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Abstract 20 

A novel, integrated framework is proposed to assess the vulnerability of a case study 21 

unreinforced masonry (URM) Italian church by applying interacting modern tools 22 

including unmanned aircraft systems (UAS), “structure from motion” (SfM) 23 

photogrammetric survey equipment and software, and finite element method (FEM) 24 

analysis software in a complete heritage building information model (HBIM). The FEM 25 

model was used to perform both a modal response spectrum analysis and a validation 26 

pushover using stiffness adaptation analysis (SAA) to investigate the global behavior of 27 

the church and to identify the most critical local mechanisms for collapse potential. 28 

Once the most vulnerable components of the church were identified, macro-block 29 

analysis was used to estimate the capacity of these collapse mechanisms. Macro-block 30 

analysis is well established in the field and was proposed for use as one step in the 31 

overall proposed methodology with the aim of providing a holistic methodology that is 32 

sophisticated enough to identify the most vulnerable elements of URM churches, but 33 

also practical and efficient enough to be applied by practitioners. Traditionally, 34 

obtaining the necessary geometric information to correctly conduct the macro-block 35 

analysis of such complex buildings requires time-demanding and expensive surveying 36 

campaigns. Furthermore, accurately and precisely identifying the local failure 37 

mechanisms most influential to macro-block behavior is numerically demanding. The 38 

novelty of the current research detailed herein regards a proposed comprehensive 39 

seismic vulnerability analysis of historic URM churches with increased efficiency and 40 

accuracy of surveying and capacity modeling using modern tools in a fashion 41 

approachable by practitioners. 42 

Keywords: URM churches; unmanned aircraft systems; structure from motion; 43 

photogrammetry; dense points cloud; HBIM; macro-blocks; FEM; modal response 44 

spectrum; macro-block crack lines. 45 

1. Introduction 46 

Unreinforced masonry (URM) churches are a critical component of Italian Heritage due to their 47 

inherent historic value, ongoing community usage, and the large quantity and significance of artwork 48 

housed therein. According to Cagnana [1], most of the remaining Medieval churches in Italy were 49 

constructed using unreinforced masonry (URM) due to the prominence of URM construction 50 
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techniques during the High and Late Middle Ages, as well as the known durability of URM. 51 

Furthermore, URM churches are also present in other countries with regions of high seismicity [2]. 52 

URM churches are usually composed of slender vertical elements which are especially vulnerable to 53 

damage and collapse under high lateral load demands, and the vulnerability of this construction type 54 

was widely observed during past earthquakes such as in Friuli-Venezia Giulia in 1976 [3], in 55 

Basilicata and Campania in 1980 [4], in Umbria-Marche in 1997 [5, 6], in L’Aquila in 2009 [7, 8, 9], 56 

in Emilia- Romagna in 2012 [10, 11],  and in central Italy in 2016 [12, 13]. 57 

A holistic risk assessment methodology to guide the decision-making processes of the dioceses for 58 

prioritizing detailed assessments and retrofitting interventions was previously proposed [14]. Given 59 

the regional scale of this holistic methodology and its rapid application, the holistic methodology 60 

relied on simplistic, approximate methods to quantify structural vulnerabilities with the intention that 61 

churches with high holistic risk indices would subsequently be prioritized for more detailed 62 

vulnerability assessment. The church of Santa Maria Maggiore in Alatri (Figure 1) was identified as 63 

the church having the highest risk rating, iR, among the seven churches in the Lazio region considered 64 

in the holistic study (Pirchio, et al. 2020a), and was thus identified as the highest priority candidate 65 

in the region for the subsequent detailed assessment as described herein. The church is located in the 66 

main square of the city, in the diocese of Anagni – Alatri (province of Frosinone). Construction of 67 

the church was completed in the 13th century, and it was constructed atop the ruins of a pagan temple 68 

dating from the 5th century A.D. The church was constructed with masonry in square-cut stones and 69 

lime-based mortar. It has three groin-vaulted naves (a main nave and two lateral aisles), no transept, 70 

and a vaulted apse divided from the rest of the church by a triumphal arch. Hemispherical-vaulted 71 

chapels were constructed on the south side of the church, while buttresses were placed by the north 72 

lateral wall. The main façade has three points of ingress (corresponding to each nave) and a large 73 

circular rose-window on top of the main entrance. The bell tower is attached to the body of the church, 74 

with two sides atop the façade and the north lateral wall of the main church structure, while the other 75 
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two sides of the bell tower are supported by independent walls with internal arches. A reinforced 76 

concrete bond beam sits atop the exterior walls, supporting timber trusses forming the pitched roof. 77 

 78 

Figure 1 - Church of Santa Maria Maggiore, Alatri, Lazio (Italy). 79 

The material mechanical properties (e.g., masonry compressive strength, shear strength, 80 

elastic modulus, etc.) often govern the in-plane and dynamic behavior of URM structures [15, 16, 17] 81 

and were determined for the case study church using an aggregation of non-destructive test techniques 82 

conducted by Pirchio, et al. [18]. The geometric properties of the building components are the 83 

governing parameters for the out-of-plane behavior of URM structures [19, 15, 20]. Thus, an adequate 84 

understanding of the three-dimensional (3D) configuration of the church is necessary for a proper 85 

detailed vulnerability analysis. 86 

The proposed framework addresses the complete modeling procedure of a URM church 87 

starting from the acquisition of the geometric configuration to the global structural analysis of the 88 

church and finally then the local structural capacity analysis of its components using “macro-blocks.” 89 

The framework was developed with the primary aim of being generalizable for similar cases and 90 

applicable using software widely employed in engineering practice. Four steps describe the 91 

framework generally: 92 
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• Step 1: Acquisition of the geometry of the church via “structure from motion” (SfM) 93 

photogrammetry-based surveys using unmanned aircraft systems (UAS) and the development 94 

of a dense point cloud; 95 

• Step 2: Development of a solid 3D model comprising geometric information, material 96 

properties, and various other risk-related information collected from site investigations [14, 97 

