
Moderate levels of endogenous reactive oxygen species (ROS) are important for various cellular activities, but high levels lead to tox-
icity and are associated with various diseases. Levels of ROS are maintained as a balance between oxidants and antioxidants. Accu-
mulating data suggest that oxidative stress is a major factor in deterioration of renal function. In this review, we highlight the possible 
mechanism by which oxidative stress can lead to chronic kidney disease (CKD). This review also describes therapies that counter the 
effect of oxidative stress in CKD patients. Numerous factors such as upregulation of genes involved in oxidative phosphorylation and 
ROS generation, chronic inflammation, vitamin D deficiency, and a compromised antioxidant defense mechanism system cause pro-
gressive detrimental effects on renal function that eventually lead to loss of kidney function. Patients with renal dysfunction are high-
ly susceptible to oxidative stress, as risk factors such as diabetes, renal hypertension, dietary restrictions, hemodialysis, and old age 
predispose them to increased levels of ROS. Biomolecular adducts (DNA, proteins, and lipids) formed due to reaction with ROS can 
be used to determine oxidative stress levels. Based on the strong correlation between oxidative stress and CKD, reversal of oxidative 
stress is being explored as a major therapeutic option. Xanthine oxidase inhibitors, dietary antioxidants, and other agents that scav-
enge free radicals are gaining interest as treatment modalities in CKD patients.
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Background

Living organisms require oxygen to sustain their existence, 

and oxidative compounds such as reactive oxygen species 

(ROS) and reactive nitrogen species in cells are produced 

from molecular oxygen as a consequence of aerobic 
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metabolism. ROS can be classified as either free radicals or 

non-radicals; free radicals include superoxide anion radical 

(O2
–), peroxyl (ROO•), alkoxyl (RO•), nitric oxide (NO•), 

and hydroxyl radical (OH•). Non-radical species include 

peroxynitrite (ONOO–), hydrogen peroxide (H2O2), and 

hypochlorous acid (HOCl) [1]. ROS exhibit both beneficial 

and harmful effects on the cell. Oxidative compounds 

aid in physiological cell processes when produced in low 

to moderate concentration, but higher concentration 

causes detrimental effects including damage to molecular 

components such as DNA, proteins, and lipids; production 

of pro-and anti-inflammatory cytokines; and activation of 

several stress-induced transcription factors [2]. Endogenous 

sources of ROS include several cellular enzymes such as 

nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase (Nox), xanthine oxidase (XO), mitochondrial oxidases, 

cyclooxygenase, myeloperoxidase, amino acid oxidase, 

lipoxygenase, and peroxisomes. Exogenous sources of oxidants 

include cigarette smoke, ozone exposure, hyperoxia, ionizing 

radiation, and heavy metal ions. 

To counterbalance the effects of oxidants, the human body 

is equipped with enzymatic and nonenzymatic antioxidant 

defense mechanisms. Antioxidant enzyme defenses 

include superoxide dismutase (SOD), catalase, glutathione 

peroxidase, thioredoxin and peroxiredoxin, and glutathione 

transferase. Nonenzymatic antioxidants include vitamin C, 

vitamin E, glutathione, and carotenoids. 

When the balance between oxidants and antioxidants shifts 

in favor of oxidants, oxidative stress is produced. Oxidative 

stress is known to trigger several pathological conditions 

including neurological disorders [3], cardiovascular 

diseases (CVDs) [4], diabetes [5], cancer, and asthma [6] 

and has been associated with kidney dysfunction [7]. In 

pyelonephritis, renal dysfunction is caused by ROS-mediated 

lipid peroxidation and DNA damage, leading to structural 

and functional aberrations in the kidney [8]. Administration 

of free radical scavengers such as catalase and dimethyl-

sulfoxide neutralizes ROS production, resulting in reversal 

of oxidative damage and histopathological changes in a 

chronic pyelonephritis mouse model [9]. Over the last few 

decades, a large number of clinical, experimental, and 

theoretical investigations have been conducted for detection 

of signs of oxidative stress in renal failure patients [10–12]. 

Oxidative stress is widely considered a biochemical hallmark 

of chronic kidney disease (CKD) influencing progression of 

renal function deterioration [13] and onset of major systemic 

comorbidities including CVD.

