ELSEVIER

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Single Cell Line

Generation of an induced pluripotent stem cell line (CSS012-A (7672)) carrying the p.G376D heterozygous mutation in the TARDBP protein

Angela D'Anzi^a, Filomena Altieri^a, Elisa Perciballi^a, Daniela Ferrari^b, Barbara Torres^c, Laura Bernardini^c, Serena Lattante^d, Mario Sabatelli^e, Angelo Luigi Vescovi^{a,b,*}, Jessica Rosati^{a,*}

^a Cellular Reprogramming Unit, Fondazione I.R.C.C.S. Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013 San Giovanni Rotondo, Foggia, Italy

^b Biotechnology and Bioscience Department, Bicocca University, Piazza della Scienza 2, 20126 Milan, Italy

^c Medical Genetics Unit, Fondazione I.R.C.C.S. Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013 San Giovanni Rotondo, Foggia, Italy

^d Medical Genetics Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Section of Genomic Medicine, Department of Health Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, Rome, Italy

^e Neurology Unit, NeMO Clinical Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Section of Neurology, Department of Neurosciences, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, Rome, Italy

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative condition with phenotypic and genetic heterogeneity. It is characterized by the selective vulnerability and the progressive loss of the neural population. Here, an induced pluripotent stem cell (iPSC) line was generated from dermal fibroblasts of an individual carrying the p.G376D mutation in the TDP-43 protein. Fibroblasts were reprogrammed using non-integrating episomal plasmids. There were no karyotype abnormalities, and iPSCs successfully differentiated into all three germ layers. This cell line may prove useful in the study of the pathogenic mechanisms that underpin ALS syndrome.

1. Resource Table

Please fill in right-hand column of the table below. All information requested in the table is MANDATORY, except where otherwise indicated. Manuscripts with incomplete or incorrect information will be sent back to author.

Unique stem cell line identifier	CSSi012-A (7672)
	https://hpscreg.eu/cell-line/CSSi012-A
Alternative name(s) of stem cell line	GAFU cl.A
Institution	IRCCS Casa Sollievo della Sofferenza
Contact information of distributor	Jessica ROSATI; j.rosati@css-mendel.it
Type of cell line	iPSC
Origin	human
Additional origin info required for	Age: 38
human ESC or iPSC	Sex: Male
	Ethnicity: Caucasian/Italian
Cell Source	Dermal Fibroblasts
Clonality	Clonal
Associated disease	Amyotrophic lateral sclerosis
Gene/locus	TARDBP: $c.1127G > A$
	(continued on next column)

(continued)

Unique stem cell line identifier	CSSi012-A (7672) https://hpscreg.eu/cell-line/CSSi012-A
Date archived/stock date Cell line repository/bank Ethical approval	April 2019 HPSC registry Università Cattolica del Sacro Cuore A.1320/CE/2012

2. Resource utility

Amyotrophic lateral sclerosis is a neurodegenerative condition, and it is recognized as a very complex disease. iPSCs technology may be particularly important to elucidate this disorder, allowing us to deepen our knowledge on the mutated gene's pathological influence on brain development and function (Table 1).

3. Resource details

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative condition characterized by the selective vulnerability and the

* Corresponding authors at: Fondazione I.R.C.C.S. Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013 San Giovanni Rotondo, Foggia, Italy (A.L. Vescovi); Cellular Reprogramming Unit, Fondazione I.R.C.C.S. Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013 San Giovanni Rotondo, Foggia, Italy (J. Rosati). *E-mail addresses:* vescovia@gmail.com (A.L. Vescovi), j.rosati@css-mendel.it (J. Rosati).

https://doi.org/10.1016/j.scr.2021.102356

Received 29 March 2021; Received in revised form 8 April 2021; Accepted 11 April 2021 Available online 18 April 2021 1873-5061/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-ac-ad/4.0/).

Table 1

Characterization and validation.