18]. This information is aggregated into a complete heritage building information model 98 

(HBIM);  99 

• Step 3: Structural analysis of the church to identify the components most likely to experience 100 

high demands using finite element method (FEM) analysis software to carry out both a modal 101 

response spectrum analysis and a validation pushover using stiffness adaptation analysis 102 

(SAA); and 103 

• Step 4: Simplified determination of component capacity using well-establish methodologies 104 

for “macro-block” analysis of elements.  105 

While each step listed above was studied extensively by previous researchers [e.g., 19, 22, 25, 27, 35, 106 

45, 48], the current research regards an aggregated and comprehensive framework comprising the 107 

different state of the art procedures of geometric data acquisition, 3D modeling, and structural 108 

analysis in a cohesive, consistent, and efficient fashion. In this regard, the novelty of the paper regards 109 

the effectiveness and the continuity across all steps which has not been previously established in the 110 

literature in a repeatable way for use by practitioners. The selection of the case study church was 111 

based on rational criteria pertaining to its overall risk relative to other churches in the local portfolio, 112 

but it’s size and components are also representative of a large number of churches, thus making it 113 

representative for exhibiting the usefulness of the proposed framework. 114 

2. Step 1: Acquisition of the Geometry of the Church using Photogrammetric Techniques 115 

Photogrammetric techniques are increasingly applied in building surveys to procure geometric 116 

information [21, 22, 23]. Geometric information is relevant to the accurate assessment of URM 117 
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buildings, both for out-of-plane behavior and for global model updating [19, 24, 22, 25]. Given the 118 

complex geometry of churches, traditional survey techniques and tools (e.g., triangulation method, 119 

total station, and laser scanner) may be inadequate due to inaccessible or visually obstructed church 120 

macro-block elements such as the bell tower, nave vaults, or roofs. Therefore, UAS (colloquially 121 

referred to as a “drone”) with an on-board high-resolution camera was used to photograph different 122 

perspectives of the exterior of the church. Stationary cameras were used for the interior of the church. 123 

Subsequently, those photographs were processed using photogrammetric software, resulting in a 124 

high-density point cloud in which each point’s position is defined in a three-dimensional reference 125 

system. A large number of photographs both outside and inside the building (Figure 2) is required to 126 

create a complete 3D model. 127 

 128 

Figure 2 – Examples of photographs taken both using UAS and stationary cameras to produce a high-density point 129 
cloud. 130 

The photographic acquisition was performed following three best-practice requirements [26]: 131 
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• Completeness: All exposed surfaces of the entire building were photographed. Any 132 

unphotographed “blank” areas could compromise the accuracy of the model and the point 133 

cloud density; 134 

• Overlap: Adjacent photographs were overlapped for at least 40% of their planar dimensions 135 

to capture the same objects with different perspectives, allowing the photogrammetric 136 

software to process the photographs with less distortion; and 137 

• Redundancy: “Key-points” of the building, such as wall corners or opening vertices were 138 

captured in several different photographs in case some of the photographs were discarded for 139 

any reason (e.g., blurriness).  140 

A schematic drawing representing the configuration of the photograph acquisition is shown 141 

in Figure 3a-b. A Typhoon H UAS (Figure 3c) was used during the exterior photogrammetric survey, 142 

due to the increased stability under wind provided by the six-rotor configuration and the 360° 143 

rotational freedom of the camera. The exterior camera resolution size was 3840 × 2160 pixels with a 144 

focal lens length of 35 mm. The photographs were acquired with a lens opening of f/2.8 and ISO-100. 145 

A digital camera NIKON COOLPIX L830 (Figure 3d) was used for the stationary interior 146 

photographs. The digital camera resolution size was 4608 × 3456 pixels with a focal lens length of 147 

22 mm. The photographs were acquired with a lens opening of f/3 and ISO-720. 148 

  149 

Figure 3 – a) Schematic plan view of the UAS photographic survey; b) schematic elevation of the UAS photographic 150 
survey; c) the UAS; and d) the digital camera utilized during the current study. 151 

a) 

c) 

d) 

b) 
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The photographs were processed using a photogrammetric software (e.g., Autodesk ReCap 152 

Pro® or Agisoft Photoscan®), which utilizes georeferenced meta-data in the photographs to auto-scale 153 

the point cloud, thus reducing the post-process time for the scaling of the model. A few measurements 154 

of some church components (e.g., doors width and height, façade length, and arches net span) were 155 

taken manually to confirm the accuracy of the auto-scaled point cloud from the photogrammetric 156 

survey, with an error of approximately 1%. The models produced at the end of the photogrammetric 157 

process are shown in Figure 4a (exterior) and Figure 4b (interior) for the case study church. 158 

 159 

Figure 4 – High-density point cloud with applied texture of the: a) exterior; and b) interior of the church of Santa Maria 160 
Maggiore. 161 

3. Step 2: 3D Modeling of the Church using HBIM 162 

3.1. The HBIM Approach to the seismic risk assessment 163 

HBIM represents both a software tool as well as a holistic approach in the management of the design-164 

related information for a building [27, 28, 29]. A HBIM package for a building may contain not only 165 

the 3D geometric shape of the building and its components but also various other data types (e.g., 166 

mechanical material properties, structural shell and linear elements, and photographs and worksheets 167 

collected during the surveys) that might warrant exchange amongst various designers and facility 168 

managers [30]. Thus, “integration” (i.e., integrating in one single model a large amount of multi-169 

source data) and “interoperability” (i.e., comprehensive and bi-lateral interaction with other software) 170 

should be considered the key words to apply to the HBIM approach [28]. The information regarding 171 
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the seismic risk assessment of the church of Santa Maria Maggiore developed by Pirchio, et al. [14] 172 

and the mechanical properties of the macro-blocks of the church defined using aggregated non-173 

destructive test techniques (Pirchio, et al. 2020b) were included in the multi-dimensional HBIM-174 

based model as shown in Figure 5. The modeling could be performed with any BIM-based software 175 

