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Abstract: One of the main issues for the navigation of underwater robots consists in accurate vehicle
positioning, which heavily depends on the orientation estimation phase. The systems employed to
this end are affected by different noise typologies, mainly related to the sensors and to the irregular
noise of the underwater environment. Filtering algorithms can reduce their effect if opportunely con-
figured, but this process usually requires fine techniques and time. This paper presents DANAE++,
an improved denoising autoencoder based on DANAE (deep Denoising AutoeNcoder for Attitude
Estimation), which is able to recover Kalman Filter (KF) IMU/AHRS orientation estimations from
any kind of noise, independently of its nature. This deep learning-based architecture already proved
to be robust and reliable, but in its enhanced implementation significant improvements are obtained
in terms of both results and performance. In fact, DANAE++ is able to denoise the three angles
describing the attitude at the same time, and that is verified also using the estimations provided
by an extended KF. Further tests could make this method suitable for real-time applications in
navigation tasks.

Keywords: attitude estimation; autoencoders; deep learning; denoising; Kalman filter; underwater
environment

1. Introduction

Localization is one of the most important tasks for unmanned robots, especially in
underwater scenarios. Being a highly unstructured and GPS-denied environment, and
being characterized by different noise sources and by the absence of man-made landmarks,
the underwater setting provides more challenges for orientation estimation. In a typical
configuration, the Euler angles representing the vehicle attitude (roll, pitch and yaw) are
obtained through the integration of raw data acquired by the sensors embedded into an
Inertial Measurement Unit (IMU), or in the more cost-effective Attitude and Heading
Reference System (AHRS). One of the most successful methods to perform this elaboration
is based on the Kalman Filter (KF) [1], in its linear and non-linear versions [2]. Although
known as the perfect estimator under some assumptions, the estimation provided by the
KF strongly depends on a good knowledge of the error covariance matrices describing
the noise affecting the system. Moreover, the on-line computation of these matrices is
often required for any time-varying or nonlinear system, squaring the number of necessary
updating steps at each time step. Finally, the procedure employed to accurately fine-tune
the filter parameters is known to be unintuitive, requiring specific settings for different
scenarios [3].

Sensors 2021, 21, 1526. https://doi.org/10.3390/s21041526 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1886-3491
https://orcid.org/0000-0002-4271-2255
https://orcid.org/0000-0002-4311-6156
https://doi.org/10.3390/s21041526
https://doi.org/10.3390/s21041526
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041526
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1526?type=check_update&version=2


Sensors 2021, 21, 1526 2 of 20

In order to overcome these issues we present DANAE++, an improved version of
DANAE [4], which is a deep denoising autoencoder developed to attenuate any source of
error from the attitude estimation of linear and an extended KFs. In this improved version,
DANAE++ gets as inputs the intermediate parameters provided by the filtering algorithms:
this configuration proved to further reduce the total error affecting the final estimation.
Extensive tests performed on two different datasets to evaluate the Euler angles showed
the power of our approach, with a sensible improvement of both mean squared error and
max deviation w.r.t. the ground truth data (GT). The strength of our proposed method
consists in its ability to act as a full-noise compensation model for both noise and bias
errors, without the need to separately process each influencing factor. The remainder of this
study is organized as follows: Section 2 presents a brief literature review for Kalman-based
algorithms and deep learning techniques applied on similar tasks. Section 3 introduces
the theoretical concepts at the basis of our study, i.e., the orientation estimation process
and the filtering techniques usually employed for the task, the U-Net model from which
DANAE++ took inspiration and the general architecture of deep denoising autoencoders.
Section 4 contains the characteristics of the datasets used for the experiments, followed by
a concise description of our algorithms and of DANAE++ architecture. In Section 5 the
results of all of the experiments are summarized and commented upon, with some final
considerations regarding the topic and future possible improvements reported in Section 6.

2. Related Works

Robots’ performances are strongly affected by a correct pose and position determination,
on which an accurate orientation estimation has a great impact, especially indoor or in
underwater environments [5], where GPS support can frequently not be guaranteed. Since
any kind of external factors combined with the sensors’ integration difficulties can lead to
errors in the resulting angles, it is of fundamental importance to minimize error sources and
their effects. The use of Kalman filtering techniques in robotic applications is ubiquitous. For
example, the authors of [6] developed a GPS/IMU multisensor fusion algorithm to increase
the reliability of the position information, while another interesting approach has been
presented by [7], which uses KF to estimate the sensors’ signals’ noise or their biases. Over
the last year, underwater navigation has seen a huge development of KF-based algorithms
for orientation estimation; some interesting underwater applications have been developed
by the author of [8,9]. Nowadays, small-scale robots usually mount more affordable sensor
systems (e.g., AHRS), which greatly benefit from the power of KF and can equally provide
high precision and reliable results. An example is the work of the authors of [10], who
proposed an effective adaptive Kalman filter, which is able to exploit low-cost AHRS for
efficient attitude estimation under various dynamic conditions, and of [11], who evaluated
orientation estimation performances of smartphones in different settings.

The Linear Kalman Filter (LKF) takes as a basic assumption the linearity of the system
dynamics formulation. When both state and observations are non-linear, extended and
unscented KFs are used. Non-linear implementations of the filter were developed for
example in [12], in which the robot pose is obtained by fusing camera and inertial data
with an Extended Kalman Filter (EKF), and in [13] where the same task is accomplished
using an Unscented Kalman Filter (UKF). For a detailed comparison between different
Kalman filters, see [2] or [14].

Beside the critical task of sensor fusions, the estimation of both the sensors’ biases
and noises is also crucial for an effective navigation system. Nonetheless, Kalman filtering-
based techniques constitute a powerful approach even to solving this problem, allowing to
estimate both the state and the sensors’ biases. For example, the authors of [15] exploited
a KF for accurate biases estimation in a distributed-tracking system, while the authors
of [16] identified and successfully removed noise using a KF in a real-time application. In
order to reduce the noise and compensate for the drift of the Micro Electro Mechanical
Systems (MEMS) gyroscope during usage, the authors of [17] proposed a Kalman filtering
method based on information fusion. In [18], the authors proposed an algorithm based
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on an external acceleration compensation model to be used as a modifying parameter
in adjusting the measurement noise covariance matrix of the EKF. In general, the noise
matrices expressing the covariance of the measurements and of the process can be fine-
tuned to reduce as much as possible the noise influence. However, this presents some
drawbacks. An example is that the procedure requires on-line computation of the error
covariance matrix for any time-varying or nonlinear system, squaring the number of
necessary updating steps at each time step. Moreover, the formal nature of the Kalman
filter makes the tuning phase a nonintuitive and complicated process [3].

