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Witnesses of coherence and dimension from multiphoton indistinguishability tests
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Quantum coherence marks a deviation from classical physics, and has been studied as a resource for metrology
and quantum computation. Finding reliable and effective methods for assessing its presence is then highly
desirable. Coherence witnesses rely on measuring observables whose outcomes can guarantee that a state is
not diagonal in a known reference basis. Here, we experimentally measure a type of coherence witness that
uses pairwise state comparisons to identify superpositions in a basis-independent way. Our experiment uses a
single interferometric setup to simultaneously measure the three pairwise overlaps among three single-photon
states via Hong-Ou-Mandel tests. Aside from coherence witnesses, we show the measurements also serve as a
Hilbert-space dimension witness. Our results attest to the effectiveness of pooling many two-state comparison
tests to ascertain various relational properties of a set of quantum states.
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I. INTRODUCTION

Quantum coherence is a resource for quantum metrolog-
ical advantage and quantum computational speedup, and is
central to phenomena such as superfluidity, superconduc-
tivity, and Bose-Einstein condensation [1,2]. Its importance
has inspired resource-theoretical approaches for its identifi-
cation and quantification, with the introduction of the idea
of coherence witnesses [3–5]. These are observables whose
expectation value provides evidence of superposition or, more
precisely, that a quantum state cannot be diagonal in a given
reference basis.

In quantum optics, it is possible to create superposition
states of the various degrees of freedom of photons [6]: po-
larization, path [7], transverse mode structure [8–12], time of
arrival [13–16], frequency [17], etc. This flexibility, associated
with their fast propagation and resistance to decoherence, has
resulted in the use of photons for tests of the foundations of
quantum theory [16,18,19], demonstrations of cryptographic
key distribution [11,15,20–22], and other quantum commu-
nication protocols [23]. Furthermore, photons represent a
significant platform for quantum sensing [24] and quantum
imaging [25]. Photons are the perfect information carriers to
connect different nodes of a distributed quantum computer,
and may even yield scalable, fully photonic quantum comput-
ers [26].
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For many applications, it is important to have photons
which are as indistinguishable as possible. The degree of
indistinguishability of two photons can be measured by one
of the simplest linear-optical devices: a balanced beam split-
ter (BS). The famous Hong-Ou-Mandel (HOM) effect [27]
states that perfectly indistinguishable photons will always
leave the balanced BS bunched through the same output port.
Various multimode and multiphoton generalizations of the
HOM effect have been proposed [28–35]. Interestingly, an
intermediate model of quantum computation was proposed
that only uses the interference of multiple single photons in
a multimode, linear interferometer [36,37]. If we accept some
reasonable computational complexity assumptions, these so-
called boson sampling devices were shown to be hard to
simulate by classical computers [38], representing a possible
approach to demonstrate quantum computational advantage
[39,40]. Recently, a theoretical framework was established to
use information provided by multiple HOM tests to ascertain
the degree of multiphoton indistinguishability [41–43]. HOM
experiments are very versatile state-comparison tools, as they
provide information on a relational quantity (the overlap),
independently on how it is physically encoded in different
photonic degrees of freedom [44,45]. HOM tests are a phys-
ical, photonic implementation of the abstract quantum circuit
known as a SWAP test [46–49]. This approach provides a
direct advantage for such implementation. Indeed, HOM tests
permit to perform SWAP tests with no need for photon-
photon interactions, thus not requiring challenging optical
nonlinearities.

In this work we extend the cornerstone role of HOM
tests by showing how we can pool the information from
multiple such tests to establish important relational proper-
ties of a set of states. We use a single interferometric setup

2643-1564/2021/3(2)/023031(10) 023031-1 Published by the American Physical Society

https://orcid.org/0000-0001-7111-0272
https://orcid.org/0000-0003-2582-9918
https://orcid.org/0000-0003-3471-2252
https://orcid.org/0000-0003-1715-245X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.023031&domain=pdf&date_stamp=2021-04-09
https://doi.org/10.1103/PhysRevResearch.3.023031
https://creativecommons.org/licenses/by/4.0/


TAIRA GIORDANI et al. PHYSICAL REVIEW RESEARCH 3, 023031 (2021)