(e.g., Autodesk Revit® or Graphisoft ArchiCAD®) 176 
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 177 

Figure 5 – Overview of the seismic risk assessment of the church of Santa Maria Maggiore. 178 
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3.2. The HBIM Approach to the Macro-Blocks Analysis 179 

Due to the height and slenderness of church walls, as well as the poor quality of connections between 180 

different URM walls compared to most other types of buildings, subdividing URM churches into 181 

units called “macro-blocks” is the preferred method to assess churches and other complex URM 182 

buildings [3, 31, 32]. In the Italian seismic assessment guidelines for heritage buildings [33] nine 183 

different macro-blocks types are identified for URM churches (Figure 6). 184 

  185 

Figure 6 – Macro-blocks considered: (a) façade; (b) lateral walls; (c) naves; (d) transept; (e) triumphal arch;  (f) dome; 186 
(g) apse; (h) chapels; (i) bell tower. 187 

Each macro-block of the church of Santa Maria Maggiore was identified in the HBIM-based 188 

approach, and each single sub-component (e.g., one of the vaults of the macro-block “nave”) could 189 

be classified and assigned within the HBIM file with particular data regarding the macro-block’s 190 

material properties and geometry. 191 

Thus, starting from the high-density point clouds developed in step 1, each macro-block was defined 192 

and singularly modelled (Figure 7), for use in subsequent analysis of the entire church building.  193 
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     194 

            195 

Figure 7 – The macro-blocks of the church of Santa Maria Maggiore: a) façade; b) lateral walls; c) naves; d) triumphal 196 
arch; e) apse; f) chapels; g) bell tower. 197 

 198 

4. Step 3: Structural Analysis of the Church using FEM Analysis 199 

Simplified analysis techniques (e.g., linear equivalent static or modal response spectrum) and FEM 200 

analysis are not suitable for particularly complex URM buildings (such as churches) due to the 201 

discontinuity and non-homogeneity of the URM [34]. Alternative structural modeling approaches 202 

based on finite-discrete elements (FDE) and discrete elements (DE) were proposed by different 203 

authors [35, 36, 37, 38]. However, these alternative approaches require a niche expertise as well as 204 

specific software that is not common to the industry at large. 205 

Given the practice limitations of highly specialized analysis, the current research shared the 206 

aim of other authors [39, 40] to explore the possibilities of FEM analysis and modal response 207 

spectrum analysis to approximate reasonable results for complex URM structures like the selected 208 

case study church. Shell elements were chosen for the FEM analysis –  as opposed to solid elements 209 

– to maintain a direct interconnection between the geometric 3D model and the finite element model, 210 

a) a) b) 

e) 

d) 

g) f) 

c) 
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because only shell elements could be directly exported from the HBIM-based software into the FEM 211 

software. 212 

Finite-discrete element models (FDEM) and discrete element models (DEM) with discrete, 213 

solid elements representing the masonry units have been shown to provide more precise behavior of 214 

URM buildings than do shell elements in a FEM [34].  However, a shell-element-based FEM offers 215 

non-negligible advantages in modeling, both in terms of cost-efficiency and in terms of replicability 216 

of the procedure for practicing engineers, and it still provide accurate results [41]. Furthermore, some 217 

of the limitations of the shell element modeling can be overcome by using the model as a starting 218 

point for the macro-block analysis and by performing a stiffness adaptation analysis (SAA), both of 219 

which were considered in the current study and described hereafter. 220 

4.1. The HBIM Approach to the FEM Analysis 221 

In addition to being a useful storage of information regarding the composing material, the macro-222 

blocks, and the provisional regional-scale qualitative seismic risk assessment of the case study church, 223 

the developed HBIM-based model (Figure 8a) was also implemented as a base for a FEM of the 224 

church. Consistent with the principle of interoperability” [30, 28], the model also contains structural 225 

information regarding the approximated shell elements representing the walls and the vaults of the 226 

church (Figure 8b). 227 

 228 

Figure 8 – a) Geometric HBIM-based model; and b) structural HBIM-based shell elements model of the church of Santa 229 
Maria Maggiore. 230 
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The shell elements for the model were directly exported to the FEM software through the .ifc 231 

file [30] with limited data-loss regarding the modeled macro-blocks (e.g., a few shell elements could 232 

not be exported due to their significant geometric complexity). To obtain a correct exportation of the 233 

vaults during the HBIM modeling, a parametric approximation of flat 4-node surfaces was utilized 234 

(Figure 8). 235 

4.2. Design Response Spectra 236 

The response spectrum analysis was performed assuming a 710-year median return period to address 237 

the largest resulting stresses and the dominate modal shapes (in terms of participating mass) for each 238 

macro-block, as a necessary premise to any retrofitting intervention proposal. The resulting seismic 239 

inertial forces were combined using Equation 1 – 2 provided by the Italian Technical Standard for 240 

Constructions [42] and its commentary [43]: 241 

1.00𝐸𝐸𝑥𝑥 + 0.30𝐸𝐸𝑦𝑦 (1) 242 

0.30𝐸𝐸𝑥𝑥 + 1.00𝐸𝐸𝑦𝑦 (2) 243 

where: 𝐸𝐸𝑥𝑥 and 𝐸𝐸𝑦𝑦 are the resulting seismic inertial forces in x and y building plan principal 244 

  directions. 245 

Variable Value 

Reference period in which the earthquake might happen 𝑉𝑉𝑅𝑅 
[years] 75 

Probability of exceedance of the considered earthquake intensity within 
the reference period 