Classification	Test	Result	Data
Morphology Phenotype	Photography Immunocytochemistry	Normal Staining of pluripotency markers: Oct4; Tral. 60	Fig. 1 <i>A</i> Fig. 1 <i>D</i>
	qRT-PCR	Expression of pluripotency markers: OCT4, LIN28, L-MYC, KLF4_SOX2	Fig. 1 <i>E</i>
Genotype	Karyotype (G-banding) and resolution	46 XY, Resolution 450–500	Fig. 1 <i>I</i>
Identity	STR analysis	19 sites tested, all matched	With Authors
Mutation analysis (IF APPLICABLE)	Sequencing	Heterozygous mutation	Fig. 1 <i>B</i>
Microbiology and virology	Mycoplasma	Mycoplasma tested by N-Garde Mycoplasma PCR kit (EuroClone) is Negative.	Supplementary Fig. 1
Differentiation potential	Embryoid body formation and Teratoma formation	Genes expressed in embryoid bodies: SOX1, NESTIN, PAX6, EOMES, T, GATA4, FOXA2, SOX17 Proof of three germ layers formation.	Fig. 1F, G, H
List of recommended germ layer markers	Expression of these markers has to be demonstrated at mRNA	Ectoderm: SOX1, NESTIN, PAX6, FABP, SLC1A3; Mesoderm: EOMES, T; Endoderm: GATA4, FOXA2, SOX17.	Fig. 1G: qRT- PCR
Donor screening (OPTIONAL) Genotype	HIV 1 + 2 Hepatitis B, Hepatitis C Blood group	N/A N/A	ì
additional info (OPTIONAL)	genotyping HLA tissue typing	N/A	

progressive loss of the neural population (1). It affects 1-1.8/100,000 individuals worldwide, and the number of cases is projected to increase as the population ages. Despite the significant advances in the understanding of the molecular and the genetic aspects of ALS, the causes and the mechanisms of the neurodegenerative process typical of this disease are still unknown. Among the numerous defective genes associated with ALS, we focused our attention on the TARDBP gene (transactive response DNA binding protein) (2). Fibroblast cells were isolated from a patient with familial ALS carrying the missense c.1127G > A variant in the TARDBP gene. Skin biopsy was performed six months after disease onset, when the patient was 38 years old. The patient had a spinal onset and a flail arm phenotype. The disease showed an aggressive course, and the patient underwent tracheostomy 15 months after the onset. Death occurred six years after tracheostomy at the age of 44. iPSCs were generated by a non-integrating episomal plasmid-based method through expression of the reprogramming factors oct4, sox2, klf4, l-myc, lin28 and p53 shRNA (3). iPSC colonies were manually picked and expanded in culture over several passages for further characterisation. The established iPSC line showed typical human stem cell-like morphology as judged by brightfield microscopy (Fig. 1A). Sequencing analysis confirmed the presence of the missense TARDBP variant found in the parental fibroblast line (Fig. 1B). Quantitative real-time PCR (qRT-PCR) analysis confirmed that the reprogramming factors were no longer

present in iPSCs after ten passages using, as positive control, the fibroblasts after one week from episomal nucleofection (Fig. 1C). iPSC line (pVII) expressed the pluripotency marker OCT4 and the endogenous cell surface marker TRA-1-60, as shown by immunofluorescence staining (Fig. 1D). The expression of endogenous stemness markers lin28, oct4, klf4, sox2, L-myc was detected by qRT-PCR after ten passages, using fibroblast cells as negative control (Fig. 1E). Mechanically splitted iPSC colonies, at 10th passage, spontaneously differentiated into embryoid bodies, representative of the three embryonic germ layers (Fig. 1F), as confirmed through qRT-PCR in which the gene expression was calculated by comparing the embryoid bodies with iPS cells (Fig. 1G). Furthermore, the teratoma assay demonstrated the pluripotent potential of the iPS cells, after XIV passages, to differentiate into endoderm, mesoderm and ectoderm (Fig. 1H), in vivo. Short tandem repeat (STR) analysis confirmed that parental fibroblasts and iPSCs (pXI) were both from the same patient. Chromosomal analysis showed a normal karyotype (46, XY), at 7th passage (Fig. 1I). iPS cell line was negative for Mycoplasma contamination (Supplementary Fig. 1).