FIG. 1. Polyhedron C of overlaps compatible with diagonal states, and quantum violations. (a) Five-vertex polyhedron C in the space of
three overlaps �r = (rAB, rBC, rAC ), corresponding to states which are diagonal in a single basis. The convex volumes outside of C correspond
to coherent, nondiagonal states. (b) The convex body of overlaps corresponding to quantum states (pink) includes the classical polyhedron C
(cyan). (c) The convex body Qb (blue) corresponds to overlaps obtainable from three states spanning a two-dimensional Hilbert space, and is
a strict subset of Q. The part of Q outside of Qb (pink) corresponds to overlaps among states spanning a Hilbert space of dimension d = 3.

to measure the three two-photon overlaps of three single-
photon states. We then use the theoretical results of [42] to
formulate coherence and dimension witnesses for the case
of three states produced by a physical single-photon source.
We show that for especially prepared polarization states, our
pooled HOM measurements can be used to witness quantum
coherence in a basis-independent way, in contrast with basis-
dependent witnesses proposed previously, e.g., in [3–5,50].
For this, we tuned the two-photon indistinguishabilities to
suitable, intermediate values, which are provably unreachable
by coherence-free, diagonal states in any single basis. We
also prepare time-of-arrival wave packets and measure overlap
values that work as a dimension witness [42] that guarantees
that the states necessarily span a three-dimensional Hilbert
space. Such dimension witnesses are important in quantum
cryptography, where the accidental use of unwanted degrees
of freedom represents a security threat [51].

II. THEORY OF COHERENCE AND DIMENSION
WITNESSES FROM OVERLAPS

If we restrict quantum mechanics to states and mea-
surements diagonal in a single, reference basis, we recover
classical theory. Finding ways to ascertain the presence of
superpositions is hence a fundamental problem. Coherence
witnesses [3–5] are observables which can attest that a state
is not diagonal in a given, known reference basis. A novel ap-
proach to witness superpositions was introduced in Ref. [42].
This method is able to assess coherence without any assump-
tion on the reference basis. More precisely, [42] shows how
pairwise overlaps among a set of n states can be used to guar-
antee that those states cannot be diagonal in any single basis.
Moreover, the tests are experimentally friendly, as overlaps
can be estimated by a simple quantum circuit called the SWAP
test [46,47].

Let us now recall the theory behind the simplest setup to
witness quantum coherence. Consider three (generally mixed)
quantum states ρA, ρB, and ρC , and assume they are coher-
ence free, i.e., they are diagonal in a single basis formed by

eigenvectors {|φi〉} of a reference observable Ô. The pairwise
overlap rAB ≡ tr(ρAρB) is then just the probability of obtain-
ing the same outcome v(Ô) when observable Ô is measured
separately on states ρA and ρB (and similarly for the other two
overlaps rAC and rBC). Now, consider a single-shot experiment
which measures Ô separately on ρA, ρB, and ρC . Let us de-
scribe the states associated with the obtained measurement
outcomes using the three overlaps �r = (rAB, rAC, rBC ). It is
clear that if two of the overlaps are 1, then the third overlap
also must equal 1, by the transitivity of equality. So, there
are three possibilities for �r = (rAB, rAC, rBC ) which are logi-
cally impossible: {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. The possible
outcomes must then be described by one of the five allowed
states �r ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.

So far, we have only illustrated a single-shot experiment.
After performing many measurements of Ô on the three states,
we will in general obtain probabilistic results, described by
�r which must lie in the convex hull of the five allowed,
deterministic �r we have listed above. This polyhedron C
corresponding to overlaps obtainable from three diagonal,
coherence-free states can be seen in Fig. 1(a). Note that aside
from the trivial inequalities satisfied by the overlaps (ri j �
0, ri j � 1), there are three nontrivial new inequalities:

rAC � rAB + rBC − 1, (1)

rAC � rAB − rBC + 1, (2)

rAC � rBC − rAB + 1. (3)