Understanding the pathogenesis and mediators 
of oxidative stress in CKD

Kidneys are responsible for homeostasis of extracellular 

fluids. Progressive decline in kidney function causes CKD, 

which leads to accumulation of toxic waste (uremia). CKD 

has become a global health concern, with more than one 

million annual deaths from end-stage renal disease (ESRD) 

[14]. CKD is diagnosed by either a reduction in glomerular 

filtration rate (GFR) and/or the presence of albumin, red 

blood cells, or white blood cells in the urine. The normal 

GFR in a healthy individual is ≥90 mL/min/1.73m2, whereas 

GFR <60 mL/min/1.73m2 for three months or more is 

indicative of decreased kidney function or presence of 

CKD [15]. Onset and progression of CKD are associated 

with various components of metabolic syndrome (MetS) 

including hypertension, diabetes, obesity, and dyslipidemia. 

The relationship between MetS and CKD is complex and 

bidirectional. However, it is difficult to define the etiological 

role of MetS in CKD as the individual components of MetS 

are sensitive to lifestyle modifications, medications, and 

other factors. Some of the additional risk factors for CKD 

include exposure to nephrotoxins, acute kidney disease, 

smoking, and aging [16]. All these risk factors significantly 

disturb the redox balance in the body. Increased oxidative 

species and decreased antioxidant capacity have been 

documented in various renal insufficiencies including CKD 

(Fig. 1).

In kidney diseases, cellular oxidative stress induces 

apoptosis and senescence, reduced regenerative capability 

of cells, and fibrosis in the kidney cells. Oxidative stress 

leads to accumulation of extracellular matrix proteins, 

podocyte damage, mesangial expansion, renal hypertrophy, 

endothelial dysfunction, tubulointerstitial fibrosis, and 

glomerulosclerosis [1]. Thus, oxidative stress further 

contributes to deterioration of renal function and disease 

progression. 

The mitochondrial electron transport complex is major 

source of ROS production via oxidative phosphorylation 

system (OXPHOS) in the cell. In CKD patients, mitochondrial 

deregulation causes overproduction of ROS and enhances 

oxidative stress. Several genes involved in OXPHOS have 
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been found to be upregulated in CKD patients [17]. Other 

enzymes including Nox, XO, and lipoxygenases, which 

initiate ROS production, are upregulated in CKD [18]. Several 

isoforms of Nox have been implicated in renal diseases 

including nephrolithiasis, hypertension, membranous 

nephropathy, renal transplantation, and acute kidney injury 

[19]. Nox4, the predominant Nox isoform in kidney, acts as 

a major source of ROS and plays a central role in chronic 

renal diseases such as diabetic nephropathy [20]. Increased 

Nox-dependent superoxide generation has been reported in 

patients at an early stage of chronic renal failure [21] and has 

been shown to contribute to microvascular dysfunction in 

CKD [22]. 

XO is the oxidative radical-producing isoform of xanthine 

oxidoreductase (XOR), also known as urate-producing 

enzyme. The XO enzyme catalyzes oxidation of hypoxanthine 

to xanthine and then xanthine to uric acid together with 

ROS release. XO activity is higher in plasma of CKD patients 

and has been suggested to be an independent predictor 

of cardiovascular events in CKD patients [23]. Recently, 

Terawaki et al. [24] reported relationships between estimated 

GFR (eGFR) and both XO and XOR activity. Further, these 

researchers showed higher XOR redox, the ratio of XO 

to total XOR, in the plasma of advanced CKD patients, 

indicating its role in elevated ROS production. 

Nitric oxide (NO) influences kidney function and aids 

in maintaining normal blood pressure by promoting 

natriuresis and diuresis, aiding in adaptation to variations in 

dietary salt intake. NO also acts as a powerful anti-oxidative 

agent that minimizes the adverse effects of O2
–. Studies 

have reported reduced NO production in CKD patients 

[25]. Multiple factors are responsible for the diminished 

levels of NO including decreased availability of L-arginine, 

the substrate for NO synthesis, and increased levels of NO 

Figure 1. Factors influencing oxidative stress in chronic kidney disease (CKD). Disturbance in the balance of antioxidants (pink 
box) and oxidants (light blue box) causes oxidative stress to can lead to CKD. Additional factors that contribute to CKD by enhancing 
oxidative stress are shown in the green box. Comorbid conditions associated with CKD are listed in orange. 
NADPH, nicotinamide adenine dinucleotide phosphate; PMN, polymorphonuclear neutrophil.
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synthase inhibitors such as asymmetric dimethylarginine 

[26]. The decreased NO activity and further deactivation 

by superoxide anion radical increase vascular resistance in 

renal arteries and manifest as hypertensive nephropathy 

and CVD [27]. 