𝑃𝑃𝑉𝑉𝑅𝑅  
[%] 10 

Soil category - A 

Topographic category - T1 

Peak ground acceleration 𝑎𝑎𝑔𝑔 
[g] 0.2687 

Magnification factor 𝐹𝐹0 2.5206 

Corner period 𝑇𝑇𝐶𝐶∗ 
[s] 0.3616 

Behavior factor for horizontal accelerations (corresponding to the R 
factor in the ASCE 7) 𝑞𝑞ℎ 2 

Table 1 – Assumptions to determine the elastic and design response spectra according to MIT [42, 43]. 246 
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The elastic and design response spectra were determined accordingly with the MIT [42] using 247 

the assumptions in Table 1, and they are shown in Figure 9. Please note that the corresponding 248 

acceleration at the plateau of the elastic response spectrum for the 1-in-500 years earthquake, SDS, 249 

would correspond to a moderate level of seismicity according to the American Standards [44], since 250 

0.33𝑔𝑔 < 𝑆𝑆𝐷𝐷𝐷𝐷 = 0.41 < 0.50 𝑔𝑔. 251 

 252 

Figure 9 – Horizontal elastic and design response spectra. 253 

4.3. Structural analysis 254 

4.3.1. The FEM Model 255 

The HBIM-based model was exported into CSi SAP2000®, and the FEM model is shown in Figure 256 

10. The walls were initially modeled as shell elements fully “fixed” (i.e., translationally and 257 

rotationally restrained in all three axes) at the base. The masonry piers were initially modeled with 258 

rotational restraints at the top and bottom. A rotationally restrained connection between perpendicular 259 

walls was assumed as well. The masonry columns were modeled as frame elements assumed as 260 

hinged both at the top and at the bottom. The masonry vaults were modelled consistently with their 261 

geometric imperfections such that the edges were not perfectly coincident with the centerlines of the 262 

walls. Thus, translationally rigid connectors were added to link the vaults and the walls. Nonetheless, 263 

the rotation of the vault edges around their weak axis was allowed. Given that it was not possible to 264 
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survey the roof and the reinforced concrete bond beam sitting on top of the walls, the connection 265 

between the roof and the top of the walls was conservatively assumed to be poor, consistent with 266 

observation in late 20th century following retrofitting interventions [45, 46]. Thus, the roof was 267 

modelled only as an additional dead load and assumed to provide no diaphragm action. The latter 268 

choice was conservative since because of the lack of diaphragm action, the walls would respond to 269 

the seismic excitation more similarly to cantilever systems (the response would still not be completely 270 

independent given the wall-to-wall connections). Furthermore, considering the roof as a dead load 271 

resulted in larger seismic demand and allowed to still capture the compression on top of the walls, 272 

which play a key role when determining the shear and rocking strength of URM walls. 273 

 274 

Figure 10 – FEM model of the church of Santa Maria Maggiore. 275 

The sum of the resulting shear stresses, 𝜏𝜏21 and 𝜏𝜏23 in Figure 11 (𝜎𝜎33 is assumed equal to zero 276 

in the structural analysis model), was checked against the frictional shear capacity of the wall 277 

determined accordingly with the Mohr-Coulomb theory [47] in Equation 3: 278 

𝜏𝜏21 + 𝜏𝜏23 ≤ 𝑓𝑓𝑣𝑣𝑣𝑣 = 𝑐𝑐 + 𝜇𝜇𝜎𝜎22 (3) 279 

where: 𝑓𝑓𝑣𝑣𝑣𝑣 is the shear capacity of the URM; 280 

 𝑐𝑐 is the cohesion of the URM; 281 
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 𝜇𝜇 is the coefficient of friction of the URM; 282 

 𝜎𝜎22 is the compressive stress acting at the considered section of the wall. 283 

 284 

Figure 11 – Positive direction of the stresses on a typical wall shell element. 285 

Both sides of the connection were controlled (i.e., the two edges of the connected 286 

perpendicular walls). If the condition expressed in Equation 3 was satisfied, then the fixed connection 287 

between the connected walls was retained in the model. Otherwise, horizontal translational releases 288 

were applied to the connection in the out-of-plane direction of the wall as well as rotational releases 289 

with respect of the out-of-plane rotation. The condition provided by Equation 4 was checked 290 

iteratively until all the wall-to-wall connections and the wall-base restraint shear demands satisfied 291 

the shear friction capacity. Note that residual friction capacity was neglected in the analysis. 292 

In Table 2 the mechanical material properties of each macroblock of the case study church 293 

are shown. The material properties were determined by Pirchio, et al. [18]. 294 

Macroblock 
Compressive 
strength, f’m 

[MPa] 

Young’s 
modulus, Em 

[MPa] 

Shear 
modulus, Gm 

[MPa] 

Cohesion, c 
[MPa] 

Coefficient of 
friction, μ 

Density, γ 
[kN/m3] 

Façade 8.13 3258 995 0.102 0.722 22 
Lateral Walls 3.77 1608 502 0.073 0.563 21 

Naves 5.54 2218 678 0.109 0.768 22 
Triumphal 

Arch 6.96 2787 851 0.109 0.768 22 

Roofs 25 kN/m3 specific weight concrete was assumed for determining the dead load  
Apse 3.771 16081 5021 0.0731 0.5631 21 

Chapels 3.771 16081 5021 0.0731 0.5631 21 
Bell Tower 6.80 2724 832 0.102 0.722 22 

1Since no measurements were taken at these locations, the worst material properties measured in other locations on the 295 

case study church were assumed. 296 
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Table 2 – Mechanical material properties assumed for the analysis. 297 

4.3.2. Dynamic Properties and Stress Status of the Structure 298 

A modal analysis was performed on the FEM model of the case study both for the initial condition 299 

