵�x2 +

2

�
(V21x1 + V22x2),

where

V11 = �(1 + µ)h↵|g1|↵ih�̃|g
†

1|�̃i � (1� µ)h↵|g2|↵ih�̃|g
†

2|�̃i � µh↵|g†1g1|↵i+ µh�̃|g†2g2|�̃i,

V22 = �(1 + µ)h↵̃|g1|↵̃ih�|g
†

1|�i � (1� µ)h↵̃|g2|↵̃ih�|g
†

2|�i+ µh↵̃|g†2g2|↵̃i � µh�|g†1g1|�i,

V12 = (1 + µ)h↵|↵̃ih�|g†1g2|�̃i+ (1� µ)h↵|g†1g2|↵̃ih�|�̃i,
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V21 = (1 + µ)h↵̃|g†2g1|↵ih�̃|�i+ (1� µ)h↵̃|↵ih�̃|g†2g1|�i.

The eigenvalues v1, v2 of the matrix V with elements Vij give the corrections to the eigenvalues ��/2 + i(✏↵ � ✏�),

�1↵� = ��/2 + i(✏↵ � ✏�) +
2

�
v1, (S56)

�2↵� = ��/2 + i(✏↵ � ✏�) +
2

�
v2. (S57)

For degenerate eigenvalues �1,↵,↵ = �2,↵,↵ = ��/2, the O(1/�) corrections have to be calculated in the following way.
In the Zeno limit, the stationary solutions of Eqs. (S51) and (S52) are, respectively, r1(1) =

P
↵ ⌫↵|↵ih↵̃| and r2(1) =P

↵ µ↵|↵̃ih↵|. Therefore, for r1(⌧) and r2(⌧) we may assume the form r1(⌧) =
P

↵ ⌫↵(⌧)|↵ih↵̃| and r2(⌧) =
P

↵ µ↵(⌧)|↵̃ih↵|
with coefficients ⌫↵ and µ↵ depending on time. Inserting these expressions into Eqs. (S51) and (S52) and writing down the
equations for the components h↵|r1(⌧)|↵̃i = ⌫↵(⌧) and h↵̃|r2(⌧)|↵i = µ↵(⌧), we have

d⌫↵
d⌧

=
2

�

X

�

�
T 11
↵�⌫� + T 12

↵�µ�

�
, (S58)

@µ↵

@⌧
=

2

�

X

�

�
T 21
↵�⌫� + T 22

↵�µ�

�
, (S59)

where

T 11
↵� = w1(↵,�), � 6= ↵, (S60)

T 22
↵� = w2(↵,�), � 6= ↵, (S61)

T 12
↵� = w12(↵,�), (S62)

T 21
↵� = w21(↵,�), (S63)

T 11
↵↵ = w1(↵,↵) +

X

�

f(↵,�), (S64)

T 22
↵↵ = w2(↵,↵) +

X

�

f(↵,�), (S65)

and

w1(↵,�) = �(1 + µ)h↵|g1|�ih�̃|g
†

1|↵̃i � (1� µ)h↵|g2|�ih�̃|g
†

2|↵̃i, (S66)

w2(↵,�) = �(1 + µ)h↵̃|g1|�̃ih�|g
†

1|↵i � (1� µ)h↵̃|g2|�̃ih�|g
†

2|↵i, (S67)

f(↵,�) = µ|h�̃|g2|↵̃i|
2
� µ|h�|g1|↵i|

2, (S68)

w12(↵,�) = (1� µ)h↵|�̃ih�|g†1g2|↵̃i+ (1 + µ)h�|↵̃ih↵|g†1g2|�̃i, (S69)

w21(↵,�) = (1� µ)h↵̃|�ih�̃|g†2g1|↵i+ (1 + µ)h�̃|↵ih↵̃|g†2g1|�i. (S70)

By finding the eigenvalues q↵ of the block matrix

T =

✓
T 11 T 12

T 21 T 22

◆
, (S71)

we resolve the degeneracy problem. The real eigenvalues with O(1/�) corrections, belonging to the degenerate eigenvalue
c1 = c2 of the dissipator, are given by

�1&2,↵,↵ =
�

2
+

2

�
q↵, ↵ = 1, 2, . . . , 2⇥ 2N . (S72)

Numerically, we find that all the coefficients of the matrix T , as the operators f±, are µ independent and, therefore, the correc-
tions q↵ in Eq. (S72) are µ independent. This property is exceptional and probably connected with the integrability of the XY Z
model.
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Figure S1. Complex eigenvalues of the Liouvillian belonging to the stripes 0, 3 and 1&2 for � = 8000. Approximated eigenvalues (open red
circles) are computed at order 1/� by Eqs. (S25) and (S26) for stripe 0, Eqs. (S35) and (S43) for stripe 3 and Eqs. (S56), (S57) and (S72) for
stripes 1&2, and compare very well with the exact numerical results (blue dots). Parameters as in Fig. 1.

Properties of the auxiliary Markov Matrix Mab

It is well known that the eigenvalues of a generic stochastic matrix are complex. Nevertheless, for our case example – the
XYZ model with Zeno boundary dissipation – all the eigenvalues happen to be real.