CKD patients have severe vitamin D deficiency that is further 

decreased by reduced activity of the enzyme 1-α hydroxylase 
(CYP27B1), which converts 25-hydroxyvitamin D to its more 

active form, 1,25-dihydroxyvitamin D. Deficiency of vitamin 

D causes oxidative stress, inflammation, hypertension, and 

hypocalcemia, which lead to progression of CKD and CVD [28]. 

Elevated levels of lipid-associated oxidation markers such 

as F2-isoprostanes and malondialdehyde (MDA); protein-

associated oxidation markers including oxidized low-density 

lipoproteins, carbonyls, and glycations; and DNA-associated 

oxidation markers such as 8-oxo-2'-deoxyguanosine reflect 

the status of oxidative stress in CKD and can be correlated 

to disease severity (Fig. 2). The free radicals generated due 

to oxidative stress have high reactivity and short half-lives 

(seconds) and are difficult to quantitate in clinical settings. 

Therefore, biomolecular adducts having longer half-lives 

(hours to weeks) have become an important tool to measure 

the levels of oxidative stress. 

Oxidative stress is an important contributor to chronic 

inflammation in CKD. Long-term low-grade inflammation 

has been implicated in the pathophysiology of CKD. Damage 

to the kidney causes inflammation and recruits macrophages 

and leucocytes to result in an “oxidative burst” that causes 

overproduction of ROS. Accumulation of ROS triggers an 

inflammatory chain reaction by recruiting macrophages 

and secreting cytokines, chemokines, and eicosanoids. 

Cytokines and inflammatory mediators such as tumor 

necrosis factor (TNF)-α, transforming growth factor β, and 
interleukins (ILs) have been shown to modulate GFR, renal 

blood flow, and sodium excretion [29]. In addition, oxidative 

stress activates nuclear factor (NF)-κB, a transcription 

factor responsible for expression of inflammatory mediator 

genes [30]. Oxidative stress affects the phosphorylation and 

degradation of I-κB, an inhibitory protein that maintains NF-

κB in an inactivated state, and leads to activation of NF-κB. 

The presence of antioxidants inhibits activation of NF-κB by 

ROS [31]. Patients with advanced-stage CKD have high levels 

of inflammation markers such as C-reactive protein, TNF-α, 
and IL-6 as well as oxidative stress markers such as plasma 

protein carbonyls and F2-isoprostanes, supporting the 

link between inflammation and oxidative stress in disease 

pathogenesis [32,33]. 

Antioxidant defense mechanisms have been shown to be 

compromised in patients with renal dysfunction. The free 

radical scavenger SOD is down-regulated in renal patients 

[34]. Genetic polymorphism in glutathione-S transferase, 

another antioxidant enzyme, contributes to elevated 

oxidative stress in ESRD patients [35]. In addition, reduced 

plasma levels of antioxidant enzymes including catalase, 

glutathione peroxidase, intracellular glutathione, and thiol 

have been reported in patients with CKD [36].

ROS increase in renal patients

Increased susceptibility to oxidative stress in patients with 

renal dysfunction can be attributed to various mechanisms 

(Fig. 1). Risk factors such as diabetes, renal hypertension, 

Figure 2. Elevated levels of biomolecular adducts are potential biomarkers to measure oxidative stress in chronic kidney disease.
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and old age predispose these patients to increased levels of 

oxidative stress compared to the normal population. Another 

possible reason is nutritional limitation of fresh vegetables 

and fruits to avoid hyperkalemia and low level/intake of 

vitamin C. Normal potassium level is critical to maintain 

normal heart function; in hyperkalemia, the reduced ability 

of the kidney to excrete potassium from blood can disrupt 

potassium hemostasis and lead to abnormal heart rhythms. 

Severe hyperkalemic condition results in mortality. 

Renal dysfunction leads to accumulation of several 

uremic toxins such as indoxyl sulfate, p-cresol, and p-cresyl 

sulfate, which trigger progression of CKD and increase the 

risk of CVD [37–39]. Indoxyl sulfate stimulates oxidative 

stress to contribute to atherosclerotic vascular disease, 

arrhythmia, and chronic heart failure, indicating its role in 

the high prevalence of CVD that accelerates progression 

of CKD [40]. In addition, accumulation of uremic toxins in 

CKD causes uremic sarcopenia and uremic osteoporosis 

[41,42]. Similarly, p-cresyl sulfate increases oxidative stress 

and is involved in various mechanisms associated with 

cardiovascular and renal dysfunction [43]. 

