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Abstract. Viscoelastic materials have excellent properties of absorbing vibrational energy 
which makes their use very attractive in structural, aerospace and biomechanics engineering 
applications. The macroscopic dynamical behaviour of such materials depends on the time his-
tory, or memory, of the strain. The stress-strain viscoelastic relation can be described by a
convolution integral with a memory kernel, according to Boltzmann’s formulation of hereditary 
elasticity, or by using Caputo or Riemann-Liouville fractional derivatives. In order to empha-
size the vibrations damping attitude of these materials, by actively controlling their stress-strain 
behaviour, novel optimal control logics are required which involve memory effects. This paper 
deals with a feedback control strategy applied to a structural-dynamic problem described by 
integral-differential equations. It is shown how to obtain a feedback control, called PD(N), i.e. 
Proportional-Nth-order-Derivatives control, by using a variational approach. Numerical sim-
ulations show how the PD(N) controller is an effective tool to improve the viscoelastic materials 
performance. 
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1 INTRODUCTION

The use of viscoelastic materials is crucially important in many engineering disciplines and 
there are applications in a wide variety of areas such as aerospace, transport components, bio-
mechanics  and civil infrastructures [1-5]. These materials have excellent properties of absorb-
ing vibrational energy which makes their use in engineering applications very attractive, such 
as the dynamic instabilities and the fluid-structures interaction control.

Often, the macroscopic dynamical behaviour of such materials depends on the time history
or memory effects, of the strain response. According to Boltzmann’s formulation of hereditary 
elasticity [6], the stress-strain relation in linear viscoelasticity can be described by a convolution 
integral with a memory kernel. However, the mathematical form of this kernel is not easily 
predictable by theoretical tools, but it rather relies on experimental identification.

In the past, combinations of elemental rheological components such as the spring and dash-
pot, were used to generate a whole family of rheological models, such as Maxwell and Kelvin–
Voigt, or the four-parameters Burger’s model, generalizing the viscoelastic response, but with-
out including memory effects [7]. Moreover, experimental tests have shown some inconsisten-
cies of viscoelastic materials, especially when the effects of relaxation and creep would be kept 
into the model [8]. For these reasons in the second part of the last century, many researches 
have been carried out a more realistic description of creep and/or relaxation given by the use of
power law functions with real order exponent [9]. Such formulation captures the creep behav-
iour and generates the fractional hereditary model. In fact, the constitutive law of viscoelastic 
materials makes use of the Riemann-Liouville and Caputo’s fractional derivative [10, 11]. Due 
to the high mathematical complexity of such models, which imply integral-differential equa-
tions (IDEs), difficulties arise in the formulation of optimal control algorithm.

In recent years the interest in model-based control of mechanical systems incorporating ac-
tive controlled viscoelastic dampers has been increased in order to improve the mechanical 
system efficiency. Systems with viscoelastic dampers has been investigated by [12] where the
viscoelastic term is approximated by damping terms which are converted into stochastic differ-
ential equations solved by a dynamic programming method; meanwhile multi-input and multi-
output mechanical systems incorporating viscoelastic dampers are controlled with discrete-time 
sliding mode control algorithm [13]. Fractal-fractional model are used by [14] where the non-
linear algebraic system is solving by the Gauss-Legendre quadrature rule. Moreover, active 
control for standard Kelvin-Maxwell viscoelastic structures can be designed accurately with 
poles and zeros assignment defining an ad-hoc receptance transfer function [15]. Numerical 
scheme for solving fractional differential equations are proposed by [16] using the approxima-
tion of Laguerre integral formula.

In general, the optimal control strategies, applied to viscoelastic model, make use of direct 
methods. This paper introduces an indirect optimal feedback control algorithm, which is still 
missing in the literature panorama. Starting from the prototype integral-differential beam equa-
tion, the authors show how it is possible to obtain a Proportional-Nth-order-Derivatives control, 
called PD(N), by using the variational approach. PD(N) algorithm depends on the structure of 
the kernel and is a sort of hyper-derivative proportional control. The PD(N) control belongs to 
the category of Variational Feedback Controls-VFC, in the context of which the authors are 
developing different control architectures [17-19].