The rise of Deep Learning has radically changed fields like computer vision and
natural language processing. Since the spectacular success of ImageNet [19], Convolu-
tional Neural Networks (CNNs) produce state-of-the-art accuracy on classification [20],
detection [21] and segmentation [22] tasks, with Recurrent Neural Networks (RNNs) being
the backbone models for speech recognition [23] and sequence generation [24]. Autoen-
coders [25] are another successful deep architecture where the aim is to reconstruct a signal
by learning a latent representation from a set of data. They have been used for several
tasks, as realistic text and image generation. One of the main models developed in this
field is the U-Net [26], which performs effective semantic segmentation on medical images
by exploiting skip connections on encoder–decoder layers. Variational Autoencoders [27]
(VAEs) play an important role in text generation tasks, when semantically consistent latent
space is needed; however, VAEs training generally suffers from mode collapse issues. The
authors of [28] developed an autoencoder with binary latent space using a straight-through
estimator: experiments showed that this approach maintains the main features of VAE, e.g.,
semantic consistency and good latent space coverage, while not suffering from the mode
collapse, other than being much easier to train. One of the most successful uses of autoen-
coders is for noise removal. Since their introduction [29], Denoising Autoencoders (DAEs)
have been used for a broad number of tasks, such as medical images improvement [30],
speech enhancement [31] and electrocardiogram (ECG) signal boosting [32]. Unsupervised
feature learning methods for single modalities (such as text or audio) have recently been
developed; in [33], a deep denoising autoencoder was trained to predict the original clean
audio feature from a deteriorated one, and then process the audio to conduct an isolated
word recognition task. Traditional denoising methods, such as principal component anal-
ysis and dictionary learning, are computationally expensive on large datasets and not
optimal for dealing with non-Gaussian noise. To overcome these issues, the authors of [34]
applied state-of-the-art signal processing techniques to denoise gravitational wave signals
embedded either in Gaussian or non-Gaussian noise, based on a sequence-to-sequence
bi-directional Long-Short-Term-Memory (LSTM) RNN. In [35], a novel training proce-
dure of an autoencoder network was proposed. In particular, a discriminator network
was trained to distinguish between the output of the autoencoder and the data sampled
from the training corpus. The autoencoder was then trained also by using the binary
cross-entropy loss calculated at the output of the discriminator network. Expanding these
concepts, we propose an intelligent deep denoising autoencoder to improve the Kalman
filter outputs, significantly reducing the difficulties related to the parameters tuning, the
biases definition and the effects of other noise sources. The strength of this method lies
in the development of a full-noise compensation model, without the need to separately
process each influencing factor.

3. Theoretical Notions and Method

In this section we provide some basic concepts regarding the attitude estimation
process and the instrumentation used for the scope. A brief description of the linear and
extended implementation of the KF and of the autoencoders will follow, and then our
method will be discussed. It should be emphasized that DANAE++ is filter-agnostic and
can be used seamlessly on linear and non-linear KFs as well as any other type of filter able
to perform attitude estimation.
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3.1. Orientation Estimation

The position and attitude of a body in 3D space can be defined by the three transna-
tional and the three rotational coordinates, which relate the origin and orientation of the
body-fixed coordinate system to the world frame. In particular, the orientation of a rigid
body is usually expressed by a transformation matrix, the elements of which are gener-
ally parameterized in terms of Euler angles, rotation vectors, rotation matrices, and unit
quaternions [36]. A detailed survey of this representation can be found in [37]. For the
purposes of our study, some notions on reference systems and Eulerian and quaternion
representations are given.

According to Euler’s theorem, any rotation can be described using the φ, θ, ψ angles
or a rotational matrix A. The latter can be defined through the combination of the matrices
D, C, and B: each of them describes the rotation around one of three axes X, Y, and Z in a
specific order designated by the adopted convention (e.g., A = BCD). The Euler angles
then represent the result of the three composed successive rotations, allowing to define
the orientation of the body w.r.t. the local East-North-Up (ENU) or the North-East-Down
(NED) coordinate frames.

The latter is mainly adopted when working with aerial [38] and underwater robots: in
this case, the positive X axis points to the North, the positive Y axis to the East, and the
positive Z axis follows the positive direction of the gravity force (down). Other custom
body frames can be adopted when acquiring data from sensors, so it is of fundamental
importance to specify this configuration in order to properly transform the measurements
in the correct frame. With this state, the Euler angles are defined as follows:

• φ represents the rotation around the X axis, known as roll;
• θ defines the rotation around the Y axis, i.e., the pitch angle;
• ψ is related to the yaw angle around the Z axis.

As can be seen, Euler angles are intuitive and allow for a simple analysis of the body
orientation in 3D space. However, they are limited by the gimbal lock phenomenon, which
prevents them from measuring the correct angles when the pitch (θ) angle approaches ±90◦.
Another issue related to the dynamics of rigid bodies is the singularity that can occur in the
Euler angle parameterization. For a detailed discussion on the topics, see [39] or [40].

Quaternions provide an alternative representation technique that does not suffer from
these problematics, although it is less intuitive than the previous one. A quaternion q can
be seen as a generalization of complex numbers [41], formally written as in Equation (1):

q = q0 + q1 ĩ + q2 j̃ + q3k̃ =

[
q0
q̃

]
. (1)

For the scope of this paper, we will only introduce some quaternion expressions that
will be used in the extended KF implementation. A vector r can be rotated by θ degrees
around the reference vector u using (2), where the rotation matrix C can be defined as
in (3).

r′ = Cr. (2)

C =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

. (3)

Finally, the first derivative of a quaternion is defined in (4), where w is the angular
velocity in the X, Y, and Z directions. This equation will give us the possibility to directly
use the gyroscope measures to transform the quaternion into a rotation matrix as in (3).

q̇ =
1
2

q×w. (4)
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3.2. Sensors’ Characteristics

As already stated, AHRS integrates the magnetometer to the basic IMU configuration
containing a gyroscope and an accelerometer. The raw data acquired by the MEMS-AHRS
sensors can have possible errors due to the system design, other than being affected by
thermal and electronic-related noise, usually modeled as additive Gaussian noise. This
entails deviations and oscillations around the correct value that can be reduced by prior
calibration procedures [42]. MEMS contain limited size vibratory-rate gyroscopes, which
have no rotating parts; this makes their installation easier and lowers their costs but at the
same time, combined with even the slightest fabrication imperfections, leads to sensitivity
issues that inevitably increase the noise levels in the angular velocity measurements [43].
Furthermore, another critical error is due to sensor drift, which theoretically makes the
position error grow exponentially over time while it linearly increases for heading and
velocity [44].

The accelerometer is very sensitive to vibrations and mechanical noise: this means
that it does not solely measure gravity, but the result of many additional forces including
the gravitational acceleration [45]. Moreover, MEMS accelerometers are characterized by
lower accuracy than traditional high-performance ones [46].

Finally, the output of a magnetometer also depends on multiple factors, mainly related
to offsets and sensitivity errors. Besides the instrumentation-related influences, magnetic
field sensors suffer from magnetic perturbations. The presence of both ferromagnetic
materials and electromagnetic systems heavily affects the measurements, causing artificial
biases, scale factors and non-orthogonality errors which are very difficult to detect and
compensate for [47].