Hemodialysis (HD), which is currently one of the major 

renal replacement therapies, is associated with increased 

oxidative stress [44]. HD is a nonselective procedure that 

removes solutes and results in loss of antioxidant molecules 

including water-soluble vitamins [45–48] and trace elements 

[49]. Furthermore, the bioincompatible dialyzer membranes 

used in HD cause ROS production via activation of 

polymorphonuclear neutrophils (PMNs). Activated PMNs 

generate myeloperoxidase, which is a key trigger for ROS 

activation and inactivation of nitrogen oxide. Studies have 

shown that increased serum myeloperoxidase is associated 

with markers of both inflammation and mortality in HD 

patients [50]. The presence of bacterial endotoxins such as 

lipopolysaccharide or anticoagulants in the dialysate triggers 

formation of oxidative species [51–53].

Therapies to counter oxidative stress in CKD

A growing body of evidence clearly suggests a role of oxidative 

stress in the pathogenesis of CKD and has prompted 

researchers worldwide to explore the possibility of reversing 

oxidative stress. Oxidative stress is enhanced in patients 

undergoing HD. Studies indicate that supplementation 

of antioxidants is beneficial in treating and preventing 

progression of CKD in predialysis as well as dialysis patients 

[54]. Several clinical trials have been performed to examine 

the therapeutic potential of various antioxidants in slowing 

progression of CKD. 

XO inhibitors (XOi) have been the primary choice for 

treatment of hyperuremia associated with various diseases 

including CKD. The first-generation XOi allopurinol has 

been shown to exert a moderate nephroprotective effect by 

reducing ROS generation and inflammation and improving 

endothelial function [55,56]. Recently, new randomized 

clinical trials with second-generation XOi (febuxostat and 

topiroxostat) have been initiated [57]. N-acetylcysteine (NAC), 

a precursor of glutathione, has also emerged as a potential 

molecule for slowing CKD progression to ESRD by attenuating 

systemic oxidative stress [58]. NAC has been shown to 

improve endothelial dysfunction in CKD patients on HD [59]. 

Noxs are a major source of ROS in the kidney; therefore, 

Nox inhibitors are emerging as potential therapeutics for 

CKD [60]. Preclinical studies have shown that GKT137831 

(setanaxib), a dual inhibitor of Nox1 and Nox4, exhibits 

renoprotective effects by attenuating glomerular structural 

changes, podocyte loss, extracellular matrix accumulation, 

and albuminuria in a mouse model of diabetic nephropathy 

[61,62]. Owing to the crucial role of setanaxib in attenuating 

renal pathology, it has now been enrolled in a Phase 2 

clinical trial for type I diabetes and kidney disease. Recently, 

Cha et al. [63] showed that APX-115, a novel pan-Nox 

inhibitor, provides better protection than setanaxib. APX-115 

decreased oxidative stress and improved insulin resistance 

in diabetic db/db mice. Moreover, APX-115 decreased 

albuminuria and preserved creatinine level [63]. Another 

study showed that APX-115 effectively prevented kidney 

injury such as oxidative stress, inflammation, and fibrosis in 

diabetic mice [64]. Moreover, APX-115 treatment effectively 

inhibited mitochondrial and peroxisomal dysfunction, 

suggesting pan-Nox inhibition as an effective therapy. 

Nuclear factor erythroid 2-related factor 2 (Nrf2) is 

another emerging treatment target to counteract oxidative 

stress and inflammation in CKD [65]. Nrf2 is a transcription 

factor responsible for regulation of various antioxidant 

genes. Enhancing Nrf2 activity in renal tubules decreases 

oxidative stress and prevents kidney disease progression [66]. 

Bardoxolone methyl (BARD), a semisynthetic triterpenoid, 

is one of the most potent activators of Nrf2. BARD has been 

shown to increase estimated GFR and preserve kidney 
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function in stage 4 CKD patients. This strongly suggests 

that restoring Nrf2 activity could potentially retard CKD 

progression [67]. 

The protective effect of dietary antioxidant micronutrients 

in various diseases associated with oxidative stress has 

been well documented. Antioxidant therapy reduces 

serum creatinine level and improves kidney function which 

contributes to reduced risk of progression to ESRD. Vitamins 

E and C are strong and powerful antioxidants that have been 

considered for CKD therapy [68-70]. 