(i.e., fixed wall-to-wall connections) and for the final condition (following the end of the process of 300 

iteratively releasing the connections). Sixteen modes were analyzed to achieve at least 70% of 301 

participating mass in x and y direction. The first eight mode shapes are shown both for the initial and 302 

final conditions (Figure 12 and Figure 13). The periods of vibration and the corresponding 303 

participating masses for each of these modes are shown in Table 3. 304 

305 

 306 

Figure 12 – First eight mode shapes for the initial condition. 307 

Mode 1 Mode 2 Mode 3 Mode 4 

Mode 5 Mode 6 Mode 7 Mode 8 
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308 

 309 

Figure 13 – First eight mode shapes for the final condition. 310 

Condition Dynamic 
property Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

Initial 

Period, T [s] 0.234 0.205 0.194 0.154 0.151 0.123 0.111 0.110 
Participating 
mass, Ux [%] 48.85 3.36 13.22 0.26 0.15 0.10 6.98 0.02 

Participating 
mass, Uy [%] 2.23 46.44 0.02 18.83 2.34 1.61 0.01 0.13 

Final 

Period, T [s] 0.239 0.205 0.196 0.157 0.153 0.125 0.114 0.111 
Participating 
mass, Ux [%] 45.25 3.88 16.62 0.35 0.02 0.20 1.26 5.50 

Participating 
mass, Uy [%] 2.55 47.06 0.09 18.32 0.06 0.66 2.18 0.16 

Table 3 – Dynamic properties of the first eight mode shapes for both the initial and the final conditions. 311 

As can be observed in Figure 12 and Figure 13, the first two modes (which involve the largest 312 

participating mass) are dominated by the vibration of the bell tower and the façade. Furthermore, 313 

modes 1, 3, and 7 together contribute approximately 75% of participating mass in the x-direction, 314 

Mode 1 Mode 2 Mode 3 Mode 4 

Mode 5 Mode 6 Mode 7 Mode 8 
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while modes 2, 4, and 5 together contribute approximately 70% of participating mass in the y-315 

direction (Table 3). Although the rotational-translational releases applied to the wall-to-wall and wall-316 

to-base connections slightly affected the dynamic behavior of the building (Table 3), the differences 317 

were almost negligible. In fact, although the new restraints are much less stiff, only a few wall-to-318 

wall connections experienced a shear and moment failure and mainly on the façade and bell tower. 319 

Therefore, the global behavior represented in Table 3 resulted lightly affected and only small increase 320 

of the period was experienced. More differences might be noticed in modal shape mainly involving 321 

the façade and bell tower (i.e., modes 2, 6, 7, and 8) when comparing Figure 12 and Figure 13. 322 

Subsequently, a modal response spectrum analysis was performed to compute the design 323 

demands associated with the 1-in-710 years earthquake. The compressive stresses and the shear 324 

stresses (both in-plane and out-of-plane) were determined to identify critical zones of stress 325 

concentration. In general, the compressive stresses determined in the worst-case scenario (Figure 14a) 326 

were smaller than the compressive capacity of the URM material (Table 2). Nonetheless, the piers of 327 

the façade and of the bell tower were found to be subjected to large shear stresses (Figure 14b, c, and 328 

d), and thus, these macro-block elements were analysed in greater detail, as discussed in the next 329 

section. 330 
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 331 

  332 

Figure 14 – Stress: a) σ22; b) τ12; c) τ13; d) τ23. Please note that the units in Figure 14 are in MPa and that the stress 333 
directions are in accordance with Figure 11. 334 

Although the FEM analysis adopted herein is not suitable to simulate the actual failure 335 

mechanisms of the macro-blocks, in the current research it was used (given its wide practitioner 336 

acceptance) to determine the resulting stresses that can be used to identify where crack lines 337 

governing macro-block formation would most-likely develop. The most likely crack lines of the gable 338 

mechanism on the façade were identified using the FEM (Figure 15) and assessed via the virtual 339 

works approach as discussed in the next section. 340 

a) b) 

c) d) 
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 341 

Figure 15 – Out-of-plane shear stresses on the façade with likely crack lines for the gable mechanism identified. 342 

5. Step 4: Local Macro-blocks Failure Mechanisms 343 

Although the analysis of local macro-blocks failure mechanisms underwent major advancements in 344 

the last decade via use of NURBS-based software and sequential linear programming of adaptive 345 

mesh [48, 49, 50, 51], the knowledge and the tools to perform this type of advanced analysis are still 346 

not available to the wide audience of practitioners which currently populate the world of engineering. 347 

The aim of the current section was to show how procedure developed so far can be used as a 348 

aid for the traditional macro-blocks analysis in terms of selection of the relevant local failure 349 

mechanisms and identification of the most likely crack lines (Figure 14, and Figure 15). Therefore, 350 

the the pier mechanisms of the bell tower and on the gable mechanism of the façade were analyzed 351 

herein a possible example. 352 

5.1. Pier Mechanism 353 

URM piers should be checked against three mechanisms: rocking and toe crushing, diagonal shear, 354 

and sliding shear [52, 53, 54, 42] resulting in Equation 4 – 6. 355 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐷𝐷𝐷𝐷𝜎𝜎0
2𝜓𝜓 𝐻𝐻

𝐷𝐷 (𝑜𝑜𝑜𝑜 𝑡𝑡)
�1 − 𝜎𝜎22

0.85𝑓𝑓′𝑚𝑚
� (4) 356 
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𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐷𝐷𝐷𝐷
𝑏𝑏
𝑓𝑓𝑢𝑢𝑢𝑢�1 + 𝜎𝜎22