Three main sources of attitude estimation errors can then be summarized as follows:

• Noise errors coming from the sensors’ noisy measurements;
• Bias errors deriving from wrong or missing calibration procedures;
• Filter errors due to a wrong or missing filter tuning procedure.

Generally speaking, the deterministic errors (static biases or scale factors) can be
mathematically modeled, regardless of their constant or variable distribution over time. On
the contrary, the random nature of stochastic errors implies that they can only be modeled
as random variables characterized by some probabilistic distribution [16].

Some of the aforementioned sensor errors can be compensated through the integration
of the three systems: combining this with proper sensor bias estimation procedures and
opportune calibrations, an accurate orientation estimation can be obtained. Nevertheless,
there are some noise sources that are difficult to detect and correctly remove with tradi-
tional methods. For this reason, we decided to develop DANAE++, a novel denoising
autoencoder specifically trained to recognize and discard any kind of noise and disturbance
from the KF estimations.

3.3. Kalman Filtering Techniques

The LKF is a widely used algorithm for the state estimation of dynamic systems since
it is able to minimize the related variance under some perfect model assumptions (i.e., the
expression of the process and measurement models as matrices and their related noise as
additive Gaussian noise due to the linearity of the considered dynamic).

The system behavior in a discrete time setting can be described by a state Equation (5)
and a measurement Equation (6):

xt = Fxt−1 + But−1 + wt−1. (5)

zt = Hxt + vt. (6)

where xt is the state vector to be predicted, xt−1 and ut−1 are the state and the input vectors,
respectively, at the previous time step and zt represents the measurement vector. F and
B are the system matrices and H is the measurement matrix. The vectors wt−1 and vt
are respectively associated with the additive process noise and the measurement noise,



Sensors 2021, 21, 1526 6 of 20

assumed to be zero mean Gaussian processes. The final estimate is obtained by a first
prediction step ((7) and (8)) followed by the update phase ((9)–(12)):

x̂−t = Fx̂+t−1 + But−1. (7)

P−t = FP+
t−1FT + Q. (8)

ỹt = zt − Hx̂−t . (9)

Kt = P−t HT(HP−t HT + R)−1. (10)

x̂+t = x̂−t + Ktỹ. (11)

P+
t = (I − KtH)P−t . (12)

The a posteriori state estimate x̂+t is obtained as a linear combination of the a priori
estimate x̂−t and the weighted difference between the actual and the predicted measure-
ments, the residual ỹ−t (see Equation (11)); the weight is defined by the Kalman gain (K in
Equation (10)) and allows to minimize the a posteriori error covariance (P in Equation (12))
initially set by the user. Finally, Q and R are the covariance matrices of the process and of
the measurement noise, respectively. Q models the dynamics uncertainty, and R represents
the sensors internal noises. These matrices heavily affect the final filter performance, and
thus a tricky tuning process is necessary to correctly estimate noises statistics. A proper
fine-tuning is also important for sensors biases estimation; however, even in this case
traditional approaches based on the KF suffer from implementation complexity and require
non-intuitive tuning procedures [48]. In a non-linear dynamic system either the process
or the measurement model cannot be defined with simple vectors and matrices’ multi-
plications. In this case, the EKF allows to efficiently deal with this issue by considering
a model linearization around the current estimations. As the EKF is computationally
cheaper than other nonlinear filtering methods (e.g., particle filter), it is widely used in
various real-time applications, especially in the robotic and navigation fields. In this case,
Equations (5) and (6) can be rewritten as:

xt = f(xt−1, ut−1) + wt−1. (13)

zt = h(xt) + vt. (14)

where the matrices F and H have been replaced by f, the function that provides the current
state xt on the basis of the previous state and control input, and by h, relating the current
states to the measurements. These functions are processed at each time step to obtain the
Jacobian matrix, first-order partial derivative of the function with respect to a vector, as
described by Equations (15) and (16):

Ft−1 =
∂f
∂x

∣∣∣
x̂+t−1,ut−1

. (15)

Ht =
∂h
∂x

∣∣∣
x̂−t

. (16)

The estimation procedure is then similar to that of the LKF, with the main difference of
obtaining the predicted estimations by the nonlinear functions in Equations (13) and (14).

3.4. Denoising Autoencoders

A DAE is a deep convolutional model that is able to recover clean, undistorted output
starting from partially corrupted data as input. In the original implementation, the input
data are intentionally corrupted through a stochastic mapping (Equation (17)):

x̃ ∼ qD(x̃|x). (17)
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Then, the corrupted input is mapped into a hidden representation as in the case of a
standard autoencoder (Equation (18)):

h = fθ(x̃) = s(Wx̃ + b). (18)

Finally, the hidden representation is mapped back to a reconstructed signal (Equation (19)):

x̂ = gθ′(h). (19)

During the training procedure, the output signal is compared with a reference signal
in order to minimize the L2 reconstruction error (Equation (20)):

L(x− x̂) = ||x− x̂||2 = ||x− s(Wx̃ + b)||2. (20)

3.5. U-Net Architecture

The U-Net [26] is a fully convolutional network originally developed for effective
medical images analysis. It is able to achieve robust and accurate performance in several
tasks like pancreas, brain tumor and abdominal computed tomography semantic segmen-
tation [49–51]. Its architecture resembles the encoder–decoder model: a contracting path
reduces the input data up to a set of high-level features, and an expansive path that upsam-
ples the features back to the original size by exploiting transposed convolutions [52]. Encoder
and decoder paths are linked by skip connections so that the li

d layer of the decoder network
receives as input both the feature maps from the li−1

d decoder layer and the features map
from the li−1

e encoder layer. The presence of these long, symmetric shortcuts both reduce
the vanishing gradient issue and improve the ability of the model to capture fine-grained
details [53].

3.6. DANAE++

DANAE++ is a deep denoising autoencoder developed to recover the orientation
estimation of robots and low-cost sensors from any kind of disturbance, considering
the internal AHRS noise as well as that introduced by the filtering process. In fact, in
this work DANAE++ has been tested on both linear and extended Kalman filters, but it
can run on any kind of algorithm employed for the scope. The proposed architecture is
inspired by WaveNet [54], which is a 1-dimensional U-Net model originally created for raw
audio waveform generation; DANAE++ takes as input the roll, pitch and yaw estimations
provided by the filter and produces as output the same angles recovered from the noise.
DANAE++ can work with any input signal length, here denoted by N; without loss of
generality, we performed our experiments using N = 20.

To increase the generation ability of the architecture, DANAE++ has been further
improved from its original structure by receiving as additional input the intermediate
angles estimation calculated inside the filtering loop. Moreover, DANAE++ is able to
estimate the three angles at the same time. For these reasons, the input dimension becomes
MxN, where M = 9 is the sum of the three estimated angles and the six intermediate ones
extrapolated from the KF. As shown in Section 5, the aforementioned changes increase the
final accuracy.