Alpha-tocopherol, the biologically active form of vitamin 

E, counteracts oxidative stress by protecting against 

peroxidation of lipids and increasing low-density lipoprotein 

resistance [71]. Vitamin E is a strong scavenger of peroxyl 

radical and also regulates the expression of inflammatory 

genes. Supplementation with vitamin E in HD patients 

causes significant decrease in serum MDA and induces SOD1 

and catalase activity [68]. In addition, vitamin E-modified 

cellulose membrane use in HD has been shown to suppress 

oxidative stress and inflammation and improves endothelial 

function. Furthermore, hemolipodialysis has been shown 

to reduce oxidative stress caused during HD using vitamin 

C and liposomes containing vitamin E in the dialysate [72]. 

However, daily administration of vitamin E in ESRD patients 

significantly reduces cardiovascular complications but 

does not affect mortality [73]. Reduced vitamin C level has 

been observed in CKD patients undergoing HD. Vitamin C 

prevents oxidative damage by directly scavenging superoxide 

anion and hydroxyl radical. A moderate dose of vitamin 

C has been suggested as a corrective measure in CKD. 

Coadministration of vitamin C and vitamin E decreases the 

formation of carbonyl compounds and MDA concentration 

and increases total antioxidant capacity levels in peritoneal 

dialysis patients [74]. CKD patients are also supplemented 

with 1, 25-vitamin D, the active form of vitamin D, as these 

patients have very a high rate of vitamin D deficiency 

[28]. Numerous studies have reported a beneficial effect of 

vitamin D supplementation, including reduced proteinuria, 

improvement in endothelial cardiovascular markers, increased 

serum level of 1, 25-vitamin D, and decreased inflammation 

markers and serum parathyroid hormone levels in CKD and 

dialysis patients [75–79]. A recent meta-analysis demonstrated 

that vitamin D supplementation modulates various 

parameters of oxidative stress including total antioxidant 

capacity, glutathione, and MDA [80]. Experimental evidence 

suggests that vitamin D supplementation reduces oxidative 

stress and inflammation by increasing Nrf2 and up-regulating 

antioxidant enzymes [81]. 

Along with lifestyle changes such as exercise, smoking 

cessation, and dietary measures, treatment of CKD is focused 

on controlling albuminuria, blood pressure, blood glucose, 

and lipids. Agents such as beta blockers, angiotensin-

converting enzyme (ACE) inhibitors, angiotensin II receptor 

blockers (ARBs), and direct renin inhibitors (DRI) suppress 

the renin-angiotensin-aldosterone-system (RAAS), a 

regulator of blood pressure. These agents have been 

demonstrated to attenuate oxidative stress and therefore 

play a protective role in early as well as end stages of kidney 

disease [82,83]. A meta-analysis of randomized trials 

showed that ACE inhibitors were effective in decreasing 

blood pressure and excretion of urinary protein and in 

slowing progression of renal disease [84]. Monotherapy 

with ARBs or ACE inhibitors has been shown to reduce 

proteinuria. Similarly, a combination of ACE inhibitors 

and ARBs maximizes RAAS inhibition and normalizes 

proteinuria and GFR. Based on experimental evidence, a 

combination of RAAS inhibitors was suggested to be more 

effective than monotherapy in attenuating the progression 

of renal dysfunction. However, this regimen was linked with 

higher occurrence of adverse events such as hypotension 

and hyperkalemia [85]. The effect of triple RAAS blockade 

therapy through administration of aldosterone antagonists 

in combination with ACE inhibitors and/or ARBs for 

treatment of patients with kidney disease is undetermined 

[86]. Aliskiren, the first orally bioactive DRI, has been 

predicted to have greater potential for suppression of 

RAAS than any other class of drug. Additionally, aliskiren 

attenuates oxidative stress and provides protection of renal 

tubules in patients with CKD [83,87]. 

Natural compounds that target mitochondria, alone or 

in combination with conventional therapies and lifestyle 

modifications, are gaining worldwide interest as treatment 

modalities in CKD patients undergoing both conservative 

and dialysis treatment because of the low prevalence 

of adverse effects associated with their use. Although 

these antioxidant therapies seem promising, their use is 

controversial. Most studies demonstrating a benefit are 

either in vivo, isolated, or non-holistic studies. Large-scale 

randomized controlled trials (RCTs) are lacking for most 

of these compounds. Currently, there are ongoing trials for 

6 www.krcp-ksn.org

Kidney Res Clin Pract   [Epub ahead of print]



various antioxidants including resveratrol, NAC, coenzyme 

Q10, tocopherols, and curcumin. Table 1 describes various 

therapies that have shown promise and/or are under 

investigation [61–64,67,68,88–100].