𝑓𝑓𝑢𝑢𝑢𝑢
 (5) 357 

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐷𝐷𝐷𝐷𝑓𝑓𝑢𝑢𝑢𝑢 (6) 358 

where: 𝐷𝐷 is the depth of the URM pier; 359 

 𝑡𝑡 is the thickness of the URM pier; 360 

 𝐻𝐻 is the height of the URM pier; 361 

 𝜓𝜓 is a coefficient equal to 1.0 for cantilever piers and 0.5 for fixed-fixed piers; 362 

 fut is the tensile strength of URM, 𝑓𝑓𝑢𝑢𝑢𝑢 = 𝑐𝑐 + 𝜇𝜇𝜎𝜎22; 363 

 b is the shear stress distribution factor, with 1 ≤ b = H/D ≤ 1.5 364 

The FEM model might be used to determine the forces and the moments acting at the base 365 

and at the top of each URM pier in order to perform a demand versus capacity check. As an example, 366 

the capacity of the piers of the façade and the bell tower were checked against the force demand 367 

obtained by the modal response spectrum analysis. The results are shown in Figure 16. 368 
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 369 

Figure 16 – Failure mechanisms of the piers of the façade and of the bell tower. 370 

5.2. Gable Mechanism 371 

The gable mechanism is identified as one on the most affecting macro-blocks failure mechanism for 372 

the façade [33]. Due to the rose-window (i.e., the large circular opening on the façade), the gable of 373 

the façade of the church of Santa Maria Maggiore is subjected to significant out-of-plane forces which 374 

might likely lead to the out-of-plane collapse of the gable (Figure 17, Figure 18a and b). 375 
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 376 

Figure 17 – Schematic representation of the gable mechanism. 377 

        378 

Figure 18 – a) elevation of the gable mechanism; b) isometric representation of one of the rigid blocks and relative 379 
displacements. Units of m. 380 

To determine if the gable might collapse under the inertial forces imposed by the considered 381 

design response spectrum (Figure 9), the linear kinematic approach was used [55], which is a type of 382 

analysis based on the virtual work principle. The horizontal inertial forces acting on the gable are 383 

considered equal to the self-weight multiplied by an inertial multiplier 𝛼𝛼0, as shown in Figure 18b (in 384 

which one single block is shown considering the second one symmetric). Considering the two blocks 385 

composing the mechanism as rigid (Figure 17), the sum of work produced by the inertial forces and 386 

the work produced by the self-weights of the rigid blocks was equated to zero in Equation 7 [55]: 387 

a) b) 
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𝛼𝛼0�∑ 𝑃𝑃𝑖𝑖 ∙ 𝛿𝛿𝑌𝑌,𝑃𝑃𝑖𝑖
2
𝑖𝑖=1 � − ∑ 𝑃𝑃𝑖𝑖 ∙ 𝛿𝛿𝑍𝑍,𝑃𝑃𝑖𝑖

2
𝑖𝑖=1 = 0 (7) 388 

where: 𝑃𝑃𝑖𝑖 is the self-weight of the 𝑖𝑖-th block; 389 

 𝛿𝛿𝑌𝑌,𝑃𝑃𝑖𝑖 is the translation along the Y-axis of the center of gravity of the 𝑖𝑖-th block; 390 

 𝛿𝛿𝑍𝑍,𝑃𝑃𝑖𝑖 is the translation along the Z-axis of the center of gravity of the 𝑖𝑖-th block. 391 

The inertial multiplier, 𝛼𝛼0, necessary to develop the mechanism can be determined using 392 

Equation 8 [55]. 393 

𝛼𝛼0 =
(𝑃𝑃1+𝑃𝑃2)�𝑡𝑡2 cos𝛽𝛽+𝑡𝑡 tan𝛽𝛽 sin𝛽𝛽�𝛿𝛿𝛿𝛿

(𝑃𝑃1𝑥𝑥𝐺𝐺1+𝑃𝑃2𝑥𝑥𝐺𝐺2)𝛿𝛿𝛿𝛿
 (8) 394 

In general, given that the position and the inclination of the yield lines would be unknown, 395 

Equation 8 would have too many variables (i.e., 𝛼𝛼0, 𝛽𝛽, and 𝑥𝑥𝐺𝐺1=𝑥𝑥𝐺𝐺2) and a relatively complex 396 

optimization problem would be required to determine the minimum value of 𝛼𝛼0. However, thanks to 397 

the FEM analysis, the most likely configuration of the yield lines was determined already (Figure 15), 398 

thus, the value of the inertial multiplier can be easily determined to be 𝛼𝛼0 = 1.26. 399 

6. Validation of the Findings by applying a Pushover Analysis via Stiffness Adaptation 400 

To confirm the results and the observations obtained via the simplified response spectrum analysis, 401 

an enhanced non-linear static analysis (i.e., non-linear pushover analysis) was performed in the 402 

structural model. Non-linear stress-strain analysis for URM buildings is sometimes carried out in 403 

highly specialized software [56, 57, 58], but with the goal of providing an accurate means of 404 

replicating the precision and accuracy of results from highly specialized software but in FEM tools 405 

more commonly used in practice, the traditional non-linear pushover analysis was enhanced into a 406 

multi-step pushover method called a “stiffness adaptation analysis” (SAA) [59]. 407 

The SAA consists of an iterative linear pushover analysis in which at the end of each step the 408 

shell elements that experienced tensile stresses or exceeded the compressive strength of the material 409 
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are removed. Thus, the result of the iterative SAA process is equivalent to performing multiple non-410 

linear pushover analyses but with the initial stiffness being degraded at each iterative step. A graphic 411 

representation of different steps is shown in Figure 19 and 20, while the algorithm applied in the 412 

iterative process was described in Figure 21. 413 

 414 

Figure 19 – SAA in N-S direction. 415 

 416 

Figure 20 – SAA in E-W direction. 417 

Although the SAA can be used to accurately represent URM component behavior and to 418 

ensure numerical convergence in the model, it still presents some limitations as follows: 419 

• As for the traditional non-linear pushover analysis, out-of-plane behavior is disregarded; 420 