As regards the network structure, the encoder part of DANAE++ is made up of four
dilated 1D convolutions, which bring the M× N input signal to a hidden representation
made of 128 features. The decoder part transforms this representation to a 3× N output
by alternating three transposed-dilated 1D convolutions to four standard ones (Figure 1).
While the transposed convolution is exploited to increase the input resolution back to the
original size, the (i + 1)th standard convolution works on the sum of the ith encoder and
the ith decoder outputs. This approach, loosely inspired by the WaveNet architecture [55],
is able to enforce additional constrains on the encoder–decoder pipeline, enabling a more
faithful signal reconstruction.
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Figure 1. DANAE++ architecture: the dilated convolutions (green blocks) represent the encoder part of the model, while
the transposed and standard convolutions (red blocks) constitute the decoder part.

In our implementation, DANAE++ takes as input the noisy angles’ prediction per-
formed by the LKF or EKF, together with the intermediate estimations obtained be-
fore their integration (i.e., the Euler angles analytically derived using the accelerome-
ter/magnetometer and the gyroscope measurements), and as reference signal the ground
truth angles provided by the dataset. It adds white noise during the training and tries
to output the undistorted signal, forcing the network to recognize and discard any kind
of disturbance.

For this reason, we underline that our method is able to remove both stochastic errors
(e.g., electromagnetic- and thermo-mechanical-related ones) and systematic errors (due for
example to sensor misalignment).

4. Experimental Setup

In this section the two datasets on which DANAE++ has been developed will be
presented, outlying the measurements and the ground truth acquisition methodologies. A
detailed overview of our experimental setup will then be given, describing the estimation
acquisition–training–validation–testing pipeline of DANAE++ as well as the determination
of the model hyper-parameters and settings.

4.1. Datasets

DANAE++ was originally conceived as a method to improve underwater positioning
operations, with the aim of reducing the noise effects on the measurements acquired in
this particularly unstructured environment. However, this setting poses strong challenges
also regarding the acquisition of reliable GT data, which leads to a scarcity of available
underwater datasets suitable for Deep Learning applications. For this reason, we decided
to test DANAE++ on two public available datasets, acquired in both terrestrial (indoor and
outdoor) and underwater environments. In this way, we also highlight the strength of our
method, which produces remarkable improvements regardless of the working conditions.

The chosen datasets are the Oxford Inertial Odometry Dataset (OxIOD) [56] and the
Underwater Caves Sonar Dataset (UCSD) [57].

OxIOD has been chosen for its accurate ground truth measurements over big het-
erogeneous settings. Developed for Deep Learning-based inertial odometry navigation,



Sensors 2021, 21, 1526 9 of 20

OxIOD provides 158 sequences (for a total of 42.587 km) of inertial and magnetic field
data acquired from low-cost sensors. Five users made indoor and outdoor acquisitions
while normally walking with their phone in hand, pocket or handbag and slowly walking,
running and performing mixed motion modes. Different smartphones have been used to
acquire the data, but its majority has been collected by an iPhone 7 Plus equipped with
an InvenSense ICM20600. The gyroscope noise is 4mdps/

√
(Hz), with a sensitivity error

of 1%, while the accelerometer noise is 100g/
√
(Hz). The three-axis geomagnetic sensor

in the iPhone 7 Plus (Alps HSCDTD004A) has a measurement range of ±1.2 mT and an
output resolution of 0.3T/LSB. A Vicon motion capture system was used to obtain the
ground truth, provided only for the position with a precision down to 0.5 mm [56]. The
UCSD has been collected by a Sparus Autonomous Underwater Vehicle (AUV) navigating
in the underwater cave complex “Coves de Cala Viuda” in Spain. The vehicle explored
two tunnels, following a 500 m-long path at a depth of approximately 20 m. Among the
equipped sensors (e.g., DVL, sonar, etc.), a standard low-cost Xsens MTi AHRS and an
Analog Devices ADIS16480 were mounted. The latter is a 10 DOF MEMS that provides
more accurate raw sensor measurements and dynamic orientation outputs (obtained by
their EKF fusion). Table 1 provides Sparus XSens MTi and ADIS AHRSs specifications.
The elaboration of images containing six traffic cones placed on the seabed allowed to
obtain the relative positioning of the vehicle. Unfortunately, the ground truth thus obtained
is synchronized with the low-rate camera acquisitions, making the comparison with the
high-rate IMU measurements inconsistent. For this reason, we assumed that the orienta-
tion directly provided by the AHRS could at first glance substitute the true ground truth.
Despite not being a proper solution to the issue, this choice allowed us to understand the
ability of DANAE++ to work in a true underwater scenario with its unique features.

Table 1. Sparus AUV AHRS specifications.

XSens MTi ADIS16480

Angular resolution 0.05 deg Static accuracy (roll/pitch) 0.1 deg
Repeatability 0.2 deg Static accuracy (heading) 0.3 deg

Static accuracy (roll/pitch) 0.5 deg Dynamic accuracy (roll/pitch) 0.3 deg
Static accuracy (heading) 1 deg Dynamic accuracy (heading) 0.5 deg

Dynamic accuracy 2 deg RMS

4.2. Experiments

Some details on the experiments will be given in this section. Both datasets have been
split into training and test sets; in the case of OxIOD, we used for each setting run 1 as a
test set, leaving all of the other sessions as a training set.

UCSD instead provides a single file for each system containing all of the measurements
stored during the entire survey. We then decided to split the data, using the first 80% to
train DANAE++ and the remaining 20% to test the performances.

Three main phases can be distinguished: during the first one, the inertial and magnetic
field data are integrated with a linear or extended KF, providing the estimation of the three
Euler angles. In the second phase, these outputs are fed to DANAE++ for training, while in
the third phase tests are performed using a pipeline of KF and DANAE++ (Figure 2). All of
the hyper-parameter values were found using the OxIOD handheld data set as a validation
set. We empirically found that these values generalize well on both the OxIO and on UCS
datasets. The network weights after training have been saved for later use, e.g., for model
deployment on a robot. The code was developed in Python 3.6.9 running on Ubuntu 18.04,
with the help of the Pytorch framework.
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Figure 2. Workflow of the experiments: the upper section summarizes the training phase, while the bottom section
represents the relative testing phase.

4.2.1. Kalman Filters Initialization

We implemented the LKF in its most basic formulation following the equations from
(7) to (12). The covariance matrices P, Q and R were initialized as an identity matrix, and no
tuning has been done with relation to both the internal system and the measurements noises.
This choice was made to highlight the ability of DANAE++ to denoise the estimations
provided by the filter independently of its poor or erroneous initialization and/or tuning.
This becomes particularly useful in those situations in which the finalization of those
procedures is difficult or not possible.

The elaboration of the accelerometer and magnetometer raw data provided the mea-
surements vector (see Hxt in Equation (6)), while the gyroscope-derived angles have been
set as external input (see Bxt−1 in Equation (5)).