The paper consists of three main sections. The first presents the viscoelastic mathematical 
beam model, using the Caputo’s fractional derivatives. The PD(N) feedback optimal control
algorithm is derived in the second section, and in the third, numerical results show the effective 
performance of the proposed control for a bridge deflection control when it is subject to earth-
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quake excitation and impulsive disturbances, still maintaining low the cost function in compar-
ison with the LQR method and the implicit Pontryagin solution for IDEs already formulated by 
authors [20-22].

2 VISCOELASTIC BEAM MODEL

A brief description of the viscoelasticity fractional Kelvin–Voigt model is the premise to 
obtain the partial differential equations (PDE) of an Euler–Bernoulli viscoelastic beam, of 
length L and subjected to a basement seismic motion (see Figure 1).

Figure 1: Viscoelastic beam.

The classical Kelvin–Voigt model, using one spring and one viscous pot in parallel, presents 
a time-varying linear stress-strain relationship which can be expressed by the Caputo’s
fractional derivative :

(1)
with E the Young’s modulus, the damping modulus and the time varying operator ,
with 0 1 depending on material proprieties, defined as:

(2)

with (·) the Gamma function.
Considering constant density, cross-section area and inertial moment the PDE is de-

rived by defining the conservation of momentum and of moment of momentum:

(3)

where , , and are the vertical displacement along the z-axis,
the shear, the bending moment and the punctual actuation acting on , respectively.

The introduction of the kinematic Euler-Bernoulli and the stress and bending moment 
relations

(4)

leads to the definition of the viscoelastic beam equation as formulated by [23]:

(5)

Finally, equation (5) can be expressed in a compact form with the convolution integral term 
instead of the fractional operator as formulated by Nutting [24]. By using
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the derivative convolution properties and considering the supported beam case, the final equa-
tion with the associated boundary conditions is:

(6)

where is the Dirac function. In the case of translational base motion, the final transverse
displacement is given by the summation of two contributions:

(7)
Decoupling equation (6) by the modal decomposition:

(8)

with the eigenfunction of the r-th vibration mode, one obtains:
(9)

With the following normalization:

(10)

equation (9) becomes:
(11)

Finally, equation (11) is a second order integral-differential equation which represents the 
decoupled dynamic of the controlled viscoelastic Euler-Bernoulli beam when an external base-
ment disturbance is acting on it. In the following section, is investigated a novel optimal control 
approach to equation (11).

3 THE VISCOELASTIC OPTIMAL CONTROL

For equation (11), it is possible to introduce an optimal feedback control law by using the 
variational calculus. The control solution is a sort of hyper-derivative proportional control 
called Proportional-Nth-order-Derivatives, i.e. PD(N) controller, depending on the structure of 
the kernel [25]. Introducing the new state variable and 
equation (11) takes the space state form:

(12)
where and are constant matrixes, in this example is a scalar control var-
iable, the external disturbances vector and include the Caputo’s fractional
derivative.

The optimal control law is based on the minimization of a generic quadratic cost function 
which depends on the state and the control variables together with the Lagrange multiplier vec-
tor , introduced to account for the system’s dynamics expressed by equation (12):

(13)

The variational calculus finds a solution to the stated problem by using the stationary condi-
tion . The variations of the term present some nontrivial problems, and a 
technique to deal with this term is considered in details in [21, 25]. Considering a scalar term 
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, the kernel causality proprieties for and , produces its variation 
in the form:

(14)

Proceeding with standard variational calculus rules, and using equation (14), the associated 
extremal conditions are found:

(15)

Eq. (15) gives the optimal open loop solution to problem (13) and it can be solved with 
several direct control methods [26]. However, our goal is to obtain an explicit feedback formu-
lation of the control , that has tremendous advantages under the engineering application 
point of view. To this aim, we replace the fractional operator (2) by its approximation by a
truncated exponential series. Therefore, the Nutting’s kernel in (11), can be reformulated 
as:

(16)

where and are the -constants of the exponential series approximation and is intro-
duced to indicate the approximated kernel. In this way, eq. (16) leads to transform the integral-
differential equations (15) into the Laplace domain. In fact, both the terms, and have 
the corresponding Laplace transform in as sum of polynomials:

(17)

where and are used to indicate the N-order polynomials.
Then, using the equations (16) and (17) to express the integral terms in the first two of equa-

tions (15), setting and eliminating the control in the equation ,
using , we can produce the Laplace transform of the obtained
equations in terms of and only. Rearranging these equations, and transforming back 
to time domain, we finally obtain:

(18)

where , and the problem is reduced to a pure differential equation set, linear and time-
invariant. Collecting the variables into  and , equa-
tions (18) can be reduced to a first order normal form differential problem:

(19)
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Equation (19) is characterized by the matrix that is not 
in general of Hamiltonian type. For this reason, it is not possible to solve the optimal problem 
by satisfying the Riccati’s stationary equation, but a direct solution through the 2N-eigenvalues
and 2N-eigenvectors is used. By assuring at least negative real part eigenvalues of matrix ,
one obtains:

(20)

where and are half of the 2N eigenvectors of H, those associated to negative real part 
eigenvalues. Finally, since , extracting from the last sub-vector the opti-
mal feedback control variable is:

(21)

The structure  of  the  solution  (21) shows  that  the  optimal control  of an  integral-
differential  system  is  strongly  related  to  the  structure  of  the kernel and contains a
combination of state derivatives of order equal to the number of exponential terms of . For
this reason, (21) is called hyper-derivative proportional control, PD(N). The (21) can also be 
expressed through a gain matrix multiplied by the vector . The initial state derivatives

for can be evaluated from the Laplace transformation of (12) in the case of
uncontrolled and undisturbed system and replacing the approximated exponential kernel
function.

4 NUMERICAL RESULTS

In the following section the numerical results are shown for the deflection control of a bridge 
when external excitations are acting on it. The bridge has been considered as a three-mode 
decomposition model. Two different simulations have been performed, considering an impul-
sive and an earthquake disturbance on the bridge basement. For both cases, we assume the 
actuator is placed at in order to control not only the first and third vibrational 
modes but also the 20% of the second mode. To measure the vibrations of the bridge, three 
sensors , , , for example accelerometers, have been placed on the structure at ,

and , in such a way that it can be easily reconstruct the modal displace-
ments . Table 1 shows the geometrical parameters describing the simulated bridge which has 
been chosen with a H-beam cross-section.

Table 1: H-beam parameters.

Description Parameters Value 
Density [kg/m3] 7500
Young modulus [N/m2]
Length [m] 24
Thickness [m]
Height [m]
Momentum of inertia [m4]
Cross-sectional area [m2]
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In Table 2 are listed the main dynamic parameters and control settings used to develop numer-
ical simulations in which a kernel function composed by two exponential terms has been con-
sidered.

Table 2: Parameters and control settings used for the simulations.

Regarding the first simulation, the impulsive basement disturbance is simulated by considering
an initial condition on the modal velocity different from zero taking into account the first
three vibrational modes of eq. (11). The performances of the PD(N) controller are 
compared with the Pontryagin implicit solution, recently proposed by the authors [20, 21], and 
the benchmarking LQR method by solving eq. (12) neglecting the convolution term.
From Figure 2 to Figure 6 the time evolution of the beam displacement , cost function 
, power and force actuation, are shown respectively. The bridge deflection has been computed

in two different positions and in order to be able to catch the contributions of all the 
three vibrational modes.

Figure 2: Beam vertical displacement at under impulsive load.

Description Parameters Value
Beam eigenfunctions in 
Beam eigenfunctions in 
Beam eigenfunctions in 
Beam eigenfunctions in 
Natural frequencies [rad/s]
Modal kernel frequencies

Kernel coefficients

Control gain   R 

Control gain PDN

Initial displacement [m]  
Initial velocity [m/s]
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Figure 3: Beam vertical displacement at under impulsive load.