To recapitulate: The three inequalities above are a conse-
quence of simple logic, and refer to the probabilities of
obtaining the same outcome when measuring observable Ô
independently on pairs of states, all of which assumed to be
simultaneously diagonal in the basis of Ô. The latter assump-
tion does not hold for all quantum states. Indeed, quantum
mechanics can violate the above inequalities. While this is
logically impossible by simultaneous, direct measurements of
Ô on the three states, as we will soon see it is possible to
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FIG. 2. Conceptual scheme for measuring coherence and dimension witnesses. (a) Triangle graph C3 represents states (vertices) and overlap
measurements (edges). Overlaps ri j = tr(ρiρ j ) are measured via pairwise HOM tests. (b) All overlaps in C3 can be simultaneously measured
using this six-mode linear-optical network. Each overlap is estimated via the probability of bunching at the indicated output modes. (c) Bloch-
sphere representation of the one-qubit states that maximally violate inequalities (1)–(3). Experimentally, qubits are encoded in the polarization
degree of freedom of single-photon states. (d) Pictorial model of the time-domain degree of freedom of wave packets associated with the
three photons. Tuning of the relative delays allows for a violation of the dimension witness described in the main text. (e) Three-photon states
are produced via two-pair generation by spontaneous parametric down conversion (SPDC) in a beta-barium borate (BBO) crystal pumped at
392.5 nm. One photon serves as the trigger signal and the others, labeled A, B, and C, are prepared for the test. The first interferometer layer
in (b) is realized with bulk beam splitters made by a half-wave plate (λ/2) and a polarizing beam splitter (PBS) (see the legend below). Then,
photons are coupled into single-mode fibers (SMF), while both polarization and temporal relative delays can be manipulated via additional
half-wave plates, polarization controllers (PC), and delay lines. In the end, three in-fiber beam splitters (FBS) connect photon pairs AB, AC,
and BC so as to estimate the overlaps. Each output of FBS is connected to an approximate number-resolving detector (ANRD), consisting of
a further FBS and two avalanche-photodiode detectors (APD).

do an indirect measurement of the three overlaps, with results
that may violate inequalities (1)–(3). In this sense, a violation
serves as a basis-independent coherence witness of the three
states.

In Fig. 1(b) we have a geometrical representation of
the polyhedron C of overlap triples arising from diagonal,
coherence-free states, enclosed by the set Q of overlap triples
arising from general quantum states. The set Q is defined by
three bounds, which can be written

rAC � (
√

rABrBC −
√

(1 − rAB)(1 − rBC ))2 (4)

if rAB + rAC > 1, and rAC � 0 otherwise, together with two
equivalent expressions obtained by permutations of the in-
dices A, B, and C. The derivation of these inequalities can
be found in Ref. [42].

Points �r contained in Q but not in C correspond to triplets
of states displaying quantum coherence. The points in Q
farthest from the boundary of C correspond to a maximal
violation of inequalities (1)–(3), and one such example can
be obtained by three one-qubit states separated by 60◦ on a
great circle of the Bloch sphere [see Fig. 2(c)].

The measurement of a set of two-state overlaps can also
be used as a dimension witness, establishing a lower bound
for the dimension of the Hilbert space spanned by a set of
states. This is possible because the set of overlaps �r attainable
by three states spanning a two-dimensional Hilbert space is
strictly smaller than the set attainable by states spanning a
three-dimensional Hilbert space. If three states span only a
two-dimensional Hilbert space, inequality (4) holds always,
rather than only when rAB + rAC > 1 (and the same holds for
the two other inequalities obtained by permutation of indices)
[42]. This defines a new region Qb ⊂ Q. Intuitively, this hap-

pens because the point �r = (0, 0, 0) is no longer allowed:
three single-qubit states cannot be mutually orthogonal. This
can be seen in Fig. 1(c), where we plot a comparison between
Q and Qb. It is clear that Qb differs from Q in the vicinity of
point (0,0,0).

Therefore, observing a set of overlaps corresponding to a
point outside of Qb serves as a witness that the Hilbert space
spanned by the three states is three dimensional. This type of
photonic dimension witnesses may find applications in quan-
tum machine learning; recognizing linear dependence among
a set of quantum states allows for a compressed description of
the data (see, e.g., [52,53]).