4. Materials and methods

4.1. Fibroblast culture and reprogramming

Fibroblasts were cultured in Dulbecco's Modified Eagle Medium High Glucose supplemented with 20% FBS, 2 mM L-Glutamine, 100 U/ ml Penicillin-Streptomicin and 1 × Non-Essential Amino Acids (Sigma Aldrich) at 37 °C, 5% CO₂. 1×10^5 fibroblasts were nucleofected with 4D-NucleofectorTM X unit (Lonza), FF113 program, using P2 buffer with a mix of the episomal plasmids pCXLE-hUL (Addgene #27080), pCXLEhSK (Addgene #27078) and pCXLE-hOCT4-shp53 (Addgene #27077). Seven days after nucleofetion, fibroblasts were plated on Matrigel (Corning) and cultured in Nutristem XF medium (Biological Industries). The hiPSC colonies were picked according to their hESC-like colony morphology and expanded under feeder-free conditions. Absence of mycoplasma contamination was verified using N-Garde Mycoplasma PCR kit (EuroClone). After ten passages, the absence of the exogenous reprogramming factors was confirmed by qRT-PCR.

4.2. Embryoid body and teratoma formation assays

The hiPSc were picked and plated in a Petri dish in floating conditions. Nutristem-XF medium was gradually switched with DMEM F-12, 20% Knock-out serum replacement (Gibco), 0.1 mM β -mercaptoethanol, 1 \times NEAA, 50 U/ml Penicillin-Streptomicin, 2 mM l-glutamine in 3 days. Fourteen days later, EBs were collected and RNAs were extracted. For teratoma formation, hiPSCs derived from six well plates, combined with a Matrigel substrate, were injected into the flank of nude mice. After 1 month, teratomas were collected for histological analysis.

4.3. Real-time PCR analysis

Total RNAs were isolated using Trizol reagent (Life Technology) following the manufacturer's recommendations and cDNA synthesized using the High capacity cDNA RT (Life Technology). qPCR analysis was performed in three minimum independent biological experiments. Three germ layers were analyzed through TaqMan primers (Table 2), pluripotency markers through Sybergreen primers (Table 2). The expression ratio of the target genes was calculated by using the 2- $\Delta\Delta$ Ct method, considering β -ACTIN as the reference gene.

4.4. STR analyses

DNAs of fibroblasts and iPSCs were extracted by Dneasy blood and tissue kit (QIAGEN). PCR amplification of 19 distinct STRs (D13S252, D13S305, D13S634, D13S800, D13S628, D18S819, D18S535, D18S978, D18S386, D18S390, D21S11, D21S1437, D21S1409, D21S1442,

Fig. 1. Characterization of CSSi012-A (7672). A. Phase contrast image of the iPSC line morphology. B. DNA sequencing analysis of (TARDBP): c.1127G>A mutation. Green arrow indicate mutation site. C. Transgene expression analysis through RT-PCR demonstrates the loss of episomal vectors during amplification. D. Representative immunofluorescent picture of IPSCs showing the expression of stem cell markers such as OCT-4 (green) and TRA-1-60 (red), nuclei were stained with Hoechst 33342 (blue). E. Expression analysis of stemness markers in iPSCs with respect to fibroblasts used as reference. F. Phase contrast image of embryoid bodies. G. Expression analysis of differentiation markers in the embryoid bodies. H. Teratoma showing ectodermal, mesodermal and endodermal differentiation. I. Cytogenetic analysis showing a normal karyotype (46, XY).

Table 2

Reagents details.