Figure 4: Comparisons of cost functions under impulsive load.

Figure 5: Comparisons of power actuation under impulsive load.
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Figure 6: Comparisons of force actuation under impulsive load.

The numerical results show very good performances of the PD(N) algorithm in comparison 
with the standard LQR method in terms of vibrations minimization. In fact, the LQR, which
cannot take into account the viscoelastic memory effects, shows higher values of the actuation
force and power in comparison with the PD(N) controller. In fact, the PD(N) algorithm reach
half of the actuation power and the 80% of the maximum force reached by LQR, respectively.
Moreover, observing Figure 2 and Figure 3 the proposed controller presents lower beam de-
flection (higher in ) and a lower cost function value (Figure 4), stretching its convenience in 
comparison to the LQR method. The PD(N) performance are at the same level of the Pontryagin 
implicit solution. Of course, the implicit solution, which is the best optimal solution, presents
the lower values of cost function and arrival time.
In the second tested case, the bridge is excited by an earthquake disturb. The Class A earthquake 
load has been formulated by [27] according to the Eurocode 8 which introduce the possibility 
to use the stochastic analysis in the design of structures in seismic zone. Figure 7 and Figure 8
describe the earthquake disturbance in term of PSD and acceleration, respectively.

Figure 7: Earthquake PSD
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Figure 8: Earthquake acceleration

The class A earthquake PSD amplified the first vibrational mode of the bridge showing a max-
imum value corresponding to the bridge first natural frequency ( ) and on the contrary it 
does not excite the third mode, because is very far from the spectrum. Moreover, given the 
symmetry of the noise, even modes are not excited. For all these reasons, the results will be 
shown only for the position . The earthquake acceleration, , in Figure 8 has been gen-
erated from the PSD in Figure 7, acting for 10s and in the final 5s the bridge system is free to 
extinguish its residual vibrations.
In this simulation the performance of the proposed PD(N) controller are only compared with 
the benchmarking LQR method. In fact, the external disturbance considered in this case is sto-
chastic one, which is impossible to predict and to include in the Pontryagin solution.
From Figure 9 to Figure 12 the time evolution of the bridge deflection in , the cost function 
, the power and the force actuation, are illustrated respectively. It is possible to notice that, 

even when an external random disturbance is acting on the bridge, the proposed PD(N) 
controller presents better performance respect to the LQR method. The PD(N) algorithm shows 
a minimization of the bridge deflection requiring a lower force and power of actuation and for 
these reasons, it is also presenting a lower cost function .

Figure 9: Comparisons of deflection under earthquake load.
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Figure 10: Comparisons of cost function under earthquake load.

Figure 11: Comparisons of power under earthquake load.

Figure 12: Comparisons of force actuation under earthquake load.

5 CONCLUSIONS 

In this paper the authors propose an optimal control algorithm to actively control viscoelastic 
materials for the structural vibration’s minimization.

The proposed algorithm applies to a viscoelastic Euler-Bernoulli beam including Boltzmann
hereditary effects by using a Nutting’s memory kernel function. The prototype equation is of 
integro-differential type and requires a non-conventional optimal control strategy, which con-
siders convolution terms (memory effects). In general, the optimal control strategies, applied to 
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this viscoelastic model, make use of direct methods, while in this paper the authors offer an 
indirect optimal feedback control algorithm, which is still missing in the literature panorama.
The authors show how it is possible to obtain a Proportional-Nth-order-Derivatives control, 
called PD(N), by using the variational approach. Numerical simulations show very good result
of the PD(N) solution compared to the benchmarking LQR and the implicit Pontryagin solution 
for IDEs, already formulated by the authors in recent works. 

Thanks to the hyper derivative properties, the PD(N) controller shows a capability of mini-
mization of beam deflection, in term of force and power of actuation and cost both for different 
external disturbances acting on the model and also for multiple kernel function compared to the 
benchmarking optimal control algorithm.
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