III. EXPERIMENTAL SETUP AND RESULTS

In the more abstract formalism of quantum circuits with
qubits, the overlap rAB of two given states ρA, ρB can be
measured by projecting onto the symmetric subspace, which
can be done by a simple quantum circuit known as a SWAP
test [46]. Specifically for photonics, there is a simple way to
implement SWAP tests, namely, via two-photon, Hong-Ou-
Mandel interferometric experiments [47]. In a HOM test, two
photons impinge on different input ports of a 50/50 beam
splitter, and the probability that photons come out bunched
in a single output port pb is given by pb = (1 + rAB)/2
[41,43,47]. The needed HOM tests can be simultaneously
performed using a single multimode interferometric setup.
This is exemplified for the case of simultaneous estimation of
three pairwise overlaps of three states in Figs. 2(a) and 2(b).
This provides the full data required to test the coherence wit-
ness using inequalities (1)–(3), and the dimensionality witness
described before.
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A. Experimental apparatus

Let us now briefly describe the platform that enables
the implementation of coherence and dimension witnesses
using photonic states. The quantum states describe three pho-
tons generated by a spontaneous parametric down-conversion
(SPDC) source, comprising a BBO crystal operating at
785 nm. We focus on the generation of two photon pairs, with
one photon being used as to herald the injection of the other
three in the interferometer of Fig. 2(b) (see Appendix A).
Measurements record fourfold coincidences of the herald
and signal photons. The apparatus is described schematically
in Fig. 2(e). Each beam splitter in the first interferometer
layer is realized with a half-wave plate (λ/2) followed by
a polarizing beam splitter (PBS). Then, we have a further
half-wave plate on each beam reflected by the PBS, and po-
larization controllers (PC) on the single-mode fiber (SMF)
to tune pairwise overlaps with polarization (see Appendix B
for further details). After these stages, delay lines allow us
to control the temporal overlaps between wave packets. The
final in-fiber beam splitters (FBSs) implement the three Hong-
Ou-Mandel tests needed to calculate the three overlaps. The
detection stage employs 12 + 1 = 13 single-photon detectors.
Each output of FBSs in Fig. 2(e) is split into two further
auxiliary modes in order to obtain an approximate photon-
number-resolving detector. This is required, as the overlap is
estimated from the probability of bunching, i.e., the probabil-
ity that two photons exit the FBS bunched in a single-output
port.

B. Pairwise overlap model

Quantum states are commonly encoded in different degrees
of freedom of single photons. Here, we exploit the polar-
ization for encoding qubits, using temporal relative delays
to enlarge the dimension of the Hilbert space describing the
systems. Hence, for our aims, we need to provide an explicit
expression for the pairwise overlaps in terms of these two
degrees of freedom. We model each overlap as a product of
three factors: the overlap between the polarization vectors; the
temporal overlap of the photons’ wave packets; and then a
quantity that accounts for overlaps of the remaining degrees
of freedom (e.g., in the frequency domain). For each pair of
photons connected by the graph of Fig. 2(a), we then have

ri j = Vi j |〈ei|e j〉|2|〈ψi(ti )|ψ j (t j )〉|2, (5)

where |ei〉 stands for the polarization state, |ψi(ti )〉 describes
the photon’s wave function in the time domain, and Vi j is the
integral corresponding to the overlap over other degrees of
freedom.

The maximal violation that witnesses coherence can be
obtained by three single-qubit states on a great circle of the
Bloch sphere [41] [see Fig. 2(c)]. By using the linear polarized
states {|H〉 , |V 〉} as a basis, one convenient choice of great
circle are states of the form |e(θ )〉 = cos θ |H〉 + sin θ |V 〉,
with θ ∈ [0, π/2). The overlap between two such states is
given by |〈e(θ )|e(φ)〉|2 = cos2(θ − φ). The states |e(θ )〉 can
be generated from the |H〉 := |e(0)〉 state by the application
of a single half-wave plate, whose action results in a rotation
of the vectors |ei〉 by an angle 2α, where α is the inclination of
the optical axis of the material with respect the |H〉 direction.

In our setup [see Fig. 2(e)], the three photons are prepared
in the state |H〉. To achieve that, we begin with a layer of
PBS that selects the photons by their linear polarization, and
for those photons in the reflected arms (e.g., which are in
the |V 〉 state) we compensate with a half-wave plate to set
them to |H〉. The axes of the half-wave plates are then fur-
ther rotated to generate single-qubit states with the desired
polarization overlaps. To ensure such level of control over
polarization states, it was necessary to take into account the
effect of single-mode fibers, which was done via a preliminary
compensation of the rotations induced by the input arms of
FBSs, Ui and Uj , respectively. This was achieved by imposing
Ui = eiφUj , where φ is a global phase, thanks to the in-fiber
polarization control in the setup.