Conclusion

There is an abundance of crosstalk between pathways of 

inflammation and oxidative stress. Both inflammation and 

oxidative stress have been implicated in various pathological 

systems that are prevalent in CKD, leading to progressive 

patient deterioration. Due to the complex nature of oxidative 

stress and the numerous molecular pathways involved, poly-

pharmacotherapy with antioxidants might be effective in 

CKD patients. Many compounds have shown a beneficial 

role in reducing oxidative stress due to their free radical 

scavenging properties, indirect antioxidant properties, or 

anti- inflammatory actions. However, the most significant 

limitations of most of the relevant studies are small sample 

size and short-term follow-up. Hence, none of these molecules 

are routinely used in clinical practice. Thus, well-organized 

RCTs and comparative studies with long-term follow-up are 

warranted. 
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Table 1. Potential antioxidant therapeutics in CKD
Therapy Rationale for use Role in CKD References
NAC Essential precursor for reduced glutathione, which 

further detoxifies reactive species by enzymatic or 
nonenzymatic reactions

Reduces the levels of serum oxidative stress 
biomarkers such as MDA and anti-MDA

[88]

Vitamin C Superoxide anion and hydroxyl radical scavenger, 
vitamin E regeneration

Inhibits lipid peroxidation and reduces endothelial 
dysfunction

[69,70]

Vitamin E A lipid-soluble antioxidant that scavenges peroxyl 
radical

Increases level of serum NO and activities of 
erythrocytic SOD and catalase, decreases serum 
MDA

[68]

Vitamin B Inhibits formation of AGEs Decreases disease progression and albuminuria [89]
Vitamin D Causes hypercalcemia and hyperphosphatemia in 

CKD
Slows progression to ESRD [90]

Allopurinol Xanthine oxidase inhibitor Decreases uric acid level and cardiovascular risk 
and slows progression of renal disease

[91]

GKT137831 Dual inhibitor of Nox1 and Nox4 Attenuates glomerular structural changes, podocyte 
loss, ECM accumulation, and albuminuria

[61,62]

APX-115 Pan-Nox inhibitor Decreases oxidative stress and albuminuria 
and preserves creatinine level. Also inhibits 
mitochondrial and peroxisomal dysfunction

[63,64]

BARD Activator of Nrf2 Increases estimated glomerular filtration rate and 
preserves kidney function

[67]

L-arginine Precursor to NO and maintains endothelial function Plays a protective role in ischemic acute renal failure [92]
L-carnitine Transporter of long-chain fatty acid chains across 

the mitochondrial inner membrane, protects 
membrane structures

Increases glutathione level and glutathione 
peroxidase activity and decreases MDA level

[93,94]

Coenzyme Q10 Highly lipophilic molecule localized in mitochondria 
that prevents membrane lipid peroxidation

Improves mitochondrial function and decreases 
oxidative stress

[95,96]

Omega-3 PUFA Include DHA and EPA and possess anti-inflammatory 
properties

Reduces the inflammatory markers IL-6, IL-1β, 
TNF-α, and CRP

[97]

Curcumin Used as antioxidant, anti-inflammatory, antibacterial, 
and antimicrobial reagent

Attenuates proteinuria, TGF-β, and IL-8 [98,99]

Resveratrol Directly scavenges ROS and modulates the 
expression and activity of antioxidant enzymes

Strong anti-inflammatory and antioxidant effects [100]

AGE, advanced glycation end products; BARD, bardoxolone methyl; CKD, chronic kidney disease; CRP, C-reactive protein; DHA, docosahexanoic acid; ECM, 
extracellular matrix; EPA, eicosapentanoic acid; ESRD, end-stage renal disease; IL, interleukin; NAC, N-acetyl cysteine; NO, nitric oxide; Nox, nicotinamide 
adenine dinucleotide phosphate oxidase; Nrf2, nuclear factor erythroid 2-related factor 2; MDA, malondialdehyde; PUFA, polyunsaturated fatty acid; ROS, 
reactive oxygen species; SOD, superoxide dismutase; TGF-β, transforming growth factor-β; TNF, tumor necrosis factor.
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