Different procedures have been followed for the EKF. The filter logic is of course
the same as the LKF, but as the linearizations and the use of quaternions is not very
intuitive, a concise explanation of the implementation is reported here. We used the first-
order linearized model to discretize and easily insert the system in our code: following
Equation (4), and considering Equation (21) (where dt is approximated by calculating the
difference of timesteps between samples at time t and t + 1) we obtained Equation (22):

q̇t =
qt+1 − qt

dt
. (21)

qt+1 =
dt
2

S(w)qt −
dt
2

Sbgqt + qt. (22)

where bg is the gyroscope bias in its three components along the x, y and z axes, and S is the
skew-symmetric matrix equivalent to the cross-product. For a more detailed explanation,
see [58]. After some calculations and following the LKF structure as in Equations (7)–(12),
the EKF can then be described using Equation (23):[

q
bg

]
t
=

[
I4x4 − dt

2 S(q)
03x4 I3x3

]
t−1

[
q
bg

]
t−1

+

[ dt
2 S(q)
03x3

]
t−1

wt−1. (23)
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Once again, remember that w is the angular velocity vector in the three directions. The
covariance matrices (P, Q and R) have been initialized again as identity matrices, avoiding
any kind of tuning. The matrix C used to convert the filters states to the measured variables
(see Equation (6)) is associated with the accelerations and magnetic field values, as shown
in Equation (24): [

â
m̂

]
t
=

[
Ca 03x3
Cm 03x3

][
q
bg

]
t
. (24)

where Ca and Cm are the matrices associated with the accelerometer and magnetometer,
respectively. Please note that to simplify the reading, the vectorization of some variables
has been omitted.

We assumed that the accelerometer gives an accurate reference in the vertical plane (Z
axis) while the magnetometer is accurate in providing the reference in the horizontal plane,
in particular in the magnetic north direction (Y axis). As the latter is more susceptible to
external disturbance factors, we made a prior calibration of its measures [59], which, in the
case of the OxIO dataset, led to an improvement of the EKF estimations.

4.2.2. DANAE++ Setting

The layers have 128 3× 3 kernels with an appropriate dilation value depending on the
layer depth, while stride and padding have been fixed to 1. The Adam optimizer chosen for
the training was set with a fixed learning rate of 0.002 with a batch size of 16. The number
of epochs was set to 100 for UCSD and to 1 for each set of OxIOD. Additional experiments
performed with different hyper-parameter values did not produce any sensible difference
in the final accuracy, demonstrating the robustness of our approach.

5. Results

To numerically evaluate the performances of DANAE++, simple estimators such as
mean deviation, maximum deviation and RMSE have been calculated with respect to the
GT and compared with those of both the LKF and EKF. For the sake of brevity, we will
include the images of DANAE++ tested on the EKF alongside with those provided by its
previous implementation (DANAE, see Figures 3 and 4). Tables 2 and 3 report a detailed
analysis of the results obtained with the OxIO dataset, while Tables 4 and 5 report those for
the UCS dataset.

The numerical values demonstrate that DANAE++ is able to considerably improve
the performances on all estimators; this is valid for the LKF as well as on the EKF and for
all the three angles on both datasets. Despite the strong noise affecting the KF predictions,
DANAE++ is able to produce a sensible lowering of the mean deviation w.r.t the GT,
upholding its strong denoising capability.

More in detail, DANAE++ results on the OxIO dataset produced a mean LKF RMSE
reduction of 63%, ranging from 58% (ψ) to 67% (θ), and of 52% for the EKF, with a minimum
of 25% (ψ) and a maximum of 60% (φ). Figure 5 shows the difference between the EKF and
DANAE++ on the estimation of φ.

A similar result was found in the UCSD experiments: DANAE++ output faithfully
resembles the reference signal for the estimated angles, reducing the LKF RMSE to a range
between 57% and 60%. For the EKF, the reduction is instead between 54% (θ) and 61 (φ):
Figure 6 reports the corresponding results for the θ angle. Unfortunately, ψ exhibits a
perturbed behavior in both the estimated and ground truth values, which is the reason
numerical values are omitted here. This can be probably related to erroneous sensors
calibrations or to magnetometer effects, whose non-linearity results in a scale factor error.
Moreover, electromagnetic-produced deviations can considerably alter the estimations of
this angle [47].
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Figure 3. OxIO Dataset: roll angle estimation provided by the LKF (top, light brown) and DANAE (bottom, light blue)
compared to the GT (dark red). This experiment was performed on a subsection of the slow walking set.

Table 2. OxIO Dataset: evaluation of the performances of the LKF, DANAE and DANAE++ w.r.t. the GT for the three Euler
angles.

LKF DANAE DANAE++

φ θ ψ φ θ ψ φ θ ψ

Mean dev. [rad] 0.0661 0.0483 1.9518 0.0224 0.0157 0.7392 0.0237 0.0157 0.5756
Max dev. [rad] 0.2929 0.2134 2.7313 0.1382 0.1082 0.4925 0.1396 0.1064 0.1285

RMSE 0.0815 0.0600 2.4000 0.0282 0.0196 1.3194 0.0296 0.0197 1.0014
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Figure 4. UCS Dataset: theta angle estimation provided by the LKF (top, light brown) and DANAE (bottom, light blue)
compared to the GT (dark red).

Table 3. OxIO Dataset: evaluation of the performances of the EKF, DANAE and DANAE++ w.r.t. the GT for the three
Euler angles.

LKF DANAE DANAE++

φ θ ψ φ θ ψ φ θ ψ

Mean dev. [rad] 0.0614 0.0485 0.4535 0.0216 0.0150 0.3636 0.0240 0.0149 0.2790
Max dev. [rad] 0.2724 0.2113 0.0189 0.1198 0.1100 0.7921 0.1632 0.1014 0.2482

RMSE 0.0762 0.0601 1.0478 0.0270 0.0187 0.8218 0.0301 0.0188 0.7860
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Figure 5. OxIO Dataset: roll angle estimation provided by the EKF (top, light brown) and DANAE++ (bottom, light blue)
compared to the GT (dark red). This experiment is made on a subsection of the slow walking set.

Table 4. UCS Dataset: evaluation of the performances of the LKF, DANAE and DANAE++ w.r.t. the GT for the three Euler
angles. Since the GT values of ψ are not reliable, the corresponding results are not reported here.

LKF DANAE DANAE++

φ θ ψ φ θ ψ φ θ ψ

Mean dev. [rad] 0.0326 0.0328 - 0.0139 0.0147 - 0.0127 0.0142 -
Max dev. [rad] 0.1476 0.1751 - 0.0671 0.0769 - 0.0616 0.0712 -

RMSE 0.0410 0.0412 - 0.0177 0.0190 - 0.0162 0.0184 -
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Figure 6. UCS Dataset: theta angle estimation provided by the EKF (top, light brown) and DANAE++ (bottom, light blue)
compared to the GT (dark red). This experiment was performed on a subsection of the slow walking set.

Table 5. UCS Dataset: evaluation of the performances of the EKF, DANAE and DANAE++ w.r.t. the GT for the three Euler
angles. Since the GT values of ψ are not reliable, the corresponding results are not reported here.