The temporal contribution to ri j can be expressed as
|〈ψi(ti )|ψ j (t j )〉|2 = e−σi j (ti−t j )2

where σi j are the widths of
the mutual overlaps of single-photon spectra, modeled as
Gaussian. Both σi j and Vi j were estimated by preliminary
Hong-Ou-Mandel tests between the pairs, as discussed in
Appendix A. The temporal overlaps between photons are
controlled by suitable changes in the delay line positions. The
three independent temporal delays are calibrated to generate
logically allowed states.

C. Coherence witness using three polarization states

In Fig. 1(a) we show the polyhedron C of overlap triples
�r = (rAB, rBC, rAC ) compatible with three states diagonal in
a common basis. Our goal is to prepare the system in states
which lie outside one of the nontrivial faces of C: we pick
states that violate the face rAC = rAB + rBC − 1 of C, and
define Wc as the Euclidean distance of an overlap triple to that
face.

We can now investigate the conditions for which our pair-
wise overlap model (5) predicts the possibility of witnessing
coherence. To this end we express Wc as a function of the
parameters {β, γ } (the angles between state |B〉 and states
{|A〉, |C〉}, as in Fig. 2(c), and whose value also depends on
the Vi j and the temporal overlaps between wave packets. If we
now assume perfect synchronization of the three wave packets
(ti = t j for all pairs {i, j}), we have

Wc(β, γ ) = 1√
3
|1 − VAB cos2 β +

−VBC cos2 γ + VAC cos2(β − γ )|. (6)

In Fig. 3(a) we show the contour lines of values of Wc(β, γ ),
highlighting in purple the region that leads to triples outside
of C, i.e., for which Wc > 0. We estimate a maximum value
of Wc = 0.08 according to our model of the system. Note that
overlap triples in the white area cannot guarantee coherence,
as they are compatible with coherence-free states ∈ C.

Following this numerical investigation, we prepared four
sets of single-qubit polarization states corresponding to points
{S1, S2, S3, S4} in Fig. 3(a). Point S4 corresponds to a set of
three equal states, i.e., (β, γ ) = (0, 0), which is in C. We then
moved on to prepare states for which it is possible to witness
coherence: S1 corresponds to the pair (β, γ ) that leads to a
maximum violation of the coherence witness, while S2 and
S3 correspond to two sets of polarization configurations for
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(a) (b)

FIG. 3. Coherence witness of three-photon polarization states. (a) Amount of violation Wc(β, γ ) of inequality (1), expressed as the
Euclidean distance from the closest face of polyhedron C, as a function of the angles β (γ ) between states A-B (B-C) along a great circle
of the Bloch sphere. The purple area corresponds to outcome preparations for which we can witness coherence (Wc > 0). The surface was
calculated numerically from the shapes and visibility of the three Hong-Ou-Mandel dips measured during the preparation of the setup. Points
{S1, S2, S3, S4} result from suitably prepared polarization states. (b) Projection of the four experimental points on the plane perpendicular to
the face of C that saturates inequality (1) (see inset). The maximum Euclidean distance Wc to C is reached by S1. All the error bars have been
retrieved from propagating the Poissonian uncertainties associated to single-photon counts.

which we expected lower witness violations. We report the
sets of qubit states first according to the values of (β, γ ) in
Fig. 3(a), which were obtained from the experiments by the

relations |β| = arccos (
√

rAB
VAB

) and |γ | = arccos (
√

rBC
VBC

). Then,

we report the points in the three-dimensional space of the
overlaps, highlighting the position with respect to polyhedron
C and the quantum body Q. For easier visualization, we
project the points and the two borders of C and Q on the
plane perpendicular to the relevant face of C [see Fig. 3(b)].
The highest violation is by point S1, which was tailored to
maximize the distance to the closest face of C, thus confirm-
ing the agreement between our model and the experiment.
The distance from S1 to the closest boundary of C is Wc1 =
0.081 ± 0.014, which is positive by 5.7 standard deviations.
The values for S1 . . . S4 are reported in Fig. 3(b) and in
Table I. In Fig. 4 we report the three-photon output distribu-
tion corresponding to input configuration S1. The distributions
of the other polarization states have been included in
Appendix C.