	Antibody	Dilution	Company Cat #	RRID
Pluripotency	Rabbit anti-	1:100;	Life technologies	RRID: AB
Markers	OCT4;	1:100	(A13998); Life	2534182;
	Mouse anti-		technologies	RRID:
	TRA-1-60		(411000)	AB_2533494.
Secondary	anti-Rabbit	1:1000;	Invitrogen	RRID:
antiboales	AlexaFillor	1:1000e.g. 1:500	(A11034); Invitrogen	AB_25/021/;
	400, unit- Mouse	1.500	(A21422)	AB 2535844
	AlexaFluor		(1121 (22))	110_2000011
	555			
	Primers			
SyBr green	Target	Size of	Forward/	
Primers used		band	Reverse primer	
for qPCR	aOCT4	70 150 hr	(5'-3') Funda CATT TCA	
Episoniai genes	20014	70–130 <i>bp</i>	AAC TGA GGT	
			AAG GG	
			Rev: TAG CGT	
			AAA AGG AGC	
			AAC ATA G	
	eKLF4	70–150 bp	Fwd: CCA CCT	
			CGC CTT ACA	
			CAT GAA GA	
			AAA AGG AGC	
			AAC ATA G	
	eLIN28	70–150 bp	Fwd: AGC CAT	
		•	ATG GTA GCC	
			TCA TGT CCG C	
			Rev: TAG CGT	
			AAA AGG AGC	
	A MYC	70 150 hr	AAC ATA G	
	eL-MIYC	70–150 <i>bp</i>	GAA GAG GAT	
			GGC TAC	
			Rev: TTT GTT	
			TGA CAG GAG	
			CGA CAA T	
	eSOX2	70–150 bp	Fwd: TTC ACA	
			TGT CCC AGC	
			ACT ACC AGA	
			TCA CAC CAC	
			CGA CAA T	
Pluripotency	OCT4	70–150 bp	Fwd: CCC CAG	
Markers		1	GGC CCC ATT	
			TTG GTA CC	
			Rev: ACC TCA	
			GTT TGA ATG	
			CAT GGG AGA	
	111129	70 150 hn	GC Furd: CCC CAC	
	LINZO	70–150 bp	GGC CCC ATT	
			TTG GTA CC	
			Rev: ACC TCA	
			GTT TGA ATG	
			CAT GGG AGA	
			GC	
	L-MYC	70–150 bp	Fwd: GCG AAC	
			CCA AGA CCC	
			Rev: CAG GGG	
			GTC TGC TCG	
			CAC CGT GAT G	
	SOX2	70–150 bp	Fwd: TTC ACA	
			TGT CCC AGC	
			ACT ACC AGA	
			Rev: TCA CAT	
			GTG TGA GAG	
			GC	
	β-Α.Γ.ΤΙΝ		00	
	P 1101111			

Table 2 (continued)

Antibodies used for immunocytochemistry/flow-cytometry				
	Antibody	Dilution	Company Cat #	RRID
House-Keeping		70-	Fwd: GGC ATC	
Genes		150bp500bp	CTC ACC CTG	
			AAG TA	
			Rev: GGG GTG	
			TTG AAG GTC	
			TCA AA	
TaqMan primers used for qPCR	Target		Probe	
Differentation markers '	SOX1		Hs01057642_s1	
	NESTIN		Hs04187831_g1	
	PAX6		Hs00240871_m1	
	Т		Hs00610080_m1	
	EOMES		Hs00172872_m1	
	GATA4		Hs00171403_m1	
	FOXA2		Hs00232764_m1	
	SOX17		Hs00751752_s1	
	β -ACTIN		Hs 99999903_m1	

D21S1435, D21S1446, DXS6803, HPRT, DXS1187) was carried out using the QST*Rplusv2 kit (Elucigene Diagnostics), PCR products were separated on an ABI Prism 3130 DNA sequencer and analyzed by GeneMapper version 4.0 (Applied Biosystems).

4.5. Sequencing

Genomic DNA was extracted from iPSCs and fibroblasts using ReliaPrepTM Blood gDNA Miniprep System. TARDBP exon 6 was amplified by PCR using the following primers: Forward: 5-GACTGAAA-TATCACTGCTGCTGTT-3, Reverse: 5'-GATCCCCAACCAATTGCTGC-3'. The amplicon was sequenced by BigDye terminator v.3.1 Cycle Sequencing kit on ABI 3130XL Genetic Analyzer.

4.6. Karyotype analysis

iPSCs were cultured in Nutristem XF medium for 2–3 days. Karyotype analysis of metaphase chromosomes was performed using Gbanding. Fifteen metaphases were counted and three karyograms analyzed.

4.7. Immunofluorescence staining

Cells were fixed using 4% paraformaldehyde for 20 min at room temperature and blocked in PBS containing 20% Normal Goat Serum. 0.1% Triton X-100 was used for 30 min for only OCT4 staining. Next, primary antibodies diluted in 5% BSA, were incubated O/N at 4 °C. After washing, Alexa-Fluor-conjugated secondary antibodies were added for 1 h at room temperature. Cellular nuclei were stained with Hoechst. Microphotographs were taken using a Nikon C2 fluorescence microscope.

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Jessica Rosati reports financial support was provided by Italian Ministry of Health.

Acknowledgement

This work was supported by grant from the Italian Ministry of Health, Ricerca Corrente 2019/2020 to JR.

org/10.1016/j.scr.2021.102356.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.