EKF DANAE DANAE++

φ θ ψ φ θ ψ φ θ ψ

Mean dev. [rad] 0.0249 0.0341 - 0.0125 0.0141 - 0.0126 0.0140 -
Max dev. [rad] 0.1382 0.1578 - 0.0807 0.0882 - 0.0616 0.0824 -

RMSE 0.0427 0.0412 - 0.0163 0.0180 - 0.0160 0.0179 -
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It should be emphasized that DANAE++ works simultaneously on the three angles;
this reduces the overall time consumption of ∼66%, thus proving to be a smarter solution
than the previous version.

With the aim of further validating our method, we also compared the results of
DANAE++ to those obtained applying a low-pass filter to the KF estimations. In particu-
lar, we implemented Butterworth (Scipy Butterworth filter: https://docs.scipy.org/doc/
scipy/reference/generated/scipy.signal.butter.html) and a cumulative (Scipy cumulative
filter: https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_
filter1d.html) filters, both using the Python library Scipy.

Figure 7 compares the GT to the EKF estimations provided by DANAE++ and the
Butterworth and cumulative filters w.r.t the GT. Results in Table 6 confirm that the de-
noising effect of our model outperforms that provided by both filters. This is because
DANAE++ does not work on a specific frequency noise, but on any kind of influencing
factor or bias regardless of their nature.

Figure 7. OxIO Dataset: roll angle estimation provided by DANAE++ (light blue) compared to the butterworth (top) and
the uniform1d (bottom) filters applied on the EKF outputs (light brown). The GT (dark red) is reported as reference in both
the images.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter1d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter1d.html
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Table 6. OxIO Dataset: evaluation of the performances of DANAE++, butterworth and uniform1d filters w.r.t. the GT for
the three Euler angles.

DANAE++ Butterworth Filter Uniform1d Filter

φ θ ψ φ θ ψ φ θ ψ

Mean dev. [rad] 0.0240 0.0149 0.2790 0.0470 0.0204 1.0113 0.0535 0.0456 0.4537
Max dev. [rad] 0.1632 0.1014 0.2482 0.1488 0.1012 2.1764 0.1841 0.1880 0.0926

RMSE 0.0301 0.0188 0.7860 0.0547 0.0254 1.3377 0.0640 0.0561 1.0039

6. Conclusions

This paper presents DANAE++, an enhanced implementation of the previously devel-
oped deep denoising autoencoder for attitude estimation, DANAE. Despite the exceptional
results obtained by the scientific community, attitude estimation is still considered a chal-
lenging task. This is particularly evident in complex scenarios such as those underwater,
where different noise sources, unstructured settings and the absence of GPS heavily affect
the orientation and positioning accuracy of the vehicles. The filtering algorithms employed
to determine the Euler angles of roll, pitch and yaw are able to give state-of-the-art results
through the integration of measurements provided by the gyroscope, accelerometer and
magnetometer embedded in high-performing systems or in the cheaper but equally effec-
tive MEMS sensors. However, these filters generally require fine-tuning procedures, which
constitute a non-trivial task, and can suffer from the effect of different disturbing factors
and other internal and external noise sources, which are not easily detectable.

By leveraging the potential of recent progress in the Deep Learning field, we developed
a denoising autoencoder that is able to recover attitude estimation signals from any kind of
noise, thus attenuating the aforementioned issues’ impact. The DANAE++ architecture is
loosely inspired by the U-Net and WaveNet models: it has an encoder part that contracts
the signal to a set of high-level features through 1D convolutions, and a decoder part that
upsamples them to the original size by exploiting transposed convolutions. Both paths are
linked through skip connections, with the aim of reducing the vanishing gradient issue
while improving the model’s ability to capture details.

DANAE++ was developed and tested on two datasets: the Oxford Inertial Odometry
Dataset, acquired with low-cost sensors in different settings, and the Underwater Caves
Sonar Dataset, collected by a Sparus Autonomous Underwater Vehicle. For each of them,
training and a testing sets were defined. During the training, the network took as input the
noisy angles estimations provided by the filters (LKF and EKF in our case) and the ground
truth values provided by the datasets. One of the subsets of the OxIO dataset has been
used to validate the model, empirically finding that the thus derived hyperparameters
generalized well on the UCSD too. These network weights have been saved for later use,
e.g., for a possible deployment of the model on a robot, in real time.

At the end of the test phase, an analysis of the performances was made: the orien-
tation obtained by DANAE++ was evaluated through mean and maximum deviation
and RMSE w.r.t. the GT. The results confirm that DANAE++ is able to improve the final
estimations, providing a general reduction of the RMSE of more than 50% for both the
datasets, independently of the used filter.

DANAE++ adds to its previous configuration some remarkable improvements that
can be summarized as follows:

• In addition to the estimations provided by the filter, it takes as an input the inter-
mediate attitude values analytically derived inside the filter loop from the sensors’
measurements; this solution was proven to increase the accuracy of the final results;

• Differently from its previous implementation, it is capable of denoising the three orienta-
tion angles at the same time, thus reducing the overall time consumption of ∼66%.

We emphasize that our method is capable of removing both stochastic errors (e.g.,
electromagnetic- and thermo-mechanical-related ones), and systematic errors (for example
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due to sensors misalignment), and that it is completely filter-agnostic. It is important
to highlight that DANAE++ can work on the estimations provided by any kind of filter
regardless of its initial configuration and tuning. In fact, in some situations it can be
difficult or not even possible to successfully complete these procedures (e.g., when sensor
characteristics are not known or when a lack of time does not allow it), so it could be
useful to rely on a method that does not need to perform these operations. Considering the
obtained numerical results and the aforementioned characteristics, DANAE++ proves to
be a smarter solution than its previous version. We are trying to enhance the reliability of
systems orientation, whose accuracy is strictly related to the final position determination,
by merging classical methods with Deep Learning novelties. This powerful approach
will be further enhanced, analyzing the possibility to work with the raw measurements
acquired by the sensors and to further optimize the architecture. Moreover, experiments
on real robot acquisitions will be made, and deployments for on-line applications will be
investigated and tested.