D. Dimension witness from relative temporal delays

As discussed previously, our characterization of the regions
of allowed overlap triples (rAB, rBC, rAC ) can also be used as
a dimension witness. To that end we focus on a different
region than in the case of the coherence witness. Now, we

TABLE I. Measured overlaps and distance from coherence-free
polyhedron C. Overlaps {rAB, rBC, rAC} corresponding to the four sets
of states generated in the experiment. Column Wc is the Euclidean
distance from the closest face of polyhedron C, i.e., the amount of
violation of inequality (1).

rAB rBC rAC Wc

S1 0.648 ± 0.014 0.63 ± 0.01 0.14 ± 0.02 0.081 ± 0.014
S2 0.830 ± 0.008 0.624 ± 0.012 0.381 ± 0.012 0.041 ± 0.010
S3 0.828 ± 0.009 0.409 ± 0.021 0.167 ± 0.019 0.040 ± 0.017
S4 0.827 ± 0.011 0.701 ± 0.014 0.527 ± 0.013 0.000 ± 0.010

are interested in the difference between the regions accessible
by general quantum states (Q) and by states spanning a Hilbert
space which is at most two dimensional (Qb) [cf. Fig. 1(c)]. By
observing an overlap triple in Q but not in Qb, we confirm ex-
perimentally that the Hilbert space spanned by our three states
is necessarily three dimensional. As discussed previously, we
require a set of states for which inequality (4) is violated when
rAB + rBC � 1.

A simple choice for this purpose corresponds to three mu-
tually orthogonal states, unreachable if states do not span a
three-dimensional Hilbert space. Even though experimental
fluctuations mean that an exactly null overlap will never be

A
B

C

FIG. 4. Output probability distribution for set S1 of polariza-
tion states. Above: experimental data, where brighter colors indicate
bunched outcomes. The x axis reports the three-photon outcomes at
the output of the six-port interferometer. Outcomes associated with
photon pairs {(A, B), (B,C), (A,C)} are marked, respectively, with
red, blue, and green. The gray part of the distribution is insensitive
to two-photon interference and so it is irrelevant for the estimation of
overlaps. Below: expected distribution according to our model based
on preliminary measurements of Hong-Ou-Mandel dips. We consider
the total variation distance (TVD) as a quantifier of the agreement
with the theory. Error bars are computed propagating, via Monte
Carlo methods, the Poissonian uncertainties associated to photon
counts. We collected N ∼ 104 fourfold coincidence and we obtained
a TVD = 0.138 ± 0.005. In the inset, the three single-photon states
on the equator of the Bloch sphere.
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(a) (b)

FIG. 5. Dimension witness Wd . Wd is the minimum Euclidean distance from an overlap triple (rAB, rBC, rAC ) to the body Qb of triples
compatible with states spanning only a two-dimensional Hilbert space. (a) Wd as a function of the two relative time delays between the
three photons, in the presence of experimental imperfections. The purple area corresponds to Wd > 0, i.e., triples /∈ Qb. (b) Geometrical
representation of the set Qb (blue), and the set of overlap triples only reachable by states spanning a three-dimensional Hilbert space (magenta).
The plane in light blue includes the experimental datum and the green line segment (of length Wd ) connecting it to the closest point in Qb.

measured, our bounds enable us to rule out the possibility
of a smaller Hilbert-space span in a robust way, despite the
fluctuations.

In our experimental setup, high-dimensional states were
created by introducing delays between three single-photon
wave packets with identical polarizations [see Fig. 2(d)]. Our
dimension witness Wd is the distance between the resulting
overlap triple (rAB, rBC, rAC ) and the body Qb, of triples con-
sistent with states that span a two-dimensional Hilbert space.
Wd > 0 corresponds to points /∈ Qb. In Fig. 5(a) we show how
Wd depends on the two wave-packet delays. In Fig. 5(b) we
see that the resulting triple is clearly outside of Qb. In Table II
we report the resulting overlap triple retrieved from the three-
photon distribution shown in the Appendix C, resulting in a
distance Wd = 0.380 ± 0.019 to Qb. The measured overlap
triple is inconsistent with the hypothesis that states span only
a two-dimensional Hilbert space by ∼20 standard deviations.