• The SAA has a high computational demand since the multiple iterations require running the 421 

model multiple times; 422 
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• The SAA is sensitive to the selected displacement increment, Δi+1 (Figure 21), as smaller 423 

intervals would result in more accurate results but also in extended computational times; 424 

therefore, a careful calibration of Δi+1 is required; 425 

• The identification and removal of the shell elements in the model which exceeded the 426 

compressive or the tensile material capacity may be need to be done manually pending the 427 

development of a separate program to automate this process; and 428 

• Since some elements are removed from the model at each step of the iterative process, SAA 429 

is not suitable for cyclic analysis. 430 

 431 

Figure 21 – Algorithm of the SAA iterative process. 432 

Thus, the pushover capacity curves in North-South and East-West directions (respectively x 433 

and y in the model) were determined for the multi-degree of freedom (MDoF) model as shown in 434 

Figure 23. The loads were distributed proportionally to the fundamental mode in the direction under 435 
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consideration (i.e., a triangular load pattern). Given the representative nature of the study case, no 436 

other load patterns were considered as further analysis would have exceeded the scope of the research. 437 

Note that the displacement was expressed in terms of drift ratio of the selected control point 438 

(Figure 22). Since a global analysis was performed, the control point was selected as close to the 439 

center of gravity of the roof level as possible and at the intersection of two bearing walls of the 440 

structure so that the increased stiffness given by the return wall prevented the local deformation of 441 

the wall to significantly affect the results. Please note that the SAA, as well as the traditional non-442 

linear pushover analysis, is sensitive to the selection of the control point. Local SAA of single macro-443 

blocks could be performed as well by selecting the localized control point accordingly. 444 

 445 

Figure 22 – Selected control point for the pushover analysis. 446 

Control point 
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 447 

Figure 23 – Capacity curves for the MDoF system: a) N-S direction (x); b) E-W direction (y). 448 

For comparison with the demand spectrum, an equivalent single degree of freedom (SDoF) 449 

capacity curve was derived from the MDoF curve. The equivalent SDoF curve was obtained per the 450 

provisions of MIT [43] by scaling both the coordinates (Drift ratioi) and the ordinates (base shear, 451 

Vb,i) of the original curve using the sum of modal participation factors of the first eight modes, ΣΓi, 452 

as described in Equation 9. Only the modal participation factor of the first mode would typically be 453 

used to scale the MDoF curve into a SDoF curve; however, previous studies showed that this 454 

simplification is inadequate to capture the often significant effects of higher modes for complex 455 

structures [60]. 456 

⎩
⎨

⎧𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

(𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜)

∑𝛤𝛤𝑖𝑖
�

𝑉𝑉𝑏𝑏,𝑖𝑖
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = 𝑉𝑉𝑏𝑏,𝑖𝑖

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)

∑𝛤𝛤𝑖𝑖
�

 (9) 457 

where: 𝛤𝛤 is the modal participation factor as defined in Equation 10. 458 

𝛤𝛤𝑖𝑖 = 𝜑𝜑𝑇𝑇𝑖𝑖𝑀𝑀𝑀𝑀
𝜑𝜑𝑇𝑇𝑖𝑖𝑀𝑀𝜑𝜑𝑖𝑖

 (10) 459 

where: 𝜑𝜑𝑖𝑖 is the vector of the modal i-th mode of vibration; 460 

 𝑀𝑀 is mass matrix of the structure;  461 

 𝜏𝜏 is the influence vector corresponding to the direction of loading. 462 
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In Figure 24 the equivalent capacity curve relative to the SDoF system was shown. 463 

 464 

Figure 24 – Capacity curves for the SDoF system: a) in N-S direction (x); b) in E-W direction (y). 465 

 466 

Once the capacity curve for the SDoF system was obtained, the performance point (PP) for 467 

all the limit states (i.e., immediate occupancy, damage limitation, life safety, and collapse prevention) 468 

was determined comparing the capacity curve with the corresponding demand spectrum. The 469 

comparison was based on an iterative process in order to find the equivalent damping ratio, ξeq, to be 470 

used for each limit state to scale the demand spectrum. MIT [43] proposed Equation 11 to determine 471 

ξeq, and the iterative process to obtain the PP is charted in Figure 25. 472 

𝜉𝜉𝑒𝑒𝑒𝑒
(𝑖𝑖+1) = 𝑘𝑘

63.7�𝐹𝐹𝑦𝑦∗(𝑖𝑖)𝑑𝑑𝑃𝑃𝑃𝑃∗
(𝑖𝑖)−𝐹𝐹𝑃𝑃𝑃𝑃∗(𝑖𝑖)𝑑𝑑𝑦𝑦∗

(𝑖𝑖)�

𝐹𝐹𝑃𝑃𝑃𝑃∗(𝑖𝑖)𝑑𝑑𝑃𝑃𝑃𝑃∗(𝑖𝑖) + 5 (11) 473 

where: 𝜉𝜉𝑒𝑒𝑒𝑒
(𝑖𝑖+1) is the equivalent damping ratio (percentage) to be used in the i+1-th step; 474 

 𝐹𝐹𝑦𝑦∗(𝑖𝑖) and 𝑑𝑑𝑦𝑦
∗(𝑖𝑖) are the coordinates of the equivalent yielding point of the bilinear curve; 475 

 𝐹𝐹𝑃𝑃𝑃𝑃∗(𝑖𝑖) and 𝑑𝑑𝑃𝑃𝑃𝑃
∗(𝑖𝑖) are the coordinates of the equivalent PP of the bilinear curve; 476 

 𝑘𝑘 is 0.33 for structures with low dissipation capacity. 477 
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 478 

Figure 25 – Algorithm for the iterative process to determine the PP, according to MIT [43]. 479 