Author Contributions: Conceptualization, F.D.C. and P.R.; Methodology, F.D.C. and P.R.; Software,
F.D.C. and P.R.; Validation, F.D.C. and P.R.; Formal analysis, F.D.C., P.R. and S.T.; Investigation,
F.D.C. and P.R.; Resources, F.D.C. and P.R.; Data curation, F.D.C. and P.R.; Writing—original draft
preparation, F.D.C. and P.R.; Writing—review and editing, F.D.C., P.R. and S.T.; Visualization, F.D.C.
and P.R.; Supervision, F.D.C., P.R. and S.T.; Project administration, F.D.C., P.R. and S.T. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: OxIO Dataset: http://deepio.cs.ox.ac.uk/ (accessed on 12 December 2020); UCS
Dataset: https://cirs.udg.edu/caves-dataset/ (accessed on 12 December 2020).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AHRS Attitude and Heading Reference System
CNN Convolutional Neural Networks
DAE Denoising Auto-Encoders
DANAE Denoising AutoeNcoder for Attitude Estimation
DOF Degree of Freedom
DVL Doppler Velocity Logger
ECG Electrocardiogram
EKF Extended Kalman Filter
ENU East-North-Up
NED North-East-Down
GPS Global Positioning System
GT Ground Truth
IMU Inertial Measurement Unit
KF Kalman Filter
LSTM Long-Short-Term-Memory
MEMS Micro Electro Mechanical Systems
OxIOD Oxford Inertial Odometry Dataset
RMSE Root Mean Square Error
RNN Recurrent Neural Networks
UCSD Underwater Caves Sonar Dataset
UKF Unscented Kalman Filter
VAE Variational Autoencoder

http://deepio.cs.ox.ac.uk/
https://cirs.udg.edu/caves-dataset/


Sensors 2021, 21, 1526 19 of 20

References
1. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. Trans. ASME- Basic Eng. 1960, 82, 35–45. [CrossRef]
2. St-Pierre, M.; Gingras, D. Comparison between the unscented Kalman filter and the extended Kalman filter for the position

estimation module of an integrated navigation information system. IEEE Intell. Veh. Symp. 2004, 2004, 831–835.
3. Tereshkov, V.M. An intuitive approach to inertial sensor bias estimation. Int. J. Navig. Obs. 2013, 2013. [CrossRef]
4. Russo, P.; Di Ciaccio, F.; Troisi, S. DANAE: A denoising autoencoder for underwater attitude estimation. In Proceedings of

the 2020 IMEKO TC-19 International Workshop on Metrology for the Sea. arXiv 2020, arXiv:2011.06853. Available online:
https://arxiv.org/abs/2011.06853 (accessed on 12 December 2020).

5. Pirník, R.; Hruboš, M.; Nemec, D.; Mravec, T.; Božek, P. Integration of inertial sensor data into control of the mobile platform. In
Federated Conference on Software Development and Object Technologies; Springer: Berlin, Germany, 2015; pp. 271–282.

6. Caron, F.; Duflos, E.; Pomorski, D.; Vanheeghe, P. GPS/IMU data fusion using multisensor Kalman filtering: Introduction of
contextual aspects. Inf. Fusion 2006, 7, 221–230. [CrossRef]

7. Ferdinando, H.; Khoswanto, H.; Purwanto, D. Embedded Kalman filter for inertial measurement unit (IMU) on the ATMega8535.
In Proceedings of the IEEE 2012 International Symposium on Innovations in Intelligent Systems and Applications, Trabzon,
Turkey, 2–4 July 2012; pp. 1–5.

8. Allotta, B.; Caiti, A.; Costanzi, R.; Fanelli, F.; Fenucci, D.; Meli, E.; Ridolfi, A. A new AUV navigation system exploiting unscented
Kalman filter. Ocean Eng. 2016, 113, 121–132. [CrossRef]

9. Zhang, X.; Mu, X.; Liu, H.; He, B.; Yan, T. Application of Modified EKF Based on Intelligent Data Fusion in AUV Navigation. In
Proceedings of the 2019 IEEE Underwater Technology (UT), Kaohsiung, Taiwan, 16–19 April 2019; pp. 1–4.

10. Li, W.; Wang, J. Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference
systems. J. Navig. 2013, 66, 99–113. [CrossRef]

11. Di Ciaccio, F.; Gaglione, S.; Troisi, S. A Preliminary Study on Attitude Measurement Systems Based on Low Cost Sensors. In
International Workshop on R3 in Geomatics: Research, Results and Review; Springer: Berlin, Germany, 2019; pp. 103–115.

12. Alatise, M.B.; Hancke, G.P. Pose estimation of a mobile robot based on fusion of IMU data and vision data using an extended
Kalman filter. Sensors 2017, 17, 2164. [CrossRef]

13. De Marina, H.G.; Pereda, F.J.; Giron-Sierra, J.M.; Espinosa, F. UAV attitude estimation using unscented Kalman filter and TRIAD.
IEEE Trans. Ind. Electron. 2011, 59, 4465–4474. [CrossRef]

14. Allotta, B.; Chisci, L.; Costanzi, R.; Fanelli, F.; Fantacci, C.; Meli, E.; Ridolfi, A.; Caiti, A.; Di Corato, F.; Fenucci, D. A comparison
between EKF-based and UKF-based navigation algorithms for AUVs localization. In Proceedings of the IEEE OCEANS
2015-Genova, Genova, Italy, 18–21 May 2015; pp. 1–5.

15. Taghavi, E.; Tharmarasa, R.; Kirubarajan, T.; Bar-Shalom, Y.; Mcdonald, M. A practical bias estimation algorithm for multisensor-
multitarget tracking. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2–19. [CrossRef]

16. Nirmal, K.; Sreejith, A.; Mathew, J.; Sarpotdar, M.; Suresh, A.; Prakash, A.; Safonova, M.; Murthy, J. Noise modeling and
analysis of an IMU-based attitude sensor: Improvement of performance by filtering and sensor fusion. In Advances in Optical and
Mechanical Technologies for Telescopes and Instrumentation II; International Society for Optics and Photonics: Bellingham, WA, USA,
2016; Volume 9912, p. 99126W.

17. Guo, H.; Hong, H. Research on Filtering Algorithm of MEMS Gyroscope Based on Information Fusion. Sensors 2019, 19, 3552.
[CrossRef]

18. Widodo, R.B.; Wada, C. Attitude estimation using kalman filtering: External acceleration compensation considerations. J. Sens.
2016, 2016. [CrossRef]

19. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems 25; Harrah’s Lake Tahoe: Stateline, NV, USA, 2012; pp. 1097–1105.

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

21. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

22. Russo, P.; Tommasi, T.; Caputo, B. Towards Multi-source Adaptive Semantic Segmentation. In International Conference on Image
Analysis and Processing; Springer: Berlin, Germany, 2019; pp. 292–301.

23. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649.

24. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850.
25. Kramer, M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37, 233–243.

[CrossRef]
26. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International

Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin, Germany, 2015; pp. 234–241.
27. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
28. Baynazarov, R.; Piontkovskaya, I. Binary Autoencoder for Text Modeling. In Conference on Artificial Intelligence and Natural

Language; Springer: Berlin, Germany, 2019; pp. 139–150.

http://doi.org/10.1115/1.3662552
http://dx.doi.org/10.1155/2013/762758
https://arxiv.org/abs/2011.06853
http://dx.doi.org/10.1016/j.inffus.2004.07.002
http://dx.doi.org/10.1016/j.oceaneng.2015.12.058
http://dx.doi.org/10.1017/S0373463312000331
http://dx.doi.org/10.3390/s17102164
http://dx.doi.org/10.1109/TIE.2011.2163913
http://dx.doi.org/10.1109/TAES.2015.140574
http://dx.doi.org/10.3390/s19163552
http://dx.doi.org/10.1155/2016/6943040
http://dx.doi.org/10.1002/aic.690370209


Sensors 2021, 21, 1526 20 of 20

29. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

30. Gondara, L. Medical image denoising using convolutional denoising autoencoders. In Proceedings of the 2016 IEEE 16th
International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15 December 2016; pp. 241–246.