IV. DISCUSSION

Whether or not a quantum state is a superposition depends,
of course, on the reference basis chosen. When we fix a
reference basis, coherence witnesses have been proposed as
a convenient way to detect superposition, using a simpler
setup than full state tomography. When we have three or more
states, however, the very geometry of their pairwise overlaps

TABLE II. Measured overlaps incompatible with states span-
ning a two-dimensional Hilbert space. We report the overlaps
measured for three time-delayed wave packets. Wd represents the
minimum Euclidean distance between the experimental point xexpt =
(rAB, rBC, rAC ) and the closest point of the body Qb of overlap triples
compatible with states spanning a two-dimensional Hilbert space.

rAB rBC rAC Wd

0.019 ± 0.021 0.041 ± 0.025 0.032 ± 0.02 0.380 ± 0.019

can be used to guarantee the presence of quantum coherence
in a basis-independent way. Here, we have experimentally
demonstrated this approach to witness quantum coherence via
pairwise overlap measurements on a set of three photonic
states. It would be interesting to develop further the theory
of such coherence witnesses, for example, by characterizing
how the amount of violation can quantify coherence, and its
usefulness in quantum computation. We have also used over-
lap measurements to demonstrate a Hilbert-space dimension
witness. Such witnesses can be useful in the analysis of quan-
tum key distribution schemes, where unwanted correlations in
a space of higher dimension can result in a security threat.

Our coherence and dimension witnesses rely on pooling
information from a set of two-state SWAP tests, which can
be conveniently implemented as Hong-Ou-Mandel tests in
a linear-optical setup. Our schemes can be extended in a
straightforward way to larger number of states. Furthermore,
the scheme is not limited to the presented encoding using
polarization and time. Thus, it can be also employed in a more
general scenario involving different degrees of freedom and
variable number of states. This suggests that our results may
find applications in near-term linear-optical computers using
SWAP test-based quantum algorithms for distance calcula-
tions and data clustering [52,54,55].
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FIG. 6. Scheme of the three-photon source. In the experiment,
we exploit two-photon pairs emission through spontaneous paramet-
ric down-conversion by a nonlinear crystal. Two photons in the pump
beam (in purple) are annihilated. Each of the two photons generate
a pair, marked with red and orange, respectively. The photons are
then split into four auxiliary arms to postselect the input state of the
experiment and perform the preliminary characterization of pairwise
indistinguishability.
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APPENDIX A: PRELIMINARY CHARACTERIZATION
OF THE SINGLE-PHOTON SOURCE

In this Appendix, we provide some further details re-
garding the three-photon state produced by the source of
the experiment. A pulsed laser at λ = 392.5 nm with mean
power of 580 mW generates two-photon pairs at λ = 785 nm
through type-II spontaneous parametric down-conversion pro-
cess (SPDC). Each pair is composed of two orthogonal
polarized photons, propagating in two different directions
(disks of the same color in Fig. 6). The two pairs are then split
into four modes by two polarizing beam splitter (PBS). This
operation allows us to postselect the state for the experiment,
in which we have three photons distributed in the modes A, B,
and C plus the trigger photon. Given the above arrangement
of the source, we can perform the HOM dip measurement,
namely, the recording of simultaneous clicks between single-
photon detectors at the output of a beam splitter with respect to
the relative time delay between two photons. This preliminary
operation enables us to quantify the actual indistinguishability
among photon pairs and to synchronize them for the state
manipulation needed by the experiment.

TABLE III. Parameters of the three HOM dips. In this table we
report the parameters of the fit for the three HOM dips performed in
the setup of Fig. 2(e) in the main text. The relative delays are here
expressed in terms of the displacement of the delay lines �x = c�t .

(i, j) Vi j σi j

(A, B) 0.944 ± 0.003 (8.7 ± 0.3) × 10−5 μm−2

(B,C) 0.835 ± 0.007 (7.0 ± 0.4) × 10−5 μm−2

(A,C) 0.80 ± 0.01 (6.2 ± 0.5) × 10−5 μm−2

In Table III we report the parameters of the HOM dips
retrieved from the measurements. The dip (A, B) is between
pairs generated by the same pump photon. Then, the HOM
test can be performed by recording twofold coincidence at the
outputs of the beam splitter in which A and B interfere. It is
worth noting that the other pairs (A, C) and (B, C) are made up
of photons belonging to different pairs, and dip measurements
need fourfold coincidence recording, the two beam-splitter
outputs plus the two remaining photons acting as heralding
signals. The data recorded twofold and fourfold coincidences
for different relative position of delay lines �xi j have been fit-
ted with the function C(�xi j ) = Ai j (1 − Vi j e−σi j�x2

i j ), where
Ai j is a constant, Vi j the dip visibility, and σi j , that takes into
account the dip’s width. The Vi js for (A, C) and (B, C) are
smaller than VAB. The reason is that the first two pairs involve
interference between photons from different pairs, and the
spatial and spectral correlations existing in the multiphoton
wave function bound the maximum degree of indistinguisha-
bility. This preliminary study furnishes the parameters for the
surface calculation reported in Figs. 3(a) and 5(a) in the main
text. Furthermore, there values are used to calculate the ex-
pected three-photon distributions used to retrieve the overlaps,
as we discuss in the next Appendix.