Applying the procedure shown in Figure 25 for each limit state resulted in the PPs indicated 480 

in Figure 26. It might be noticed that the poorest performance corresponded to an earthquake 481 

excitation in North-South direction (Figure 26a). In the East-West direction, the capacity largely 482 

exceeded the demand (Figure 26b) most likely due to the substantially proportioned resisting walls 483 

oriented in the East-West direction. Furthermore, focusing on Figure 20, it might be noticed that, 484 

according to the analysis, the damage was concentrated on the façade and the bell tower. This 485 

observation is consistent with the results of the modal analysis (Figure 13) and the response spectrum 486 

analysis (Figure 14, Figure 15, and Figure 16). 487 
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Figure 26 – a) Performance point (PP) in N-S direction (x); b)  PP in E-W direction (y). 489 

The equivalent damping ratio, ξeq , the reduction factor to be applied to the elastic demand 490 

spectrum, η, and the behavior factor for horizontal acceleration (corresponding to the R factor in 491 

ASCE 7), qh, related with each PP are listed in Table 4. Please note that, although they have different 492 

definitions, the factor η and the coefficient qh are applied for the same purpose and with the same 493 

physical meaning (i.e., reducing the demand spectrum due to the capability of dissipating energy of 494 

the structure), and they can be considered as reciprocal values in the equations proposed by MIT [42]. 495 

Note that the maximum response spectrum modification factor, qh, resulting from the pushover SAA 496 

was smaller than the one assumed in the response spectrum analysis as suggested by MIT [42] in 497 

general for URM buildings.  498 

 499 

Considered 
direction 

Limit state considered 
for the PP 

Equivalent 
damping ratio, ξeq 

[%] 

Reduction 
factor, η 

Response spectrum 
modification coefficient for 
horizontal acceleration, qh 

North-South 

Immediate occupancy, IO 5.00 1.00 1.00 
Damage limitation, DL 5.00 1.00 1.00 

Life Safety, LS 7.29 0.90 1.11 
Collapse prevention, CP 6.98 0.91 1.09 

East-West 

Immediate occupancy, IO 5.00 1.00 1.00 
Damage limitation, DL 5.00 1.00 1.00 

Life Safety, LS 5.00 1.00 1.00 
Collapse prevention, CP 7.47 0.90 1.12 

Table 4 – Equivalent damping ratios and reduction factors related with the structure performance points. 500 

The pushover analysis via SAA was applied in order to model the global behavior of the 501 

church, but the authors wish to highlight the possibility of this application also for addressing the 502 

failure mechanisms of single macro-blocks by selecting appropriate control point [61]. As the global 503 

SAA pushover was used to validate the response spectrum analysis, the local pushover SAA might 504 

be used as a validation for the kinematic analysis shown in Figure 17 and Figure 18. 505 

7. Summary and Conclusion 506 

A four-step framework was developed and applied to the case study of the URM church of Santa 507 

Maria Maggiore in the diocese of Anagni-Alatri (Lazio, Italy) to acquire the necessary geometric 508 
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dimensions in form of a high-density point cloud (1), to convert the point cloud into a solid 3D HBIM-509 

based model attached with data regarding the material properties and the structural elements (2), and 510 

to export the latter into FEM software to perform a modal response spectrum analysis, a local collapse 511 

mechanisms analysis, and a SAA(3). 512 

Beneficial features of the proposed framework could be identified for each step as follows: 513 

• Step 1: The use of UAS and stationary cameras to perform a photogrammetric survey of the 514 

case study church represented a cost-efficient on-site data gathering campaign, that does not 515 

require contact with the surfaces and can be rapidly used even during a seismic sequence. A 516 

complete in-site geometrical survey of a complex building such as a church could be 517 

performed in a few hours by moving most of the survey into post-processing operations (e.g., 518 

creation of the high-density point cloud); 519 

• Step 2: The use of HBIM-based modeling effectuated an optimal interoperability between 520 

step 1 (i.e., point cloud development) and step 3 (FEM). Furthermore, the parametric 521 

modeling integrated data coming from different sources (e.g., the point cloud, the mechanical 522 

material properties, the geometry of the macro-blocks, the results of previous provisional risk 523 

assessment, and the structural model) and to store them in a single file reducing the risk of 524 

loss of information between the different steps; and 525 

• Step 3 and 4: The use of FEM analysis effectuated the detailed seismic assessment of a very 526 

complex structure. The modal analysis, which can be carried out by most experienced 527 

structural engineers, was used to identify the most highly stressed macro-blocks in an 528 

earthquake scenario. The forces and moments demand could be easily obtained via modal 529 

response spectrum analysis, exported, and used to classify the failure mechanisms of the 530 

masonry piers. Eventually, the stress condition of the shell elements in the FEM  was used to 531 

identify the most-likely yield lines of the local collapse mechanisms establishing a logical 532 

connection between FEM analysis and the more appropriate, but highly sensitive on the 533 
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mechanism selection, macro-block modeling approach. The simplified linear modal response 534 

spectrum analysis was further checked via an enhanced non-linear pushover SAA resulting in 535 

a validation of the identified main collapse mechanism. However, the behavior factor, qh, 536 

prescribed by MIT [42] for URM ordinary buildings was larger than the one obtained for the 537 

collapse prevention performance point through the comparison of the capacity curve for the 538 

SDoF system with the demand spectrum. Other sources [62, 44] suggested that smaller values 539 

for the behavior factor that might be more appropriate for the modeling of churches. The 540 

authors encourage for further research on the topic for allowing a larger number of practicing 541 

engineers to be able to approach the simplified modeling of complex URM buildings such as 542 

churches. 543 

Although the proposed four-step framework may be improved in terms of automatization of 544 

the process and accuracy of the results, the authors forecast that it might serve as a useful methodology 545 

for the detailed analysis of complex, historic URM buildings that can be applied by the practicing 546 

engineering community. The authors also encourage further research on the interaction of HBIM-547 

based and FEM-based software as, while the .ifc files permit discrete interoperability between the 548 

geometric and the structural modeling software, the current state of the art requires the engineers 549 

either to oversimplify the modeling or to perform significant manual adjustments when exporting the 550 

model from one software to the other. 551 
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