Here we prove this exceptional property, namely, that the eigenvalues µa of the Markov matrix Mab in Eq (S26) are all real,
for pure state boundary driving µ = 1. We observe (numerically) that the elements Mab of the Matrix Markov process,

d⌫↵(⌧)

d⌧
=

1

�

X

�

M↵� ⌫�(⌧), (S73)

satisfy the so-called Kolmogorov condition

MabMbcMca = MacMcbMba, (S74)

with a, b, c arbitrary and all different, if the targeted state at the boundary is pure, i.e., for µ = 1. The Kolmogorov condition and
the positivity of the non-diagonal elements Mab entail

Mab = s(a, b)⇡b,

s(a, b) = s(b, a),

with s(a, b) and ⇡b real and positive. Introducing the diagonal matrix ⇡̂ with elements ⇡a, we can write the Markov matrix M as

M = ⇡̂S,

where S is the matrix with non-diagonal elements Sab = s(a, b) and Saa = Maa/⇡a. The above relation can be rewritten as

⇡̂�1/2M ⇡̂1/2 = ⇡̂1/2S⇡̂1/2.
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Obviously, the RHS of the above equation is a real symmetric matrix, since S is a real symmetric matrix. Consequently,
⇡̂�1/2M ⇡̂1/2 is also a real symmetric matrix, i.e., the Markov matrix M is equivalent to a real symmetric matrix. Therefore, the
eigenvalues µa of M are all real. It follows that the 2N Liouvillian eigenvalues belonging to the first stripe (S26) lie, in the Zeno
limit, on the real axis.

The same argument can be repeated for all stripes, and consequently, all the Liouvillian eigenvalues of type �k,↵,↵ are, near
the Zeno limit, real. In total, for our XY Z spin chain, there are 4 ⇥ 2N = 2N+2 real Liouvillian eigenvalues, while all the
remaining Liouvillian eigenvalues �k,↵,� , with ↵ 6= � generically, i.e., in the absence of extra degeneracies, have a nonzero
imaginary part.

Finally, for µ 6= 1 we observe numerically the same situation, i.e., the eigenvalues of the Markov matrix M (and its analogs
for the other stripes) are all real, so that the Zeno-limit Liouvillian spectrum contains 2N+2 real entries. Clearly, also in this case
M must be equivalent to a Hermitian matrix. However, this fact can no longer be explained by the Kolmogorov property (S74),
(equivalent to a detailed balance condition for the Markov rates wab = Mba) since this property is violated for µ 6= ±1, and the
detailed balance condition ⇡awab = ⇡bwba is consequently not satisfied. Further studies are required to clarify this subtle issue.

Zeno limit for a problem with two qubits

Consider a problem (1) with H = ~�0 · (Ĵ~�1), where Ĵ = diag(Jx, Jy, Jz) ⌘ diag(1, �,�), and

D[⇢] = �+
0 ⇢�

�

0 �
1

2
��

0 �
+
0 ⇢�

1

2
⇢��

0 �
+
0 . (S75)

According to our general theory, the stripe closest to the imaginary axis, in the Zeno limit contains 4 eigenvalues. They are
governed by the effective Hamiltonian (S24)

hD = � �z (S76)

and by the effective Lindblad operator

L̃1 = �

✓
0 1 + �

1� � 0

◆
. (S77)

The near-Zeno limit eigenvalues for the first stripe are given by Eq. (S25),

�0,1,1 = 0,

�0,1,2 = �4
1 + �2

�
� 2�i,

�0,2,1 = �⇤0,1,2,

�0,2,2 = �8
1 + �2

�
.

Analogously, we obtain the other Liouvillian eigenvalues. The full set of 16 Liouvillian eigenvalues � up to order 1/� is given
by

�0,↵,� =
n
0,�2

�+
�

,�
�+
�

± 2�i
o
,

�1&2,↵,� =

⇢
�
�

2
,�

�

2
,�

�

2
±

2��
�

,�
�

2
±

8�

�
± 2�i

�
, (S78)

�3,↵,� =
n
��,��+ 2

�+
�

,��+
�+
�

± 2�i,
o
,

where �± = 4(1 ± �2). The respective eigenfunctions are fully analytic functions of � in the Zeno regime (� > �cr, see later
for its definition) so the Liouvillian is diagonalizable in any point. In the following considerations, the free fermion point � = 0
must be excluded, since it corresponds to zero hD and multiple degeneracies even in the Zeno limit (S78).

As discussed in the main text, the analyticity of Liouvillian eigenvalues breaks down at the branch points, which can be
located by finding the eigenvalues of the Liouvillian for arbitrary �, �,�. An inspection shows that among the 16 eigenvalues
for � 6= 0, apart from � = 0 there is a double degenerate real eigenvalue � = ��/2, the eigenvalue � = �� and all the other
eigenvalues contain branch points. Depending on the parameters, there can be up to 8 values of � = �i where branchings occur.
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Two points are �1 = 8 and �2 = 8|�|, while the location of the other branch points �3, . . . ,�8 involves radicals of a quartic
equation. In particular, for small � we find a singularity, for max(�3, . . .�8) = O(1/|�|), which has a probable origin in the
repulsion of the eigenvalues, which, for |�| ⌧ 1, become too close each other. The onset of the fully analytic Zeno regime sets
in beyond the rightmost branching points, i.e., for � > �cr ⌘ maxi �i. The value of �cr is easily estimated numerically for a
generic choice of the model parameters, see Fig. 3 for an example.