APPENDIX B: POLARIZATION CONTROL
OF THE PAIRWISE OVERLAPS

As reported in the main text, the overlap dependence
from the polarization degree of freedom is given by the term
|〈ei|e j〉|2 where |ei〉 is the polarization state at the inputs
of the beam splitter that performs the HOM test. The con-
trol over polarization to prepare states outside polyhedron
C is performed by a half-wave plate (λ/2) placed before
the beam-splitter operations. Then, the overlap dependence
from polarization becomes |〈ei|Uλ/2|e j〉|2, where Uλ/2 is the
transformation operated by the half-wave plate. Since in the
experimental apparatus we use in-fiber beam splitters (FBS) to
perform the HOM test, we have to take into account the effects
of the input fibers to the polarization of the single-photon
states. Indeed, the fiber performs a further transformation
that changes the polarization. Hence, the overlap expres-
sion becomes |〈ei|U †

i UjUλ/2|e j〉|2, where Ui and Uj are the
two different unitary transformations performed by the in-
put fiber of the FBS. By properly compensating the fiber’s
action via polarization controllers in the apparatus in such
way that Ui = eiφUj , we can rewrite the overlap expression as
|〈ei|U †

i UiUλ/2|e j〉|2 = |〈ei|Uλ/2|e j〉|2. Finally, we retrieve the
actual overlap in polarization between the two single-photon
states at the input of the FBS.

APPENDIX C: THREE-PHOTON DISTRIBUTIONS

The three pairwise overlaps {rAB, rBC, rAC} are obtained
from the three-photon distributions. More specifically, they
are retrieved from the recorded fourfold coincidences, i.e.,
three photons at the output of the interferometer of Fig. 2(e)
and the trigger photon. In Fig. 7 we report the distributions
for the states measured in the experiment. The overlaps are
inferred from the bunching probabilities, the probability to
find two photons in the same output of the in-fiber beam
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FIG. 7. Probability distributions of outputs for different preparations of polarization and time delays. Here, we report the three-photon
distributions at the output of the device. Above the experimental data, where brighter colors indicate bunched outcomes. Outcomes associated
with photon pairs {(A, B), (B,C), (A,C)} are marked, respectively, with red, blue, and green. The gray part of the distribution is insensitive
to two-photon interference and so it is irrelevant for the estimation of overlaps. Below the expected distribution according to our model based
on preliminary measurements of Hong-Ou-Mandel dips. For each distribution we calculate the total variation distance (TVD) with respect
to the theory. Error bars are computed propagating, via Monte Carlo methods, the Poissonian uncertainties associated to photon counts. For
each preparation we collected N ∼ 104 fourfold coincidences. States with zero relative delays and different polarization preparation: (a) zero
relative angles between qubit states, S4 in the main text (TVD = 0.122 ± 0.005); (b), (c) sets of polarization states S2 and S3 of the main text
(TVD = 0.152 ± 0.004, TVD = 0.120 ± 0.004, respectively); (d) distribution for single-photon states with the same polarization state but
different time delays for violating the dimension witness (TVD = 0.126 ± 0.005).

splitter (FBS), for each pair, highlighted by the colors red for
(A, B), blue for (B, C), and green for (A, C). These quantities
are estimated by additional beam splitter connected to each
output of the interferometer that perform an approximated
photon-number-resolving detector. Each distribution for dif-
ferent state preparations in polarization and time delays has
been compared with the expected one, calculated according

to the actual degree of indistinguishability of the source (see
previous Appendix). Furthermore, we have taken into account
also losses at propagation and detection stages to obtain a
more accurate model of the experimental data. The agreement
between the experimental distribution pexpt and the theory pth

has been quantified via the total variation distance (TVD),
defined as TVD = 1

2

∑
i |pexpt

i − pth
i |.
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