31. Lu, X.; Tsao, Y.; Matsuda, S.; Hori, C. Speech Enhancement Based on Deep Denoising Autoencoder. Available online: https:
//bio-asplab.citi.sinica.edu.tw/paper/conference/lu2013speech.pdf (accessed on 12 December 2020).

32. Xiong, P.; Wang, H.; Liu, M.; Zhou, S.; Hou, Z.; Liu, X. ECG signal enhancement based on improved denoising auto-encoder. Eng.
Appl. Artif. Intell. 2016, 52, 194–202. [CrossRef]

33. Noda, K.; Yamaguchi, Y.; Nakadai, K.; Okuno, H.G.; Ogata, T. Audio-visual speech recognition using deep learning. Appl. Intell.
2015, 42, 722–737. [CrossRef]

34. Shen, H.; George, D.; Huerta, E.; Zhao, Z. Denoising gravitational waves using deep learning with recurrent denoising
autoencoders. arXiv 2017, arXiv:1711.09919.

35. Principi, E.; Vesperini, F.; Squartini, S.; Piazza, F. Acoustic novelty detection with adversarial autoencoders. In Proceedings of the
IEEE 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 3324–3330.

36. Bernal-Polo, P.; Martínez Barberá, H. Orientation Estimation by Means of Extended Kalman Filter, Quaternions, and Charts. J.
Phys. Agents 2017, 8, 11–24. [CrossRef]

37. Shuster, M.D. A survey of attitude representations. Navigation 1993, 8, 439–517.
38. Božek, P.; Al Akkad M, A.; Blištan, P.; Ibrahim N, I. Navigation control and stability investigation of a mobile robot based on a

hexacopter equipped with an integrated manipulator. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417738103. [CrossRef]
39. Diebel, J. Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 2006, 58, 1–35.
40. Hemingway, E.G.; O’Reilly, O.M. Perspectives on Euler angle singularities, gimbal lock, and the orthogonality of applied forces

and applied moments. Multibody Syst. Dyn. 2018, 44, 31–56. [CrossRef]
41. Ben-Ari, M. A Tutorial on Euler Angles and Quaternions; Weizmann Institute of Science: Rehovot, Israel, 2014.
42. Angrisano, A.; Nocerino, E.; Troisi, S.; Del Core, G. IMU low cost calibration method. In Proceedings of the European Navigation

Conference-Global Navigation Satellite Systems, Naples, Italy, 3–6 May 2009.
43. Lakshminarayan, I.; Rao, D. Kalman Filter Based Estimation of Constant Angular Rate Bias for Mems Gyroscope. In Proceedings

of the IEEE TechSym 2014 Satellite Conference, Vellore, India, 7–8 March 2014; pp. 22–23.
44. Bao, J.; Li, D.; Qiao, X.; Rauschenbach, T. Integrated navigation for autonomous underwater vehicles in aquaculture: A review.

Inf. Process. Agric. 2020, 7, 139–151. [CrossRef]
45. Yu, Z.; Crassidis, J.L. Accelerometer bias calibration using attitude and angular velocity information. J. Guid. Control. Dyn. 2016,

39, 741–753. [CrossRef]
46. D’Emilia, G.; Gaspari, A.; Mazzoleni, F.; Natale, E.; Prato, A.; Schiavi, A. Metrological Characterization of MEMS Accelerometers by

LDV; Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1589, p. 012011.
47. Renaudin, V.; Afzal, M.H.; Lachapelle, G. Complete triaxis magnetometer calibration in the magnetic domain. J. Sens. 2010, 2010.

[CrossRef]
48. Tereshkov, V.M. A simple observer for gyro and accelerometer biases in land navigation systems. J. Navig. 2015, 68, 635–645.

[CrossRef]
49. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.

Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999.
50. Kamnitsas, K.; Bai, W.; Ferrante, E.; McDonagh, S.; Sinclair, M.; Pawlowski, N.; Rajchl, M.; Lee, M.; Kainz, B.; Rueckert, D.

Ensembles of multiple models and architectures for robust brain tumour segmentation. In International MICCAI Brainlesion
Workshop; Springer: Berlin, Germany, 2017; pp. 450–462.

51. Weston, A.D.; Korfiatis, P.; Kline, T.L.; Philbrick, K.A.; Kostandy, P.; Sakinis, T.; Sugimoto, M.; Takahashi, N.; Erickson, B.J.
Automated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology 2019, 290, 669–679.
[CrossRef]

52. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

53. Li, H.; Xu, Z.; Taylor, G.; Studer, C.; Goldstein, T. Visualizing the loss landscape of neural nets. In Advances in Neural Information
Processing Systems 31; Palais des Congrès de Montréal, Montréal CANADA: Montreal, QC, Canada, 2018; pp. 6389–6399.

54. Oord, A.v.d.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. Wavenet:
A generative model for raw audio. arXiv 2016, arXiv:1609.03499.

55. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
56. Chen, C.; Zhao, P.; Lu, C.X.; Wang, W.; Markham, A.; Trigoni, N. Oxiod: The dataset for deep inertial odometry. arXiv 2018,

arXiv:1809.07491.
57. Mallios, A.; Vidal, E.; Campos, R.; Carreras, M. Underwater caves sonar data set. Int. J. Robot. Res. 2017, 36, 1247–1251. [CrossRef]
58. Sola, J. Quaternion kinematics for the error-state Kalman filter. arXiv 2017, arXiv:1711.02508.
59. Kok, M.; Hol, J.D.; Schön, T.B.; Gustafsson, F.; Luinge, H. Calibration of a magnetometer in combination with inertial sensors. In

Proceedings of the IEEE 2012 15th International Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 787–793.

https://bio-asplab.citi.sinica.edu.tw/paper/conference/lu2013speech.pdf
https://bio-asplab.citi.sinica.edu.tw/paper/conference/lu2013speech.pdf
http://dx.doi.org/10.1016/j.engappai.2016.02.015
http://dx.doi.org/10.1007/s10489-014-0629-7
http://dx.doi.org/10.14198/JoPha.2017.8.1.03
http://dx.doi.org/10.1177/1729881417738103
http://dx.doi.org/10.1007/s11044-018-9620-0
http://dx.doi.org/10.1016/j.inpa.2019.04.003
http://dx.doi.org/10.2514/1.G001437
http://dx.doi.org/10.1155/2010/967245
http://dx.doi.org/10.1017/S0373463315000016
http://dx.doi.org/10.1148/radiol.2018181432
http://dx.doi.org/10.1177/0278364917732838

	Introduction
	Related Works
	Theoretical Notions and Method
	Orientation Estimation
	Sensors' Characteristics
	Kalman Filtering Techniques
	Denoising Autoencoders
	U-Net Architecture
	DANAE++

	Experimental Setup
	Datasets
	Experiments
	Kalman Filters Initialization
	DANAE++ Setting


	Results
	Conclusions
	References

